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Abstract

Structure-based machine-learning techniques are frequently used in extensions of

supervised learning, such as active, semi-supervised, multi-modal, and multi-task

learning. A common step in many successful methods is a structure-discovery process

that is made possible through the addition of new information, which can be user

feedback, unlabeled data, data from similar tasks, alternate views of the problem,

etc. Learning paradigms developed in the above-mentioned fields have led to some

extremely flexible, scalable, and successful multivariate analysis approaches. This

success and flexibility offer opportunities to expand the use of machine learning

paradigms to more complex analyses. In particular, while information is often readily

available concerning complex problems, the relationships among the information

rarely follow the simple labeled-example-based setup that supervised learning is based

upon. Even when it is possible to incorporate additional data in such forms, the

result is often an explosion in the dimensionality of the input space, such that both

sample complexity and computational complexity can limit real-world success. In this

work, we review many of the latest structural learning approaches for dealing with

sample complexity. We expand their use to generate new paradigms for combining

some of these learning strategies to address more complex problem spaces. We

overview extreme-scale data analysis problems where sample complexity is a much

more limiting factor than computational complexity, and outline new structural-

learning approaches for dealing jointly with both. We develop and demonstrate a

method for dealing with sample complexity in complex systems that leads to a more
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scalable algorithm than other approaches to large-scale multi-variate analysis. This

new approach reflects the underlying problem structure more accurately by using

interdependence to address sample complexity, rather than ignoring it for the sake of

tractability.
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Chapter 1

Introduction

Computational science is at the forefront of many efforts to extend scientific knowl-

edge. As the problems being addressed become more complex, new computational

paradigms must be designed to handle the complications that inevitably arise.

Increased complexity can manifest in higher dimensionality, greater interdependence

among variables, larger variety in data types, missing and incomplete data, more

noise, etc. Typically, we will be dealing with all of these issues.

When casting the problem of predictive structure discovery as a computational

analysis problem over experimental and/or simulation data, we are immediately

confronted with well-known challenges related to data fusion and knowledge discovery

in the analysis of high dimensional spaces with strong inter-dependencies among

variables. The scientific community continues to struggle with this type of analysis in

many important applications. In particular, while simulation approaches to scientific

discovery are ideally suited to High Performance Computing (HPC), discovery of

new model characteristics through analysis of the data remains a daunting challenge

in the HPC community. Currently, analysis of extreme-scale data is typically

performed on isolated portions of the data, ignoring interdependence for the sake of

tractability. Although the curse of dimensionality is well known for its computational

consequences, the more limiting factor in high-dimensional data is often due to its
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statistical consequences, which are also known as sample complexity. The sample

complexity is related to the inability to account for the role of each of a large number

of potentially influential variables given finite data.

New tools are required, but first and foremost, we also require new algorithmic

approaches that are fundamentally different in design. They must deal with the

sample complexity by taking advantage of information in the data that is being

ignored and scale by design to perform analyses that are consistent with the nature of

the problem, rather than being forced to make inaccurate independence assumptions

for the sake of scalability. Maintaining a low dimensional representation by ignoring

parts of the data (unless they are known a priori to be insignificant) does not solve

the sample complexity side of the curse of dimensionality. In other words, the

conclusions are just as unreliable for having ignored data, as they would be for not

being able to account for it. We need methods that can systematically hypothesize

interaction sub-structures among observed variables, observe correlations among the

sub-structures, rank and identify contributing variables in the full-system context,

and thereby capture the essence of the model underlying complex systems in the

form of ultra-scale high-dimensional datasets.

In this work, we expand the basic foundations of the latest structural learning

algorithms and explore their use in solving some of the most pressing problems in

high-dimensional analysis in real world applications in which the relations between

data elements fall outside of any single learning paradigm.

1.1 The curse of dimensionality: computational

complexity vs. sample complexity

The curse of dimensionality (Donoho, 2000) is most widely known for its computa-

tional implications, perhaps because Richard Bellman, who is credited with coining

the phrase, dealt with a problem in which the number of samples was not a limiting
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factor, since generating a sample would be the equivalent of evaluating a function in

his domain (Bellman, 1961). However, as we attempt to use computational power to

analyze more complex problems, the characteristic of the principle that often serves

as the larger barrier to accurate analysis is sample complexity. Sample complexity is

the side of the curse of dimensionality that essentially refers to the number of training

examples required to allow effective statistical learning to take place. This is usually

dependent upon the number of features, but the number of features should be thought

of as the number of variables (complex or otherwise) that could play a role, as opposed

to the number of variables recorded in the data. It can also be the case that the most

useful features, perhaps the ones that represent the degrees of freedom in the problem

space, are non-linear combinations of some of the recorded variables. In many large,

complex applications, the sample complexity is the limiting factor, because although

we may have extremely large sets of examples, the number is often small in relation to

the actual dimensionality of the problem, even though we need it to be exponential

in relation to the dimensionality. For example, even if we recorded everything of

relevance, it could be the case that none of these recorded, atomic, variables is useful

by themselves, but only when looked at as a conjunction with other variables. Even if

the number of atomic variables, n, is reasonable, consider that the number of possible

combinations to explore includes every non-empty member of the power set of these

variables, which equates to 2n − 1. Thus, it is important to recognize how much

we oversimplify analysis problems over complex systems when we cannot model them

from first principles, because otherwise we are prone to overconfidence in our analyses.

Innate high dimensionality can result from natural complexity when there are

an extreme number of factors that can be measured and that influence behavior in

a system. Moreover, artificial high dimensionality can result from redundant and

irrelevant factors being considered. As the problems computational science seeks

to address grow more complex, we see both of these issues grow more prominent as

natural complexity is exacerbated by lack of understanding of the system under study.

Examples of importance include climate science, materials science, cyber security, etc.
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In such domains, major challenges exist in data fusion and knowledge discovery in

the analysis of high dimensional spaces composed of complex, inter-related structures

and properties. Often there is information, whether recognized or not, that does not

readily fit into current learning paradigms and statistical modeling techniques. We

will focus on two goals in our work. One is the ability to learn to predict y ∈ Y

from examples (d-dimensional input vectors, xi), while maximizing generalization

performance on unseen data. In other words, machine-learning-based classification

(e.g., Y = {0, 1}) and regression (Y = ℜ) (Mitchell, 1997). The other is the ability to

identify, and even construct, key influential inputs. While this can be thought of as

feature selection, extraction, and/or construction (Blum and Langley, 1997; Kohavi

and John, 1997; Guyon and Elisseeff, 2003; Liu and Yu, 2005), the application is

often simply better understanding of influential interactions in a complex system. In

the course of this work, we will focus on solving important real world problems that

involve one or both of the following: 1) incorporating highly redundant information

from another view or measurement modality of a problem, and 2) evaluating highly

interdependent variables in a complex system. Both of these situations run straight

into the sample complexity problems inherent in the curse of dimensionality.

1.2 Real world implementation issues

Unfortunately, data rarely comes in an easy to use form when addressing real

applications. In this section we outline some of the most common problems and

how we deal with them.

Much of the hard work in data analysis and machine learning comes during the

data preparation phase. Observations can be numeric, categorical, or binary. Data

can be recorded in different forms (text, images, etc.) using different numeric scales.

Important observations may be missing, or even incorrect, for some examples. Some

examples may belong to multiple classes simultaneously, and others may not belong

to any known class. And that is just the tip of the iceberg!
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Data normalization is common practice in data mining and machine learning, but

the best way to do this is not always obvious. Many problem domains have different

types of features and different scales at which they are measured. Since this can be

problematic for some learning models, as standard practice, we convert categorical

features to binary, and normalize all numeric data using a Softmax scaling approach,

which is purported to retain the most information (Pyle, 1999).

Missing and incomplete data can be particularly problematic. The most common

way of dealing with it is to impute missing values (Marwala, 2009). One of the

advantages of the approaches to data integration discussed in this work is that they

often do not require any special means for dealing with missing data. They allow

the use of information that is normally not used, and this flexibility extends to the

example level. For example, it is possible to alter a similarity score between two

points based only on the data that is common between those points, thus negating

the need for data imputation. Furthermore, in a task-based learning approach, when

problems are constructed to consider common predictive structures, it is also possible

to subdivide tasks to account for missing data.

Irrelevant and redundant data are particularly common in complex problem

spaces. Therefore, the methods discussed in this work are designed to handle such

information. It should be noted that simple methods for eliminating supposedly

irrelevant features can be counter-productive, and thus we do not attempt to do so

as a preprocessing step. For example, in some language processing tasks with sparse

features, eliminating features that occur only once in the dataset can actually degrade

performance (see Klein and Manning (2002) for an enlightening example of why this

might occur).

1.3 Large data vs. complex data

It is important to note the difference between large data and complex data. There

is a widespread and ever-growing effort to use ”big data” among businesses and
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government. Business intelligence tools have been commonplace for many years, and

they are being used to a greater extent all the time. However, these tools are intended

to work with clean, structured data, or else they help you evaluate the cleanliness of

your data. They use standard statistics, which means they are not designed to deal

with data representing ultrahigh-dimensional spaces and limited ground truth. Nor

are they capable of incorporating data in ways that take advantage of the additional

information we are focusing on in this work. They are primarily designed to analyze

relatively simple relationships among and trends across cleanly measured variables

collected in structured form. So, despite the fact that the work in the business world

on ”big data” seems relevant to this proposal at first glance, it should be emphasized

that such applications are almost completely unrelated to our work.

1.4 Main contributions

The major contributions of this work are outlined below.

1) Novel graph-building methods for graph-Laplacian-based semi-supervised learning

techniques,

a) Random subspace methods,

b) Stochastic Discrimination graphs (Kleinberg, 1990; Irle and Kauschke, 2011),

c) Theoretical justification,

d) Demonstration of scalable graph-based learning methods,

2) Novel combined learning approach for budgeted, semi-supervised, multi-view

(multi-modal) learning,

a) Motivating applications for budgeted, multi-view learning

b) Demonstrated effectiveness of knowledge carryover across views,

3) New, scalable framework for extreme-scale data analysis of complex systems data

based on multi-task and semi-supervised learning,

a) Automated construction methods for auxiliary tasks in complex systems,

6



b) Automated feature expansion methods for more extensive predictive structure

exploration in complex systems,

c) Proof of principle for improved generalization ability,

d) Proof of principle of linear speedup,

4) Validation of approaches in multiple large-scale domains,

a) Cyber security: intrusion detection

b) Text processing

c) Climate
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Chapter 2

Background

2.1 Moving beyond supervised learning

Supervised learning (Mitchell, 1997; Duda et al., 2001) is the most common form

associated with the field of machine learning. It consists of having a human label

information, and then having the computer learn to make the same judgments

on new data. This simply requires one to define a set of classes (or a scoring

mechanism in the case of regression) and a set of observables that constitute a sample

(typically referred to as features). Then, in the most straightforward applications,

based on examples classified by a human, the machine learns the significance of

the features in determining the class to which an example belongs. There are too

many forms of supervised learning to mention here, but two of the more popular

forms that form the basis for much of the field are Support Vector Machines (SVMs)

(Vapnik, 1998), a nonparametric form of learning that seeks to maximize the margin

between classes, and Graphical Models (Bishop, 2006), a form of learning that

seeks to constrain the search space for a solution by using links between random

variables to assert dependence assumptions among them. While supervised learning

represents the foundations of machine learning, the present and the future belong

to adaptive learning methods, such as semi-supervised learning, active learning,
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multi-task learning, transfer learning, and reinforcement learning. These and similar

subfields have arisen due to a need to adapt machine learning to real problem areas.

2.2 Semi-supervised learning

Semi-supervised learning (Chapelle et al., 2006) is generally defined as any learning

method that uses both labeled and unlabeled data during the model discovery process.

Methods for incorporating the unlabeled information can vary. Some methods include

the use of data-dependent priors and low-density separation, but the most common

approach is graph-based (Chapelle et al., 2006; Johnson and Zhang, 2008). Graph-

based methods are typically designed based on the assumption that the data naturally

occur on an underlying manifold, such that the true degrees of freedom of the problem

can be discovered using unlabeled data. In other words, the most common approaches

are non-linear forms of dimensionality reduction where unlabeled data is used to find

a lower-dimensional space that is good for classification (or regression). In essence,

the intent is to find structure in the ambient space that can be exploited to constrain

the search for a good hypothesis. Some common forms of this type of nonlinear

dimensionality reduction include Isomap (Tenenbaum et al., 2000), Locally-Linear

Embedding (LLE) (Roweis and Saul, 2000), Laplacian Eigenmaps (LEM) (Belkin and

Niyogi, 2003), Diffusion Maps (DM) (Nadler et al., 2005), Semidefinite Embedding

(Weinberger and Saul, 2006), etc. A more comprehensive list can be found in Lin and

Zha (2008).

