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This work studies which storage mechanisms in automata permit decidability of the 
emptiness problem. The question is formalized using valence automata over graph 
monoids, an abstract model of automata in which the storage mechanism is specified 
by a finite graph. In this framework, many important storage mechanisms can be realized. 
Examples include pushdown stacks, partially blind counters (which behave like Petri net 
places), blind counters (which may attain negative values), and combinations thereof.
We study for which graphs the emptiness problem for valence automata is decidable. A 
particular model in our framework is that of Petri nets with a pushdown stack. For these, 
decidability is a long-standing open question and we do not answer it here.
However, if one excludes subgraphs corresponding to this model, a characterization 
can be achieved. Moreover, we provide a description of those storage mechanisms 
for which decidability remains open. This leads to a model that naturally generalizes 
both (i) pushdown Petri nets and (ii) another model with high expressiveness: priority 
multicounter machines introduced by Reinhardt.
The cases that are proven decidable constitute a natural and apparently new extension of 
Petri nets with decidable reachability. We finally present a further decidable generalization 
that also subsumes a decidable Petri net extension by Atig and Ganty.
© 2021 The Author. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For each storage mechanism in one-way automata, it is an important question whether the emptiness problem is decid-
able. It therefore seems prudent to aim for general insights into which properties of storage mechanisms are responsible for 
decidability or undecidability.

Our approach to obtain such insights is the model of valence automata. These feature a finite-state control and a (typi-
cally infinite) monoid that represents a storage mechanism. The edge inscriptions consist of an input word and an element 
of the monoid. Then, a computation is accepting if it arrives in a final state and composing the encountered monoid ele-
ments yields the neutral element. This way, by choosing a suitable monoid, one can realize a variety of storage mechanisms. 
Hence, our question becomes: For which monoids M is the emptiness problem for valence automata over M decidable?

We address this question for a class of monoids that was introduced in [19] and accommodates a number of storage 
mechanisms that have been studied in automata theory. Examples include pushdown stacks, partially blind counters (which 
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behave like Petri net places), and blind counters (which may attain negative values; these are in most situations interchange-
able with reversal-bounded counters), and combinations thereof. See [22,23] for an overview. These monoids are defined by 
graphs and thus called graph monoids.2

A particular type of storage mechanism that can be realized by graph monoids are partially blind counters that can 
be used simultaneously with a pushdown stack. Automata with such a storage are equivalent to pushdown Petri nets (PPN), 
i.e. Petri nets where the transitions can also operate on a pushdown stack. This means, a complete characterization of 
graph monoids with a decidable emptiness problem would entail an answer to the long-standing open question of whether 
reachability is decidable for this Petri net extension [15]. Partial solutions have recently been obtained by Atig and Ganty [2]
and by Leroux, Sutre, and Totzke [12].

Contribution While this work does not answer this open question concerning PPN, it does provide a characterization among 
all graph monoids that avoid this elusive storage type. More precisely, we identify a set of graphs, ‘PPN-graphs’, each of 
which corresponds precisely to PPN with one Petri net place. Then, among all graphs � avoiding PPN-graphs as induced 
subgraphs, we characterize those for which the graph monoid M� results in a decidable emptiness problem. Furthermore, 
we provide a simple, more mechanical (as opposed to algebraic) description of

(i) the storage mechanism emerging as the most general decidable case and
(ii) a type of mechanism equivalent to the cases we leave open.

The model (i) is a new extension of partially blind counter automata (i.e. Petri nets). While the decidability proof employs 
a reduction to Reinhardt’s priority multicounter machines [15], the model (i) seems to be expressively incomparable to 
Reinhardt’s model. The model (ii) is a class of mechanisms whose simplest instance are the pushdown Petri nets and which 
also naturally subsumes priority multicounter machines (see also Remark 3.7).

Another recent extension of the decidability of reachability of Petri nets has been obtained by Atig and Ganty [2]. In fact, 
it is a partial solution to the reachability problem for PPN. Their proof also relies on priority multicounter machines. They 
show that given a finite-index context-free language K and a language L generated by a Petri net, it is decidable whether 
the intersection K ∩ L is empty. Note that without the finite-index requirement, this would be equivalent to the reachability 
problem for PPN. Our final contribution is a decidability result that subsumes both the decidability of model (i) and the 
result of Atig and Ganty. We present a natural language class that contains both the intersections considered by Atig and 
Ganty and the languages of model (i) and still has a decidable emptiness problem. To this end, we employ a slightly stronger 
(and perhaps simpler) version of Atig and Ganty’s reduction.

Hence, the perspective of valence automata allows us to identify natural storage mechanisms that (i) push the frontier 
of decidable emptiness (and hence reachability) and (ii) let us naturally interpret PPN and priority multicounter machines 
as special cases of a more powerful model that might enjoy decidability, respectively.

The paper is structured as follows. We present the main results in Section 3 and prove them in Sections 4 to 6. Section 4
presents the undecidability part, Section 5 treats the decidable cases, and Section 6 shows the expressive equivalence with 
the more mechanical descriptions. In Section 7, we present the enhanced decidability result that also subsumes the one by 
Atig and Ganty.

This work is an extended version of the paper [21]. This version provides proofs of the results of [21] and the enhanced 
decidability result. Moreover, it contains proofs of some results that first appeared in [19,20], but have not yet undergone 
journal peer review.

2. Preliminaries

A monoid is a set M together with a binary associative operation such that M contains a neutral element. Unless the 
monoid at hand warrants a different notation, we will denote the neutral element by 1 and the product of x, y ∈ M by xy. If 
X is a set of symbols, X∗ denoted the set of words over X . The length of the word w ∈ X∗ is denoted |w|. An alphabet is a 
finite set of symbols. The empty word is denoted by ε ∈ X∗ . Let P ⊆ X × X be a set of pairs of symbols, then the semi-Dyck 
language over P , denoted D∗

P is the smallest subset of X∗ such that ε ∈ D∗
P and whenever uv ∈ D∗

P , then also uaāv ∈ D∗
P

for every (a, ̄a) ∈ P . If P = {(ai, ̄ai) | i ∈ {1, . . . , n}}, then we also write D∗
n instead of D∗

P . Moreover, if P = {(a, b)}, then the 
words in D∗

P are called semi-Dyck words over a, b. If w ∈ X∗ is a word with w = x1 · · · xn for x1, . . . , xn ∈ X , then w R denotes 
w in reverse, i.e. w R = xn · · · x1.

For an alphabet X and languages L, K ⊆ X∗ , the shuffle product L K is the set of all words u0 v1u1 · · · vnun where 
u0, . . . , un, v1, . . . , vn ∈ X∗ , u0 · · · un ∈ L, and v1 · · · vn ∈ K . For a subset Y ⊆ X , we define the projection homomorphism
πY : X∗ → Y ∗ by πY (y) = y for y ∈ Y and πY (x) = ε for x ∈ X \ Y . Moreover, we define |w|Y = |πY (w)| and for x ∈ X , we 
set |w|x = |w|{x} .

2 They are not to be confused with the closely related, but different concept of trace monoids [5], i.e. monoids of Mazurkiewicz traces, which some authors 
also call graph monoids.
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(a) C4 (b) P4

Fig. 1. Graphs C4 and P4.

Valence automata As a framework for studying which storage mechanisms permit decidability of the emptiness problem, 
we employ valence automata. They feature a monoid that dictates which computations are valid. Hence, by an appropriate 
choice of the monoid, valence automata can be instantiated to be equivalent to a concrete automata model with storage. For 
the purposes of this work, equivalent is meant with respect to accepted languages. Therefore, we regard valence automata 
as language accepting devices.

Let M be a monoid and X an alphabet. A valence automaton over M is a tuple A = (Q , X, M, E, q0, F ), in which (i) Q is 
a finite set of states, (ii) E is a finite subset of Q × X∗ × M × Q , called the set of edges, (iii) q0 ∈ Q is the initial state, and 
(iv) F ⊆ Q is the set of final states. For q, q′ ∈ Q , w, w ′ ∈ X∗ , and m, m′ ∈ M , we write (q, w, m) →A (q′, w ′, m′) if there is 
an edge (q, v, n, q′) ∈ E such that w ′ = w v and m′ = mn. The language accepted by A is then

L(A) = {w ∈ X∗ | (q0, ε,1) →∗
A ( f , w,1) for some f ∈ F }.

The class of languages accepted by valence automata over M is denoted by VA(M). If M is a class of monoids, we write 
VA(M) for 

⋃
M∈M VA(M).

Graphs A graph is a pair � = (V , E) where V is a finite set and E is a subset of {S ⊆ V | 1 ≤ |S| ≤ 2}. The elements of V
are called vertices and those of E are called edges. Vertices v, w ∈ V are adjacent if {v, w} ∈ E . If {v} ∈ E for some v ∈ V , 
then v is called a looped vertex, otherwise it is unlooped. A subgraph of � is a graph (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E . Such 
a subgraph is called induced (by V ′) if E ′ = {S ∈ E | S ⊆ V ′}, i.e. E ′ contains all edges from E incident to vertices in V ′ . By 
� \ {v}, for v ∈ V , we denote the subgraph of � induced by V \ {v}. By C4 (P4), we denote a graph that is a cycle (path) 
on four vertices; see Figs. 1a and 1b. Moreover, �− denotes the graph obtained from � by deleting all loops: We have 
�− = (V , E−), where E− = {S ∈ E | |S| = 2}. The graph � is loop-free if �− = �. Finally, a clique is a loop-free graph in which 
any two distinct vertices are adjacent.

Products and presentations If M , N are monoids, then M × N denotes their direct product, whose set of elements is the 
cartesian product of M and N and composition is defined component-wise. By Mn , we denote the n-fold direct product, i.e. 
M × · · · × M with n factors.

Let A be a (not necessarily finite) set of symbols and R be a subset of A∗ × A∗ . The pair (A, R) is called a (monoid) 
presentation. The smallest congruence of the free monoid A∗ containing R is denoted by ≡R and we will write [w]R for 
the congruence class of w ∈ A∗ . The monoid presented by (A, R) is defined as A∗/≡R . Note that since we did not impose 
a finiteness restriction on A, up to isomorphism, every monoid has a presentation. If A = {a1, . . . , an} and R = {(ri, ̄ri) | i ∈
{1, . . . , k}}, we also use the shorthand 〈a1, . . . , an | r1 = r̄1, . . . , rk = r̄k〉 to denote the monoid presented by (A, R).

Furthermore, for monoids M1, M2 we can find presentations (A1, R1) and (A2, R2) such that A1 ∩ A2 = ∅. We define 
the free product M1 ∗ M2 to be presented by (A1 ∪ A2, R1 ∪ R2). Note that M1 ∗ M2 is well-defined up to isomorphism. In 
analogy to the n-fold direct product, we write M(n) for the n-fold free product of M .

