488 research outputs found

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    Extending Structural Learning Paradigms for High-Dimensional Machine Learning and Analysis

    Get PDF
    Structure-based machine-learning techniques are frequently used in extensions of supervised learning, such as active, semi-supervised, multi-modal, and multi-task learning. A common step in many successful methods is a structure-discovery process that is made possible through the addition of new information, which can be user feedback, unlabeled data, data from similar tasks, alternate views of the problem, etc. Learning paradigms developed in the above-mentioned fields have led to some extremely flexible, scalable, and successful multivariate analysis approaches. This success and flexibility offer opportunities to expand the use of machine learning paradigms to more complex analyses. In particular, while information is often readily available concerning complex problems, the relationships among the information rarely follow the simple labeled-example-based setup that supervised learning is based upon. Even when it is possible to incorporate additional data in such forms, the result is often an explosion in the dimensionality of the input space, such that both sample complexity and computational complexity can limit real-world success. In this work, we review many of the latest structural learning approaches for dealing with sample complexity. We expand their use to generate new paradigms for combining some of these learning strategies to address more complex problem spaces. We overview extreme-scale data analysis problems where sample complexity is a much more limiting factor than computational complexity, and outline new structural-learning approaches for dealing jointly with both. We develop and demonstrate a method for dealing with sample complexity in complex systems that leads to a more scalable algorithm than other approaches to large-scale multi-variate analysis. This new approach reflects the underlying problem structure more accurately by using interdependence to address sample complexity, rather than ignoring it for the sake of tractability

    Robust Learning from Multiple Information Sources

    Full text link
    In the big data era, the ability to handle high-volume, high-velocity and high-variety information assets has become a basic requirement for data analysts. Traditional learning models, which focus on medium size, single source data, often fail to achieve reliable performance if data come from multiple heterogeneous sources (views). As a result, robust multi-view data processing methods that are insensitive to corruptions and anomalies in the data set are needed. This thesis develops robust learning methods for three problems that arise from real-world applications: robust training on a noisy training set, multi-view learning in the presence of between-view inconsistency and network topology inference using partially observed data. The central theme behind all these methods is the use of information-theoretic measures, including entropies and information divergences, as parsimonious representations of uncertainties in the data, as robust optimization surrogates that allows for efficient learning, and as flexible and reliable discrepancy measures for data fusion. More specifically, the thesis makes the following contributions: 1. We propose a maximum entropy-based discriminative learning model that incorporates the minimal entropy (ME) set anomaly detection technique. The resulting probabilistic model can perform both nonparametric classification and anomaly detection simultaneously. An efficient algorithm is then introduced to estimate the posterior distribution of the model parameters while selecting anomalies in the training data. 2. We consider a multi-view classification problem on a statistical manifold where class labels are provided by probabilistic density functions (p.d.f.) and may not be consistent among different views due to the existence of noise corruption. A stochastic consensus-based multi-view learning model is proposed to fuse predictive information for multiple views together. By exploring the non-Euclidean structure of the statistical manifold, a joint consensus view is constructed that is robust to single-view noise corruption and between-view inconsistency. 3. We present a method for estimating the parameters (partial correlations) of a Gaussian graphical model that learns a sparse sub-network topology from partially observed relational data. This model is applicable to the situation where the partial correlations between pairs of variables on a measured sub-network (internal data) are to be estimated when only summary information about the partial correlations between variables outside of the sub-network (external data) are available. The proposed model is able to incorporate the dependence structure between latent variables from external sources and perform latent feature selection efficiently. From a multi-view learning perspective, it can be seen as a two-view learning system given asymmetric information flow from both the internal view and the external view.PHDElectrical & Computer Eng PhDUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138599/1/tianpei_1.pd