A central construct in many of these methods is the graph Laplacian from spectral

graph theory (Chung, 1997). A graph is constructed to represent a manifold (or

densely populated region of interest in the ambient space), and the graph Laplacian

facilitates the discovery of a low-dimensional space that is smooth with respect to this

graph. In semi-supervised learning the goal is to augment learning through the use of

unlabeled samples, so the unlabeled data is used to find a low-dimensional space on
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which learning via the labels can be more effective. The normalized graph Laplacian

is a matrix defined as follows:

L(u, v) =



















1, if u = v and dv 6= 0

−1√
dudv

, if u and v are adjacent

0, otherwise

(2.1)

where u and v are vertices in the graph, d is the degree (number of incident edges)

of a vertex, and adjacency refers to a neighboring connection in the graph. The

unnormalized form given below is also commonly used:

L(u, v) =



















dv, if u = v

−1, if u and v are adjacent

0, otherwise

(2.2)

Using the eigenvalues and associated eigenvectors of these positive, semi-definite,

symmetric matrices provides a method for discovering dimensions that are smooth

with respect to the graph that defines it. If the graph varies smoothly with respect to

the target problem (i.e. examples from different classes or clusters are rarely linked,

similar examples from the perspective of the target problem are linked, etc.), then it

can be used to represent a manifold. The Laplacian of the graph can then be used

to find a space that roughly represents that manifold. The eigenvector associated

with the smallest non-zero eigenvalue is smoothest with respect to the graph, such

that points connected in the graph will be close together in the dimension defined

by said eigenvector. This smoothness with respect to eigenvector-defined dimensions

decreases as you progress to the larger eigenvalues.

Another useful property of the eigensystem is the fact that the number of zero-

value eigenvalues is equal to the number of connected components in the graph. In

addition, an eigenvector will not involve more than one component of the graph. Thus,

after counting the number of connected components, which is an O(n) operation, you
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(a) (b)

(c) (d)

Figure 2.1: Eigenvector values of the labeled data from the graph Laplacian based on
nearest neighbors. 2.1a and 2.1b are the values in the first and second dimensions,
respectively, using a graph based on labeled points only. 2.1c and 2.1d are the
values in the first and second dimensions, respectively, when using a graph of the
labeled and unlabeled data. In this case, the addition of the unlabeled data provides
a transformation that allows linear separation of the two classes.

need to retain at least that many dimensions in a new space in order to distinguish

between all points after they are mapped.

Typically, semi-supervised learning methods based on the graph Laplacian

separate the manifold discovery process from the learning process in such a way that

the manifold discovery is completely unsupervised. There is a general recognition

that the labels can be used as constraints when building the graph, but in semi-

supervised learning, such an approach would touch only a small portion of the graph.

In (Goldberg et al., 2007), a dissimilarity measure is used to alter the graph. However,

the method either requires ground truth dissimilarity, in which the only parts of the

graph that are affected are those for which labels are available, or dissimilarity based

on some domain specific features that are manually constructed to enforce disparity.

As an example of a real nonlinear transformation using this method, Figure 2.1

shows the values of the first two non-zero eigenvectors for the labeled points during
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training of a classifier using the Kyoto2006+ intrusion detection dataset (Song et al.,

2011). This is a two-class classification problem, where the classes represent attack

behaviors and normal behaviors in a network. The semi-supervised classifier was

built using 19 labeled and 3022 unlabeled examples sampled from a single day’s

worth of data. On the test set from Kishimoto et al. (2011), this classifier achieves

an AUC score of 98.5, with a recall of 71.4% and a false positive rate of 0.02%. For

comparison, Kishimoto et al. (2011) use a multi-classifier approach that uses over 10

million training examples and achieves a recall of 80.9% with a false positive rate of

5.9%.

There are many other approaches to semi-supervised learning. One that is

particularly noteworthy for its ability to use the labels in a more robust manner

is the predictive structure framework of Ando and Zhang (2005). Their approach

is based on multi-task learning and attempts to find structure that overlaps many

prediction problems that are formulated in such a way that they always have labels.

In other words, many of the tasks they use are simply predicting things that are

observable at all times, such as input variables. An interesting thing to note about

the experiments in Ando and Zhang (2005) is that many of the formulated tasks are

constructed with the use of the labels, and it is these tasks that seem to help the

most with the more complex (noisy) problems, particularly if the number of available

labels was non-trivial. One drawback to the approach is that the framework, as

described, requires a different kind of domain expertise in terms of the construction

of the formulated tasks.

2.3 Active learning

Active learning, which can also be referred to as selective sampling (Cohn et al., 1994;

Freund et al., 1997; Dasgupta, 2005; Dasgupta et al., 2005; Balcan et al., 2008; Druck

et al., 2009; Settles, 2009), is another method that can be used to affect the sample

complexity of a problem. The objective of active learning is most commonly described
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as either achievement of similar performance using a substantially reduced amount of

training data or improvement of generalization performance on a fixed-size training

set. Its viability has been demonstrated in the literature via noticeable improvements

in generalization performance (Cohn et al., 1994; Schohn and Cohn, 2000; Abe et al.,

2006) and/or reductions in annotation requirements (Sassano, 2002; Brinker, 2003;

Shen et al., 2004). More recently, theoretical evidence has been provided for its

effectiveness (Freund et al., 1997; Dasgupta, 2005; Balcan et al., 2008).

In the active-learning literature, many measures have been utilized to actively

select the most valuable samples for use in training, including uncertainty (Schohn

and Cohn, 2000; Tong and Koller, 2002), variance in prediction from query-by-

committee (Freund et al., 1997), and risk minimization (Zhu, 2003). Uncertainty-

based measures typically utilize some means of evaluating model confidence in order

to assign significance to a sample. Thus, this type of measure is usually model-

dependent. However, using uncertainty alone is not advisable because it often ignores

the distribution of the available data. In other words, there is the danger of selecting

outliers and degrading generalization performance due to overfitting of data that

does not represent the real distribution. To emphasize this point, it should be noted

that most machine learning methods are built on the assumption that the data is

independently and identically distributed (i.i.d.), such that the data on which they

will be applied comes from the same distribution as the data on which they were

trained. However, this assumption can be drastically violated by some selective

sampling approaches.

For this reason, several methodologies have emerged that take into account the

distribution of the unlabeled data. Freund et al. (1997) apply a query-by- committee

algorithm to selective sampling on certain concepts that are dense-in-themselves,

and prove an exponential improvement in the sample complexity. McCallum and

Nigam (1998) apply active learning with Expectation Maximization on a text

classification task. That work employs information concerning the representativeness

of a document, which allows consideration of the data distribution.
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In many practical cases, active learning is performed in batch. In other words,

instead of a single example being chosen at each round of active learning, examples

are selected as a batch in order to limit retraining costs. Thus, some methods that

attempt to choose a set of diverse examples have been proposed. Brinker (2003)

and Shen et al. (2004) seek to include a diverse sample by using geometric distance

computable in the Euclidean space of Support Vector Machines (SVMs). Sassano

(2002) reports that diverse batch selection is possible with a two-pool method when

it is applied to Japanese word segmentation.

It should be emphasized that efforts to incorporate the data distribution in

sample selection procedures have repeatedly been shown to be important for optimally

increasing generalization performance, and it has been empirically demonstrated that

such efforts result in improved outcomes (Cohn et al., 1994; Schohn and Cohn, 2000;

Freund et al., 1997; Zhu, 2003). In addition, some specific formal problems have

been shown to have strong theoretical guarantees in this regard (Freund et al., 1997;

Dasgupta et al., 2005).

More recent work has extended active learning beyond the notion of selective

sampling of examples. In particular, Druck et al. (2009) use generalized expectation

criteria (Mann and McCallum, 2008) to allow labeling of features instead of examples.

2.4 Multi-view and multi-modal learning

The idea of multi-view learning gained a lot of traction in the machine-learning

community with the development of co-training (Blum and Mitchell, 1998), which

was one of the first well-known, semi-supervised learning approaches. The problem

on which it was tested involved two views of a web-page classification problem. The

first view was constructed from the words in the content of the page, while the

second was constructed of the words underlined in the hyperlinks to the page. The

approach was based on label-propagation. Labeled samples in one view were used

to classify examples that would comprise training data for the second view, and the
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approach would iterate until all samples were labeled. The idea was that the two

classifiers should agree, and if they did, then one could be confident in the resulting

models. However, this approach has also been used to demonstrate the risk of error

propagation when propagating labels.

Multi-view learning has since received more attention as a problem in its own

right (Foster et al., 2009). In particular, its relevance to addressing problems with

multiple measurement modalities is becoming clear (Singh et al., 2009; Symons and

Arel, 2011). Methods of graph-based semi-supervised learning have clear applicability

here as well (Sindhwani et al., 2005a; Sindhwani and Rosenberg, 2008).

2.5 Multi-task and task-transfer learning

Multi-task learning (Caruana, 1997; Ben-David and Schuller, 2003; Bakker and Hes-

kes, 2003; Xue et al., 2007) is a machine-learning paradigm that uses the similarities

among two or more learning tasks to improve the generalization performance of each

of the individual models. Multi-task learning is often used interchangeably with the

idea of task-transfer learning (Taylor et al., 2008). However, task-transfer learning is

more commonly thought of as being incremental in nature, such that one is applying

previously learned knowledge the way a human would, whereas multi-task learning

usually refers to a more specific subfield of machine learning where tasks are learned

jointly, typically through some type of joint optimization. Recent work has provided

theoretical guarantees (Ando and Zhang, 2005; Ben-David and Borbely, 2008) for

certain notions of task-relatedness.

Various methods exist, but the general approach typically centers around finding

structures that are useful (predictive) in multiple tasks, such as in Ando and Zhang

(2005). Such approaches can provide more samples upon which to judge feature

relevance. In Xue et al. (2007) a Dirichlet process prior is used to judge which tasks are

similar enough that they should be learned together. They outline a symmetric joint

learning approach, which is more along the lines of traditional multi-task learning,

15



and an asymmetric learning approach where the prior is learned from previous tasks,

such that the method falls more squarely under task-transfer learning. Bakker and

Heskes (2003) use neural networks in which some model parameters are shared among

all tasks while other parameters are unique to a task. Task clustering is performed

to find the shared parameters.

2.6 Common threads

This chapter highlights a great deal of overlap across the learning paradigms

mentioned above. The use of unlabeled data is ubiquitous, and a common thread

is the use of additional information to find structure in the feature space. Typically,

the predictive nature of the structure is considered, but not always. The goal is to

find a new hypothesis space in which to search for an good model, but ideally, the new

space should be smaller, while containing better choice of models. If one can indeed

use additional information to find such a hypothesis space, either through feature

expansion, feature selection, non-linear dimensionality reduction, etc., then a better

model should result.
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Chapter 3

Robust graph-based

semi-supervised learning

The frontiers of machine learning research continue to expand based on requirements

identified through new applications. As the potential of computational learning

is recognized by a more diverse set of users with broader and more complex sets

of issues to analyze, machine learning practitioners are in a position of constantly

adapting algorithms to the peculiarities of new domains. The more labor involved in

applying algorithms to new problems, the less likely that the advantages they offer

will ever be realized. Thus, the historical trend has been one in which classification

algorithms that are less sophisticated, but better understood, are applied despite

their limitations. Unless new methods are made extremely robust to variations in

application, they often remain a niche product used by only a few, regardless of

any potential they might have to enhance our data analysis capabilities across a

broad set of applications. In this chapter, we outline new methods for enhancing

the applicability of graph-based semi-supervised learning to a more complex set of

domains. This work covers and expands upon work published in Symons et al. (2012).
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3.1 Understanding assumptions for more effective

use of information

Many popular forms of semi-supervised learning rely on graph-based methods for

regularization or spectral dimensionality reduction. Some common forms of nonlinear

dimensionality reduction include Isomap (Tenenbaum et al., 2000), Locally-Linear

Embedding (LLE) (Roweis and Saul, 2000), Laplacian Eigenmaps (LEM) (Belkin and

Niyogi, 2003), Diffusion Maps (DM) (Nadler et al., 2005), Semidefinite Embedding

(Weinberger and Saul, 2006), etc. A more comprehensive list can be found in Lin and

Zha (2008). A central construct in many of these methods is the graph Laplacian. A

graph is constructed to represent a manifold (or densely populated region of interest

in the ambient space), and the graph Laplacian facilitates the discovery of a low-

dimensional space that is smooth with respect to this graph. In semi-supervised

learning the goal is to augment learning through the use of unlabeled samples, so

the unlabeled data is used to find a low-dimensional space on which learning via the

labels can be more effective.

