
Computing Downward Closures for Stacked
Counter Automata
Georg Zetzsche

AG Concurrency Theory
Fachbereich Informatik
TU Kaiserslautern
zetzsche@cs.uni-kl.de

Abstract
The downward closure of a language L of words is the set of all (not necessarily contiguous)
subwords of members of L. It is well known that the downward closure of any language is
regular. Although the downward closure seems to be a promising abstraction, there are only few
language classes for which an automaton for the downward closure is known to be computable.

It is shown here that for stacked counter automata, the downward closure is computable.
Stacked counter automata are finite automata with a storage mechanism obtained by adding blind
counters and building stacks. Hence, they generalize pushdown and blind counter automata.

The class of languages accepted by these automata are precisely those in the hierarchy ob-
tained from the context-free languages by alternating two closure operators: imposing semilinear
constraints and taking the algebraic extension. The main tool for computing downward closures
is the new concept of Parikh annotations. As a second application of Parikh annotations, it is
shown that the hierarchy above is strict at every level.

1998 ACM Subject Classification F.4.3 Formal languages

Keywords and phrases abstraction, downward closure, obstruction set, computability

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.743

1 Introduction

In the analysis of systems whose behavior is given by formal languages, it is a fruitful idea
to consider abstractions: simpler objects that preserve relevant properties of the language
and are amenable to algorithmic examination. A well-known such type of abstraction is the
Parikh image, which counts the number of occurrences of each letter. For a variety of lan-
guage classes, the Parikh image of every language is known to be effectively semilinear, which
facilitates a range of analysis techniques for formal languages (see [12] for applications).

A promising alternative to Parikh images is the downward closure L↓, which consists of
all (not necessarily contiguous) subwords of members of L. Whereas for many interesting
classes of languages the Parikh image is not semilinear in general, the downward closure
is regular for any language [10], suggesting wide applicability. Moreover, the downward
closure encodes properties not visible in the Parikh image: Suppose L describes the behavior
of a system that is observed through a lossy channel, meaning that on the way to the
observer, arbitrary actions can get lost. Then, L↓ is the set of words received by the
observer [9]. Hence, given the downward closure as a finite automaton, we can decide
whether two systems are equivalent under such observations, and even whether the behavior
of one system includes the other. Hence, even if Parikh images are effectively semilinear for a
class of languages, computing the downward closure is still an important task. See [2, 3, 13]
for further applications.

© Georg Zetzsche;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 743–756

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.743
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

744 Computing Downward Closures for Stacked Counter Automata

However, while there always exists a finite automaton for the downward closure, it seems
difficult to compute them and there are few language classes for which computability has been
established. The downward closure is known to be computable for context-free languages
and algebraic extensions [5, 16], 0L-systems and context-free FIFO rewriting systems [1],
and Petri net languages [9]. It is not computable for reachability sets of lossy channel
systems [14] and for Church-Rosser languages [7]. For considerations of complexity, both
descriptional and computational, see [3, 8, 11, 15] and the references therein.

It is shown here that downward closures are computable for stacked counter automata.
These are automata with a finite state control and a storage mechanism obtained by two
constructions (of storage mechanisms): One can build stacks and add blind counters. The
former is to construct a new mechanism that stores a stack whose entries are configurations
of an old mechanism. One can then manipulate the topmost entry, pop it if empty, or start
a new one on top. Adding a blind counter to an old mechanism yields a new mechanism in
which the old one and a blind counter (i.e., a counter that can attain negative values and
has to be zero in the end of a run) can be used simultaneously.

Stacked counter automata are interesting because among a large class of automata with
storage, they are expressively complete for those storage mechanisms that guarantee semi-
linear Parikh images. This is due to the fact that they accept precisely those languages
in the hierarchy obtained from the context-free languages by alternating two closure oper-
ators: imposing semilinear constraints (with respect to the Parikh image) and taking the
algebraic extension. These two closure operators correspond to the constructions of storage
mechanisms in stacked counter automata (see Section 3).

The main tool to show the computability of downward closures is the concept of Parikh
annotations. As another application of this concept, it is shown that the aforementioned
hierarchy is strict at every level.

The paper is structured as follows. After Section 2 defines basic concepts and notation,
Section 3 introduces the hierarchy of language classes. Section 4 presents Parikh annotations,
the main ingredient for the computation of downward closures. The main result is then
presented in Section 5, where it is shown that downward closures are computable for stacked
counter automata. As a second application of Parikh annotations, it is then shown in
Section 6 that the hierarchy defined in Section 3 is strict at every level. Because of space
restrictions, most proofs can only be found in the long version of this work [18].

2 Preliminaries

A monoid is a set M together with a binary associative operation such that M contains a
neutral element. Unless the monoid at hand warrants a different notation, we will denote the
neutral element by 1 and the product of x, y ∈ M by xy. The trivial monoid that contains
only the neutral element is denoted by 1.

If X is an alphabet, X∗ denoted the set of words over X. The empty word is denoted
by ε ∈ X∗. For a symbol x ∈ X and a word w ∈ X∗, let |w|x be the number of occurrences
of x in w and |w| =

∑
x∈X |w|x. For an alphabet X and languages L,K ⊆ X∗, the shuffle

product L K is the set of all words u0v1u1 · · · vnun where u0, . . . , un, v1, . . . , vn ∈ X∗,
u0 · · ·un ∈ L, and v1 · · · vn ∈ K. For a subset Y ⊆ X, we define the projection morphism
πY : X∗ → Y ∗ by πY (y) = y for y ∈ Y and πY (x) = ε for x ∈ X \ Y . By P(S), we denote
the power set of the set S. A substitution is a map σ : X → P(Y ∗) and given L ⊆ X∗, we
write σ(L) for the set of all words v1 · · · vn, where vi ∈ σ(xi), 1 ≤ i ≤ n, for x1 · · ·xn ∈ L
and x1, . . . , xn ∈ X. If σ(x) ⊆ Y for each x ∈ X, we call σ a letter substitution.

G. Zetzsche 745

For words u, v ∈ X∗, we write u � v if u = u1 · · ·un and v = v0u1v1 · · ·unvn for
some u1, . . . , un, v0, . . . , vn ∈ X∗. It is well-known that � is a well-quasi-order on X∗ and
that therefore the downward closure L↓ = {u ∈ X∗ | ∃v ∈ L : u � v} is regular for any
L ⊆ X∗ [10].

