17 research outputs found

    Computing downward closures for stacked counter automata

    Get PDF
    The downward closure of a language LL of words is the set of all (not necessarily contiguous) subwords of members of LL. It is well known that the downward closure of any language is regular. Although the downward closure seems to be a promising abstraction, there are only few language classes for which an automaton for the downward closure is known to be computable. It is shown here that for stacked counter automata, the downward closure is computable. Stacked counter automata are finite automata with a storage mechanism obtained by \emph{adding blind counters} and \emph{building stacks}. Hence, they generalize pushdown and blind counter automata. The class of languages accepted by these automata are precisely those in the hierarchy obtained from the context-free languages by alternating two closure operators: imposing semilinear constraints and taking the algebraic extension. The main tool for computing downward closures is the new concept of Parikh annotations. As a second application of Parikh annotations, it is shown that the hierarchy above is strict at every level.Comment: 34 pages, 1 figure; submitte

    Monoid automata for displacement context-free languages

    Full text link
    In 2007 Kambites presented an algebraic interpretation of Chomsky-Schutzenberger theorem for context-free languages. We give an interpretation of the corresponding theorem for the class of displacement context-free languages which are equivalent to well-nested multiple context-free languages. We also obtain a characterization of k-displacement context-free languages in terms of monoid automata and show how such automata can be simulated on two stacks. We introduce the simultaneous two-stack automata and compare different variants of its definition. All the definitions considered are shown to be equivalent basing on the geometric interpretation of memory operations of these automata.Comment: Revised version for ESSLLI Student Session 2013 selected paper

    Integer Vector Addition Systems with States

    Full text link
    This paper studies reachability, coverability and inclusion problems for Integer Vector Addition Systems with States (ZVASS) and extensions and restrictions thereof. A ZVASS comprises a finite-state controller with a finite number of counters ranging over the integers. Although it is folklore that reachability in ZVASS is NP-complete, it turns out that despite their naturalness, from a complexity point of view this class has received little attention in the literature. We fill this gap by providing an in-depth analysis of the computational complexity of the aforementioned decision problems. Most interestingly, it turns out that while the addition of reset operations to ordinary VASS leads to undecidability and Ackermann-hardness of reachability and coverability, respectively, they can be added to ZVASS while retaining NP-completness of both coverability and reachability.Comment: 17 pages, 2 figure

    Bounded Context Switching for Valence Systems

    Get PDF
    We study valence systems, finite-control programs over infinite-state memories modeled in terms of graph monoids. Our contribution is a notion of bounded context switching (BCS). Valence systems generalize pushdowns, concurrent pushdowns, and Petri nets. In these settings, our definition conservatively generalizes existing notions. The main finding is that reachability within a bounded number of context switches is in NPTIME, independent of the memory (the graph monoid). Our proof is genuinely algebraic, and therefore contributes a new way to think about BCS. In addition, we exhibit a class of storage mechanisms for which BCS reachability belongs to PTIME

    The Emptiness Problem for Valence Automata over Graph Monoids

    Get PDF

    Scope-Bounded Reachability in Valence Systems

    Get PDF
    Multi-pushdown systems are a standard model for concurrent recursive programs, but they have an undecidable reachability problem. Therefore, there have been several proposals to underapproximate their sets of runs so that reachability in this underapproximation becomes decidable. One such underapproximation that covers a relatively high portion of runs is scope boundedness. In such a run, after each push to stack i, the corresponding pop operation must come within a bounded number of visits to stack i. In this work, we generalize this approach to a large class of infinite-state systems. For this, we consider the model of valence systems, which consist of a finite-state control and an infinite-state storage mechanism that is specified by a finite undirected graph. This framework captures pushdowns, vector addition systems, integer vector addition systems, and combinations thereof. For this framework, we propose a notion of scope boundedness that coincides with the classical notion when the storage mechanism happens to be a multi-pushdown. We show that with this notion, reachability can be decided in PSPACE for every storage mechanism in the framework. Moreover, we describe the full complexity landscape of this problem across all storage mechanisms, both in the case of (i) the scope bound being given as input and (ii) for fixed scope bounds. Finally, we provide an almost complete description of the complexity landscape if even a description of the storage mechanism is part of the input