Graph monoids A presentation (A, R) in which A is a finite alphabet is a Thue system. To each graph � = (V , E), we associate 
the Thue system T� = (X�, R�) over the alphabet X� = {av , ̄av | v ∈ V }. R� is defined as

R� = {(avāv , ε) | v ∈ V } ∪ {(xy, yx) | x ∈ {av , āv}, y ∈ {aw , āw}, {v, w} ∈ E}.
In particular, we have (avāv , ̄avav) ∈ R� whenever {v} ∈ E . To simplify notation, the congruence ≡R�

is then also denoted 
by ≡� . We are now ready to define graph monoids. To each graph �, we associate the monoid

M� = X∗
�/≡�.

The monoids of the form M� are called graph monoids.

Storage mechanisms as graph monoids Let us briefly discuss how to realize storage mechanisms by graph monoids. First, 
suppose �0 and �1 are disjoint graphs. If � is the union of �0 and �1, then M� ∼=M�0 ∗M�1 by definition. Moreover, if �
is obtained from �0 and �1 by drawing an edge between each vertex of �0 and each vertex of �1, then M� ∼=M�0 ×M�1.

If � consists of one vertex v and has no edges, the only rule in the Thue system is (avāv , ε). In this case, M� is 
also denoted as B and we will refer to it as the bicyclic monoid. The generators av and āv are then also written a and ā, 
respectively. It is not hard to see that B corresponds to a partially blind counter, i.e. one that attains only non-negative values 
and has to be zero at the end of the computation. Moreover, if � consists of one looped vertex, then M� is isomorphic to 
Z and thus realizes a blind counter, which can go below zero and is zero-tested in the end.
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If one storage mechanism is realized by a monoid M , then the monoid B ∗ M corresponds to the mechanism that builds 
stacks: A configuration of this new mechanism consists of a sequence c0ac1 · · ·acn , where c0, . . . , cn are configurations of 
the mechanism realized by M . We interpret this as a stack with the entries c0, . . . , cn . One can open a new stack entry on 
top (by multiplying a ∈ B), remove the topmost entry if empty (by multiplying ā ∈ B) and operate on the topmost entry 
using the old mechanism (by multiplying elements from M). In particular, B ∗B describes a pushdown stack with two stack 
symbols. See [22] for more examples and [23] for more details.

As a final example, suppose � is one edge short of being a clique, then M� ∼= B(2) ×Bn−2, where n is the number of 
vertices in �. Then, by the observations above, valence automata over M� are equivalent to Petri nets with n −2 unbounded 
places and access to a pushdown stack. Hence, for our purposes, a pushdown Petri net is a valence automaton over B(2) ×Bn

for some n ∈N .

3. Results

As a first step, we exhibit graphs � for which VA(M�) includes the recursively enumerable languages.

Theorem 3.1. Let � be a graph such that �− contains C4 or P4 as an induced subgraph. Then VA(M�) is the class of recursively 
enumerable languages. In particular, the emptiness problem is undecidable for valence automata over M�.

This unifies and slightly strengthens a few undecidability results concerning valence automata over graph monoids. The 
case that all vertices are looped was shown by Lohrey and Steinberg [14] (see also the discussion of Theorem 3.4). Another 
case appeared in [19]. We prove Theorem 3.1 in Section 4.

It is not clear whether Theorem 3.1 describes all � for which VA(M�) exhausts the recursively enumerable languages. For 
example, as mentioned above, if � is one edge short of being a clique, then valence automata over M� are pushdown Petri 
nets. In particular, the emptiness problem for valence automata is equivalent to the reachability problem of this model, for 
which decidability is a long-standing open question [15]. In fact, it is already open whether reachability is decidable in the 
case of B(2) ×B, although Leroux, Sutre, and Totzke have recently made progress on this case [12]. Therefore, characterizing 
those � with a decidable emptiness problem for valence automata over M� would very likely settle these open questions.3

However, we will show that if we steer clear of pushdown Petri nets, we can achieve a characterization. More precisely, 
we will present a set of graphs that entail the behavior of pushdown Petri nets. Then, we show that among those graphs 
that do not contain these as induced subgraphs, the absence of P4 and C4 already characterizes decidability.

PPN-graphs A graph � is said to be a PPN-graph if it is isomorphic to one of the following three graphs:

We say that the graph � is PPN-free if it has no PPN-graph as an induced subgraph. Observe that a graph � is PPN-free if 
and only if in the neighborhood of each unlooped vertex, any two vertices are adjacent.

Of course, the abbreviation ‘PPN’ refers to ‘pushdown Petri nets’. This is justified by the following fact. It is proven in 
Section 5 (page 11).

Proposition 3.2. If � is a PPN-graph, then VA(M�) = VA(B(2) ×B).

Transitive forests In order to exploit the absence of P4 and C4 as induced subgraphs, we will employ a characterization of 
such graphs as transitive forests. The comparability graph of a tree t is a simple graph with the same vertices as t , but has 
an edge between two vertices whenever one is a descendant of the other in t . A graph � is a transitive forest if the simple 
graph �− is a disjoint union of comparability graphs of trees. For an example of a transitive forest, see Fig. 2.

Let DEC denote the smallest isomorphism-closed class of monoids such that

1. for each n ≥ 0, we have Bn ∈ DEC and
2. for M, N ∈ DEC, we also have M ∗ N ∈ DEC and M ×Z ∈ DEC.

Our main result characterizes those PPN-free � for which valence automata over M� have a decidable emptiness prob-
lem.

Theorem 3.3. Let � be PPN-free. Then the following conditions are equivalent:

1. Emptiness is decidable for valence automata over M�.

3 Strictly speaking, it is conceivable that there is a decision procedure for each B(2) ×Bn , but no uniform one that works for all n. However, this seems 
unlikely.
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Fig. 2. Example of a transitive forest. The solid edges are part of the trees whose comparability graphs make up the graph. The transitive forest consists of 
both the solid and the dashed edges.

2. �− contains neither C4 nor P4 as an induced subgraph.
3. � is a transitive forest.
4. M� ∈ DEC.

We present the proof in Section 5. Note that this generalizes the fact that emptiness is decidable for pushdown automata 
(i.e. graphs with no edges) and partially blind multicounter automata (i.e. cliques), or equivalently, reachability in Petri nets.

Note that if � has a loop on every vertex, then M� is a group. Groups that arise in this way are called graph groups. 
In general, if a monoid M is a group, then emptiness for valence automata over M is decidable if and only if the rational 
subset membership problem is decidable for M [11]. The latter problem asks, given a rational set R over M and an element 
m ∈ M , whether m ∈ R; see [13] for more information. Therefore, Theorem 3.3 extends the following result of Lohrey and 
Steinberg [14], which characterizes those graph groups for which the rational subset membership problem is decidable.

Theorem 3.4 (Lohrey and Steinberg [14]). Let � be a graph in which every vertex is looped. Then the rational subset membership 
problem for the group M� is decidable if and only if � is a transitive forest.

Lohrey and Steinberg show decidability by essentially proving that in their case, the languages in VA(M�) have semi-
linear Parikh images (although they use different terminology). Here, we extend this argument by showing that in the 
equivalent cases of Theorem 3.3, the Parikh images of VA(M�) are those of languages accepted by priority multicounter 
machines. The latter were introduced and shown to have a decidable reachability problem by Reinhardt [15].

Intuition for decidable cases In order to provide an intuition for those storage mechanisms (not containing a pushdown Petri 
net) with a decidable emptiness problem, we present an equally expressive class of monoids for which the corresponding 
storage mechanisms are easier to grasp. Let SC± be the smallest isomorphism-closed class of monoids with

1. for each n ∈N , we have Bn ∈ SC± ,
2. for each M ∈ SC± , we also have B ∗ M ∈ SC± and M ×Z ∈ SC± .

Thus, SC± realizes those storage mechanisms that can be constructed from a finite set of partially blind counters (Bn) by 
building stacks (M �→ B ∗ M) and adding blind counters (M �→ M ×Z). Then, in fact, the monoids in SC± produce the same 
languages as those in DEC.

Proposition 3.5. VA(DEC) = VA(SC±).

Proposition 3.5 is proven in Section 6. While our decidability proof for SC± will be a reduction to priority multicounter 
machines (see Section 5 for a definition), it seems likely that these two models are incomparable in terms of expressiveness 
(see the remarks after Theorem 5.12).

Intersections with finite-index languages This work exhibits valence automata over SC± as an extension of Petri nets that 
features a type of stack but retains decidability of the emptiness problem. Another recent result of this kind has been 
obtained by Atig and Ganty [2]. They showed that given a finite-index context-free language K and a Petri net language L, it 
is decidable whether K ∩ L is empty. Moreover, they also employ a reduction to priority multicounter machines. This raises 
the question of how the two results relate to each other. In Section 7, we present a natural language class that subsumes 
both the languages of Atig and Ganty and those of VA(SC±) and prove that emptiness is still decidable. Intuitively, this class 
is obtained by taking languages of Atig and Ganty and then applying operators corresponding to building stacks and adding 
blind counters. The precise definition and the result can be found in Section 7.
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Intuition for open cases We also want to provide an intuition for the remaining storage mechanisms, i.e. those defined by 
monoids M� about which Theorems 3.1 and 3.3 make no statement. To this end, we describe a class of monoids that 
are expressively equivalent to these remaining cases. The remaining cases are given by those graphs � where �− does not 
contain C4 or P4, but � contains a PPN-graph. Let REM denote the class of monoids M�, where � is such a graph. Let SC+
be the smallest isomorphism-closed class of monoids with

1. B(2) ×B ∈ SC+ and
2. for each M ∈ SC+ , we also have B ∗ M ∈ SC+ and M ×B ∈ SC+ .

This means, SC+ realizes those storage mechanisms that are obtained from a pushdown stack, together with one partially blind 
counter (B(2) ×B) by the transformations of building stacks (M �→B ∗ M) and adding partially blind counters (M �→ M ×B).

Proposition 3.6. VA(REM) = VA(SC+).

We prove Proposition 3.6 in Section 6. Of course, SC+ generalizes pushdown Petri nets, which correspond to monoids 
B(2) ×Bn for n ∈N . Moreover, SC+ also subsumes priority multicounter machines (see p. 12 for a definition) in a straight-
forward way: Every time we build stacks, we can use the new pop operation to realize a zero test on all the counters we 
have added so far. Let M0 = 1 and Mk+1 =B ∗ (Mk ×B). Then, priority k-counter machines correspond to valence automata 
over Mk where the stack heights never exceed 1.