As emphasized in Goldberg et al. (2008), normalized-output algorithms, such as

LLE, LEM, and DM, do not handle noise well, and should not be applied arbitrarily,

and there is a need for improvements that are robust. Goldberg et al. (2009) recognize

the potential problem of having data that resides on multiple manifolds and offer some

methods for applying semi-supervised manifold learning in such cases. However, while

the methodology adds some robustness in such multi-manifold cases, the manifold

description is made without the use of the labels so that high levels of noise can still

hide the manifolds. Furthermore, it is quite possible that many of these discoverable

manifolds are not relevant to the target problem.

A consistent theme among most graph-based semi-supervised learning approaches

is that the unlabeled data is used to discover the manifold (or the decision space in

general, as in the case of a cluster-like assumption), and the labeled data is used to

learn a model in this new space. We present a simple method for adding robustness
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to these methods by taking a different view of the semi-supervised aspect of these

algorithms. We turn the focus to the fact that these methods can be used to find

functions that are smooth with respect to the graph that we construct. From this

perspective, it makes sense to use the labeled data to guide the graph construction

process in order to avoid close connections (which will be preserved in the reduced

space) that are created due to noise in the feature set. To see why this is problematic,

see the synthetic examples in Figure 3.1. The figures show the results of Laplacian-

Eigenmap dimensionality reduction on each of the two graphs. It is not hard to

imagine that when the ambient space is noisy, nearest neighbors built without regard

to label information will often not represent a manifold of interest, as in Figure 3.1a,

and thus the targeted dimensionality reduction would not be useful, as in Figure 3.1b.

However, in order to make good use of the labeled data, it is necessary to go

beyond using them as constraints. It is also necessary to be cognizant of the fact

that there likely will be within-class clusters, so that we must avoid strongly linking

members of the same class if they are from very different subsets of that class. Doing

so would violate the assumptions of local-distance preservation (whether geodesic or

other) on which the methods are based. In practice, using the labels to guide the

graph construction can confound the search for a relevant manifold if the labels are

applied carelessly, while conservative methods of using the labels have little effect.

The approach presented here takes care to preserve relevant local structure by using

random subspaces as an edge weighting mechanism. Our goal is to find a method

that allows us to incorporate expert domain knowledge via the labels in a way that

can find relevant but subtle differences between samples. Therefore, we also discuss

more direct methods for biasing the graph and demonstrate the difficulty of finding

a robust approach.

The focus of this chapter is on the graph-construction process in this area of semi-

supervised learning and how it can be improved to find a better decision space. The

principle intuition is the same for any method that uses a graph constructed from

data points to represent a manifold that one hopes to discover.
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(a) (b)

(c) (d)

Figure 3.1: Each of the graphs 3.1a and 3.1c is intended to represent a manifold or
manifolds in a given two-class problem (red and blue). We assume that black points
are unlabeled, and that the manifolds in 3.1c are ones that are relevant to the target
problem. In 3.1b and 3.1d, we plot the points according to the coordinates generated
by the first two non-zero eigenvectors resulting in the eigensystem of the Laplacian
matrix of the graphs in 3.1a and 3.1c, respectively. To demonstrate the effect in
terms of the target problem, in plots 3.1b and 3.1d, we color each point according to
it’s actual manifold in 3.1c. In other words, all of the points on the outer semi-circle
are colored red, and all of the points on the inner semi-circle are colored blue. It is
obvious, that if 3.1c does indeed represent the true manifolds, then using proximity
alone, without regard to label information, can be problematic.
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3.2 Graph modifications

Typically, semi-supervised learning methods based on the graph Laplacian separate

the manifold discovery process from the learning process in such a way that the

manifold discovery is completely unsupervised. There is a general recognition that

the labels can be used as constraints when building the graph, but in semi-supervised

learning, such an approach would touch only a small portion of the graph. In Goldberg

et al. (2007), a dissimilarity measure is used to alter the graph. However, the method

either requires ground truth dissimilarity, in which the only parts of the graph that

are affected are those for which labels are available, or dissimilarity based on some

domain specific features that are manually constructed to enforce disparity.

The approach to graph building in this paper seeks to utilize the small number

of labels assumed to be available to influence the edge construction in a manner that

allows concept-specific structure to be encoded in the graph. We imagine that this

approach can be less than optimal for extremely clean feature spaces that already meet

the assumption that nearby points are in the same class. However, this assumption is

rarely valid in practice, unless the feature space has already been heavily engineered.

We are primarily concerned with finding good semi-supervised solutions for newer

domains that lack a good understanding of the noise and how to eliminate it in

preprocessing. Moreover, we focus on problems where labeled data is expensive and

unlabeled data is abundant.

As in the Augmented PAC Model described in Balcan and Blum (2006)

we approach the problem from the viewpoint that there should be a notion of

compatibility, χ, between the hypothesis and the data distribution (as estimated

using the unlabeled examples). Graph-based manifold learning methods assume

that the target concept passes through a dense portion of the ambient space,

and that this manifold can be discovered using the unlabeled data. In data sets

where the feature space has been refined (e.g. image recognition data that has
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been preprocessed, centered, scaled, etc.), the ability to find the manifold is well-

demonstrated experimentally.

Unfortunately, most applications do not have such a nice, clean ambient space,

and yet, the decision space will almost always have an innate dimensionality that

is much lower than that of the ambient space. If we then make the further

(rather uncontroversial) assumption that there will be features whose similarity across

examples has nothing to do with the target problem (either because they are noisy

or they represent an observation that is not noise per se, but is not relevant to

the target concept), then these features should ideally not be used to construct

the classifier’s representation of the manifold. So, with respect to the Augmented

PAC Model, our compatibility matches their notion of compatibility with a data

distribution over edges, such that two adjacent vertices should have a common label.

However, intuitively, improving the chance that two edges will in fact share a label,

should also provide greater justification for constraining the search to match this

graph-imposed compatibility constraint.

In semi-supervised learning, the amount of labeled data is typically small. This

raises several issues when trying to incorporate useful information from the labels

at an early stage; i.e. when the dimensionality is still large. For example, feature

selection is made that much more difficult, and therefore, attempts at using feature

selection to eliminate noise are not particularly helpful. Furthermore, applying the

labels directly through the use of a classifier is not advisable, since many classes

contain subclasses or clusters, such that enforcing links between points based on

labels alone is unwise. For example, creating an edge between two very dissimilar

points can create a graph that violates the Riemannian assumptions that underpin

the intuition of the Laplacian Eigenmap approach. We would like to have some sense

that the end result will preserve some semblance of geodesic distance (even if the true

distances are obscured by noise in the ambient space). Even if using a classifier for

label propagation was a good idea, the high dimensionality would make it difficult to

learn an accurate classifier at this stage.
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3.2.1 Random Subspace Graphs

We first utilize a method based on random subspace selection (Bryll et al., 2003;

Skurichina and Duin, 2001) in order to allow the labels to influence the graph

construction in a robust way. The approach is simple in that we randomly select

many feature splits and use them to train simple classifiers, each of which represents

one subspace. Random subspace selection is sometimes used as a method for finding

different views for ensemble learning. In such cases the hope is that the views will

be independent. We do not necessarily have the same inclination here, which is

important, because it could be difficult to ensure independence due to label sparsity.

In ensemble learning, the independence is a necessary condition to ensure improved

accuracy. However, we care very little about accuracy in that sense, because we are

not looking to make a real classification. In fact, we simply want to place examples

together in such a way as to provide some sense of smoothness according to our target,

and therefore, if all of the classifiers were completely accurate, we would expect to

end up ignoring any in-class clusters, and thus we would still have difficulty finding

a good manifold.

What we do want is an ability to link together examples that share subsets of

features that are useful in determining a classification in our target problem. Using

the classifications of many classifiers that represent good hypotheses from different

subspaces allows us to find a more delicate similarity that represents our target

concept. If two examples share feature subsets that are useful according to our labeled

data, then we want them to be classified together. If they both lack good predictive

features in particular subspaces, then they will often be misclassified together, which

is what we want. Another advantage to using random subspaces is that we can

expect the classifiers to more effectively utilize the labeled data based on the fact

that random subspace selection reduces the dimensionality of the feature space on

which each classifier learns.
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In the method that we employ in our experiments, we first perform one hundred

random feature splits, resulting in two hundred classifiers that are trained on the

labeled data based on the subset of features that represent their hypothesis space.

We then construct a nearest neighbor graph based on cosine similarity while weighting

the similarity scores based on the percentage of shared classifications using the random

subspaces. We then build the unnormalized graph Laplacian. Using an unweighted

graph not only performs well in practice, but we also expect it to be more robust to

noise.

There are several parameters here that can be chosen rather arbitrarily. Finding

optimal ways to choose these parameters (i.e. model selection) forms a good basis for

improving the method, but that lies outside of the scope of this paper. Therefore, for

our experiments we chose these parameters based on suggestions from the literature

whenever possible. We retained the six nearest neighbors for most of our experiments,

but we used eight nearest neighbors for the text categorization to mirror the same

choice as that made in Belkin and Niyogi (2004). Similarly, unlike some methods, the

use of Laplacian Eigenmaps does not automatically suggest the size of the new space.

Therefore, we typically retained a basis size that was twenty percent of the number

of labels used, once again to reflect the suggestions from Belkin and Niyogi (2004),

although we explore this parameter in one set of experiments.

The graph construction algorithm is shown in Algorithm 1, where wu,v is the

weight on the edge between vertices u and v, n is the size of the dataset including

both labeled and unlabeled samples, and m is the dimensionality of the feature set.

3.2.2 Stochastic Discrimination graphs

Stochastic Discrimination

Stochastic Discrimination (SD) (Kleinberg, 1990, 2000b; Irle and Kauschke, 2011) is

an ensemble method of classifier construction, in which so-called weak classifiers are

combined to make a higher-level model. SD differs in significant ways from standard
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Algorithm 1 Random Subspace Graph Construction

Input: data {(xi, yi)}li=1, {xi}ni=l+1}, numNeighbors := k, numFeatureSplits :=
s
for i = 1 to s do
Randomly split feature set into two equal parts
Train linear classifier on each part
Classify each sample point using the classifiers

end for
for u = 1 to n do
for v = 1 to n do
wu,v =

∑
m

i=1
uivi√∑

m

i=1
uiui

√∑
m

i=1
vivi

× (percent of time classified together)

end for
end for
Retain k nearest neighbors; create Laplacian matrix L(u, v)

methods of combining classifiers. Most notably, it is well known for its ability to

support complex models without overfitting.

Stochastic Discrimination can be described most naturally as a binary classifica-

tion scheme. Thus, while it is possible to build multi-class SD models, we will restrict

our explanation here to the binary case. As described in Kleinberg (2000b), while

most ensemble methods generate weak classifiers that are in some sense experts on the

problem in that they will all agree on at least some of the easy points, it is important

that this not happen in SD. While Stochastic Discrimination is a random subspace

method in the most general use of the term, the weak models produced by the method

are very different from those generated by other random subspace methods.

Selection of the weak learners is guided very strictly by three overarching

principles: generalization, uniformity, and enrichment. In order for a model to have

the ability to generalize, weak models must cover enough space to capture points

outside of the training data. In other words, the weak models must apply to test

points, such that standard generalization assumptions apply. A weak model must

also have at least some discriminatory power, even if its error rate is close to fifty

percent. Thus, an enriched model is one that contains a greater fraction of the labeled

points from one class than from the other class. This does not simply mean that it has
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more of one class than the other; rather it means that the percentage of all points of

class 1 covered by the weak model is greater than the percentage of all class 2 points

that it covers. The amount of enrichment that one requires a new weak learner to

have can be set using a parameter, β, that defines the minimum difference between

the coverage percentages of the two classes. Finally, the algorithm seeks to ensure

uniformity of coverage of points. This uniformity is class-specific, such that we won’t

add a new model to the ensemble even if it is enriched, unless the average coverage of

points of each class is less than the average coverage for that class so far (plus some

constant λ).