If X is an alphabet, X⊕ denotes the set of maps α : X → N. The elements of X⊕ are
called multisets. Let α + β ∈ X⊕ be defined by (α + β)(x) = α(x) + β(x). With this
operation, X⊕ is a monoid. We consider each x ∈ X to be an element of X⊕. For a subset
S ⊆ X⊕, we write S⊕ for the smallest submonoid of X⊕ containting S. For α ∈ X⊕ and
k ∈ N, we define (k · α)(x) = k · α(x), meaning k · α ∈ X⊕. A subset of the form µ + F⊕

for µ ∈ X⊕ and a finite F ⊆ X⊕ is called linear. A finite union of linear sets is called
semilinear. The Parikh map is the map Ψ: X∗ → X⊕ defined by Ψ(w)(x) = |w|x for all
w ∈ X∗ and x ∈ X. Given a morphism ϕ : X⊕ → Y ⊕ and a word w ∈ X∗, we use ϕ(w) as
a shorthand for ϕ(Ψ(w)). We lift Ψ to sets in the usual way: Ψ(L) = {Ψ(w) | w ∈ L}. If
Ψ(L) is semilinear, we will also call L itself semilinear.

LetM be a monoid. An automaton over M is a tuple A = (Q,M,E, q0, F), in which
(i) Q is a finite set of states,
(ii) E is a finite subset of Q×M ×Q called the set of edges,
(iii) q0 ∈ Q is the initial state, and
(iv) F ⊆ Q is the set of final states.
We write (q,m) →A (q′,m′) if there is an edge (q, r, q′) ∈ E such that m′ = mr. The set
generated by A is then S(A) = {m ∈M | (q0, 1)→∗A (f,m) for some f ∈ F}.

A class of languages is a collection of languages that contains at least one non-empty
language. The class of regular languages is denoted by REG. A finite state transducer is an
automaton over Y ∗ × X∗ for alphabets X,Y . Relations of the form S(A) for finite state
transducers A are called rational transductions. For L ⊆ X∗ and T ⊆ Y ∗ × X∗, we write
TL = {u ∈ Y ∗ | ∃v ∈ L : (u, v) ∈ T}. If TF is finite for every finite language F , T is said
to be locally finite. A class C of languages is called a full trio (full semi-trio) if it is closed
under (locally finite) rational transductions, i.e. if TL ∈ C for every L ∈ C and every (locally
finite) rational transduction T . A full semi-AFL is a union closed full trio.

Stacked counter automata In order to define stacked counter automata, we use the con-
cept of valence automata, which combine a finite state control with a storage mechanism
defined by a monoid M . A valence automaton over M is an automaton A over X∗ ×M
for an alphabet X. The language accepted by A is then L(A) = {w ∈ X∗ | (w, 1) ∈ S(A)}.
The class of languages accepted by valence automata over M is denoted VA(M). By choos-
ing suitable monoids M , one can obtain various kinds of automata with storage as valence
automata. For example, blind counters, partially blind counters, pushdown storages, and
combinations thereof can all be realized by appropriate monoids [19].

If one storage mechanism is realized by a monoid M , then the mechanism that builds
stacks is realized by the monoid B ∗M . Here, B denotes the bicyclic monoid, presented
by 〈a, ā | aā = 1〉, and ∗ denotes the free product of monoids. For readers not familiar
with these concepts, it will suffice to know that a configuration of the storage mechanism
described by B ∗M consists of a sequence c0ac1 · · · acn, where c0, . . . , cn are configurations
of the mechanism realized by M . We interpret this as a stack with the entries c0, . . . , cn.
One can open a new stack entry on top (by multiplying a ∈ B), remove the topmost entry
if empty (by multiplying ā ∈ B) and operate on the topmost entry using the old mechanism
(by multiplying elements from M). For example, the monoid B describes a partially blind
counter (i.e. a counter that cannot go below zero and is only tested for zero in the end) and

STACS 2015

746 Computing Downward Closures for Stacked Counter Automata

B ∗B describes a pushdown with two stack symbols. Given a storage mechanism realized by
a monoid M , we can add a blind counter by using the monoid M × Z, where Z denotes the
group of integers. We define SC to be the smallest class of monoids with 1 ∈ SC such that
whenever M ∈ SC, we also have M ×Z ∈ SC and B∗M ∈ SC. A stacked counter automaton
is a valence automaton overM for someM ∈ SC. For more details, see [19]. In Section 3, we
will turn to a different description of the languages accepted by stacked counter automata.

3 A hierarchy of language classes

This section introduces a hierarchy of language classes that divides the class of languages
accepted by stacked counter automata into levels. This will allow us to apply recursion with
respect to these levels. The hierarchy is defined by alternating two operators on language
classes, algebraic extensions and semilinear intersections.

Algebraic extensions Let C be a class of languages. A C-grammar is a quadruple G =
(N,T, P, S) where N and T are disjoint alphabets and S ∈ N . The symbols in N and T

are called the nonterminals and the terminals, respectively. P is a finite set of pairs (A,M)
with A ∈ N and M ⊆ (N ∪ T)∗, M ∈ C. A pair (A,M) ∈ P is called a production of G and
also denoted by A→M . The set M is the right-hand side of the production A→M .

We write x⇒G y if x = uAv and y = uwv for some u, v, w ∈ (N ∪ T)∗ and (A,M) ∈ P
with w ∈ M . A word w with S ⇒∗G w is called a sentential form of G and we write SF(G)
for the set of sentential forms of G. The language generated by G is L(G) = SF(G) ∩ T ∗.
Languages generated by C-grammars are called algebraic over C. The class of all languages
that are algebraic over C is called the algebraic extension of C and denoted Alg(C). We say
a language class C is algebraically closed if Alg(C) = C. If C is the class of finite languages,
C-grammars are also called context-free grammars.

We will use the operator Alg(·) to describe the effect of building stacks on the accepted
languages of valence automata. In [19], it was shown that VA(M0 ∗M1) ⊆ Alg(VA(M0) ∪
VA(M1)). Here, we complement this by showing that if one of the factors is B ∗ B, the
inclusion becomes an equality. Observe that since VA(B ∗ B) is the class of languages ac-
cepted by pushdown automata and Alg(REG) = Alg(VA(1)) is clearly the class of languages
generated by context-free grammars, the first statement of the following theorem generalizes
the equivalence between pushdown automata and context-free grammars.