Remark 3.7. Priority multicounter machines are already subsumed by pushdown Petri nets alone: Atig and Ganty [2, Lemma 
7] show implicitly that for each priority multicounter machine, one can construct a pushdown Petri net that accepts the 
same language. Hence, valence automata over SC+ are not the first perhaps-decidable generalization of both pushdown 
Petri nets and priority multicounter machines, but they generalize both in a natural way.

4. Undecidability

In this section, we prove Theorem 3.1. It should be mentioned that a result similar to Theorem 3.1 was shown by Lohrey 
and Steinberg [14]: They proved that if every vertex in � is looped and �− contains C4 or P4 as an induced subgraph, 
then the rational subset membership problem is undecidable for M�. Their proof adapts a construction of Aalbersberg and 
Hoogeboom [1], which shows that the disjointness problem for rational sets of traces is undecidable when the independence 
relation has P4 or C4 as an induced subgraph. An inspection of the proof presented here, together with its prerequisites 
(Theorems 4.2 and 4.3), reveals that the employed ideas are very similar to the combination of Lohrey and Steinberg’s and 
Aalbersberg and Hoogeboom’s proof.

A language class is a collection of languages that contains at least one non-empty language. In this work, for each language 
class, there is a way to finitely represent each member of the class. Moreover, an inclusion C ⊆D between language classes 
C and D is always meant to be effective, in other words: Given a representation of a language in C , we can compute a 
representation of that language in D. The same holds for equalities between language classes.

Let X and Y be alphabets. A relation T ⊆ X∗ × Y ∗ is called a rational transduction if there is an alphabet W , a regular 
language R ⊆ W ∗ , and homomorphisms g : W ∗ → X∗ and h : W ∗ → Y ∗ such that T = {(g(w), h(w)) | w ∈ R} (see [3]). For 
a language L ⊆ X∗ , we define T L = {v ∈ Y ∗ | ∃u ∈ L : (u, v) ∈ T }. A language class C is a full trio if for every language L in 
C , the language T L is effectively contained in C as well. Here, “effectively” means again that given a representation of a 
language L from C and a description of T , one can effectively compute a representation of T L. For a language L, we denote 
by T (L) the smallest full trio containing L. Note that if L �= ∅, the class T (L) contains precisely the languages T L for rational 
transductions T . For example, it is well-known that for every monoid M , the class VA(M) is a full trio [6]. A full AFL is a full 
trio that is also closed under Kleene iteration, i.e. for each member L, the language L∗ is effectively a member as well.

Here, we use the following fact. We denote the recursively enumerable languages by RE.

Lemma 4.1. Let X = {a1, ̄a1, b1, a2, ̄a2, b2} and let B2 ⊆ X∗ be defined as

B2 = ({an
1ān

1 | n ≥ 0}b1)
∗ ({an

2ān
2 | n ≥ 0}b2)

∗.

Then RE equals T (B2), the smallest full trio containing B2.

Lemma 4.1 is essentially due to Hartmanis and Hopcroft, who stated it in slightly different terms:

Theorem 4.2 (Hartmanis and Hopcroft [9]). Let C be the smallest full AFL containing {anbn | n ≥ 0}. Every recursively enumerable 
language is the homomorphic image of the intersection of two languages in C .

By the following auxiliary result of Ginsburg and Greibach [8, Theorem 3.2a], Lemma 4.1 will follow from Theorem 4.2.
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Fig. 3. Graphs � where �− is C4 or P4. Dotted lines represent edges that may or may not exist in �.

Theorem 4.3 (Ginsburg and Greibach [8]). Let L ⊆ X∗ and c /∈ X. The smallest full AFL containing L equals T ((Lc)∗).

As announced, Lemma 4.1 now follows.

Proof (Lemma 4.1). Since clearly T (B2) ⊆ RE, it suffices to show RE ⊆ T (B2). According to Theorem 4.2, this amounts to 
showing that L1 ∩ L2 ∈ T (B2) for any L1 and L2 in C , where C is the smallest full AFL containing the language S = {anbn | n ≥
0}. Hence, let L1, L2 ∈ C . By Theorem 4.3, L1 and L2 belong to C = T ((Sc)∗). This means we have Li = Ti({an

i ān
i | n ≥ 0}bi)

∗
for some rational transduction Ti for i = 1, 2. Using a product construction, it is now easy to obtain a rational transduction 
T with T B2 = L1 ∩ L2. �

The proof of Theorem 3.1 will require one more auxiliary lemma. In the following, [w]� denotes the congruence class of 
w ∈ X∗

� with respect to ≡� .

Lemma 4.4. Let � = (V , E) be a graph, let W ⊆ V be a subset of vertices, and let Y ⊆ X� be defined as Y = {aw , ̄aw | w ∈ W }. Then 
u ≡� v implies πY (u) ≡� πY (v) for u, v ∈ X∗

� .

Proof. An inspection of the rules in the Thue system T� reveals that if (u, v) ∈ R� , then either (πY (u), πY (v)) = (u, v)

or πY (u) = πY (v). In any case, πY (u) ≡� πY (v). Since ≡� is a congruence and πY a homomorphism, this implies the 
lemma. �

Note that the foregoing lemma does not hold for arbitrary alphabets Y ⊆ X� . For example, if V = {1}, X� = {a1, ̄a1}, and 
Y = {a1}, then a1ā1 ≡� ε, but a1 �≡� ε.

We are now ready to prove Theorem 3.1.

Proof (Theorem 3.1). Observe that w ≡� ε if and only if w can be transformed into ε by finitely many times replacing 
an infix u with an infix v for some (u, v) ∈ R� . Since R� is finite, this implies that the set of all w ∈ X∗

� with w ≡� ε
is recursively enumerable. (In fact, whether w ≡� ε can be decided in polynomial time [19,23].) In particular, one can 
recursively enumerate runs of valence automata over VA(M�) and hence VA(M�) ⊆ RE. For the other inclusion, recall that 
VA(M) is a full trio for any monoid M . Furthermore, if � is an induced subgraph of �, then M� embeds into M�, meaning 
VA(M�) ⊆ VA(M�). Hence, according to Lemma 4.1, it suffices to show that B2 ∈ VA(M�) if �− equals C4 or P4.

Let X = {a1, ̄a1, b1, a2, ̄a2, b2}. and � = (V , E). If �− equals C4 or P4, then V = {1, 2, 3, 4} with {3, 1}, {1, 2}, {2, 4} ∈ E
and {1, 4}, {2, 3} /∈ E . See Fig. 3. We construct a valence automaton A over M� for B2 ⊆ X∗ as follows. First, A reads a 
word in R = ((a∗

1ā∗
1)b1)

∗ ((a∗
2ā∗

2)b2)
∗ . Here, when reading ai or āi , it multiplies [ai] or [āi], respectively, to the storage 

monoid. When reading b1 or b2, it multiplies [a4] or [a3], respectively. After this, A switches to another state and nondeter-
ministically multiplies an element from {[ā4], [ā3]}∗ . Then it changes into an accepting state. We shall prove that A accepts 
B2. Let the homomorphism h : X∗ → {ai, ̄ai | 1 ≤ i ≤ 4}∗ be defined by h(ai) = ai and h(āi) = āi for i = 1, 2 and h(b1) = a4
and h(b2) = a3.

Suppose w ∈ L(A). Then w ∈ R and there is a v ∈ {ā4, ̄a3}∗ with [h(w)v]� = [ε]� . Let wi = π{ai ,āi ,bi}(w). If we can show 
wi ∈ ({an

i ān
i | n ≥ 0}∗bi)

∗ for i = 1, 2, then clearly w ∈ B2. For symmetry reasons, it suffices to prove this for i = 1. Let 
Y = {a1, ̄a1, a4, ̄a4}. Since [h(w)v]� = [ε]� , we have in particular [πY (h(w)v)]� = [ε]� by Lemma 4.4. Moreover,

πY (h(w)v) = an1
1 ān̄1

1 a4 · · ·ank
1 ān̄k

1 a4ām
4

for some n1, . . . , nk, ̄n1, . . . , ̄nk, m ∈N . Again, by projecting to {a4, ̄a4}∗ , we obtain [ak
4ām

4 ]� = [ε]� and hence k = m. If nk �= n̄k , 
then it is easy to see that πY (h(w)v) cannot be reduced to ε, since there is no edge {1, 4} in �. Therefore, we have nk = n̄k . 
It follows inductively that ni = n̄i for all 1 ≤ i ≤ k. Since wi = an1

1 ān̄1
1 b1 · · ·ank

1 ān̄k
1 b1, this implies wi ∈ ({an

1ān
1 | n ≥ 0}b1)

∗ .
We shall now prove B2 ⊆ L(A). Let g : X∗ → {ā3, ̄a4} be the homomorphism defined by g(ai) = g(āi) = ε and g(b1) =

ā4 and g(b2) = ā3. We show by induction on |w| that w ∈ B2 implies [h(w)g(w)R ]� = [ε]� . Since for each w ∈ B2, A
clearly has a run that puts [h(w)g(w)R ]� into the storage, this establishes B2 ⊆ L(A). Suppose π{b1,b2}(w) ends in b1. Then 
w = rsb1 for some r ∈ X∗ , s ∈ (an

1ān
1) t with n ∈ N and t ∈ {a2, ̄a2, b2}∗ . Note that then rt ∈ B2. Since there are edges 

{1, 2}, {1, 3} in �, we have [h(s)]� = [h(tanān)]� . Moreover, since g deletes a1 and ā1, we have g(s) = g(t). Therefore,
1 1
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[h(w)g(w)R ]� = [h(rsb1)g(rsb1)
R ]� = [h(rtan

1ān
1b1)g(rtb1)

R ]�
= [h(rt)an

1ān
1a4ā4 g(rt)R ]� = [h(rt)g(rt)R ]�.

By induction, we have [h(rt)g(rt)R ]� = [ε]� and hence [h(w)g(w)R ]� = [ε]� . If π{b1,b2}(w) ends in b2, then one can show 
[h(w)g(w)R ]� = [ε]� completely analogously. This proves B2 ⊆ L(A) and hence the theorem. �
5. Decidability

In this section, we prove Theorem 3.3 and Proposition 3.2. First, we mention existing results that are ingredients to our 
proofs.