The following definitions are taken from Kleinberg (2000b):

Definition 1. Enrichment: A subset of the feature space (i.e., a weak classfier) M
of F is said to be enriched with respect to classes C1 and C2 if

inf{|Pr(M |C1)− Pr(M |C2)| |M ∈ M} > 0

Definition 2. Uniformity: A subset of the feature space (i.e., a weak classfier)M of

F is said to be uniform with respect to classes C1 and C2 if for every point, p, in either

C1 or C2, and every nonempty subset of M of the form Mx,y, P rF (p ∈ M |M ∈ Mx,y)

is equal to x if p is a member of C1, and is equal to y if p is a member of C2.

The idea is to generate an ensemble model consisting of a wide variety that subsets

of the feature space, such that those subsets (classifiers) cover points evenly, cover

enough space to provide generalization ability, and cover a disproportionate number

of points from one class, C1, or the other, C2.

To turn these ensembles into classifiers, a new test point is evaluated based on

the subsets that cover it, as well as those that do not. Each subset contributes the

following score to the point:

X(C1,C2)(p, S) =

(

1S(p)− Pr(S|C2)

Pr(S|C1)− Pr(S|C2)

)

, (3.1)

where 1S is the indicator function of the set S. In other words 1S(p) 7→ 1 for points

p ∈ S, and 1S 7→ 0 for points p /∈ S.
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Then, points are classified using the following sum:

Y t
(C1,C2)

=

(

∑t

k=1 X
k
(C1,C2)

)

t
, (3.2)

where t is the number of classifiers.

It is possible in this fashion to cause points of class C1 to have a mean of 1.0 and

points of class C2 to have a mean of 0. New points can then be classified as belonging

to class C1 when Y t
(C1,C2)

> 0.5. By the Central Limit Theorem, as t approaches

infinity, the variance of the probability density function of points of class C1 and the

variance of the probability density function of points of class C2 both approach zero.

This fact helps explain the resistance to overfitting as the number of weak classifiers

is increased.

The SD algorithm as described in Kleinberg (2000b,a) can be implemented in

a variety of ways. In particular, the performance is heavily dependent upon how

the stream of weak classifiers is generated and which classifiers are retained (e.g., the

choice of beta; How enriched do retained classifiers have to be?). One significant choice

we make in our implementation is that we grow weak classifiers around neighboring

points rather than choosing the expansion points at random. The motivation for

this is the fact that we want to use SD to generate a psuedometric that is both

target-based and local-proximity-based.

Graph construction using SD

From a more theoretical standpoint, the characteristics we want to require in our

graph construction approach are resistance to overfitting, since we won’t have much

labeled data, and lack of correlation between ensemble members to ensure a globally

applicable psuedometric. Among ensemble classification methods, there are two

prominent approaches that have both of these properties. The first, is the well-

known AdaBoost algorithm (Schapire et al., 1997; Schapire and Freund, 2012). The
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second is Stochastic Discrimination (Kleinberg, 2000b,a; Irle and Kauschke, 2011).

AdaBoost ensures that ensemble-members’ errors are not correlated by adding more

weight in the next round to examples on which the current ensemble makes mistakes

or is unsure. While AdaBoost modifies the training set from the example point of

view, SD modifies it from the feature point of view. Thus, SD is a natural fit for

what we want to do, while AdaBoost is not.

As in the more general random subspace method used in Algorithm 1, we can

use Stochastic Discrimination to generate a task-relevant psuedometric. Kleinberg

discusses the point that weak classifiers generated via SD are not classifiers in the

traditional sense of the word. Similarly, we dont want classifiers in the traditional

sense of the word either. Just as SD depends on the weak learners being error prone,

we do too. In other words, if each SD learner was highly accurate, we would likely

be joining together many points that, while sharing the same class, are not close in

the sense of where they lie on the manifold that we want to discover.

Owing to the over-fitting resistance of SD, we are able to benefit from additional

weak classifiers as they help lower the overall bound on the generalization error

without any real risk of hurting performance. In addition, because the weak classifiers

are error prone, we can obtain a fine-grained pseudometric simply by using the

scores (Equation 3.1) generated by the weak classifiers covering any given two points.

This pseudometric captures local proximity due to the way we create our stream of

classifiers, and any bound on the generalization error that applies to the SD algorithm

applies to our graph edges as well, with a sufficient number of weak classifiers and a

sufficient number of unlabeled points.

The graph construction algorithm is shown in Algorithm 2.

3.3 Theoretical analysis

The framework described in this section can be considered to rely on a notion of

compatibility, χ, as described in Balcan and Blum (2006); Balcan (2008). The notion
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Algorithm 2 SD Graph Construction

Input: data {(xi, yi)}li=1, {xi}ni=l+1}, numNeighbors := k,
numWeakClassifiers := c, β, λ, minPoints := q
Train SD classifier: SD(c, β, λ, q)
for u = 1 to n do
for v = 1 to n do

wu,v =
∑c

i=1

{

1Si
(u)−Pr(Si|C2)

Pr(Si|C1)−Pr(Si|C2)
, if 1Si

(u) = 1Si
(v)

0, otherwise
end for

end for
Retain k nearest neighbors; create Laplacian matrix L(u, v)

of compatibility is based on finding a model that has a low unlabeled error rate. In

the case of a graph regularizer, this can indicate that the function being learned

agrees with the graph and would not label two connected nodes with different class

labels. Of course, if the graph incorrectly connects examples from different classes,

then the target function itself does not have an unlabeled error rate of zero, even if

some hypotheses do.

In Balcan (2008), various sample complexity bounds are provided. In some

cases an assumption is made that the target function’s unlabeled error rate is low

(essentially zero), and in other cases the bounds depend on the unlabeled error of c∗,

the true target function. For example, Theorem 2.3.2 provides a sample complexity

bound in the realizable case (c∗ ∈ C) that depends upon the unlabeled error of the

target, c∗. A graph constructed over noisy samples is likely to have many ”errors.”

Therefore, the first assumption is too simplistic for many real-world situations. Using

unlabeled data alone, the target function’s unlabeled error cannot be bounded at all,

since it is entirely possible that similarity in the ambient feature space does not reflect

similarity in terms of the target concept at all. In other words, the number of mistakes

in the notion of compatibility itself (the graph) cannot be bound while ignoring all

information concerning the target concept. Although labeled and unlabeled error

are of different types, it should still be possible to use supervised-learning bounds on

generalization error to provide a bound on the unlabeled error rate of c∗, meaning that
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use of label information in the construction of the graph can bound this error with

respect to the target, allowing bounds to be applied to the overall sample complexity.

First, let’s look at the definition of notion of compatibility given in Definition 2.2.1

from Balcan (2008), which we restate here, in slightly modified form, for completeness.

Definition 3. A notion of compatibility is a function χ : C × X 7→ [0, 1] where

we define χ(f,D) = Ex∼D[χ(f, x)]. Given a sample S, we define χ(f, S) to be the

empirical average of χ over the sample.

C is the hypothesis space from which the hypothesis, f , is chosen, andX is the instance

space, from which the distribution, D, is drawn. For our purposes, we will actually

assume that χ(f,D) = Ex∼D[χ(f, xi, xj)], so we are looking at the expectation over

pairs of examples (edges in the graph). Note that the unlabeled error rate is simply

a measure of incompatibility between a hypothesis, f , and the distribution, D; i.e.

1− χ(f,D), or 1− χ(f, S), for a given sample.

Now, consider Theorem 2.3.2 from Balcan (2008), which we restate verbatim here

for completeness.

Theorem 4. If c∗ ∈ C and errunl(c∗) = t, then mu unlabeled examples and ml labeled

examples are sufficient to learn to error ǫ with probability 1− δ, for

mu = 2
ǫ2

[

ln|C|+ ln4
δ

]

and ml =
1
ǫ

[

ln|CD,X (t+ 2ǫ)|+ ln2
δ

]

.

In particular, with probability at least 1−δ, the f ∈ C that optimizes ˆerrunl(f) subject

to ˆerr(f) = 0 has err(f) ≤ ǫ.

Alternatively, given the above number of unlabeled examples mu, for any number of

labeled examples ml, with probability at least 1−δ, the f ∈ C that optimizes ˆerrunl(f)

subject to ˆerr(f) = 0 has

err(f) ≤ 1
ml

[

ln|CD,X (errunl(C
∗) + 2ǫ)|+ ln2

δ

]

.

Next, we need the following definition from Kleinberg (2000a):

Definition 5. An m-class problem in supervised learning, presented as two finite

sequences E = (E1, E2, . . . , Em) and T = (T1, T2, . . . , Tm) of classes in a finite feature
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space (intuitively, all examples and the training examples, respectively), is said to be

solvable if there exists a collection M of subsets of the feature space such that T is

M-representative of E, and such that M is T-enriched and T-uniform.

Note that enrichment and uniformity are defined in Section 3.2.2

Now, consider Theorem 1 from Kleinberg (2000a), which we also restate essentially

verbatim here for completeness.

Theorem 6. There exists an algorithm A with the following property: given any

solvable problem, E, T, in supervised learning, if M is a collection of subsets of the

feature space, such that T is M-representative of E, and if M is T-enriched and

T-uniform, then given any desired upper bound u on the error rate, A will output,

within time proporational to 1
u
and inversely proportional to the square of e(T,M)

(the T-enrichment degree of M), a classifier whose expected error rate on E is less

than u.

The algorithm A builds classifiers by sampling, with replacement, from the set M,

and then combining the ”weak classifiers” in the resulting samples. We reduce n-class

problems to n-many two-class problems; given a training pair (T1, T2) for any such

two-class problem, a sample S of size t produces the classifier which assigns any given

example q to class 1 if

1

t

∑

S∈S

1S(q)− Pr(S|T2)

Pr(S|T1)− Pr(S|T2)
> 0.5, (3.3)

(where 1S(q) is the indicator function of the set S).

Note that the phrase M-representative in the above theorem, just means that the

set of all examples, Ei, of class i is indistinguishable from the set of training examples,

Ti, for that class when using the sets in M.

Now, we can combine the two theorems, by building a Stochastic Discrimination

graph using Algorithm 2, such that vertices concur with the SD classifier, which

allows us to bound the error on edges; i.e. the unlabeled error rate. If we can use
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Theorem 6 to impose an unlabeled error rate on our semi-supervised algorithm, then

the unlabeled error rate, t, of the target function in Theorem 4 can be defined, and

thus we can bound the generalization error in terms of the number of unlabeled

examples mu and the number of labeled examples ml. Note that we are considering

this in the context of binary classification for simplicity.

Theorem 7. If c∗ ∈ C and we define errunl(c∗) to be 1 − χ(f, S), where χ(f, S) =

Ex∼S[χ(f, xi, xj)] and S represents pairs of samples defined by a graph constructed

using Stochastic Discrimination with expected error < t, then errunl(c∗) ≤ 2t − 2t2

and mu unlabeled examples and ml labeled examples are sufficient to learn to error ǫ

with probability 1− δ, for

mu = 2
ǫ2

[

ln|C|+ ln4
δ

]

and ml =
1
ǫ

[

ln|CD,X (2t− 2t2 + 2ǫ)|+ ln2
δ

]

.

In particular, with probability at least 1−δ, the f ∈ C that optimizes ˆerrunl(f) subject

to ˆerr(f) = 0 has err(f) ≤ ǫ.

Proof. Recall that we defined the unlabeled error rate, errunl(c∗), over pairs of

samples, and that these pairs were selected (joined) according to the SD algorithm

with expected error < t, which is possible by Theorem 6 from Kleinberg (2000a).

Then, in the binary case, errunl(c∗) depends on the number of pairs having only one

vertex misclassified, since if both vertices are misclassified, then it does not increase

errunl(c∗). Therefore, it follows that if the error on the individual vertices is < t, then

the error on the pairs is errunl(c∗) ≤ (1− t)t+ t(1− t) = 2t− 2t2. The remainder of

the proof follows directly from Theorom 4 from Balcan (2008).