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method

    Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods

    Full text link
    Feature extraction and dimensionality reduction are important tasks in many fields of science dealing with signal processing and analysis. The relevance of these techniques is increasing as current sensory devices are developed with ever higher resolution, and problems involving multimodal data sources become more common. A plethora of feature extraction methods are available in the literature collectively grouped under the field of Multivariate Analysis (MVA). This paper provides a uniform treatment of several methods: Principal Component Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS), as well as their non-linear extensions derived by means of the theory of reproducing kernel Hilbert spaces. We also review their connections to other methods for classification and statistical dependence estimation, and introduce some recent developments to deal with the extreme cases of large-scale and low-sized problems. To illustrate the wide applicability of these methods in both classification and regression problems, we analyze their performance in a benchmark of publicly available data sets, and pay special attention to specific real applications involving audio processing for music genre prediction and hyperspectral satellite images for Earth and climate monitoring

    Towards On-line Domain-Independent Big Data Learning: Novel Theories and Applications

    Get PDF
    Feature extraction is an extremely important pre-processing step to pattern recognition, and machine learning problems. This thesis highlights how one can best extract features from the data in an exhaustively online and purely adaptive manner. The solution to this problem is given for both labeled and unlabeled datasets, by presenting a number of novel on-line learning approaches. Specifically, the differential equation method for solving the generalized eigenvalue problem is used to derive a number of novel machine learning and feature extraction algorithms. The incremental eigen-solution method is used to derive a novel incremental extension of linear discriminant analysis (LDA). Further the proposed incremental version is combined with extreme learning machine (ELM) in which the ELM is used as a preprocessor before learning. In this first key contribution, the dynamic random expansion characteristic of ELM is combined with the proposed incremental LDA technique, and shown to offer a significant improvement in maximizing the discrimination between points in two different classes, while minimizing the distance within each class, in comparison with other standard state-of-the-art incremental and batch techniques. In the second contribution, the differential equation method for solving the generalized eigenvalue problem is used to derive a novel state-of-the-art purely incremental version of slow feature analysis (SLA) algorithm, termed the generalized eigenvalue based slow feature analysis (GENEIGSFA) technique. Further the time series expansion of echo state network (ESN) and radial basis functions (EBF) are used as a pre-processor before learning. In addition, the higher order derivatives are used as a smoothing constraint in the output signal. Finally, an online extension of the generalized eigenvalue problem, derived from James Stone’s criterion, is tested, evaluated and compared with the standard batch version of the slow feature analysis technique, to demonstrate its comparative effectiveness. In the third contribution, light-weight extensions of the statistical technique known as canonical correlation analysis (CCA) for both twinned and multiple data streams, are derived by using the same existing method of solving the generalized eigenvalue problem. Further the proposed method is enhanced by maximizing the covariance between data streams while simultaneously maximizing the rate of change of variances within each data stream. A recurrent set of connections used by ESN are used as a pre-processor between the inputs and the canonical projections in order to capture shared temporal information in two or more data streams. A solution to the problem of identifying a low dimensional manifold on a high dimensional dataspace is then presented in an incremental and adaptive manner. Finally, an online locally optimized extension of Laplacian Eigenmaps is derived termed the generalized incremental laplacian eigenmaps technique (GENILE). Apart from exploiting the benefit of the incremental nature of the proposed manifold based dimensionality reduction technique, most of the time the projections produced by this method are shown to produce a better classification accuracy in comparison with standard batch versions of these techniques - on both artificial and real datasets

    An Overview of Deep Semi-Supervised Learning

    Full text link
    Deep neural networks demonstrated their ability to provide remarkable performances on a wide range of supervised learning tasks (e.g., image classification) when trained on extensive collections of labeled data (e.g., ImageNet). However, creating such large datasets requires a considerable amount of resources, time, and effort. Such resources may not be available in many practical cases, limiting the adoption and the application of many deep learning methods. In a search for more data-efficient deep learning methods to overcome the need for large annotated datasets, there is a rising research interest in semi-supervised learning and its applications to deep neural networks to reduce the amount of labeled data required, by either developing novel methods or adopting existing semi-supervised learning frameworks for a deep learning setting. In this paper, we provide a comprehensive overview of deep semi-supervised learning, starting with an introduction to the field, followed by a summarization of the dominant semi-supervised approaches in deep learning.Comment: Preprin
    corecore