Let C be a class of languages. A C-grammar is a quadruple G = (N, T , P , S) where N and T are disjoint alphabets and 
S ∈ N . P is a finite set of pairs (A, M) with A ∈ N and M ⊆ (N ∪ T )∗ , M ∈ C . A pair (A, M) ∈ P is called a production of 
G . We write x ⇒G y if x = u Av and y = uw v for some u, v, w ∈ (N ∪ T )∗ and (A, M) ∈ P with w ∈ M . Moreover, x ⇒n

G y
means that there are x0, . . . , xn ∈ (N ∪ T )∗ with xi−1 ⇒G xi for 1 ≤ i ≤ n and x0 = x and xn = y. Furthermore, we have 
x ⇒∗

G y if x ⇒n
G y for some n ≥ 0. The language generated by G is L(G) = {w ∈ T ∗ | S ⇒∗

G w}. The class of all languages 
that are generated by C-grammars is called the algebraic extension of C and is denoted Alg(C). Of course, if C ⊆ D, then 
Alg(C) ⊆ Alg(D). Moreover, it is easy to see that if C ⊆ Alg(D), then Alg(C ∪D) = Alg(D).

The following is easy to show in the same way one shows that the context-free languages constitute a full trio [3]. A 
proof can be found in [23].

Lemma 5.1. If C is a full trio, then Alg(C) is a full trio as well.

A monoid M is called finitely generated if there is a finite subset F ⊆ M such that every element of M can be written as 
a product of elements of F . A language I ⊆ X∗ is called an identity language for M if there is a surjective homomorphism 
ϕ : X∗ → M with I = ϕ−1(1). We will also use the following well-known fact about valence automata. A proof can be found, 
e.g., in [23,10].

Proposition 5.2. Let M be a finitely generated monoid. Then:

1. VA(M) is the smallest full trio containing all identity languages of M.
2. If L is any identity language of M, then VA(M) is the smallest full trio containing L.

The well-known theorem of Chomsky and Schützenberger [3], expressed in terms of valence automata, states that VA(Z ∗
Z) is the class of context-free languages. This formulation, along with a new proof, is due to Kambites [10]. Let Reg and CF
denote the class of regular and context-free languages, respectively. Then we have Reg = VA(1) and CF = Alg(Reg). Here, 
1 denotes the trivial monoid {1}. Moreover, notice that Alg(Alg(C)) = Alg(C) for every language class C . Since furthermore 
valence automata over B ∗B are equivalent to pushdown automata, we have in summary:

CF = VA(B ∗B) = Alg(VA(1)) = Alg(CF) = VA(Z ∗Z). (1)

In order to work with general free products, we use the following result, which expresses the languages in VA(M0 ∗ M1)

in terms of VA(M0) and VA(M1). It was first shown in [19]. In [4], it was extended to more general products. For the 
convenience of the reader, we include a proof.

Proposition 5.3 ([19]). Let M0 and M1 be monoids. Then VA(M0 ∗ M1) is included in Alg(VA(M0) ∪ VA(M1)).

Proof. For every monoid M , we have VA(M) = ⋃
N VA(N), where N ranges over the finitely generated submonoids of M . 

Moreover, every finitely generated submonoid of M0 ∗ M1 is included in some N0 ∗ N1, where Ni is a finitely generated 
submonoid of Mi , for i = 0, 1. Therefore, we have VA(M0 ∗ M1) = ⋃

N0,N1
VA(N0 ∗ N1), where Ni ranges over the finitely 

generated submonoids of Mi , for i = 0, 1. Thus, it suffices to show the proposition in the case that M0 and M1 are finitely 
generated.

For i = 0, 1, let (Ai, Ri) be a presentation of Mi such that Ai is finite. Then M0 ∗ M1 is presented by (A0 ∪ A1, R0 ∪ R1). 
Consider the languages Li = {w ∈ A∗

i | w ≡Ri ε} for i ∈ {0, 1}. Then Li is an identity language of Mi and hence contained 
in VA(Mi). Moreover, by definition of M0 ∗ M1, the language L = {w ∈ (A0 ∪ A1)

∗ | w ≡R0∪R1 ε} is an identity language of 
M0 ∗ M1.

According to Lemma 5.1, the class Alg(VA(M0) ∪ VA(M1)) is a full trio. Thus, Proposition 5.2 tells us that it suffices to 
show that the identity language L of M0 ∗ M1 is contained in Alg(VA(M0) ∪ VA(M1)).

Consider the binary relation ⇀ on (A0 ∪ A1)
∗ where u ⇀ v if and only if for some i ∈ {0, 1}, there are x, z ∈ (A0 ∪ A1)

∗ , 
y ∈ A∗ , such that u = xz, v = xyz, and y ≡Ri ε. It is now easy to see that w ≡R0∪R1 ε if and only if ε ⇀∗ w .
i
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This allows us to construct a VA(M0) ∪ VA(M1)-grammar for L. Let G = (N, A0 ∪ A1, P , S), where N = {S}. In order to 
describe the productions, we need to define two languages. For i ∈ {0, 1}, let

Ki = {Sa1 S · · ·an S | a1, . . . ,an ∈ Ai, a1 · · ·an ∈ Li}.
Then Ki can be obtained from Li using full trio operations and is thus contained in VA(Mi). Our grammar contains only 
three productions: S → K0, S → K1, and S → {ε} (recall that as a regular language, {ε} belongs to each VA(Mi)). Then, it is 
immediate that w ∈ L(G) if and only if ε ⇀∗ w and hence L(G) = L. �

Proposition 5.3 tells us that the languages in VA(M0 ∗ M1) are confined to the algebraic extension of VA(M0) ∪ VA(M1). 
Our next ingredient, Proposition 5.6, will complement Proposition 5.3 by describing monoids N such that the algebraic ex-
tension of VA(M) is confined to VA(N). We need two auxiliary lemmas, for which the following notation will be convenient. 
We write M ↪→ N for monoids M, N if there is a homomorphism ϕ : M → N such that ϕ−1(1) = {1}. Clearly, if M ↪→ N , 
then VA(M) ⊆ VA(N): Replacing in a valence automaton over M all elements m ∈ M with ϕ(m) yields a valence automaton 
over N that accepts the same language.

Lemma 5.4. If M ↪→ M ′ and N ↪→ N ′ , then we have M ∗ N ↪→ M ′ ∗ N ′ .

Proof. Let ϕ : M → M ′ and ψ : N → N ′ be homomorphisms with ϕ−1(1) = {1} and ψ−1(1) = {1}. Then defining κ : M ∗ N →
M ′ ∗ N ′ as the homomorphism with κ |M = ϕ and κ |N = ψ clearly yields κ−1(1) = 1. �

For a monoid M , we define R1(M) = {x ∈ M | ∃y ∈ M : xy = 1}. Observe that the set R1(M) can be thought of as the 
storage contents that can occur in a valid run of a valence automaton over M . The following result appeared first in [20]. 
We include a proof for the convenience of the reader.

Lemma 5.5 ([20]). Let M be a monoid with R1(M) �= {1}. Then we have B(n) ∗ M ↪→B∗ M for every n ≥ 1. In particular, VA(B∗ M) =
VA(B(n) ∗ M) for every n ≥ 1.

Proof. Observe that if B(n) ∗ M ↪→B ∗ M and B ∗B ∗ M ↪→B ∗ M , then

B(n+1) ∗ M ∼= B ∗ (B(n) ∗ M) ↪→ B ∗ (B ∗ M) ↪→ B ∗ M.

Therefore, it suffices to prove B ∗B ∗ M ↪→B ∗ M .
Let Bs = 〈s, ̄s | ss̄ = 1〉 for s ∈ {p, q, r}. We show Bp ∗Bq ∗ M ↪→ Br ∗ M . Suppose M is presented by (X, R). We regard 

the monoids Bp ∗ Bq ∗ M and Br ∗ M as embedded into Bp ∗ Bq ∗ Br ∗ M , which by definition of the free product, has a 
presentation (Y , S), where Y = {p, p̄, q, ̄q, r, ̄r} ∪ X and S consists of R and the equations ss̄ = 1 for s ∈ {p, q, r}. For w ∈ Y ∗ , 
we write [w] for the class of w in the congruence generated by S . Since R1(M) �= {1}, we find u, v ∈ X∗ with [uv] = 1 and 
[u] �= 1.

Observe that then for any f , g ∈ ({r, ̄r} ∪ X)∗ , we have [ f rvr̄ g] �= 1: By induction on the number of rewriting steps, one 
can show that every word in [ f rvr̄ g] is of the form f ′rv ′r̄ g′ for f ′, g′ ∈ ({r, ̄r} ∪ X)∗ and v ′ ∈ X∗ with v ′ ≡R v . By the same 
argument, we have [ f rur̄g] �= 1 for any f , g ∈ ({r, ̄r} ∪ X)∗ .

Let ϕ : ({p, p̄, q, ̄q} ∪ X)∗ → ({r, ̄r} ∪ X)∗ be the homomorphism with ϕ(x) = x for x ∈ X and

p �→ rr, p̄ �→ r̄r̄,

q �→ rur, q̄ �→ r̄ vr̄.

We show by induction on |w| that [ϕ(w)] = 1 implies [w] = 1. Since this is trivial for w = ε, we assume |w| ≥ 1. Now 
suppose [ϕ(w)] = [ε] for some w ∈ ({p, p̄, q, ̄q} ∪ X)∗ . If w ∈ X∗ , then [ϕ(w)] = [w] and hence [w] = 1. Otherwise, we have 
ϕ(w) = xryr̄z for some y ∈ X∗ with [y] = 1 and [xz] = 1. This means w = f sys′g for s, s′ ∈ {p, q} with ϕ( f s) = xr and 
ϕ(s′g) = r̄z. If s �= s′ , then s = p and s′ = q; or s = q and s′ = p. In the former case

[ϕ(w)] = [ϕ( f ) rr y r̄vr̄ ϕ(g)] = [ϕ( f )rvr̄ϕ(g)] �= 1

by our observation above and in the latter

[ϕ(w)] = [ϕ( f ) rur y r̄r̄ ϕ(g)] = [ϕ( f )rur̄ϕ(g)] �= 1,

again by our observation. Hence s = s′ . This means [w] = [ f sys̄g] = [ f g] and also 1 = [ϕ(w)] = [ϕ( f g)] and since | f g| <
|w|, induction yields [w] = [ f g] = 1.

Hence, we have shown that [ϕ(w)] = 1 implies [w] = 1. Since, on the other hand, [u] = [v] implies [ϕ(u)] = [ϕ(v)] for 
all u, v ∈ ({p, p̄, q, ̄q} ∪ X)∗ , we can lift ϕ to a homomorphism witnessing Bp ∗Bq ∗ M ↪→Br ∗ M . �
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As a partial converse to Proposition 5.3, we have the following. It was first shown in [20]. Since valence automata over 
B ∗B are essentially pushdown automata and since Alg(VA(1)) = Alg(Reg) = CF, the equality VA(B ∗B ∗ M) = Alg(VA(M))

generalizes the equivalence between pushdown automata and context-free grammars.

