425 research outputs found

    Semidefinite programming relaxations through quadratic reformulation for box-constrained polynomial optimization problems

    Get PDF
    International audienceIn this paper we introduce new semidefinite programming relaxations to box-constrained polynomial optimization programs (P). For this, we first reformu-late (P) into a quadratic program. More precisely, we recursively reduce the degree of (P) to two by substituting the product of two variables by a new one. We obtain a quadratically constrained quadratic program. We build a first immediate SDP relaxation in the dimension of the total number of variables. We then strengthen the SDP relaxation by use of valid constraints that follow from the quadratization. We finally show the tightness of our relaxations through several experiments on box polynomial instances

    (Global) Optimization: Historical notes and recent developments

    Get PDF

    Linear Programming Relaxations of Quadratically Constrained Quadratic Programs

    Full text link
    We investigate the use of linear programming tools for solving semidefinite programming relaxations of quadratically constrained quadratic problems. Classes of valid linear inequalities are presented, including sparse PSD cuts, and principal minors PSD cuts. Computational results based on instances from the literature are presented.Comment: Published in IMA Volumes in Mathematics and its Applications, 2012, Volume 15

    (Global) Optimization: Historical notes and recent developments

    Get PDF
    Recent developments in (Global) Optimization are surveyed in this paper. We collected and commented quite a large number of recent references which, in our opinion, well represent the vivacity, deepness, and width of scope of current computational approaches and theoretical results about nonconvex optimization problems. Before the presentation of the recent developments, which are subdivided into two parts related to heuristic and exact approaches, respectively, we briefly sketch the origin of the discipline and observe what, from the initial attempts, survived, what was not considered at all as well as a few approaches which have been recently rediscovered, mostly in connection with machine learning

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Global solution of non-convex quadratically constrained quadratic programs

    Get PDF
    International audienceThe class of mixed-integer quadratically constrained quadratic programs (QCQP) consists of minimizing a quadratic function under quadratic constraints where the variables could be integer or continuous. On a previous paper we introduced a method called MIQCR for solving QC-QPs with the following restriction : all quadratic sub-functions of purely continuous variables are already convex. In this paper, we propose an extension of MIQCR which applies to any QCQP. Let (P) be a QCQP. Our approach to solve (P) is first to build an equivalent mixed-integer quadratic problem (P *). This equivalent problem (P *) has a quadratic convex objective function, linear constraints, and additional variables y that are meant to satisfy the additional quadratic constraints y = xx T , where x are the initial variables of problem (P). We then propose to solve (P *) by a branch-and-bound algorithm based on the relaxation of the additional quadratic constraints and of the integrality constraints. This type of branching is known as spatial branch-and-bound. Computational experiences are carried out on a total of 325 instances. The results show that the solution time of most of the considered instances is improved by our method in comparison with the recent implementation of QuadProgBB, and with the solvers Cplex, Couenne, Scip, BARON and GloMIQO

    Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem

    Full text link
    Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major computational challenge to today's power industry for the real-time operation of large-scale power grids. In this paper, we propose a new technique for reformulation of the rank constraints using both principal and non-principal 2-by-2 minors of the involved Hermitian matrix variable and characterize all such minors into three types. We show the equivalence of these minor constraints to the physical constraints of voltage angle differences summing to zero over three- and four-cycles in the power network. We study second-order conic programming (SOCP) relaxations of this minor reformulation and propose strong cutting planes, convex envelopes, and bound tightening techniques to strengthen the resulting SOCP relaxations. We then propose an SOCP-based spatial branch-and-cut method to obtain the global optimum of AC OPF. Extensive computational experiments show that the proposed algorithm significantly outperforms the state-of-the-art SDP-based OPF solver and on a simple personal computer is able to obtain on average a 0.71% optimality gap in no more than 720 seconds for the most challenging power system instances in the literature
    corecore