3.4 Graph-based classifiers

3.4.1 Laplacian Eigenmaps

We are focusing on the effects of altering the graph, so we use two different graph

based classifiers. The first uses a Laplacian Eigenmap (Belkin and Niyogi, 2003) for

dimensionality reduction, followed by construction of a simple linear classifier in the
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new space in the same manner as in Belkin and Niyogi (2004), in which the coefficients

for the new dimensions are set by minimizing the sum of squared error on the labeled

data. In other words, the weights of our new dimensions are given by the vector a in

the following:

a = (EET )−1Ec (3.4)

where c is a vector representing the class labels, the entries of E are λkvi,k, i is the

index of the labeled point in the matrix, and k is the index in the new low-dimensional

space; i.e. the k-th eigenvalue and eigenvector provide the mapping into the new space

for labeled point i. The number of connected components in the graph is determined

in order to eliminate the zero-valued eigenvalues, and then the mapping starts with

the next eigenfunction.

3.4.2 Out-of-sample extension

The Laplacian Eigenmap approach is inherently transductive, meaning that it only

creates a mapping for an unlabeled example if it was part of the set used for graph

construction. This means that applying a method transductively would involve

solving the eigenvalue problem all over again for any new point or set of points,

which would be impractical for most purposes. For an out-of-sample extension that

allows efficient application to new points, we utilize the Nystrom Formula as described

in Ouimet and Bengio (2005). The method has been shown (and for the most part

verified via our own experiments) to provide inductive classification results with no

significant difference in accuracy from the transductive application. It simply uses the

Laplacian matrix as a data-dependent Kernel function KD in the following formula

in order to map a new point into each dimension k of the new decision space:

fk(x) =

√
n

λk

n
∑

i=1

vikKD(x, xi) (3.5)

33



where n is the size of the original dataset, and (λk, vk) are the k-th eigenvalue and

eigenvector.

3.4.3 Laplacian RLS/Bayesian Kernel Model

The next semi-supervised model that we focus on is interesting from multiple

perspectives. In fact, it is possible to arrive at the same functional form for this

model based on two completely different derivations. In other words, this model

represents both the Laplacian Regularized Least Squares (Laplacian RLS) model in

Belkin et al. (2006) and the Bayesian Kernel Model in Liang et al. (2007a,b); Pillai

et al. (2007) with a Dirichlet process prior.

In the case of the Laplacian RLS (Belkin et al., 2006), we are using unlabeled

data as a graph-based regularization term. This essentially means that the algorithm

penalizes models that assign points that are adjacent in the graph to different classes.

In the case of the Bayesian Kernel Model (Liang et al., 2007a,b; Pillai et al.,

2007), a model is estimated by selecting from among functions in the reproducing

kernel Hilbert spaces (RKHS) induced by the chosen kernel. We would like to assume

that we have a smooth function that we want to represent. We can look at our kernel

as data that fall on a smooth manifold; i.e. that points in the original space actually

vary along a dense manifold that cuts through that space.

We will see that these assumptions can also lead us to the same functional form

as the Laplacian RLS. The derivation can be found in Liang et al. (2007a,b); Pillai

et al. (2007). The relevant Bayesian kernel derivation is based on integral operators.

The form that is used in Liang et al. (2007a) is the following:

f(x) =

∫

k(x, u)dγ(u) =

∫

k(x, u)w(u)dF (u) (3.6)

F is the unknown distribution of the kernel knots, u, where a knot is a data point on

the manifold. In essence this means that F can be set to correspond to the marginal

distribution of the data, X.
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Given a fixed sample from an uncertain distribution F in the Dirichlet process

(DP) model, the posterior is the following Dirichlet process Liang et al. (2007a):

F |Xn ∼ DP (α + n, Fn), Fn = (αF0 +
n

∑

i=1

δxi
)/(α + n) (3.7)

In Liang et al. (2007a), we see that if we want to predict the value of a new point,

x, based on our sample from F , i.e. based on our labeled and unlabeled training data,

then we want the following:

E[f |Xn] = an

∫

k(x, u)w(u)dF0(u) + n−1(1− an)
n

∑

i=1

w(xi)k(x, xi) (3.8)

where an = α/(α + n).

Then, assuming an uninformative prior, they take the limit α → 0 to get the

following representer form:

f̂n(x) =
n

∑

i=1

wik(x, xi) (3.9)

Thus, according to Liang et al. (2007a,b); Pillai et al. (2007), when the uncertainty

about the probability distribution function for the data, X, is expressed using a

Dirichlet process prior, then the function f can be approximated by the following

formula over labeled and unlabeled examples.

f̂(x) =
n

∑

i=1

wn,iK(x, xi) +
nm
∑

i=1

wn+nm,n+iK(x, xm
i ) (3.10)

This results in the exact same functional form as that derived in Belkin et al.

(2006). And in fact, the graph Laplacian over the observed data can then approximate

the Laplacian on the manifold by solving the following.
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f̂(x) = argminf∈HK

[

1

n

n
∑

i=1

V (f(xi), yi) + γA‖f‖2K +
γI

(n+ nm)2
fTLf

]

(3.11)

where L is the Laplacian derived from the data and f = {f(x1), ..., f(xn), f(x
m
1 ), ..., f(x

m
nm

)}.
γA and γI are parameters that control the amount of regularization in the ambient

space and intrinsic space, respectively.

3.4.4 Laplacian RLS Model Implementation

So, once again, we can use a method of semi-supervised learning using the graph

Laplacian. In our experiments, we use the unnormalized form of the graph Laplacian

here as well (Equation 2.2).

The output function that is learned is the following:

f(x) =
l+u
∑

i=1

αiK(xi, x), (3.12)

where K is the (l+ u)× (l+ u) Gram matrix over labeled and unlabeled points, and

α is the following learned coefficient vector:

α = (JK + γAlI +
γI l

(l + u)2
LK)−1Y, (3.13)

with L being the Laplacian matrix described above, I being the (l + u) × (l + u)

identity matrix, J being the (l+u)× (l+u) diagonal matrix with the first l diagonal

entries equal to 1 and the rest of the entries equal to 0, and Y being the (l+ u) label

vector, Y = [y1, ..., yl, 0, ..., 0]. See Belkin et al. (2006) for details.

This method does have two parameters that control the amount of regularization.

For all of our experiments, we use the following parameters, as suggested for manifold

regularization in Belkin et al. (2006): γAl = 0.005, γI l

(l+u)2
= 0.045.
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3.5 Experiments

A variety of experiments were constructed to demonstrate the effect of altering the

graph in the manner proposed. The experiments cover several different problem sets

with a variety of parameters in an effort to evaluate the robustness of the proposed

methods. For comparison purposes, we use the standard Laplacian Eigenmap (LEM)

(Belkin and Niyogi, 2004) and the standard Laplacian RLS (Belkin et al., 2006), where

the graph is constructed using unlabeled data only. We use cosine similarity as our

distance measure, since it outperformed Euclidean distance in all of our experiments.

We denote the approach with the random-subspace augmented graph as LB-LEM

and LB-LapRLS in the experimental results. LB stands for label-biased, since we

are essentially choosing a bias for our graph-based learning algorithms based on the

labeled data. We refer to the combination of the SD-graph-construction method with

the LapRLS as SD-LapRLS.

3.5.1 Brain-computer interface

The Brain-Computer Interface (BCI) problem comes from a collection of electroen-

cephalography (EEG) recordings using 39 probes. The goal is to determine whether

the human subject was concentrating on moving their right or left hand during the

monitoring process. This is an extremely noisy dataset, and one in which the use of

the unlabeled data alone is very unsuccessful in discovering a good predictive space.

More details can be found in Chapelle et al. (2006). Note that the BCI dataset was

identified in Chapelle et al. (2006) as one in which it is very difficult to improve over

the supervised baseline obtained using an SVM (error: 34.31%; AUC: 71.17%).

The experiments in Table 6.1 were conducted using the method described in Belkin

and Niyogi (2004), with the only difference being in the construction of the graph. For

each of the methods described, we ran 10 experiments in which 100 labeled samples

were randomly selected and the remaining 300 samples were used as unlabeled data.

The unlabeled data were then used as the transductive test set. In addition, in
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Table 3.1: Average error of Laplacian-Eigenmap-based classifiers on BCI data.

Graph construction method Average Error
Unlabeled data graph (LEM) 0.4856

Random subspace label-biased graph (LB-LEM) 0.3086
Top 10 feature label-biased graph 0.4596
Top 20 feature label-biased graph 0.4673
Top 30 feature label-biased graph 0.4746

Table 3.2: Average error of Laplacian RLS classifiers on BCI data.

Model Building Condtions Average Error AUC
Standard LapRLS 0.3244 0.7431
Standard LapRLS* 0.3136 0.7483

LB-LapRLS 0.2697 0.8083
SD-LapRLS 0.2750 0.7894

*LapRLS results in Chapelle et al. (2006), obtained using model selection, a
normalized graph Laplacian, and an RBF base kernel; which was the best
result among all 11 semi-supervised algorithms tested in the benchmark.

order to demonstrate that some simple methods for using the labeled data in the

graph construction can have significant robustness problems, we ran a third version

of experiments with a feature-selection-based graph construction process. In this

approach, we select the top features (out of 117 total) as ranked using a combination

of mutual information and fisher criterion, as in Dhir and Lee (2009). Table 3.2

shows a comparison of results across the 12 data splits from the benchmark set in

Chapelle et al. (2006), where the LapRLS performed the best out of all methods in

the benchmark. We see that our simple approach can improve even these results.

The SD-LapRLS was built with β = 0.05, λ = 5, and using 1000 weak classifiers.

Although the SD-graph results are very good, model selection was required to obtain

them, and the more general random subspace approach performs better, while having

the advantage of being trivially parallelizable.
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3.5.2 Text categorization

Text categorization is a common high-dimensional classification task that does not

seem to fit the manifold assumption. Text data is generally thought to be cluster-like

instead. Therefore, it is an interesting test for manifold-based techniques, and one

in which we might assume that nonlinear manifold learning methods might perform

poorly. The task is a binary classification task from the well-known 20 newsgroup

data. The two categories tested here are the atheism and the religion newsgroups. The

data was preprocessed to remove headers and stopwords, and the terms were stemmed

using the Porter stemming algorithm. Finally, the stems were used as features with

values determined by their TF-IDF scores. This task had 1424 documents. Ten

random experiments were carried out in which selections of one thousand of the

documents were used for the graph, and the remaining 424 data points were used for

the out-of-sample tests. Eight nearest neighbors were used in the graph construction.

The advantage one gains over the purely unsupervised graph construction by using

the labels to bias the graph should increase with the number of labeled data available.

Table 6.2 demonstrates this advantage on the text categorization task. While this

also shows that there is some risk to using this method with very few labels, it is

more likely the ratio of the number of labeled data to the size of the ambient feature

space that leads to a requirement for a larger labeled set. The number of dimensions

retained is kept at 20% of the number of labels, as suggested in Belkin and Niyogi

(2004). Also note that the semi-supervised approaches clearly outperform the purely

supervised linear SVM (which is typically very good for text categorization).

As expected, the accuracy of the classifier rises as the percentage of graph edges

that join two examples from the same class increases. This is significant because it

confirms that the hypotheses under consideration in the learning process are indeed

being restricted in a way that matches our notion of compatibility, χ, as discussed

above.
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Table 3.3: Binary text categorization

Avg. Error Rates
Algorithm Labels transductive out-of-sample

100 0.2253 0.2120
LEM 200 0.1954 0.1882

300 0.1849 0.1724
100 0.2951 0.2538

LB-LEM 200 0.2064 0.1861
300 0.1730 0.1649
100 0.3047 0.3009

Linear SVM 200 0.2268 0.2300
300 0.1870 0.1913

Table 3.4: Average edge correctness.

LEM LB-LEM
100 200 300

Accuracy 75.5 77.3 81.9 85.0

3.5.3 Dimensionality reduction in hyperspectral image anal-

ysis

Land cover classification by hyperspectral image (HSI) data analysis has become

an important part of remote sensing research in recent years Landgrebe (2002).