Proposition 5.6 ([20]). For every monoid M, VA(B∗B∗M) = Alg(VA(M)). Moreover, if R1(M) �= {1}, then VA(B∗M) = Alg(VA(M)).

Proof. It suffices to prove the first statement: If R1(M) �= {1}, then Lemma 5.5 implies VA(B ∗ M) = VA(B ∗B ∗ M). Observe 
that if C is a language class with C ⊆ CF, then Alg(C∪VA(N)) = Alg(VA(N)) for every monoid N: For each production A → L
in a (C∪VA(N))-grammar G with L from C , we can take a context-free grammar G ′ generating L (with fresh non-terminals) 
and replace the production A → L with the productions of G ′ . This is yields a VA(N)-grammar because all singleton sets are 
contained in VA(N). Therefore, since the languages in VA(B) are effectively context-free, Proposition 5.3 yields

VA(B ∗ N) ⊆ Alg(VA(B) ∪ VA(N)) = Alg(VA(N))

for every monoid N . Therefore,

VA(B ∗B ∗ M) ⊆ Alg(VA(B ∗ M)) ⊆ Alg(Alg(VA(M))) = Alg(VA(M)).

It remains to be shown that Alg(VA(M)) ⊆ VA(B ∗B ∗ M).
Suppose G = (N, T , P , S) is a VA(M)-grammar and let X = N ∪ T . Since VA(M) is closed under union, we may assume 

that for each B ∈ N , there is precisely one production B → LB in P . For each nonterminal B ∈ N , there is a valence automa-
ton AB = (Q B , X, M, E B , qB

0 , F B) over M with L(AB) = LB . We may clearly assume that Q B ∩ Q C = ∅ for B �= C and that for 
each (p, w, m, q) ∈ E B , we have |w| ≤ 1.

In order to simplify the correctness proof, we modify G . Let � and � be new symbols and let G ′ be the grammar 
G ′ = (N, T ∪ {�, �}, P ′, S), where P ′ consists of the productions B → �L� for B → L ∈ P . Moreover, let

K = {v ∈ (N ∪ T ∪ {�, �})∗ | u ⇒∗
G ′ v, u ∈ LS}.

Then L(G) = πT (K ∩ (T ∪ {�, �})∗) and it suffices to show K ∈ VA(B ∗B ∗ M).
Let Q = ⋃

B∈N Q B . For each q ∈ Q , let Bq = 〈q, ̄q | qq̄ = 1〉 be an isomorphic copy of B. Let M ′ = Bq1 ∗ · · · ∗ Bqn ∗ M , 
where Q = {q1, . . . , qn}. We shall prove K ∈ VA(M ′), which implies K ∈ VA(B ∗B ∗ M) by Lemma 5.5 since R1(B ∗ M) �= {1}.

Let E = ⋃
B∈N E B , F = ⋃

B∈N F B . The new set E ′ consists of the following transitions:

(p, x,m,q) for (p, x,m,q) ∈ E , (2)

(p, �,mq,qB
0 ) for (p, B,m,q) ∈ E , B ∈ N , (3)

(p, �, q̄,q) for p ∈ F , q ∈ Q . (4)

We claim that with A′ = (Q , N ∪ T ∪ {�, �}, M ′, E ′, qS
0 , F ), we have L(A′) = K .

Let v ∈ K , where u ⇒n
G ′ v for some u ∈ L S . We show v ∈ L(A′) by induction on n. For n = 0, we have v ∈ L S and can 

use transitions of type (2) inherited from AS to accept v . If n ≥ 1, let u ⇒n−1
G ′ v ′ ⇒G ′ v . Then v ′ ∈ L(A′) and v ′ = xB y, 

v = x�w�y for some B ∈ N , w ∈ LB . The run for v ′ uses a transition (p, B, m, q) ∈ E . Instead of using this transition, we can 
use (p, �, mq, qB

0 ), then execute the (2)-type transitions for w ∈ LB , and finally use ( f , �, ̄q, q), where f is the final state in 
the run for w . This has the effect of reading �w� from the input and multiplying mq1q̄ = m to the storage monoid. Hence, 
the new run is valid and accepts v . Hence, v ∈ L(A′). This proves K ⊆ L(A′).

In order to show L(A′) ⊆ K , consider the homomorphisms ϕ : (T ∪ {�, �})∗ → B, ψ : M ′ → B with ϕ(x) = 1 for x ∈ T , 
ϕ(�) = a, ϕ(�) = ā, ψ(q) = a for q ∈ Q , ψ(q̄) = ā, and ψ(m) = 1 for m ∈ M . The transitions of A′ are constructed such that 
(p, ε, 1) →∗

A′ (q, w, m) implies ϕ(w) = ψ(m). In particular, if v ∈ L(A′), then π{�,�}(v) is a semi-Dyck word with respect to 
� and �.

Let v ∈ L(A′) and let n = |w|� . We show v ∈ K by induction on n. If n = 0, then the run for v only used transitions of 
type (2) and hence v ∈ L S . If n ≥ 1, since π{�,�}(v) is a semi-Dyck word, we can write v = x�w�y for some w ∈ (N ∪ T )∗ . 
Since � and � can only be produced by transitions of the form (3) and (4), respectively, the run for v has to be of the form

(qS
0, ε,1) →∗

A′ (p, x, r)

→A′ (qB
0 , x�, rmq)

→∗
A′ ( f , x�w, rmqs)

→A′ (q′, x�w�, rmqsq′)
→∗

A′ ( f ′, x�w�y, rmqsq′t)



G. Zetzsche / Information and Computation 277 (2021) 104583 11
for some p, q, q′ ∈ Q , B ∈ N , (p, B, m, q) ∈ E , f , f ′ ∈ F , r, t ∈ M ′ , and s ∈ M and with rmqsq′t = 1. This last condition implies 
s = 1 and q = q′ , which in turn entails rmt = 1. This also means (p, B, m, q′) = (p, B, m, q) ∈ E and (qB

0 , ε, 1) →∗
A′ ( f , w, s) =

( f , w, 1) and hence w ∈ LB . Using the transition (p, B, m, q′) ∈ E , we have

(qS
0, ε,1) →∗

A′ (p, x, r)

→A′ (q′, xB, rm)

→∗
A′ ( f ′, xB y, rmt).

Hence xB y ∈ L(A′) and |xB y|� < |v|� . Thus, induction yields xB y ∈ K and since xB y ⇒G ′ x�w�y, we have v = x�w�y ∈ K . 
This proves L(A′) = K . �

For two language classes C and D, we will consider the languages obtained by intersecting a language from C with a 
language in D. Since the class of these intersections might not be well-behaved, we use a slight extension. By C � D, we 
denote the class of all languages h(K ∩ L) where K ⊆ X∗ belongs to C and L ⊆ X∗ is a member of D and h : X∗ → Y ∗ is 
a homomorphism. This allows us to state the following characterization of VA(M × N) in terms of VA(M) and VA(N) by 
Kambites [10].

Proposition 5.7. If M, N are monoids, then VA(M × N) = VA(M) � VA(N).

This implies in particular that if VA(Mi) ⊆ VA(Ni) for i ∈ {0, 1}, then we also have the inclusion VA(M0 × M1) ⊆ VA(N0 ×
N1). Of course, this also means that if VA(Mi) = VA(Ni) for i ∈ {0, 1}, then VA(M0 × M1) = VA(N0 × N1). We are now ready 
to prove Proposition 3.2.

Proof (Proposition 3.2). By definition, we have M� ∼= B × (M0 ∗ M1), where Mi ∼= B or Mi ∼= Z for i ∈ {0, 1}. We show 
that VA(M0 ∗ M1) = VA(B ∗ B) in any case. This suffices, since it clearly implies VA(M�) = VA(B(2) × B) according to 
Proposition 5.7. If M0 ∼= M1 ∼=B, the equality VA(M0 ∗ M1) = VA(B ∗B) is trivial, so we may assume M0 ∼=Z.

If M1 ∼=Z, then M0 ∗ M1 ∼=Z ∗Z, meaning that VA(M0 ∗ M1) is the class of context-free languages (see Eq. (1)) and thus 
VA(M0 ∗ M1) = VA(B ∗B).

If M1 ∼= B, then VA(Z ∗B) = Alg(VA(Z)) by Proposition 5.6. Since VA(Z) is included in the context-free languages, we 
have Alg(VA(Z)) = VA(B ∗B). �

We shall now prove Theorem 3.3. Note that the implication “1 ⇒ 2” immediately follows from Theorem 3.1. The impli-
cation “2 ⇒ 3” is an old graph-theoretic result of Wolk.

Theorem 5.8 (Wolk [18]). A simple graph is a transitive forest if and only if it does not contain C4 or P4 as an induced subgraph.

The implication “3 ⇒ 4” is a simple combinatorial observation. An analogous fact is part of Lohrey and Steinberg’s proof 
of Theorem 3.4.

Lemma 5.9. If � is a PPN-free transitive forest, then M� ∈ DEC.

Proof. Let � = (V , E). We proceed by induction on |V |. If � is empty, then M� ∼= 1 ∼= B0 ∈ DEC. Hence, we assume 
that � is non-empty. If � is not connected, then � is the disjoint union of PPN-free transitive forests �1, �2, for which 
M�1, M�2 ∈ DEC by induction. Hence, M� ∼=M�1 ∗M�2 ∈ DEC.

Suppose � is connected. Since � is a transitive forest, there is a vertex v ∈ V such that � \ v is a PPN-free transitive 
forest and v is adjacent to every vertex in V \ {v}. We distinguish two cases.

• If v is a looped vertex, then M� ∼=Z ×M(� \ v), and M(� \ v) ∈ DEC by induction.
• If v is an unlooped vertex, then � being PPN-free means that in � \ v , any two distinct vertices are adjacent. Hence, 
M� ∼= Bm × Zn , where m and n are the number of unlooped and looped vertices in �, respectively. Therefore, M� ∈
DEC. �
For establishing Theorem 3.3, our remaining task is to prove the implication “4 ⇒ 1”. In light of Theorems 3.1 and 5.8

and Lemma 5.9, this amounts to showing that emptiness is decidable for valence automata over monoids in DEC. This will 
involve two facts (Theorem 5.10 and Proposition 5.11) about the languages arising from monoids in DEC.