I Theorem 1. For every monoid M , Alg(VA(M)) = VA(B ∗ B ∗M).

Semilinear intersections The second operator on language classes lets us describe the
languages in VA(M × Zn) in terms of those in VA(M). Consider a language class C. By
SLI(C), we denote the class of languages of the form h(L ∩Ψ−1(S)), where L ⊆ X∗ is in C,
the set S ⊆ X⊕ is semilinear, and h : X∗ → Y ∗ is a morphism. We call a language class C
Presburger closed if SLI(C) = C. Proving the following requires only standard techniques.

I Proposition 2. Let M be a monoid. Then SLI(VA(M)) =
⋃

n≥0 VA(M × Zn).

The hierarchy is now obtained by alternating the operators Alg(·) and SLI(·). Let F0 be
the class of finite languages and let

Gi = Alg(Fi), Fi+1 = SLI(Gi) for each i ≥ 0, F =
⋃
i≥0

Fi.

G. Zetzsche 747

Then we clearly have the inclusions F0 ⊆ G0 ⊆ F1 ⊆ G1 ⊆ · · · . Furthermore, G0 is the
class of context-free languages, F1 is the smallest Presburger closed class containing CF, G1
the algebraic extension of F1, etc. In particular, F is the smallest Presburger closed and
algebraically closed language class containing the context-free languages.

The following proposition is due to the fact that both Alg(·) and SLI(·) preserve (effective)
semilinearity. The former has been shown by van Leeuwen [16].

I Proposition 3. The class F is effectively semilinear.

The work [4] characterized all those storage mechanisms among a large class (namely
among those defined by graph products of the bicyclic monoid and the integers) that guar-
antee semilinear Parikh images. Each of the corresponding language classes was obtained
by alternating the operators Alg(·) and SLI(·), meaning that all these classes are contained
in F. Hence, the following means that stacked counter automata are expressively complete
for these storage mechanisms. It follows directly from Theorem 1 and Proposition 2.

I Theorem 4. Stacked counter automata accept precisely the languages in F.

One might wonder why F0 is not chosen to be the regular languages. While this would
be a natural choice, our recursive algorithm for computing downward closures relies on the
following fact . Note that the regular languages are not Presburger closed.

I Proposition 5. For each i ≥ 0, the class Fi is an effective Presburger closed full semi-trio.
Moreover, for each i ≥ 0, Gi is an effective full semi-AFL.

4 Parikh annotations

This section introduces Parikh annotations, the key tool in our procedure for computing
downward closures. Suppose L is a semilinear language. Then for each w ∈ L, Ψ(w) can
be decomposed into a constant vector and a linear combination of period vectors from the
semilinear representation of Ψ(L). We call such a decomposition a Parikh decomposition.
The main purpose of Parikh annotations is to provide transformations of languages that
make reference to Parikh decompositions without leaving the respective language class. For
example, suppose we want to transform a context-free language L into the language L′ of all
those words w ∈ L whose Parikh decomposition does not contain a specified period vector.
This may not be possible with rational transductions: If L∨ = {anbm | m = n or m = 2n},
then the Parikh image is (a+ b)⊕∪ (a+2b)⊕, but a finite state transducer cannot determine
whether the input word has a Parikh image in (a+ b)⊕ or in (a+ 2b)⊕. Therefore, a Parikh
annotation for L is a language K in the same class with additional symbols that allow a
finite state transducer (that is applied to K) to access the Parikh decomposition.

I Definition 6. Let L ⊆ X∗ be a language and C be a language class. A Parikh annotation
(PA) for L in C is a tuple (K,C, P, (Pc)c∈C , ϕ), where
1. C,P are alphabets such that X,C, P are pairwise disjoint,
2. K ⊆ C(X ∪ P)∗ is in C,
3. ϕ is a morphism ϕ : (C ∪ P)⊕ → X⊕,
4. Pc is a subset Pc ⊆ P for each c ∈ C,
such that
(i) πX(K) = L (the projection property),
(ii) ϕ(πC∪P (w)) = Ψ(πX(w)) for each w ∈ K (the counting property), and
(iii) Ψ(πC∪P (K)) =

⋃
c∈C c+ P⊕c (the commutative projection property).

STACS 2015

748 Computing Downward Closures for Stacked Counter Automata

A Parikh annotation describes for each w in L one or more Parikh decompositions of Ψ(w).
The symbols in C represent constant vectors and symbols in P represent period vectors.
The symbols in Pc ⊆ P correspond to those that can be added to the constant vector
corresponding to c ∈ C. Furthermore, for each x ∈ C ∪P , ϕ(x) is the vector represented by
x. The projection property states that removing the symbols in C∪P from words inK yields
L. The commutative projection property requires that after c ∈ C only symbols representing
periods in Pc are allowed and that all their combinations occur. Finally, the counting
property says that the additional symbols in C ∪P indeed describe a Parikh decomposition
of Ψ(πX(w)). Of course, only semilinear languages can have a Parikh annotations.

I Example 7. Let X = {a, b, c, d} and consider the regular set L = (ab)∗(ca∗ ∪ db∗). For
K = e(pab)∗c(qa)∗ ∪ f(rab)∗d(sb)∗, P = {p, q, r, s}, C = {e, f}, Pe = {p, q}, Pf = {r, s},
and ϕ : (C ∪ P)⊕ → X⊕ with e 7→ c, f 7→ d, p 7→ a + b, q 7→ a, r 7→ a + b, and s 7→ b, the
tuple (K,C, P, (Pg)g∈C , ϕ) is a Parikh annotation for L in REG.

In a Parikh annotation, for each cw ∈ K and µ ∈ P⊕c , we can find a word cw′ in
K such that Ψ(πC∪P (cw′)) = Ψ(πC∪P (cw)) + µ. In particular, this implies the equality
Ψ(πX(cw′)) = Ψ(πX(cw))+ϕ(µ). In our applications, we will need a further guarantee that
provides such words, but with additional information on their structure. Such a guarantee
is granted by Parikh annotations with insertion marker. Suppose � /∈ X and u ∈ (X ∪{�})∗
with u = u0 � u1 · · · � un for u0, . . . , un ∈ X∗. Then we write u �� v if v = u0v1u1 · · · vnun

for some v1, . . . , vn ∈ X∗.