Compared to conventional multi-spectral images where each pixel usually contains

tens of bands, pixels in hyperspectral images usually consist of more than a

hundred spectral bands, providing fine-resolution spectral information. Classification

techniques for this multiclass application need to handle high-dimensional, high-

resolution data. Obtaining ground truth is another challenge, since HSI can cover

very large areas and it is not usually possible to obtain highly accurate class labels

for all locations in the image.
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A Hyperion hyperspectral image taken from Okavango Delta, Botswana in May

2001 is used for the experiments. The acquired data originally consisted of 242

bands, but only 145 bands are retained after preprocessing. The area used for the

experiments has 1476×256 pixels with 30m spatial resolution. We used two spatially

disjoint class maps from the same geographical region, and there are 9 classes in

total. The training set consists of 1580 labeled instances, and the test set has 1434

instances.

For these experiments, we treat the problem as one of purely transductive learning.

In other words, we use the test points to influence the dimensionality reduction. The

transductive approach is practical in this case since we want to classify unlabeled

portions from the same image or geographic region. For classification based on the

dimensionality reduction, we employed a maximum-likelihood classifier (MLC) with

Gaussian distribution, where the class-conditional distribution of each class is modeled

as a multi-variate Gaussian: p(x|yi) ∼ N (µ,Σi). The mean and covariance of each

distribution are measured by maximum-likelihood estimation. Given a test data

point, the MLC outputs the class label with maximum posterior probability, y =

argmaxi P (yi|x) ∝ argmaxi p(x|yi)P (yi). The prior probability distribution P (yi) is

measured emipirically from the training set.

In this case, we compare effects of the dimensionality reduction performed by our

method (LB-LEM) to that of the standard Laplacian Eigenmap method (Belkin and

Niyogi, 2003), as well as dimensionality reduction performed via an alternative non-

linear dimensionality reduction method, ISOMAP (Tenenbaum et al., 2000), and the

standard linear principle component analysis (PCA).

As shown in Figure 3.2, the modifications in the graph have a very positive effect

on the classifier. In addition, it appears that the use of the domain knowledge

through the labels incorporates some robustness into the selection of the appropriate

dimensionality, as shown in Figure 3.3.
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Figure 3.2: Classification accuracy on Botswana data using dimensionality reduction
with ML classifier.

3.6 Summary of label-guided graph construction

We have outlined robust methods for biasing the graph construction in relevant semi-

supervised learning methods and demonstrated their effectiveness. There are many

obvious ways in which to optimize these general approaches above and beyond their

basic descriptions, but the focus here has been on determining a general approach to

providing robustness that does not require a lot of effort for manually incorporating

domain knowledge. Since we utilize the labels more effectively as a source of domain

knowledge, we can notice clear improvements when the feature set is not extensively

hand engineered and is therefore noisy with respect to the target problem. These

improvements are realized without requiring any significant increase in effort for

domain adaptation.
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Figure 3.3: Change in classification error on Botswana data based on number of
dimensions retained.
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Chapter 4

Graph-based multi-modal learning

4.1 Traditional data fusion

Traditional data fusion methods (Nakamura et al., 2007; Corona et al., 2009) involve

dealing with data in stages, creating ensembles of learners, or creating complex

features by combining observations from different modalities. Unfortunately, while

the real power of fusing information may be found in combining features directly,

such an approach must deal with the sample complexity problem as the number of

features being considered increases. All of the above approaches are inadequate when

one wishes to carry over information from modalities that will not be available when

the model is applied. This chapter discusses such applications and explores new

methods of combining data to get around this issue. Some of the work in this section

was published in Symons and Arel (2011).

4.2 Budgeted learning: Addressing missing modal-

ities and limited ground truth

Budgeted learning under constraints on both the amount of labeled information and

the availability of features at test time pertains to a large number of real world
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problems. Ideas from multi-view learning, semi-supervised learning, and even active

learning have applicability, but a common framework whose assumptions fit these

problem spaces is non-trivial to construct. We leverage ideas from these fields based

on graph regularizers to construct a robust framework for learning from labeled and

unlabeled samples in multiple views that are non-independent and include features

that are inaccessible at the time the model would need to be applied. We describe

example applications that fit this scenario, and we provide experimental results to

demonstrate the effectiveness of knowledge carryover from training-only views.

As learning algorithms are applied to more complex applications, relevant

information can be found in a wider variety of forms, and the relationships between

these information sources are often quite complex. The assumptions that underly

most learning algorithms do not readily or realistically permit the incorporation of

many of the data sources that are available, despite an implicit understanding that

useful information exists in these sources. When multiple information sources are

available, they are often partially redundant, highly interdependent, and full of noise

(and other information that is irrelevant to the problem under study). In this paper,

we are focused on a framework whose assumptions match this reality, as well as the

reality that labeled information is usually sparse. Most significantly, we are interested

in a framework that can also leverage information in scenarios where many features

that would be useful for learning a model are not available when the resulting model

will be applied.

As with constraints on labels, there are many practical limitations on the

acquisition of potentially useful features. A key difference in the case of feature

acquisition is that the same constraints often don’t pertain to the training samples.

This difference provides an opportunity to allow features that are impractical in

an applied setting to nevertheless add value during the model-building process.

Unfortunately, there are few machine learning frameworks built on assumptions that

allow effective utilization of features that are only available at training time. In

this paper we formulate a knowledge carryover framework for the budgeted learning
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scenario with constraints on features and labels. The approach is based on multi-

view and semi-supervised learning methods that use graph-encoded regularization.

Our main contributions are the following: (1) We propose and provide justification

for a methodology for ensuring that changes in the graph regularizer using alternate

views are performed in a manner that is target-concept specific, allowing value to be

obtained from noisy views; and (2) We demonstrate how this general set-up can be

used to effectively improve models by leveraging features unavailable at test time.

4.2.1 Scaling issues in multi-view learning

Large-scale, multiple-evidence learning is a growing area of importance for machine

learning practitioners. Some of the increased focus on large-scale multi-view problems

might be attributed to the general rise of semi-supervised learning, which has

demonstrated significant gains in performance when augmenting supervised learning

with large amounts of unlabeled data. The major impetus of much progress in semi-

supervised learning came out of work on a natural multi-view problem Blum and

Mitchell (1998). Moreover, as the use of semi-supervised techniques has become

widespread, the data that practitioners look to incorporate is often larger and

has more complex inter-relations, often including potentially separable self-sufficient

views. Although the field is nascent, one of the more prominent areas of study in

multi-view, semi-supervised learning involves graph-based methods Sindhwani et al.

(2005a); Sindhwani and Rosenberg (2008). Unfortunately, as seen in Chapter 3, most

of these methods are non-parametric or semi-parametric Orbanz and Teh (2010),

which can complicate large-scale learning, due to the fact that the model’s complexity

is data-dependent. Another complicating factor involved in processing many natural

multi-view datasets is the inconsistent availability of all views, in which case an

application might require techniques for handling missing data Marwala (2009) or

might be viewed as a budgeted learning problem Greiner et al. (2002); Cesa-Bianchi

et al. (2009).
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Examples of natural multiple evidence problems abound. For example, in the

case of web page analysis, we often have both text and images, or video and

audio. In medical domains, particularly as the number of multiple-modality clinical

studies increases, we often have several interdependent, partially redundant views

of a condition, characterized by multiple imaging technologies, textual descriptions

of symptoms, blood assays, etc. Even in fields as well studied as satellite image

analysis, the current ubiquity of information collection often means that we now have

multiple imaging methods, ground sensor data, etc. covering a given location and

time. Unfortunately, one inconvenient reality that all of these applications share is

the high likelihood that an inconsistent set of views will be available for different

examples. In fact, often only a subset of views or a single view will be available when

applying a decision model learned across multiple evidential views. For example,

while many training examples may contain text and images, we may not have both

when we wish to index a new web page. In medical studies it has become increasingly

common to study multiple diagnostics in an attempt to find a single modality test

that outperforms the others or is most cost-effective. In other words, the search for

a multi-modality diagnostic is often only a secondary goal when cost is a driving

factor. In the case of satellite image analysis, ground sensor data might be available

for many training samples, but when applying a model to alternate localities, this

secondary evidence is often missing. See Figure 4.1 for a conceptualization of two

such applications.

Thus, a large number of multiple evidence learning scenarios can benefit from

knowledge carryover. In this case, we view the problem as one of budgeted learning,

but unlike the scenario in Greiner et al. (2002); Cesa-Bianchi et al. (2009), we usually

do not have control over which features or views are available at test time. Thus,

standard data fusion techniques are not appropriate, since we want knowledge learned

from alternate modalities to benefit a single-modality model. In addition, we are

usually constrained by the number of labeled examples, such that most large-scale

multi-view problems fall into the domain of semi-supervised learning as well. In
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Figure 4.1: Conceptualization of multi-view budgeted learning.

these cases, we are often particularly concerned with the curse of dimensionality.

Some traditional data fusion techniques applied to multiple evidence learning would

rely on exploration of combinations of features from different views. In addition to

increasing the dimensionality relative to a static number of labeled training samples,

these methods cannot benefit from alternate views unless they are available when

the model is applied. Ensemble fusion techniques that build separate models for each

view cannot take advantage of the links between modalities provided by the examples,

and these methods also cannot benefit from training-only evidence.

The benefits of the approach we will outline are many, including the following:

• It is possible to utilize powerful features and views (self-sufficient feature subsets)

to improve classifiers that will not have access to such features. This systematically

addresses the real-world issue of training-only views, a little explored subfield of

machine learning.

• It is a naturally semi-supervised method that is able to take advantage of large

amounts of unlabeled data.
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• It is possible to fully leverage incomplete data (features that are missing from

some of the training examples) without data imputation.

• The method is applicable to a broad range of learning algorithms that use graphs

for regularization or dimensionality reduction.

• It is a particularly forgiving method when the relevance or importance of many

features is not clearly known.

4.2.2 Multi-view regularization

As discussed above, constraints imposed on feature acquisition come from a variety of

sources and can be found in many real-world applications. Often these problems fit

naturally into a multi-view setting, in which feature sets can be reasonably partitioned

into disjoint, cohesive sets that are somewhat redundant. For example, in a medical

study where a battery of tests is performed, and results from all of these procedures

are available for subjects of the study (the training set), an applied diagnostic that

is dependent upon all of these tests would be prohibitively expensive. Therefore,

the standard approach is to independently consider the separate tests to find one

procedure that seems to be the best diagnostic, while inter-related, useful information

from the rest of the study typically remains unused. The framework presented here

allows such training-only observations to effectively improve a model that operates

on a feature set that does not include these observations.

We view this as a budgeted, multi-view learning problem. Since most applications

that fit this scenario will also have few labeled and many unlabeled examples, we also

treat the problem as semi-supervised. We assume that we have l labeled examples,

{(xi, yi)}li=1 and u unlabeled examples, {xi}l+u
i=l+1. In addition, we have j distinct views

of each example, xi = (x1
i , x

2
i , ..., x

j
i ). For simplicity, we will assume y ∈ {+1,−1},

with multi-class classifiers being constructed of multiple one-vs-all binary classifiers.

To facilitate discussion, we will refer to a feature set available at both training and

test time as a primary view, and we will refer to a feature set available in training
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only as a secondary view. For example, satellite image features could be a primary

view used for classification, and corresponding ground-sensor features could be a

secondary view not available when the model would be applied but that encapsulates

useful information about some or all of the training examples.

Related work on semi-supervised, multi-view regularization (Sindhwani et al.,

2005a; Sindhwani and Rosenberg, 2008) employs two regularizers, but the regular-

ization using the unlabeled examples is purely unsupervised. The result is that even

though a tradeoff can be made and the unlabeled regularization can be de-emphasized,

in cases where a feature set is particularly noisy with regard to the target concept, it

is difficult to obtain benefit from such a view, particularly if the labeled set is small.

In contrast, we demonstrate how changes in the construction of the regularizer that

are informed by the labeled information, as outlined in Chapter 3, provide benefit

consistently. In particular, it becomes safer to include such information, since it is

unlikely to make the regularization less effective than single-view, semi-supervised

regularization.

4.2.3 Random subspace multi-view smoothing

The framework we employ is one based on semi-supervised learning using graph-based

regularization across separate views. When attempting to use secondary views in the

construction of a graph regularizer, one must be cognizant of the potential for the

secondary information to be much noisier than the primary information. Therefore,

just as in Chapter 3, we need a method to alter the graph that attempts to use only

the concept-relevant information from the secondary views. In the general setup we

are addressing, the only information we have about the target concept is from the

labels.