    Algebraic dependency grammar

    Get PDF
    We propose a mathematical formalism called Algebraic Dependency Grammar with applications to formal linguistics and to formal language theory. Regarding formal linguistics we aim to address the problem of grammaticality with special attention to cross-linguistic cases. In the field of formal language theory this formalism provides a new perspective allowing an algebraic classification of languages. Notably our approach suggests the existence of so-called anti-classes of languages associated to certain classes of languages. Our notion of a dependency grammar is as of a definition of a set of well-constructed dependency trees (we call this algebraic governance) and a relation which associates word-orders to dependency trees (we call this algebraic linearization). In relation to algebraic governance, we define a manifold which is a set of dependency trees satisfying an agreement condition throughout a pattern, which is the algebraic form of a collection of syntactic addresses over the dependency tree. A boolean condition on the words formalizes the notion of agreement. In relation to algebraic linearization, first we observe that the notion of projectivity is quintessentially that certain substructures of a dependency tree always form an interval in its linearization. So we have to establish well what is a substructure; we see again that patterns proportion the key, generalizing the notion of projectivity with recursive linearization procedures. Combining the above modules we have the formalism: an algebraic dependency grammar is a manifold together with a linearization. Notice that patterns sustain both manifolds and linearizations. We study their interrelation in terms of a new algebraic classification of classes of languages. We highlight the main contributions of the thesis. Regarding mathematical linguistics, algebraic dependency grammar considers trees and word-order different modules in the architecture, which allows description of languages with varied word-order. Ellipses are permitted; this issue is usually avoided because it makes some formalisms non-decidable. We differentiate linguistic phenomena structurally by their algebraic description. Algebraic dependency grammar permits observance of affinity between linguistic constructions which seem superficially different. Regarding formal language theory, a new system for understanding a very large family of languages is presented which permits observation of languages in broader contexts. We identify a new class named anti-context-free languages containing constructions structurally symmetric to context-free languages. Informally we could say that context-free languages are well-parenthesized, while anti-context-free languages are cross-serial-parenthesized. For example copy languages and respectively languages are anti-context-free.Es proposa un formalisme matemàtic anomenat Gramàtica de Dependències Algebraica amb aplicacions a la lingüística formal i a la teoria de llenguatges formals. Pel que fa a la lingüística formal es pretén abordar el problema de la gramaticalitat, amb un èmfasi especial en la transversalitat, això és, que el formalisme sigui apte per a un bon nombre de llengües. En el camp dels llenguatges formals aquest formalisme proporciona una nova perspectiva que permet una classificació algebraica dels llenguatges. Aquest enfocament suggereix a més a més l'existència de les aquí anomenades anti-classes de llenguatges associades a certes classes de llenguatges. La nostra idea d'una gramàtica de dependències és en un conjunt de sintagmes ben construïts (d'això en diem recció algebraica) i una relació que associa ordres de paraules als sintagmes d'aquest conjunt (d'això en diem linearització algebraica). Pel que fa a la recció algebraica, introduïm el concepte de varietat sintàctica com el conjunt de sintagmes que satisfan una concordança sobre un determinat patró. Un patró és un conjunt d'adreces sintàctiques descrit algebraicament. La concordança es formalitza a través d'una condició booleana sobre el vocabulari. En relació amb linearització algebraica, en primer lloc, observem que l'essencial de la noció clàssica de projectivitat rau en el fet que certes subestructures d'un arbre de dependències formen sempre un interval en la seva linearització. Així doncs, primer hem d'establir bé que vol dir subestructura. Un cop més veiem que els patrons en proporcionen la clau, tot generalitzant la noció de projectivitat a través d'un procediment recursiu de linearització. Tot unint els dos mòduls anteriors ja tenim el nostre formalisme a punt: una gramàtica de dependències algebraica és una varietat sintàctica juntament amb una linearització. Notem que els patrons són a la base de tots dos mòduls: varietats i linearitzacions, així que resulta del tot natural estudiar-ne la interrelació en termes d'un nou sistema de classificació algebraica de classes de llenguatges. Destaquem les principals contribucions d'aquesta tesi. Pel que fa a la matemàtica lingüística, la gramàtica de dependències algebraica considera els arbres i l'ordre de les paraules diferents mòduls dins l'arquitectura la qual cosa permet de descriure llenguatges amb una gran varietat d'ordre. L'ús d'el·lipsis és permès; aquesta qüestió és normalment evitada en altres formalismes per tal com la possibilitat d'el·lipsis fa que els models es tornin no decidibles. El nostre model també ens permet classificar estructuralment fenòmens lingüístics segons la seva descripció algebraica, així com de copsar afinitats entre construccions que semblen superficialment diferents. Pel que fa a la teoria dels llenguatges formals, presentem un nou sistema de classificació que ens permet d'entendre els llenguatges en un context més ampli. Identifiquem una nova classe que anomenem llenguatges anti-lliures-de-context que conté construccions estructuralment simètriques als llenguatges lliures de context. Informalment podríem dir que els llenguatges lliures de context estan ben parentetitzats, mentre que els anti-lliures-de-context estan parentetitzats segons dependències creuades en sèrie. En són mostres d'aquesta classe els llenguatges còpia i els llenguatges respectivament.Postprint (published version
    corecore