I Definition 8. Let L ⊆ X∗ be a language and C be a language class. A Parikh annotation
with insertion marker (PAIM) for L in C is a tuple (K,C, P, (Pc)c∈C , ϕ, �) such that:
(i) � /∈ X and K ⊆ C(X ∪ P ∪ {�})∗ is in C,
(ii) (πC∪X∪P (K), C, P, (Pc)c∈C , ϕ) is a Parikh annotation for L in C,
(iii) there is a k ∈ N such that every w ∈ K satisfies |w|� ≤ k (boundedness), and
(iv) for each cw ∈ K and µ ∈ P⊕c , there is a w′ ∈ L with πX∪�(cw) �� w′ and with

Ψ(w′) = Ψ(πX(cw)) + ϕ(µ). This property is called the insertion property.
If |C| = 1, then the PAIM is called linear and we also write (K, c, Pc, ϕ, �) for the PAIM,
where C = {c}.

In other words, in a PAIM, each v ∈ L has an annotation cw ∈ K in which a bounded
number of positions is marked such that for each µ ∈ P⊕c , we can find a v′ ∈ L with
Ψ(v′) = Ψ(v) + ϕ(µ) such that v′ is obtained from v by inserting words in corresponding
positions in v. In particular, this guarantees v � v′.

I Example 9. Let L and (K,C, P, (Pc)c∈C , ϕ) be as in Example 7. Furthermore, let K ′ =
e � (pab)∗c � (qa)∗ ∪ f � (rab)∗d � (sb)∗. Then (K ′, C, P, (Pc)c∈C , ϕ, �) is a PAIM for L
in REG. Indeed, every word in K ′ has at most two occurrences of �. Moreover, if ew =
e � (pab)mc � (qa)n ∈ K ′ and µ ∈ P⊕e , µ = k · p + ` · q, then w′ = (ab)k+mca`+n ∈ L

satisfies πX∪�(ew) = �(ab)mc � an �� (ab)k(ab)mca`an = w′ and clearly Ψ(πX(w′)) =
Ψ(πX(ew)) + ϕ(µ) (and similarly for words fw ∈ K ′).

The main result of this section is that there is an algorithm that, given a language L ∈ Fi

or L ∈ Gi, constructs a PAIM for L in Fi or Gi, respectively.

I Theorem 10. Given i ∈ N and L in Fi (Gi), one can construct a PAIM for L in Fi (Gi).

G. Zetzsche 749

Outline of the proof The rest of this section is devoted to the proof of Theorem 10. The
construction of PAIM proceeds recursively with respect to the level of our hierarchy. This
means, we show that if PAIM can be constructed for Fi, then we can compute them for
Gi (Lemma 17) and if they can be constructed for Gi, then they can be computed for Fi+1
(Lemma 18). While the latter can be done with a direct construction, the former requires a
series of involved steps:

The general idea is to use recursion with respect to the number of nonterminals: Given
a Fi-grammar for L ∈ Gi, we present L in terms of languages whose grammars use fewer
nonterminals. This presentation is done via substitutions and by using grammars with
one nonterminal. The idea of presenting a language in Alg(C) using one-nonterminal
grammars and substitutions follows van Leeuwen’s proof of Parikh’s theorem [16].
We construct PAIM for languages generated by one-nonterminal grammars where we are
given PAIM for the right-hand-sides (Lemma 16).
We construct PAIM for languages σ(L), where σ is a substitution, a PAIM is given for L
and for each σ(x) (Lemma 15). This construction is again divided into the case where σ
is a letter substitution (i.e., one in which each symbol is mapped to a set of letters) and
the general case. Since the case of letter substitutions constitutes the conceptually most
involved step, part of its proof is contained in this extended abstract (Proposition 13).

Maybe surprisingly, the most conceptually involved step in the construction of PAIM lies
within obtaining a Parikh annotation for σ(L) in Alg(C), where σ is a letter substitution and
a PAIM for L ⊆ X∗ in Alg(C) is given. This is due to the fact that one has to substitute the
symbols in X consistently with the symbols in C ∪ P ; more precisely, one has to maintain
the agreement between ϕ(πC∪P (·)) and Ψ(πX(·)).

In order to exploit the fact that this agreement exists in the first place, we use the
following simple yet very useful lemma. It states that for a morphism ψ into a group, the
only way a grammar G can guarantee L(G) ⊆ ψ−1(h) is by encoding into each nonterminal A
the value ψ(u) for the words u that A derives. The G-compatible extension of ψ reconstructs
this value for each nonterminal. Let G = (N,T, P, S) be a C-grammar and M be a monoid.
A morphism ψ : (N ∪ T)∗ → M is called G-compatible if u ⇒∗G v implies ψ(u) = ψ(v) for
u, v ∈ (N ∪ T)∗. Moreover, we call G reduced if for each A ∈ N , we have A⇒∗G w for some
w ∈ T ∗ and S ⇒∗G uAv for some u, v ∈ (N ∪ T)∗.

I Lemma 11. Let H be a group, ψ : T ∗ → H be a morphism, and G = (N,T, P, S) be a
reduced C-grammar with L(G) ⊆ ψ−1(h) for some h ∈ H. Then ψ has a unique G-compatible
extension ψ̂ : (N ∪ T)∗ → H. If H = Zn and C = Fi, ψ̂ can be computed.

We will essentially apply Lemma 11 by regarding X⊕ as a subset of Zn and defining ψ : (C∪
P ∪ X)∗ → Zn as the morphism with ψ(w) = Ψ(πX(w)) − ϕ(πC∪P (w)). In the case
that G generates the corresponding Parikh annotation, the counting property implies that
L(G) ⊆ ψ−1(0). The lemma then states that each nonterminal in G encodes the imbalance
between Ψ(πX(·)) and ϕ(πC∪P (·)) on the words it generates.