We utilize the method based on random subspace selection from Chapter 3

in order to allow the views to influence the graph construction in a robust way

that reflects information about the target problem. We use the classifications of

50



many classifiers from different subspaces and various views to find a target-relevant

similarity. Although one must specify the number of neighbors to retain and the

number of splits to use in the graph construction (see Algorithm 3), the method seems

to be rather robust with regard to these choices. In the method that we employ in

our experiments, for each view, we perform s = 100 random feature splits, resulting

in two hundred classifiers that are trained on the labeled data based on the subset of

features that represent their hypothesis space. We then construct a nearest neighbor

graph based on cosine similarity in the primary view while weighting the similarity

scores based on the percentage of shared classifications using theses random subspace

models. We then build the unnormalized graph Laplacian.

Algorithm 3 Multi-View Random Subspace Graph Construction

Input: data {(xi, yi)}li=1, {xi}ni=l+1 in each view, numNeighbors := k,
numFeatureSplits := s
for each view vj do
for i = 1 to s do
Randomly split feature set into two equal parts
Train linear classifier on each part
Classify each sample point using the classifiers

end for
end for
for u = 1 to n do
for v = 1 to n do
wu,v =

∑
m

i=1
uivi√∑

m

i=1
uiui

√∑
m

i=1
vivi

× (percent of time classified together)

end for
end for
Retain k nearest neighbors; create Laplacian matrix L(u, v)

Based on common practice from related literature, we set the number of nearest

neighbors, k, equal to 8. We test the effect of the graph changes using the two different

base algorithms that use the Laplacian matrix of the graph described in Chapter 3.

Once again, the first learning algorithm is the Laplacian Eigenmap (LEM) approach

described in Belkin and Niyogi (2004), and the second is the Laplacian Regularized

Least Squares (LapRLS) approach described in Belkin et al. (2006).
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4.3 Transductive Laplacian eigenmap classifier

Again, as described in Belkin and Niyogi (2004), we construct a linear classifier in

a new space that allows transductive classification. The coefficients for the new

dimensions are set by minimizing the sum of squared error on the labeled data. In

other words, the coefficient vector a is obtained using the following equation:

a = (EET )−1Ec (4.1)

where c is a vector representing the class labels and the entries of E are the

eigenfunctions of the Laplacian matrix, λkvi,k; i is the index of the labeled point

in the matrix, and k is the index in the new low-dimensional space. The mapping

starts with the eigenvector associated with the first non-zero eigenvalue, and includes

as many eigenvectors as the number of dimensions desired.

4.3.1 LEM Out-of-Sample Extension

For our out-of-sample extension, we again use the Nystrom Formula as described in

Ouimet and Bengio (2005). It employs the Laplacian matrix as a data-dependent

Kernel function KD in the following formula in order to map a new point into each

dimension k of the new decision space:

fk(x) =

√
n

λk

n
∑

i=1

vikKD(x, xi) (4.2)

where n is the size of the original dataset, and (λk, vk) are the k-th eigenvalue and

eigenvector.

4.3.2 Multi-View Laplacian Regularized Least Squares

Note that the Laplacian Regularized Least Squares (LapRLS) (Belkin et al., 2006)

algorithm uses two regularizers, including the graph Laplacian. However, our
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modifications to the regularization only affect the unlabeled-data regularization

through the Laplacian matrix. We use the graph construction method described

in Algorithm 3 above to produce the multi-view-derived Laplacian matrix that is

used here. In this case the output function that is learned is the following:

f(x) =
l+u
∑

i=1

αiK(xi, x), (4.3)

where K is the (l+ u)× (l+ u) Gram matrix over labeled and unlabeled points, and

α is the following learned coefficient vector:

α = (JK + γAlI +
γI l

(l + u)2
LK)−1Y, (4.4)

with L being the Laplacian matrix described above, I being the (l + u) × (l + u)

identity matrix, J being the (l+u)× (l+u) diagonal matrix with the first l diagonal

entries equal to 1 and the rest of the entries equal to 0, and Y being the (l+ u) label

vector, Y = [y1, ..., yl, 0, ..., 0].

The modifications we employ are all during the graph construction phase. This

means that we can train a LapRLS learner using a primary view in a straightforward

manner since the secondary view information is encoded into the regularization term,

γI l

(l+u)2
LK, via the matrix, L. While the LapRLS avoids the need to select the number

of dimensions as in the Laplacian Eigenmap approach, it does have its own parameters

that control the effect of the unlabeled data. For all of our LapRLS experiments, we

use the following parameters, as suggested for manifold regularization in Belkin et al.

(2006): γAl = 0.005, γI l

(l+u)2
= 0.045.

4.4 Theoretical discussion

The theoretical analysis in Section 3.3 can be applied to graph construction in multiple

views without modification. In other words, since compatibility is defined as an

expectation over samples, in the multi-view setting the same theoretical arguments
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hold if the graph encoded notion of compatibility is derived from alternate views in

addition to unlabeled data.

4.5 Experimental Results

In order to demonstrate the effectiveness of the approach, we utilize the Multiple

Features Dataset, which is available through the UCI Machine Learning Repository

(Asuncion and Newman, 2007). This dataset is an image recognition task over 2000

handwritten digits. It is a 10-class problem containing 200 examples of each digit.

Each example is composed of 6 distinct features sets, which we use as 6 separate views;

one primary and five secondary. The views are the following: 240 pixel averages in

2× 3 windows (Pix); 216 profile correlations (Fac); 76 Fourier coefficients of the digit

shapes (Fou); 64 Karhunen-Loéve features (Kar); 47 Zernike moments (Zer); and 6

morphological features (Mor). Additional information on the dataset can be found

in Van Breukelen et al. (1998). Each of our experimental results is an averaged error

measurement over 10 random splits of the data into a semi-supervised training set

of 100 labeled examples and 900 unlabeled examples and a separate test set of 1000

examples for inductive testing. Table 4.1 shows a comparison of single view learning

methods. When the training and test features are the same, it indicates that a single

view was used; i.e. either the pixel features (Pix) or all features combined into a single

feature set. In the case of the Multi-View Laplacian Eigenmap (MV-LEM), the views

are treated separately, with pixel features being the only ones used for inductive

testing and the other views providing information through the graph construction

process as described above. It is interesting to note that the best performance is

obtained with a model that only has access to the pixel values at test time and that

the standard Laplacian Eigenmap approach does not improve with straightforward

addition of the other features. The best performance is obtained by a careful approach

that recognizes the potentially redundant information across multiple views and the
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Table 4.1: High-level classifier comparison: A linear SVM is trained on a single view
consisting of just pixel features or all features combined into a single set. The same
two sets are used for a LEM classifier, including a version that uses random subspace
smoothing based on all features as a single set. This is compared to the method in
this paper (MV-LEM), using all features for training, but only pixel features at test
time. Transductive results are provided in addition to the inductive results on the
set-aside test set.

Features Used Average Error Rate
Classifier Training Testing Transductive Inductive

Linear SVM Pix Pix .099 .098

Linear SVM All All .081 .083

Laplacian Eigenmap Pix Pix .083 .068

Laplacian Eigenmap All All .085 .068

Single-View RS Laplacian Eigenmap All All .111 .081

Multiview Laplacian Eigenmap All Pix .073 .057

hard realities one must face when attempting to include more features without the

ability to increase the size of the labeled data.

Table 4.2 and Table 4.3 compare the effect of different graph construction methods

using the LEM learner and the LapRLS learner. The smoothing of the graph takes

one of the following three forms: no smoothing; random subspace smoothing via the

primary view, or the cumulative effect of random subspace smoothing via all views.

In this case, regardless of the method and regardless of the primary view, the addition

of information from the other views during training always provides a significant level

of improvement to the classifier that operates on the primary view only. We do not

include the morphological features as a primary view, since the 6 features are not

sufficient to generate useful models for this 10 class problem.
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Table 4.2: Knowledge carryover comparisons using Laplacian Eigenmaps.
Classification is always performed using a single primary view. Each classifier uses
the graph Laplacian for dimensionality reduction, retaining 40 eigenfunctions. Graph
construction uses no smoothing (None), random subspace smoothing based on the
primary view only (Prime RS), or the cumulative effect of random subspace smoothing
using all of the views (Both RS).

Features Used Average Error Rate
Graph Smoothing Training Testing Transductive Inductive

None Pix Pix .083 .068
Prime RS Pix Pix .095 .059
Both RS All Pix .064 .054

None Fac Fac .136 .124
Prime RS Fac Fac .122 .101
Both RS All Fac .072 .087

None Fou Fou .307 .301
Prime RS Fou Fou .316 .308
Both RS All Fou .063 .227

None Kar Kar .128 .114
Prime RS Kar Kar .122 .092
Both RS All Kar .065 .076

None Zer Zer .276 .256
Prime RS Zer Zer .276 .256
Both RS All Zer .064 .203

4.6 Summary of multi-vew, budgeted learning re-

sults

In this chapter, we have demonstrated the use of principles from multi-view and

semi-supervised learning for budgeted learning in the face of realistic constraints on

the availability of both features and labels. Our experiments clearly show consistent

improvement when the only difference in training is the use of secondary views (not

available at test time) to modify the Laplacian matrix used for regularization or

dimensionality reduction based on the approach outlined in this chapter. The general
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Table 4.3: Knowledge carryover comparisons using LapRLS. Classification is always
performed using a single primary view. Graph construction uses random subspace
smoothing based on the primary view only (Prime RS) or the cumulative effect of
random subspace smoothing using all of the views (Both RS).

Features Used Average Error Rate
Graph Smoothing Training Testing Transductive Inductive

Prime RS Pix Pix .185 .213
Both RS All Pix .162 .195

Prime RS Fac Fac .113 .107
Both RS All Fac .070 .078

Prime RS Fou Fou .337 .349
Both RS All Fou .318 .332

Prime RS Kar Kar .180 .181
Both RS All Kar .168 .172

Prime RS Zer Zer .331 .329
Both RS All Zer .304 .307

framework is one that also supports the insertion of expert knowledge via feature-

based active learning. For example, it would be possible to use such an approach to

filter the features used in the secondary views.
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Chapter 5

Multi-task, semi-supervised

learning for large-scale analysis of

complex systems

5.1 Barriers in complex systems analysis

Coordinated knowledge discovery across diverse data at very large scales is extremely

difficult. When the number of potentially predictive or important variables is at such

scales, the severe ratio of potentially useful observations to known outcomes (i.e. the

sample complexity side of the curse of dimensionality) is even more of a problem than

lack of computational power. Ultrascale datasets offer some hope of accounting for

the importance of complex variables, but there are no general techniques or libraries

that can effectively utilize such large-scale data for knowledge discovery. This chapter

discusses initial work to fill the need for such data analysis tools by engineering a set

of solutions around an analytical approach that thrives in the presence of inter-related

large-scale data.

There is often an overwhelming number of atomic observables/measurements to

begin with in large systems. Despite this, linear and non-linear feature combinations,
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observations that encode temporal (and in many cases spatial) dependencies, etc.

are all very important, such that atomic variables often mean almost nothing, while

more complex features are quite revealing (take temporal behavior patterns in cyber

security for example). For example, in climate data analysis, the combinatorics

of teleconnections alone is enough to necessitate ultrascale computing. Current

techniques are completely inadequate for the analysis of predictive correlation in such

scenarios, and therefore most analyses focus on correlations within a subset of known

phenomena, and the ability to discover the unknown is severely handicapped.

We have built a set of core algorithms that can use large-scale coordinated

predictive analysis across seemingly inter-related portions of the data in order

to isolate noise from potentially predictive observations. Coordinated knowledge

discovery is enabled by analyzing observables and outcomes as sets of prediction tasks,

allowing use of all of the data for the filtering of noise and the discovery of potentially

important observations. The general basis for the framework comes out of statistical

machine learning with certain guarantees on the generalization ability achievable

based on the application of the uncovered observations in a predictive setting (see

Ando and Zhang (2005)). In essence, this is an ideal framework for isolation of noise

and ranking of important patterns with solid theoretical foundations. Moreover, it is

very amenable to improvement through automatic problem construction/exploration,

it is designed to take advantage of inter-relations across large-scale analyses, and it

naturally provides a scalable analysis scheme.