The following generalization of Parikh’s theorem by van Leeuwen will allow us to exploit our description of free products 
by algebraic extensions. If X is an alphabet, X⊕ denotes the set of maps α : X →N . The elements of X⊕ are called multisets. 
The Parikh map is the map � : X∗ → X⊕ where � (w) (x) is the number of occurrences of x in w . By P(S), we denote the 
power set of the set S . A substitution is a map σ : X → P(Y ∗), where X and Y are alphabets. Given L ⊆ X∗ , we write σ(L)
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for the set of all words v1 · · · vn , where vi ∈ σ(xi), 1 ≤ i ≤ n, for x1 · · · xn ∈ L and x1, . . . , xn ∈ X . If σ(x) belongs to C for 
each x ∈ X , then σ is a C-substitution. The class C is said to be substitution closed if σ(L) ∈ C for every member L of C and 
every C-substitution σ .

Theorem 5.10 (van Leeuwen [17]). For each substitution closed full trio C , we have � (Alg(C)) = � (C).

For α, β ∈ X⊕ , let α + β ∈ X⊕ be defined by (α + β)(x) = α(x) + β(x). With this operation, X⊕ is a monoid. For a subset 
S ⊆ X⊕ , we write S⊕ for the smallest submonoid of X⊕ containing S . A subset of the form μ + F ⊕ for μ ∈ X⊕ and a 
finite F ⊆ X⊕ is called linear. A finite union of linear sets is called semilinear. By SLI(C) we denote the class of languages 
h(L ∩ �−1(S)), where h : X∗ → Y ∗ is a homomorphism, L belongs to C , and S ⊆ X⊕ is semilinear.

Proposition 5.11 ([20]). For each monoid M, we have

SLI(VA(M)) =
⋃
i≥0

VA(M ×Zi).

We will prove decidability for DEC by reducing the problem to the reachability problem of priority multicounter ma-
chines, whose decidability has been established by Reinhardt [15]. Priority multicounter machines are an extension of Petri 
nets with one inhibitor arc. Intuitively, a priority multicounter machine is a partially blind multicounter machine with the 
additional capability of restricted zero tests: The counters are numbered from 1 to k and for each � ∈ {1, . . . , k}, there is 
a zero test instruction that checks whether counters 1 through � are zero. Let us define priority multicounter machines 
formally.

A priority k-counter machine is a tuple A = (Q , X, E, q0, F ), where (i) X is an alphabet, (ii) Q is a finite set of states, (iii) 
E is a finite subset of Q × X∗ × {0, . . . , k} ×Zk × Q , and its elements are called edges or transitions, (iv) q0 ∈ Q is the initial 
state, and (v) F ⊆ Q is the set of final states. For � ∈ {0, . . . , k}, let

Nk
� = {(μ1, . . . ,μk) ∈ Nk | μ1 = . . . = μ� = 0}.

We are now ready to define the semantics of priority counter machines. A configuration of A is a pair (q, μ) ∈ Q ×Nk . For 
configurations (q, μ) and (q′, μ′), we write (q, μ) w−→A (q′, μ′) if there are (q0, μ0), . . . , (qn, μn) ∈ Q ×Nk such that

(i) (q, μ) = (q0, μ0) and (q′, μ′) = (qn, μn),
(ii) for each i ∈ {1, . . . , n}, there is a transition (qi−1, wi, �, ν, qi) ∈ E such that μi−1 ∈ Nk

� and μi = μi−1 + ν , and w =
w1 · · · wn .

The language accepted by A is defined as

L(A) = {w ∈ X∗ | (q0,0)
w−→A ( f ,0) for some f ∈ F }.

A priority multicounter machine is a priority k-counter machine for some k ∈N . The class of languages accepted by priority 
multicounter machines is denoted by Prio. Reinhardt has shown that the reachability problem for priority multicounter 
machines is decidable [15], which can be reformulated as follows.

Theorem 5.12 (Reinhardt [15]). The emptiness problem is decidable for priority multicounter machines.

Although the decidability proof for the emptiness problem for valence automata over SC± employs a reduction to priority 
multicounter machines, it should be stressed that the mechanisms realized by SC± are quite different from priority counters 
and very likely not subsumed by them in terms of accepted languages. For example, SC± contains pushdown stacks (B ∗
B)—if the priority multicounter machines could accept all context-free languages (or even just the semi-Dyck language D∗

2), 
this would easily imply decidability of the emptiness problem for pushdown Petri nets. Indeed, SC± can even realize stacks 
where each entry consists of n partially blind counters (since B ∗ (Bn) ∈ SC±). On the other hand, priority multicounter 
machines do not seem to be subsumed by SC± either: After building stacks once, SC± only allows adding blind counters 
(and building stacks again). It therefore seems unlikely that a mechanism in SC± can accept the languages even of a priority 
2-counter machine.

The idea of the proof of “4 ⇒ 1” is, given a valence automaton over some M ∈ DEC, to construct a Parikh-equivalent 
priority multicounter machine. This construction makes use of the following simple fact. A full trio C is said to be Presburger 
closed if SLI(C) ⊆ C .

Lemma 5.13. Prio is a Presburger closed full trio and closed under substitutions.
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Proof. The fact that Prio is a full trio can be shown by standard automata constructions. Given a priority multicounter 
machine A and a semilinear set S ⊆ X⊕ , we add |X | counters to A that ensure that the input is contained in L(A) ∩�−1(S). 
This proves that Prio is Presburger closed.

Suppose σ : X →P(Y ∗) is a Prio-substitution. Furthermore, let A be a priority k-counter machine and let σ(x) be given 
by a priority �-counter machine for each x ∈ X . We construct a priority (� + k)-counter machine B from A by adding �
counters. B simulates A on counters � + 1, . . . , � + k. Whenever A reads x, B uses the first � counters to simulate the 
priority �-counter machine for σ(x). Using the zero test on the first � counters, it makes sure that the machine for σ(x)
indeed ends up in a final configuration. Then clearly L(B) = σ(L(A)). �
Lemma 5.14. We have the effective inclusion � (VA(DEC)) ⊆ � (Prio). More precisely, given M ∈ DEC and L ∈ VA(M), one can 
construct an L′ ∈ Prio with � 

(
L′) = � (L).

Proof. We proceed by induction with respect to the definition of DEC. In the case M =Bn , we have VA(M) ⊆ Prio, because 
priority multicounter machines generalize partially blind multicounter machines.

Suppose M = N × Z and � (VA(N)) ⊆ � (Prio) and let L ∈ VA(M). By Proposition 5.11, we have L = h(K ∩ �−1(S)) for 
some semilinear set S , a homomorphism h, and K ∈ VA(N). Hence, there is a K̄ ∈ Prio with � 

(
K̄

) = � (K ). With this, we 
have � (L) = � 

(
h(K̄ ∩ �−1(S))

)
and since Prio is Presburger closed, we have h(K̄ ∩�−1(S)) ∈ Prio and thus � (L) ∈ � (Prio).

Suppose M = M0 ∗ M1 and � (VA(Mi)) ⊆ � (Prio) for i ∈ {0, 1}. Let L be a member of VA(M). According to Proposition 5.3, 
this means L belongs to Alg(VA(M0) ∪ VA(M1)). Since � (VA(M0) ∪ VA(M1)) ⊆ � (Prio), we can construct a Prio-grammar G
with � (L(G)) = � (L). By Theorem 5.10 and Lemma 5.13, this implies � (L) ∈ � (Prio). �

The following lemma is a direct consequence of Lemma 5.14 and Theorem 5.12: Given a valence automaton over M
with M ∈ DEC, we construct a priority multicounter machine accepting a Parikh-equivalent language. The latter can then be 
checked for emptiness.

Lemma 5.15. For each M ∈ DEC, the emptiness problem for valence automata over M is decidable.

This completes the proof of “4 ⇒ 1” of Theorem 3.3 and hence concludes the proof of Theorem 3.3.

6. Expressive equivalences

We now turn to the proof of Propositions 3.5 and 3.6, which characterize the expressiveness of valence automata over 
SC± and REM, respectively.

Proof (Proposition 3.5). Since SC± ⊆ DEC, the inclusion “⊇” is immediate. We show by induction with respect to the 
definition of DEC that for each M ∈ DEC, there is an M ′ ∈ SC± with VA(M) ⊆ VA(M ′). This is trivial if M =Bn , so suppose 
VA(M) ⊆ VA(M ′) and VA(N) ⊆ VA(N ′) for M, N ∈ DEC and M ′, N ′ ∈ SC± . Observe that by induction on the definition of 
SC± , one can show that there is a common P ∈ SC± with VA(M ′) ⊆ VA(P ) and VA(N ′) ⊆ VA(P ). Of course, we may assume 
that R1(P ) �= {1}. Then we have

VA(M ∗ N) ⊆ Alg(VA(M) ∪ VA(N)) ⊆ Alg(VA(M ′) ∪ VA(N ′))
⊆ Alg(VA(P )) = VA(B ∗ P ),

in which the first inclusion is due to Proposition 5.3 and the equality in the end is provided by Proposition 5.6. Since 
B ∗ P ∈ SC± , this completes the proof for M ∗ N . Moreover, VA(M) ⊆ VA(M ′) implies VA(M ×Z) ⊆ VA(M ′ ×Z) and we have 
M ′ ×Z ∈ SC± . �
Proof (Proposition 3.6). By induction, it is easy to see that each M ∈ SC+ is isomorphic to some M� where � contains 
a PPN-graph and �− is a transitive forest. By Theorem 5.8, this means �− contains neither C4 nor P4. This proves the 
inclusion “⊇”.

Because of Theorem 5.8, for the inclusion “⊆”, it suffices to show that if �− is a transitive forest, then there is some 
M ∈ SC+ with VA(M�) ⊆ VA(M). We prove this by induction on the number of vertices in � = (V , E). As in the proof of 
Lemma 5.9, we may assume that for every induced proper subgraph � of �, we find an M ∈ SC+ with VA(M�) ⊆ VA(M). 
If � is empty, then M� ∼= 1 and VA(M�) ⊆ VA(B(2) ×B). Hence, we may assume that � is non-empty.