We continue with the problem of replacing C ∪ P and X consistently. For constructing
the PAIM for σ(L), it is easy to see that it suffices to consider the case where σ(a) = {a, b}
for some a ∈ X and σ(x) = {x} for x ∈ X \ {a}. In order to simplify the setting and exploit
the symmetry of the roles played by C ∪ P and X, we consider a slightly more general
situation. There is an alphabet X = X0] X1, morphisms γi : X∗i → N, i = 0, 1, and a
language L ⊆ X∗, L ∈ Alg(Fi) with γ0(πX0(w)) = γ1(πX1(w)) for every w ∈ L. Roughly
speaking, X1 will later play the role of C ∪ P and X0 will play the role of X. Then, γ0(w)

STACS 2015

750 Computing Downward Closures for Stacked Counter Automata

will be the number of a’s in w and γ1(w) will be the number of a’s represented by symbols
from C ∪ P in w. Therefore, we wish to construct a language L′ in Alg(Fi) such that each
word in L′ is obtained from a word in L as follows. We substitute each occurrence of x ∈ Xi

by one of γi(x)+1 many symbols y in an alphabet Yi, each of which will be assigned a value
0 ≤ ηi(y) ≤ γi(x). Here, we want to guarantee that in every resulting word w ∈ (Y0 ∪ Y1)∗,
we have η0(πY0(w)) = η1(πY1(w)), meaning that the symbols in X0 and in X1 are replaced
consistently. Formally, we have

Yi = {(x, j) | x ∈ Xi, 0 ≤ j ≤ γi(x)}, i = 0, 1, Y = Y0 ∪ Y1, (1)

and the morphisms

hi : Y ∗i −→ X∗i , h : Y ∗ −→ X∗, ηi : Y ∗i −→ N, (2)
(x, j) 7−→ x, (x, j) 7−→ x, (x, j) 7−→ j,

and we want to construct a subset of L̂ = {w ∈ h−1(L) | η0(πY0(w)) = η1(πY1(w))} in
Alg(Fi). Observe that we cannot hope to find L̂ itself in Alg(Fi) in general. Take, for
example, the context-free language E = {anbn | n ≥ 0} and X0 = {a}, X1 = {b}, γ0(a) =
1, γ1(b) = 1. Then the language Ê would not be context-free. However, the language
E′ = {wg(w)R | w ∈ {(a, 0), (a, 1)}∗}, where g is the morphism with (a, j) 7→ (b, j) for
j = 0, 1, is context-free. Although it is only a proper subset of Ê, it is large enough to
satisfy πYi

(E′) = πYi
(Ê) = πYi

(h−1(E)) for i = 0, 1. We will see that in order to construct
Parikh annotations, it suffices to use such under-approximations of L̂.

Derivation trees and matchings In this work, by an X-labeled tree, we mean a finite
ordered unranked tree in which each node carries a label from X ∪ {ε} for an alphabet
X. For each node, there is a linear order on the set of its children. For each node x, we
write c(x) ∈ X∗ for the word obtained by reading the labels of x’s children in this order.
Furthermore, yield(x) ∈ X∗ denotes the word obtained by reading leaf labels below the node
x according to the linear order induced on the leaves. Moreover, if r is the root of t, we also
write yield(t) for yield(r). The height of a tree is the maximal length of a path from the root
to a leaf, i.e. a tree consisting of a single node has height 0. A subtree of a tree t is the tree
consisting of all nodes below some node x of t. If x is a child of t’s root, the subtree is a
direct subtree.

Let G = (N,T, P, S) be a C-grammar. A partial derivation tree (for G) is an (N ∪ T)-
labeled tree t in which
(i) each inner node x has a label A ∈ N and there is some A→ L in P with c(x) ∈ L, and
(ii) no ε-labeled node has a sibling.
If, in addition, the root is labeled S and every leaf is labeled by T ∪ {ε}, it is called a

derivation tree for G.
Let t be a tree whose leaves are X ∪ {ε}-labeled. Let Li denote the set of Xi-labeled

leaves of t. An arrow collection for t is a finite set A together with maps νi : A → Li for
i = 0, 1. Hence, A can be thought of as a set of arrows pointing from X0-labeled leaves to
X1-labeled leaves. We say an arrow a ∈ A is incident to a leaf ` if ν0(a) = ` or ν1(a) = `.
If ` is a leaf, then dA(`) denotes the number of arrows incident to `. More generally, for a
subtree s of t, dA(s) denotes the number of arrows incident to some leaf in s and some leaf
outside of s. A is called a k-matching if
(i) each leaf labeled x ∈ Xi has precisely γi(x) incident arrows, and
(ii) dA(s) ≤ k for every subtree s of t.

G. Zetzsche 751

The following lemma applies Lemma 11. The latter implies that for nodes x of a deriva-
tion tree, the balance γ0(πX0(yield(x)))− γ1(πX1(yield(x))) is bounded. This can be used to
construct k-matchings in a bottom-up manner.

I Lemma 12. Let X = X0] X1 and γi : X∗i → N for i = 0, 1 be a morphism. Let G be
a reduced Fi-grammar with L(G) ⊆ X∗ and γ0(πX0(w)) = γ1(πX1(w)) for every w ∈ L(G).
Then one can compute a bound k such that each derivation tree of G admits a k-matching.

We are now ready to construct the approximations necessary for obtaining PAIM.

I Proposition 13 (Consistent substitution). Let X = X0]X1 and γi : X⊕i → N for i = 0, 1
be a morphism. Let L ∈ Alg(Fi), L ⊆ X∗, be a language with γ0(πX0(w)) = γ1(πX1(w)) for
every w ∈ L. Furthermore, let Yi, hi, ηi for i = 0, 1 and Y, h be defined as in Eq. (1) and
Eq. (2). Moreover, let L be given by a reduced grammar. Then one can construct a language
L′ ∈ Alg(Fi), L′ ⊆ Y ∗, with
(i) L′ ⊆ h−1(L),
(ii) πYi(L′) = πYi(h−1(L)) for i = 0, 1,
(iii) η0(πY0(w)) = η1(πY1(w)) for every w ∈ L′.

Proof. Let G0 = (N,X,P0, S) be a reduced Fi-grammar with L(G0) = L. Let G1 =
(N,Y, P1, S) be the grammar with P1 = {A→ ĥ−1(K) | A→ K ∈ P0}, where ĥ : (N∪Y)∗ →
(N ∪X)∗ is the extension of h that fixes N . With L1 = L(G1), we have L1 = h−1(L).

According to Lemma 12, we can find a k ∈ N such that every derivation tree of G0 admits
a k-matching. With this, let F = {z ∈ Z | |z| ≤ k}, N2 = N × F , and η be the morphism
η : (N2 ∪ Y)∗ → Z with (A, z) 7→ z for (A, z) ∈ N2, and y 7→ η0(πY0(y)) − η1(πY1(y)) for
y ∈ Y . Moreover, let g : (N2 ∪ Y)∗ → (N ∪ Y)∗ be the morphism with g((A, z)) = A

for (A, z) ∈ N2 and g(y) = y for y ∈ Y . This allows us to define the set of productions
P2 = {(A, z)→ g−1(L)∩η−1(z) | A→ K ∈ P1}. Note that since Fi is an effective Presburger
closed full semi-trio, we have effectively g−1(K)∩ η−1(z) ∈ Fi for K ∈ Fi. Finally, let G2 be
the grammar G2 = (N2, Y, P2, (S, 0)). We claim that L′ = L(G2) has the desired properties.
Since L′ ⊆ L1 = h−1(L), Item 1 is satisfied. Furthermore, the construction guarantees that
for a production (A, z) → w in G2, we have η(w) = z. In particular, every w ∈ Y ∗ with
(S, 0)⇒∗G2

w exhibits η0(πY0(w))− η1(πY1(w)) = η(w) = 0. Thus, we have shown Item 3.
Note that the inclusion “⊆” of Item 2 follows from Item 1. In order to prove “⊇”, we

shall use k-matchings in G0 to construct derivations in G2. See Fig. 1 for an example of
the following construction of derivation trees. Let w ∈ h−1(L) = L(G1) and consider a
derivation tree t for w in G1. Let t̄ be the (N ∪X)-tree obtained from t by replacing each
leaf label y ∈ Y by h(y). Then t̄ is a derivation tree of G0 and admits a k-matching Ā.
Since t̄ and t are isomorphic up to labels, we can obtain a corresponding arrow collection A
in t (see Fig. 1a).

Let Li denote the set of Yi-labeled leaves of t for i = 0, 1. Now fix i ∈ {0, 1}. We choose
a subset A′ ⊆ A as follows. Since Ā is a k-matching, each leaf ` ∈ Li of t has precisely
γi(h(λ(`))) ≥ ηi(λ(`)) incident arrows in A. For each such ` ∈ Li, we include some arbitrary
choice of ηi(λ(`)) arrows in A′ (see Fig. 1b). The tree t′ is obtained from t by changing
the label of each leaf ` ∈ L1−i from (x, j) to (x, j′), where j′ is the number of arrows in A′
incident to ` (see Fig. 1c). Note that since we only change labels of leaves in L1−i, we have
πYi

(yield(t′)) = πYi
(yield(t)) = πYi

(w).
For every subtree s of t′, we define β(s) = η0(πY0(yield(s))) − η1(πY1(yield(s))). By

construction of A′, each leaf ` ∈ Lj has precisely ηj(λ(`)) incident arrows in A′ for j = 0, 1.

STACS 2015

752 Computing Downward Closures for Stacked Counter Automata

S

(a, 0) S

(a, 0) S

(a, 1) S

ε

(b, 0)

(b, 1)

(b, 0)

(a) t; arrows in A

S

(a, 0) S

(a, 0) S

(a, 1) S

ε

(b, 0)

(b, 1)

(b, 0)

(b) t; i = 1; dashed
arrow is the one in
A′

S

(a, 0) S

(a, 1) S

(a, 0) S

ε

(b, 0)

(b, 1)

(b, 0)

(c) t′

(S, 0)

(a, 0) (S, 0)

(a, 1) (S, 0)

(a, 0) (S, 0)

ε

(b, 0)

(b, 1)

(b, 0)

(d) t′′

Figure 1 Derivation trees in the proof of Proposition 13 for the context-free grammar G with
productions S → aSb, S → ε and X0 = {a}, X1 = {b}, γ0(a) = γ1(b) = 1.

Therefore,

β(s) =
∑

`∈L0∩s

dA′(`)−
∑

`∈L1∩s

dA′(`). (3)

The absolute value of the right hand side of this equation is at most dA′(s) and hence

|η0(πY0(yield(s)))− η1(πY1(yield(s)))| = |β(s)| ≤ dA′(s) ≤ dA(s) ≤ k (4)

since Ā is a k-matching. In the case s = t′, Eq. (3) also tells us that

η0(πY0(yield(t′)))− η1(πY1(yield(t′))) =
∑
`∈L0

dA′(`)−
∑
`∈L1

dA′(`) = 0. (5)

Let t′′ be the tree obtained from t′ as follows: For each N -labeled node x of t′, we replace
the label B of x with (B, β(s)), where s is the subtree below x (see Fig. 1d). By Eq. (4),
this is a symbol in N2. The root node of t′′ has label (S, 0) by Eq. (5). Furthermore, it
follows by an induction on the height of subtrees that if (B, z) is the label of a node x,
then z = η(c(x)). Hence, the tree t′′ is a derivation tree of G2. This means πYi

(w) =
πYi

(yield(t′)) = πYi
(yield(t′′)) ∈ L(G2) = L′, completing the proof of Item 2. J

Proposition 13 now allows us to construct PAIM for languages σ(L), where σ is a letter
substitution. The essential idea is to use a PAIM (K,C, P, (Pc)c∈C , ϕ, �) for L and then
apply Proposition 13 to K with X0 = Z ∪ {�} and X1 = C ∪ P . One can clearly assume
that a single letter a from Z is replaced by {a, b} ⊆ Z ′. We can therefore choose γ0(w) to
be the number of a’s in w and γ1(w) to be the number of a’s represented by symbols from
C ∪ P in w. Then the counting property of K entails γ0(w) = γ1(w) for w ∈ K and thus
applicability of Proposition 13. Item 2 then yields the projection property for i = 0 and the
commutative projection property for i = 1 and Item 3 yields the counting property for the
new PAIM.

I Lemma 14 (Letter substitution). Let σ : Z → P(Z ′) be a letter substitution. Given i ∈ N
and a PAIM for L ∈ Gi in Gi, one can construct a PAIM in Gi for σ(L).

G. Zetzsche 753

The basic idea for the case of general substitutions is to replace each x by a PAIM for
σ(x). Here, Lemma 14 allows us to assume that the PAIM for each σ(x) is linear. However,
we have to make sure that the number of occurrences of � remains bounded.

I Lemma 15 (Substitutions). Let L ⊆ X∗ in Gi and σ be a Gi-substitution. Given a PAIM
in Gi for L and for each σ(x), x ∈ X, one can construct a PAIM for σ(L) in Gi.