If � is not connected, then � = �1 � �2 with non-empty graphs �1, �2. This implies that there are M1, M2 ∈ SC+ with 
VA(M�i) ⊆ VA(Mi) for i ∈ {1, 2}. By induction with respect to the definition of SC+ , one can show that there is a common 
N ∈ SC+ with VA(Mi) ⊆ VA(N) for i ∈ {1, 2}. Here, N can clearly be chosen with R1(N) �= {1}. Then, we have

VA(M�) = VA(M�1 ∗M�2) ⊆ Alg(VA(M�1) ∪ VA(M�2))

⊆ Alg(VA(M1) ∪ VA(M2)) ⊆ Alg(VA(N)) = VA(B ∗ N)
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and B ∗ N ∈ SC+ as in the proof of Proposition 3.5.
Suppose � is connected. Since �− is a transitive forest, there is a vertex v ∈ V that is adjacent to every vertex in 

V \ {v}. By induction, there is an M ∈ SC+ with VA(M(� \ v)) ⊆ VA(M). Depending on whether v is looped or not, we have 
M� ∼=M(� \ v) ×Z or M� ∼=M(� \ v) ×B. Since VA(Z) ⊆ VA(B×B) (one blind counter can easily be simulated by two 
partially blind counters), this yields VA(M�) ⊆ VA(M(� \ v) ×B×B) ⊆ VA(M ×B×B) and the fact that M ×B×B ∈ SC+
completes the proof. �
7. Finite-index languages and Petri nets

We have seen in the previous sections that valence automata over SC± constitute a model that (strictly) subsumes Petri 
nets and has a decidable emptiness problem. Moreover, they feature a type of pushdown stack. A similar result has been 
obtained by Atig and Ganty [2]. They proved that given a finite-index context-free language and a Petri net language, it 
is decidable whether their intersection is empty. Here, we present a common generalization of these facts: We provide a 
language class that contains the languages considered by Atig and Ganty and those in VA(SC±) and enjoys decidability of 
the emptiness problem.

Definitions If C is the class of finite languages, a C-grammar is also called a context-free grammar. For a context-free gram-
mar G = (N, T , P , S), we may assume that for each production (A, M), the set M is a singleton and instead of (A, {w}), we 
write A → w for the production. The grammar is said to be in Chomsky normal form (CNF) if for every production A → w , 
we have w ∈ N2 ∪ T ∪ {ε}.

The finite-index restriction considered by Atig and Ganty places a budget constraint on the nonterminal occurrences in 
sentential forms. This leads to a restricted derivation relation. Suppose G is in CNF. For u, v ∈ (N ∪ T )∗ , we write u ⇒G,k v
if |u|N , |v|N ≤ k and u ⇒G v . Then, the k-approximation Lk(G) of L(G) is defined as

Lk(G) = {w ∈ T ∗ | S ⇒∗
G,k w}.

For k ≥ 1, we use CFk to denote the class of languages of the form Lk(G) for context-free grammars G . The languages in CFk
are called index-k context-free languages. It will later be convenient to let CF0 denote the regular languages. Moreover, fiCF is 
the union 

⋃
k≥1 CFk . Its members are called finite-index context-free languages. Note that although clearly L(G) = ⋃

k≥1 Lk(G)

for every individual grammar G , the class fiCF is strictly contained in CF: Salomaa has shown that D∗
1, the semi-Dyck 

language over one pair of parentheses, is not contained in fiCF [16].
A d-dimensional (labeled) Petri net4 is a tuple N = (X, E, μ0, F ), where X is an alphabet, T is a finite subset of (X ∪ {ε}) ×

Zd whose elements are called transitions, μ0 ∈ Nd is the initial marking, and F ⊆ Nd is a finite set of final markings. For 
μ, μ′ ∈Nd and w ∈ X∗ , we write μ w−→N μ′ if there are μ0, . . . , μn ∈Nd and transitions (x1, ν1), . . . , (xn, νn) ∈ T such that 
w = x1 · · · xn , μ0 = μ, μn = μ′ , and μi = μi−1 + νi for i ∈ {1, . . . , n}. Moreover, we define

L(N,μ,μ′) = {w ∈ X∗ | μ w−→N μ′}, L(N) =
⋃
μ∈F

L(N,μ0,μ).

The language L(N) is said to be generated by N . A language is a Petri net language if it is generated by some labeled Petri net. 
By P, we denote the class of all Petri net languages. Observe that we have P = ⋃

n≥0 VA(Bn).
The main result of this section involves the language class fiCF � P. We will use the fact that this is a full trio, which 

follows from the following classical result. See [7, Theorem 3.6.1] for a proof.

Proposition 7.1. If C and D are full trios, then C �D is a full trio as well.

In our notation, the result of Atig and Ganty can be stated as follows.

Theorem 7.2 (Atig and Ganty [2]). The class fiCF � P has a decidable emptiness problem.

Here, we present a language class including both fiCF � P and VA(SC±) where emptiness is still decidable. First, consider 
the following hierarchy. Let

F0 = P, Fi+1 = SLI(Alg(Fi)) for i ≥ 0, F =
⋃
i≥0

Fi .

The class F captures the expressive power of valence automata over monoids in SC±:

4 This definition is closer to what is known as a Vector Addition System, but these models are well-known to be equivalent with respect to generated 
languages.
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Proposition 7.3. VA(SC±) = F.

Proof. For the inclusion “⊆”, we prove that for every M ∈ SC± , we have VA(M) ⊆ Fi for some i ≥ 0. Clearly, we have 
VA(Bn) ⊆ F0. Moreover, if VA(M) ⊆ Fi , then

VA(M ×Z) ⊆ SLI(VA(M)) ⊆ SLI(Fi) ⊆ Fi+1,

in which the first inclusion follows from Proposition 5.11. Finally, if VA(M0) ⊆ Fi and VA(M1) ⊆ F j , then VA(M0), VA(M1) ⊆
Fk for k = max{i, j} and thus

VA(M0 ∗ M1) ⊆ Alg(VA(M0) ∪ VA(M1)) ⊆ Alg(Fk) ⊆ Fk+1,

where the first inclusion is due to Proposition 5.3. This completes the proof of the inclusion “⊆”.
For the inclusion “⊇”, we show by induction on i that Fi ⊆ VA(DEC) for every i ≥ 0. Since VA(DEC) = VA(SC±) by 

Proposition 3.5, this is sufficient. Clearly, the inclusion F0 = ⋃
n≥0 VA(Bn) ⊆ VA(DEC) holds. Now suppose Fi ⊆ VA(DEC) and 

let L be a member of Fi+1 = SLI(Alg(Fi)). This means we have L = h(K ∩ �−1(S)) for some homomorphism h, a language 
K from Alg(Fi), and a semilinear set S . As a member of Alg(Fi), the language K is generated by an Fi -grammar G . Each 
right-hand side in G is contained in Fi and thus, by induction, in VA(DEC). Hence, suppose the right-hand sides of G are 
K1, . . . , Kn with Ki ∈ VA(Mi) for M1, . . . , Mn ∈ DEC. Consider the monoid M = M1 ∗ · · · ∗ Mn . Since each Mi embeds into M , 
the languages K1, . . . , Kn belong to VA(M). Thus, K is a member of Alg(VA(M)), which equals VA(B ∗B ∗ M) according to 
Proposition 5.6. According to Proposition 5.11, this implies that L belongs to VA((B ∗ B ∗ M) × Zk) for some k ≥ 0. Since 
(B ∗B ∗ M) ×Zk is a member of DEC, we know that L belongs to VA(DEC). We have thus shown Fi+1 ⊆ VA(DEC), which 
establishes the inclusion “⊆”. �

Our new class is defined as follows. Let

G0 = fiCF � P, Gi+1 = SLI(Alg(Gi)) for i ≥ 0, G =
⋃
i≥0

Gi .

Then clearly Fi ⊆ Gi for i ≥ 0 and hence VA(SC±) = F ⊆ G. Moreover, we obviously have fiCF � P ⊆ G. We shall prove the 
following.

Theorem 7.4. The class G has a decidable emptiness problem.

We show Theorem 7.4 by proving a slightly stronger version of Theorem 7.2: Atig and Ganty reduce the emptiness 
problem of fiCF � P to the emptiness problem for priority multicounter machines. We strengthen this slightly and show that 
for each language L in fiCF�P, one can construct a priority multicounter machine A with � (L(A)) = � (L), in other words: 
� (fiCF � P) ⊆ � (Prio). This allows us to apply Theorem 5.10 and Lemma 5.13 to conclude that � (G) ⊆ � (Prio).

The following observation provides a decomposition of languages in fiCF. A context-free grammar G = (N, T , P , S) is 
called linear if every production A → w in G satisfies |w|N ≤ 1. A language is called linear context-free if it is generated by 
a linear context-free grammar. Note that CF1 is precisely the class of linear context-free languages.

Proposition 7.5. Suppose k ≥ 1. A language belongs to CFk if and only if it can be written as σ(L) for a linear context-free language L
and a CFk−1-substitution σ .

Proof. We prove the statement by induction on k. For k = 1, it essentially states that linear context-free languages are 
closed under regular substitutions, which is clearly true. For the induction step, we use a result of Atig and Ganty. Let 
G = (N, T , P , S) be a context-free grammar in CNF. For each i ≥ 0, let A[i] be a fresh symbol. For each � ≥ 0, we define a 
grammar G[�] as follows. We have G[�] = (N[�], T , P [�], S[�]) with N[�] = {A[i] | A ∈ N, 0 ≤ i ≤ �} and P [�] is the smallest set 
of productions such that

1. for each A → BC in P , we have A[i] → B[i]C [i−1] and A[i] → B[i−1]C [i] in P [�] for every index i ∈ {1, . . . , �},
2. for each A → w in P with w ∈ T ∪ {ε}, we have A[i] → w in P [�] for every i ∈ {0, . . . , �}.

For each nonterminal A of G , we define

L(G, A) = {w ∈ T ∗ | A ⇒∗
G w}, L�(G, A) = {w ∈ T ∗ | A ⇒∗

G,� w}.
Atig and Ganty [2] show that for every i ∈ {0, . . . , �}, one has

L(G[�], A[i]) = Li+1(G, A). (5)
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Now suppose K belongs to CFk+1 with K = Lk+1(G) where G is in CNF. According to (5), we have L(G[k]) = K . We now 
construct a (linear) context-free grammar G ′ = (N ′, T ′, P ′, S ′) (that is not necessarily in CNF) as follows. It has terminal 
symbols T ′ = T ∪ {A[i] | 0 ≤ i ≤ k − 1} and its nonterminal symbols are N ′ = {A[k] | A ∈ N}. As productions, it contains 
all those productions of G whose left-hand side belongs to N ′ . Moreover, the substitution σ : T ′ ∗ → P(T ∗) is defined as 
follows: For a ∈ T , we set σ(a) = {a}. For A[i] ∈ T ′ , we define σ(A[i]) = L(G[k], A[i]). Since for A[i] ∈ T ′ , we have i ≤ k − 1, 
the equation (5) tells us that σ(A[i]) belongs to CFi+1 ⊆ CFk . Hence, σ is a CFk-substitution. Moreover, an inspection of the 
definition of G[�] yields that G ′ is clearly linear. Finally, we have K = σ(L(G ′)), so that with L = L(G ′), we have proven the 
“only if” direction of the proposition. The other direction is obvious. �

We now turn to the key lemma (Lemma 7.6) of our slightly stronger version of Atig and Ganty’s result. We want to 
show that given an index-k context-free language K and a Petri net language L, one can construct a priority multicounter 
machine A with � (L(A)) = � (K ∩ L). The proof proceeds by induction on the index k, which warrants a strengthening of 
the statement.