The next step is to construct PAIM for languages L(G), where G has just one nonterminal
S and PAIM are given for the right-hand-sides. Here, it suffices to obtain a PAIM for SF(G)
in the case that S occurs in every word on the right hand side: Then L(G) can be obtained
from SF(G) using a substitution. Applying S → R then means that for some w ∈ R, Ψ(w)−S
is added to the Parikh image of the sentential form. Therefore, computing a PAIM for SF(G)
is akin to computing a semilinear representation for S⊕, where S is semilinear.

I Lemma 16 (One nonterminal). Let G be a Gi-grammar with one nonterminal. Further-
more, suppose PAIM in Gi are given for the right-hand-sides in G. Then we can construct
a PAIM for L(G) in Gi.

Using Lemmas 15 and 16, we can now construct PAIM recursively with respect to the
number of nonterminals in G.

I Lemma 17 (PAIM for algebraic extensions). Given i ∈ N and an Fi-grammar G, along
with a PAIM in Fi for each right hand side, one can construct a PAIM for L(G) in Gi.

The last step is to compute PAIM for languages in SLI(Gi). Then, Theorem 10 follows.

I Lemma 18 (PAIM for semilinear intersections). Given i ∈ N, a language L ⊆ X∗ in Gi, a
semilinear set S ⊆ X⊕, and a morphism h : X∗ → Y ∗, along with a PAIM in Gi for L, one
can construct a PAIM for h(L ∩Ψ−1(S)) in SLI(Gi).

5 Computing downward closures

The procedure for computing downward closures works recursively with respect to the hier-
archy F0 ⊆ G0 ⊆ · · · . For languages in Gi = Alg(Fi), we use an idea by van Leeuwen [17],
who proved that downward closures are computable for Alg(C) if and only if this is the case
for C. This means we can compute downward closures for Gi if we can compute them for Fi.
For the latter, we use Lemma 19, which is based on the following idea. Using a PAIM for
L in Gi, one constructs a language L′ ⊇ L ∩Ψ−1(S) in which every word admits insertions
that yield a word in L ∩Ψ−1(S), meaning that L′↓ = (L ∩Ψ−1(S))↓. Here, L′ is obtained
from the PAIM using a rational transduction, which implies L′ ∈ Gi.

I Lemma 19. Given i ∈ N, a language L ⊆ X∗ in Gi, and a semilinear set S ⊆ X⊕, one
can compute a language L′ ∈ Gi with L′↓ = (L ∩Ψ−1(S))↓.

Proof. We call α ∈ X⊕ a submultiset of β ∈ X⊕ if α(x) ≤ β(x) for each x ∈ X. In analogy
with words, we write T↓ for the set of all submultisets of elements of T for T ⊆ X⊕. We
use Theorem 10 to construct a PAIM (K,C, P, (Pc)c∈C , ϕ, �) for L in Gi. For each c ∈ C,
consider the set Sc = {µ ∈ P⊕c | ϕ(c+ µ) ∈ S}. Since ≤ is a well-quasi-ordering on X⊕ [6],
membership in Sc↓ can be characterized by a finite set of forbidden submultisets, which is
Presburger definable and thus computable. Therefore, the language Ψ−1(Sc↓) is effectively
regular. Hence, the language

L′ = {πX(cv) | c ∈ C, cv ∈ K, πPc
(v) ∈ Ψ−1(Sc↓)}.

STACS 2015

754 Computing Downward Closures for Stacked Counter Automata

effectively belongs to Gi, since Gi is an effective full semi-AFL. We claim that L∩Ψ−1(S) ⊆
L′ ⊆ (L ∩Ψ−1(S))↓. The latter clearly implies L′↓ = (L ∩Ψ−1(S))↓.

The counting property of the PAIM entails the inclusion L ∩ Ψ−1(S) ⊆ L′. In order to
show L′ ⊆ (L ∩ Ψ−1(S))↓, suppose w ∈ L′. Then there is a cv ∈ K with w = πX(cv) and
πPc

(v) ∈ Ψ−1(Sc↓). This means there is a ν ∈ P⊕c with Ψ(πPc
(v)) + ν ∈ Sc. The insertion

property of (K,C, P, (Pc)c∈C , ϕ, �) allows us to find a word v′ ∈ L such that

Ψ(v′) = Ψ(πX(cv)) + ϕ(ν), πX∪{�}(cv) �� v′. (6)

By definition of Sc, the first part of Eq. (6) implies that Ψ(v′) ∈ S. The second part of
Eq. (6) means in particular that w = πX(cv) � v′. Thus, we have w � v′ ∈ L∩Ψ−1(S). J

I Theorem 20. Given a language L in F, one can compute a finite automaton for L↓.

Proof. We perform the computation recursively with respect to the level of the hierarchy.

If L ∈ F0, then L is finite and we can clearly compute L↓.
If L ∈ Fi with i ≥ 1, then L = h(L′ ∩ Ψ−1(S)) for some L′ ⊆ X∗ in Gi−1, a semilinear
set S ⊆ X⊕, and a morphism h. Since h(M)↓ = h(M↓)↓ for any M ⊆ X∗, it suffices
to describe how to compute (L′ ∩Ψ−1(S))↓. Using Lemma 19, we construct a language
L′′ ∈ Gi−1 with L′′↓ = (L′ ∩Ψ−1(S))↓ and then recursively compute L′′↓.
If L ∈ Gi, then L is given by an Fi-grammar G. Using recursion, we compute the
downward closure of each right-hand-side of G. We obtain a new REG-grammar G′ by
replacing each right-hand-side in G with its downward closure. Then L(G′)↓ = L↓. Since
we can construct a context-free grammar for L(G′), we can compute L(G′)↓ using the
available algorithms by van Leeuwen [16] or Courcelle [5].

J

6 Strictness of the hierarchy

In this section, we present another application of Parikh annotations. Using PAIM, one can
show that the inclusions F0 ⊆ G0 ⊆ F1 ⊆ G1 ⊆ · · · in the hierarchy are, in fact, all strict. It
is of course easy to see that F0 (G0 (F1, since F0 contains only finite sets and F1 contains,
for example, {anbncn | n ≥ 0}. In order to prove strictness at higher levels, we present two
transformations: The first turns a language from Fi\Gi−1 into one in Gi\Fi (Proposition 21)
and the second turns one from Gi \ Fi into one in Fi+1 \ Gi (Proposition 25).

The essential idea of the next proposition is as follows. For the sake of simplicity, assume
(L#)∗ = L′∩Ψ−1(S) for L′ ∈ C, L′ ⊆ (X∪{#})∗. Consider a PAIM (K ′, C, P, (Pc)c∈C , ϕ, �)
for L′ in C. Similar to Lemma 19, we obtain from K ′ a language L̂ ⊆ (X ∪ {#, �})∗ in C
such that every member of L̂ admits an insertion at � that yields a word from (L#)∗ =
L′∩Ψ−1(S). Using a rational transduction, we can then pick all words that appear between
two # in some member of L̂ and contain no �. Since there is a bound on the number of � in
K ′ (and hence in L̂), every word from L has to occur in this way. On the other hand, since
inserting at � yields a word in (L#)∗, every such word without � must be in L.

I Proposition 21. Let C be a full trio such that every language in C has a PAIM in C.
Moreover, let X be an alphabet with # /∈ X. If (L#)∗ ∈ SLI(C) for L ⊆ X∗, then L ∈ C.

Using induction on the structure of a rational expression, it is not hard to show that
we can construct PAIM for regular languages. This means Propositions 2 and 21 imply the
following, which might be of independent interest.

G. Zetzsche 755

I Corollary 22. Let L ⊆ X∗, # /∈ X, and (L#)∗ ∈ VA(Zn). Then L is regular.

In order to prove Proposition 25, we need a new concept. A bursting grammar is one
in which essentially (meaning: aside from a subsequent replacement by terminal words of
bounded length) the whole word is generated in a single application of a production.

I Definition 23. Let C be a language class and k ∈ N. A C-grammar G is called k-bursting
if for every derivation tree t for G and every node x of t we have: |yield(x)| > k implies
yield(x) = yield(t). A grammar is said to be bursting if it is k-bursting for some k ∈ N.

I Lemma 24. If C is a union closed full semi-trio and G a bursting C-grammar, then
L(G) ∈ C.

The essential idea for Proposition 25 is the following. We construct a C-grammar G′
for L by removing from a C-grammar G for M = (L {anbncn | n ≥ 0}) ∩ a∗(bX)∗c∗ all
terminals a, b, c. Using Lemma 11, one can then show that G′ is bursting.

I Proposition 25. Let C be a union closed full semi-trio and let a, b, c /∈ X and L ⊆ X∗. If
L {anbncn | n ≥ 0} ∈ Alg(C), then L ∈ C.

I Theorem 26. For i ∈ N, define the alphabets X0 = ∅, Yi = Xi ∪ {#i}, Xi+1 = Yi ∪
{ai+1, bi+1, ci+1}. Moreover, define Ui ⊆ X∗i and Vi ⊆ Y ∗i as U0 = {ε}, Vi = (Ui#i)∗, and
Ui+1 = Vi {an

i+1b
n
i+1c

n
i+1 | n ≥ 0} for i ≥ 0. Then Vi ∈ Gi \ Fi and Ui+1 ∈ Fi+1 \ Gi.

References
1 Parosh Aziz Abdulla, Luc Boasson, and Ahmed Bouajjani. Effective lossy queue languages.

In Proc. of ICALP 2001, volume 2076 of LNCS, pages 639–651. Springer, 2001.
2 Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded analysis for

concurrent programs with dynamic creation of threads. In Proc. of TACAS 2009, volume
5505 of LNCS, pages 107–123. Springer, 2009.

3 Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. Finite automata for the
sub- and superword closure of cfls: Descriptional and computational complexity, 2015. To
appear in: Proceedings of LATA 2015.

4 P. Buckheister and Georg Zetzsche. Semilinearity and context-freeness of languages ac-
cepted by valence automata. In Proc. of MFCS 2013, volume 8087 of LNCS, pages 231–242.
Springer, 2013.

5 Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS,
44:178–186, 1991.

6 Leonard Eugene Dickson. Finiteness of the odd perfect and primitive abundant numbers
with n distinct prime factors. American Journal of Mathematics, 35(4):413–422, 1913.

7 Hermann Gruber, Markus Holzer, and Martin Kutrib. The size of Higman-Haines sets.
Theoretical Computer Science, 387(2):167–176, 2007.

8 Hermann Gruber, Markus Holzer, and Martin Kutrib. More on the size of higman-haines
sets: effective constructions. Fundamenta Informaticae, 91(1):105–121, 2009.

9 Peter Habermehl, Roland Meyer, and Harro Wimmel. The downward-closure of Petri net
languages. In Proc. of ICALP 2010, volume 6199 of LNCS, pages 466–477. Springer, 2010.

10 Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society. Third Series, 2:326–336, 1952.

11 Prateek Karandikar and Philippe Schnoebelen. On the state complexity of closures and
interiors of regular languages with subwords. In Proc. of DCFS 2014, volume 8614 of LNCS,
pages 234–245. Springer, 2014.

STACS 2015

756 Computing Downward Closures for Stacked Counter Automata

12 Eryk Kopczynski and Anthony Widjaja To. Parikh images of grammars: Complexity and
applications. In Proc. of LICS 2010, pages 80–89. IEEE, 2010.

13 Zhenyue Long, Georgel Calin, Rupak Majumdar, and Roland Meyer. Language-theoretic
abstraction refinement. In Proc. of FASE 2012, volume 7212 of LNCS, pages 362–376.
Springer, 2012.

14 Richard Mayr. Undecidable problems in unreliable computations. Theoretical Computer
Science, 297(1-3):337–354, 2003.

15 Alexander Okhotin. On the state complexity of scattered substrings and superstrings.
Fundamenta Informaticae, 99(3):325–338, 2010.

16 Jan van Leeuwen. A generalisation of Parikh’s theorem in formal language theory. In Proc.
of ICALP 1974, volume 14 of LNCS, pages 17–26. Springer, 1974.

17 Jan van Leeuwen. Effective constructions in well-partially-ordered free monoids. Discrete
Mathematics, 21(3):237–252, 1978.

18 Georg Zetzsche. Computing downward closures for stacked counter automata.
19 Georg Zetzsche. Silent transitions in automata with storage. In Proc. of ICALP 2013,

volume 7966 of LNCS, pages 434–445. Springer, 2013.

	Introduction
	Preliminaries
	A hierarchy of language classes
	Parikh annotations
	Computing downward closures
	Strictness of the hierarchy