We need some terminology. For a vector μ = (m1, . . . , md) ∈ Nd and k ≥ d, we denote by 0|μ the vector (0, . . . , 0,

m1, . . . , md) ∈ Nk . The dimension k will always be clear from the context. In order to make the induction work, we need 
to construct priority counter machines with the additional property that for a particular d, they never zero-test their d
topmost counters. Therefore, for a priority k-counter machine A = (Q , X, E, q0, F ) and d ≤ k, we define Ad to be the 
machine obtained from A removing all transitions (q, x, �, ν, q′) with � > d. In other words, we remove all transitions that 
perform a zero-test on a counter other than 1, . . . , d. We define the language

Ld(A,q,μ,q′,μ′) = {w ∈ X∗ | (q,0|μ)
w−→Ad (q′,0|μ′)}.

For a language K ⊆ X∗ and a d-dimensional Petri net N = (X, E, μ0, F ), we say that a priority k-counter machine A is a 
(K , N)-simulator if k ≥ d and there are two states p and p′ in A such that for every μ, μ′ ∈Nd , we have

�
(
Ld(A, p,μ, p′,μ′)

) = �
(

K ∩ L(N,μ,μ′)
)
. (6)

In this case, p and p′ are called source and target, respectively.

Lemma 7.6. Given a language K in fiCF and a labeled Petri net N, one can construct a (K , N)-simulator.

Proof. Let N = (X, E, μ0, F ) be a d-dimensional Petri net and let K belong to CFk . We proceed by induction on k. If k = 0, 
then K is accepted by some finite automaton B. We may assume that B has an initial state p and one final state p′ . One 
can construct a priority d-counter machine A by a product construction from N and B such that A has the same state set 
as B and

Ld(A, p,μ, p′,μ′) = K ∩ L(N,μ,μ′),
meaning it is indeed a (K , N)-simulator.

For the induction step, suppose k ≥ 1. According to Proposition 7.5, there is a linear context-free language L ⊆ Y ∗ and 
a CFk−1-substitution σ : Y → P(X∗) with K = σ(L). Let us begin with some explanation. Since L is linear context-free, it 
is given by a grammar G = (N̄, Y , P , S) where every production is of the form A → x1 Bx2 or A → ε with A, B ∈ N̄ and 
x1, x2 ∈ Y ∪ {ε}. Let D ⊆ P∗ be the regular language of production sequences that correspond to derivations in G and let 
g1, g2 : P∗ → Y ∗ be the homomorphisms where for π = A → x1 Bx2 (with x1, x2 ∈ Y ∪ {ε}), we set gi(π) = xi . Then, we 
have L = {g1(w)g2(w R) | w ∈ D}.

Therefore, if τi is the CFk−1-substitution with τi(π) = σ(gi(π)) for i = 1, 2, then K = σ(L) consists of all words in 
τ1(w)τ2(w R) for w ∈ D . In other words, K contains precisely those words of the form

u1 · · · un vn · · · v1 (7)

such that there is a word w = π1 · · ·πn ∈ D , π1, . . . , πn ∈ P with ui ∈ τ1(πi) and vi ∈ τ2(πi) for i ∈ {1, . . . , n}.
Our task is to construct a (K , N)-simulator A′ . This means, using a priority counter machine, we have to simulate—up to 

Parikh image—all runs of N with labels as in Eq. (7). By induction, we have a (τi(π), N)-simulator Aπ,i for each π ∈ P and 
i ∈ {1, 2}. Each of the machines Aπ,i has ≥ d counters, so we may clearly assume that for some � ≥ 0, they all have � + d
counters. Moreover, by definition of a (τi(π), N)-simulator, these machines never perform a zero-test on the d top-most 
counters. Moreover, using a zero-test, we can guarantee that when Aπ,i reaches its target state, its first � counters are zero.

The basic idea is that A′ performs a run of an automaton for D , which reads a word w = π1 · · ·πn . For each j =
1, . . . , n, it executes a computation of Aπ j ,1 (reading u j) and a computation of Aπ j ,2 (reading v j). Hence, A′ reads the 
word u1 v1u2 v2 · · · un vn , which is clearly Parikh-equivalent to u1 · · · un vn · · · v1.

We have to make sure that all these runs of the machines Aπ j ,i are compatible in the sense that they can be executed 
in the order prescribed by Eq. (7). To this end, all the executions of Aπ1,1, . . . , Aπn,1 share one set of � + d counters. The 
executions of Aπ1,2, . . . , Aπn,2 also share a set of counters, but they are executed backwards. The counters for the backward 
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execution are also � + d many, but since each execution of some Aπ,i leaves the first � counters empty, the forward and 
the backward simulation can share the first � counters between them. This leaves us with � + 2d counters: We use counters 
1, . . . , � +d to simulate Aπ j ,1 and we use counters 1, . . . , � and � +d +1, . . . , � +2d to simulate Aπ j ,2 (backwards). Therefore, 
we call counters 1, . . . , � auxiliary counters, whereas the counters � + 1, . . . , � + d are called forward counters. The counters 
� + d + 1, . . . , � + 2d are dubbed backward counters.

In addition, we have to make sure that the executions of N corresponding to vn · · · v1 can be executed after the execu-
tions corresponding to u1 · · · un . Therefore, after executing the run of the automaton for D , A′ simultaneously counts down 
the forward and the backward counters and then performs a zero-test on the counters 1, . . . , � + 2d.

Finally, in order to be a (K , N)-simulator, A′ must have d top-most counters so that the following holds: If we simulate 
the computation μ u1···un vn ···v1−−−−−−−−→N μ′ with μ, μ′ ∈Nd , then the d top-most counters of A′ must contain μ in the beginning 
and μ′ in the end. To this end, we add an additional set of d counters, called global counters. Hence, in total, A′ has � + 3d
counters:

1, . . . , �︸ ︷︷ ︸
auxiliary

, � + 1, . . . , � + d︸ ︷︷ ︸
forward

, � + d + 1, . . . , � + 2d︸ ︷︷ ︸
backward

, � + 2d + 1, . . . , � + 3d︸ ︷︷ ︸
global

.

The global counters are used as follows. The machine A′ starts with counters 0|μ ∈ N�+3d . First, it nondeterministically 
subtracts some vector ν1 ∈ Nd from the global counters and simultaneously adds it to the forward counters. Then, it 
nondeterministically adds a vector ν ′

2 ∈ Nd to both the global counters and the backward counters. After performing the 
simulation of the Aπ1,1, . . . , Aπn,1 and the Aπ1,2, . . . , Aπn,2, suppose the forward counters contain ν ′

1 ∈ Nd and the back-
ward counters contain ν2 ∈Nd . As described above, A′ afterwards compares the forward and backward counters, ensuring 
that ν ′

1 = ν2 and thus:

ν1
u1···un−−−−→N ν ′

1 = ν2
vn···v1−−−−→N ν ′

2.

Observe that this guarantees that the global counters of A′ reflect the counters of the simulated computation of N: In the 
end, they are precisely 0|μ′ ∈N�+3d , where μ′ = μ − ν1 + ν ′

2, which means μ u1···un vn ···v1−−−−−−−−→N μ′ .
Let us make the description of A′ more precise.

(i) A′ has a state p, where it nondeterministically subtracts tokens from the global counters and simultaneously adds 
them to the forward counters.

(ii) Note that D ⊆ P∗ can be accepted by a finite automaton with state set N̄ , the non-terminals of G . Therefore, from the 
state p, A′ can enter the state S ∈ N̄ to start simulating the automaton for D .

(iii) In a state A ∈ N̄ , A′ selects a production π = A → x1 Bx2 ∈ P and then executes a computation of Aπ,1 in the auxiliary 
and the forward counters. Then, it executes a computation of Aπ,2 backwards on the auxiliary and backward counters. 
Then, it switches to state B ∈ N̄ .

(iv) If A′ is in state A ∈ N̄ and there is a production A → ε ∈ P , then A′ switches to a state p′′ , in which it simultaneously 
counts down the forward and the backward counters. From p′′ it nondeterministically switches to p′ while performing 
a zero-test on all counters 1, . . . , � + 2d.

In conclusion, it is clear that for μ, μ′ ∈Nd , we have (p, 0|μ) w−→A′ (p′, 0|μ′) if and only if w = u1 v1u2 v2 · · · un vn such that 
there is a word π1 · · ·πn ∈ D , π1, . . . , πn ∈ P , such that u j ∈ τ1(π j) and v j ∈ τ2(π j). Thus, A′ is a (K , N)-simulator. �

We are now ready to prove the slightly stronger version of the decidability result of Atig and Ganty.

Theorem 7.7. Given K in fiCF � P, one can construct a priority multicounter machine A with � (L(A)) = � (K ).

Proof. Since the languages of priority multicounter machines are closed under homomorphisms, we may assume that K =
C ∩ P , where C is in CFk and P = L(N) for a d-dimensional labeled Petri net N = (X, T , μ0, F ). Lemma 7.6 allows us to 
construct a (C, N)-simulator A with source p and target p′ . This means, for each μ ∈Nd , we have � 

(
Ld(A, p,μ0, p′,μ)

) =
� (C ∩ L(N,μ0,μ)) and in particular

�

⎛
⎜⎜⎜⎜⎜⎝

⋃
μ∈F

Ld(A, p,μ0, p′,μ)

︸ ︷︷ ︸
=:L

⎞
⎟⎟⎟⎟⎟⎠

= �

⎛
⎝⋃

μ∈F

C ∩ L(N,μ0,μ)

⎞
⎠ = �(C ∩ P ) .

Since we can clearly construct a priority multicounter machine for L, the proof of the theorem is complete. �
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This allows us to prove Theorem 7.4.

Proof (Theorem 7.4). Given a language in Gi , we can recursively construct a Parikh equivalent priority multicounter ma-
chine. According to Theorem 7.7, this is true of G0 = fiCF � P. Furthermore, Theorem 5.10 and Lemma 5.13 tell us that if we 
can carry out such a construction for Gi , we can also do it for Gi+1. �
8. Conclusion

Of course, an intriguing open question is whether the storage mechanisms corresponding to SC+ have a decidable 
reachability problem. First, since their simplest instance are pushdown Petri nets, this extends the open question concerning 
the latter’s reachability. Second, they naturally subsume the priority multicounter machines of Reinhardt. This makes them 
a candidate for being a quite powerful model for which reachability might be decidable.

Observe that if these storage mechanisms turn out to exhibit decidability, this would mean that the characterization of 
Lohrey and Steinberg (Theorem 3.4) remains true for all graph monoids. This can be interpreted as evidence for decidability.
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