The advantages that allow parallelization and ultrascale concurrent processing

are the following: 1) The initial learning phase allows a natural division of the data

into separate problems spaces. 2) The subspaces searched by each problem can be

set based on (loose) correlation to each analysis task. Therefore, these spaces will

overlap, but not be all encompassing, allowing intelligent division of the data. 3) The

phase that is potentially difficult to parallelize is one in which hypothesis spaces are

compared at large scale. However, the objective is to discover observations that are

representative of effective decision spaces, and in this setting it turns out that linear
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analysis techniques like Principle Component Analysis (PCA) are appropriate. In

other words, while PCA is not good at finding discriminative structures in a single

problem analysis, it is very useful for finding them here, since it can be used to find

observations that represent good discriminators across many of the individual analyses

(at least enough to rise above a noise threshold). The ability to use techniques like

PCA is important, because it can be exactly translated into a particular ”summation

form” that techniques like Map-Reduce can exploit for essentially linear scalability

on multi-core platforms (Chu et al., 2006). Exploration of non-linearities can be

conducted via the feature construction for the individual problems, which allows a

seamless fit with the parallel analysis structure presented here.

Current, even state-of-the-art, analyses in fields that contain ultrascale data are

mostly limited to the exploration of a select, small subset of variables in combination

or even to univariate analyses in many cases. This is not something that is exclusive

to those that do not have access to high-performance computing (HPC). In fact, it is

well represented by HPC users for the simple reason that the curse of dimensionality

is particularly harsh on most attempts to consider the complex inter-actions in

the systems under study. Climate data is represented by ultrascale temporal and

spatial datasets such that even the latest large-scale analyses are restricted to several

variables known to be of interest a priori. This is clearly inadequate for providing

the understanding that is required for better prediction in climate extremes, and

other approaches are needed (Ganguly, 2009). In the case of cyber security, modern

methods not only ignore most complex variables and temporal aspects, but those

that attempt to analyze data from many different subsystems do so in a piecemeal

approach that approaches fusion as a method for joining decisions that ignore the

inter-relations among the variables involved at lower levels (Corona et al., 2009).

There are many software packages that attempt to scale traditional analysis

techniques (e.g Matlab, R, Colt, etc. all have parallel versions). But parallelization of

traditional methods that do not attempt to or cannot jointly consider the interactions

in such systems is not the kind of scalability that is required for the type of scientific
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discovery that is most desired from ultrascale datasets. Many large-scale data

packages use visualization as a key component to isolate portions of the data for

further exploration, and while visualization approaches are useful, they become more

difficult and less meaningful with larger and larger datasets. Often, they end up being

a guided approach to ignoring large portions of the data simply because all of the

inter-actions cannot be jointly considered, despite the understanding that they might

actually be relevant.

In addition to not being set up to allow straightforward application by the scientific

community, modern, scalable algorithms are not scalable to extreme levels. For

example, the scalable approach in Aliferas et al. (2010) is polynomial, but on the

order of the size of the conditioning set. Even small conditioning set sizes would

be intractable at ultrascale, unless the algorithm is wrapped in a parallel learning

framework, such as the one we propose to implement here. And such is the flexibility

of the approach we propose that this is possible; i.e. it is fairly flexible with respect to

the specific approach used for the underlying predictive analysis, so that it becomes

possible to wrap such algorithms in our basic approach. On a related note, the

same paper (Aliferas et al., 2010) gives a relevant exploration of the relation between

feature selection and causal discovery through a review of much of the recent, relevant

literature from statistics and machine learning. The review supports the importance

of approaches such as those represented here to scientific discovery and the crucial

role of predictive targets in the analytic process.

For the most part, data analysis techniques have traditionally been designed

around the study of several variables in relation to a single target. Many modern

scientific datasets (particularly those that require ultrascale data processing) are

characterized by the presence of huge numbers of inter-related target functions of

interest. Several subsets of variables can contribute to understanding emerging local

phenomenon that is suggestive of discovery goals. Analyzing targets in isolation

is a suspect approach at best under these conditions. Current software packages

are not designed to take advantage of the information contained in the interactivity
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of large systems. The analysis method in this chapter is designed to systematically

hypothesize interaction sub-structures among observed variables, observe correlations

among the sub-structures, rank and identify contributing variables, and thereby

capture the essence of the model underlying complex systems generating very large

datasets. We seek to step away from the kind of approaches to large-scale data

analysis that have so far been attempted in the HPC community. The approach is

strongly motivated by the very datasets to which we envision applying it, and it offers

a clear path to extreme scalability.

5.2 General approach: using interaction informa-

tion

We take advantage of the fact that a large percentage of data exploration relates to

prediction. In other words, it is vital to understand which subsets of variables in

which combinations influence or generate certain phenomena. This type of analysis

is incredibly common, and can be defined in a very generic manner.

In the following, a very minimal example is given in order to give a high-

level view of the base analytical approach. At the most basic level, the approach

can support a user in the analysis of some phenomenon of interest. The initial

analysis treats this phenomenon as a core prediction problem. The ground truth

that consists of the values of the variable specified as the target problem is used to

build additional, related prediction problems using other variables. More specifically,

a shallow correlation analysis is used to find other variables in the dataset that seem

to correlate (at least loosely, and the level can be user defined) with our target. We

use these correlated variables to construct more prediction problems with each of

them as the corresponding target. Note that we can safely assume that at least some

of these other phenomena are related (perhaps in a very complex way) to the target.

If that is not a valid assumption, then there may be no need to study the dataset

62



all together as a large-scale data problem. We consider that variables (atomic or

complex) either correlate due to random factors or they correlate for a reason. We

want to make the distinction between the two possibilities. The variables and patterns

and their perceived predictive values are analyzed across a large set of prediction

tasks that seem to correlate in the same system. The output of this analysis is used

to inform the user of interesting variables and patterns thereof that relate to their

target phenomenon (having ruled out or re-ranked many based on perceived value

across the entire system).

Consider the following example, which is an oversimplification of the analysis

that describes the intuitive principles of the approach. Assume there are two sets

of variables, the first correlates strongly with only your target apart from random

correlations here and there with other relevant phenomena, and the second set of

variables correlates strongly with your target and strongly or weakly with a number of

other somewhat related phenomena in your system (more so than random correlation

would likely account for). What is the probability that the first is noise relative to the

probability that the second is? As long as your system is somewhat inter-connected,

bringing in additional information to evaluate variables can add substantial value. If

the joint analysis is extremely large across many factors in a dataset, a reasonable

ratio of examples to potentially predictive observations can be maintained even when

dramatically expanding the set of variables under consideration. Figures 5.1 and

5.2 show this contrast pictorially when predicting storm severity based on climate

variables.

Most of the loosely correlated data need not be relevant to the target problem;

as long as some of the coordinated problems are relevant, coordinated learning

allows noise to be more reasonably distinguished from predictive variables. There

is very strong evidence in Ando and Zhang (2005) that given a large enough amount

of information, this general approach to incorporating extra information, even in

moderately inter-connected problem spaces, can find pattern sets that generalize (are

good predictors on data that was not in the initial analysis) better than feature sets
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Figure 5.1: Learning the predictive value of variables against a single outcome
variable.

hand-engineered by domain experts over decades of study. Another important factor

pertaining to real-world data is the fact that data imputation is not necessary to

incorporate variables with missing values. For example, as many predictive problems

as necessary can be created by sub-setting the data into groups that have all values

available in that particular auxiliary problem, and thus it is possible to learn from

any relevant data that is available, and combine the knowledge from each of the

sub-problems at the joint analysis phase.
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Figure 5.2: Learning the predictive value of variables across many outcomes in an
interconnected system.

5.2.1 Task selection for multi-task learning

The framework we developed takes a naturally parallelizable approach to multi-task

learning (Ando and Zhang, 2005) and modifies it for complex systems analysis, where

automated auxiliary task creation is naturally motivated. In both theory and practice

it has been shown that joint learning across multiple related tasks can provide benefit

to generalization performance. The definition of relatedness, however, is important.

The scenarios we hope to address are in the context of complex systems, and therefore,

relatedness of two variables (the tasks of predicting two different random variables)

can be thought of as being affected by or affecting many common variables. In Ben-

David and Borbely (2008), it was shown that when multiple tasks are F -related,

then multi-task learning can improve performance on each task. More specifically,

the authors show that the sample complexity of each task will have a smaller upper
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bound when learning jointly from related tasks. So, what is this notion of relatedness,

and does it apply to the joint prediction of multiple variables in complex systems?

The following definition is taken verbatim from Ben-David and Borbely (2008):

Definition 8. For a measure space (X , A), where X denotes a domain set, and A
is a σ-algebra of its subsets, we discuss probability distributions, P over X × {0, 1},
for which the P -measurable sets are the σ-algebra generated by the sets of the form

A× B, for A ∈ A and B ⊆ {0, 1}.
• For a function, f : X → X , let f [A] be {A ⊆ X : f−1(A) ∈ A, and

let f [P ] be the probability distribution over X × {0, 1} defined by having the

probability distribution f [P ] assign to a set T ⊆ X × {0, 1}, the probability

f [P ](T ) = P ({(f(x), b)|(x, b) ∈ T )}).
Let F be a set of transformations f : X → X , and let P1, P2 be probability

distributions over X × {0, 1}.
• We say that P1, P2 are F -related if there exists some f ∈ F such that P1 = f [P2]

or P2 = f [P1].

• We say that two samples are F -related if they are samples from F -related

distributions.

By this definition, one must know or define a set a transformations that constitute

F . Therefore, there is a lot of flexibility in the definition to capture various

relationships between tasks. However, it should be expected that if the family of

functions is allowed to grow too large, then complexity of joint learning increases since

one must be able to account for all possible transformations. Leaving this increase

in complexity aside for a moment, let’s consider how inter-relatedness in complex

systems factors into this definition of relatedness. If we limit our family of functions

to linear transformations, then any prediction task that has a strong linear correlation

with our target task is technically F -related, according to the above definition. The

trick in Ben-David and Borbely (2008) is that the transformations among tasks must
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be known in order to create a working algorithm. Thus, as long as we stick with

simple correlations, we should be able to ensure benefit from the joint learning.

Also note that if what we care about is the discovery of the shared structure

among all tasks, then we may only need to show that the average error among all

tasks is reduced. With this goal in mind, a proof in the context of structural learning

is given in Ando and Zhang (2005). While structure discovery is the main goal of our

work, we would ideally be able to improve the generalization error bound for each

task, since we often have a primary task, and additional tasks that we learn from are

not always of independent interest.

Note that using labeled data to find potential joint learning tasks is more

problematic when the labeled set size is small, as in most semi-supervised learning

problems. While this is not always a problem in many complex systems, such as

climate data analysis, where the number of observed target-variable outcomes is often

large, it can still cause problems due to the high dimensionality.

As one might surmise based on the above discussion of relatedness, the most

difficult step to achieving success in this framework is the task selection step. A

similar issue is expressed in Blitzer et al. (2006), where the authors use the basic

ASO approach for transfer learning, which they refer to as Structural Correspondence

Learning (SCL). In this case the choice of joint tasks involves the selection of so-called

pivot features. In the case of transfer learning the goal is to find common structures

that are predictive of similar items in the two domains. For example, Blitzer et al.

(2006) are attempting to build models for part-of-speech tagging. Thus, the tasks are

selected such that they can learn structures that indicate nouns, etc.

The choice of pivot features in SCL is very similar to our task-selection goal, and

many of the difficulties pointed out in Blitzer et al. (2006) can be seen in structural

learning for complex systems. For example, features need to occur often enough

that predictive capability of co-occurring structures can be estimated accurately. In

addition, if there isn’t variety in the choice of their pivot features, they may not

learn structures that can make important distinctions that they care about. In SCL,
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the extra information comes from the unlabeled information in the new domain, as

well as from the unlabeled information in the original domain. In complex systems,

the extra information comes from several sources. First, we have the ability to

look at data where important values are not recorded rather than relying on data

imputation. Second, the approach allows us to combine knowledge from data where

our target variable is not recorded, but where related variables are. And finally,

we can benefit from noise reduction even across data where our target variable is

consistently recorded when the variable measurements are noisy.

We investigated the use of the following variable correlation measures to aid in

automatic task creation, where new tasks are created to predict the highly ranked

variables:

1) The combination of Fisher criterion score and Mutual Information described in

Dhir and Lee (2009).

2) Kraskov mutual information (Kraskov et al., 2004).

3) Spearman rank correlation.

4) Feature weighting based on construction of a linear discriminative learning

method.

5) Maximal Information Coefficient (Reshef et al., 2011).

In general, the best results were achieved with the Spearman rank correlation

scores. For example, while the Maximal Information Coefficient (see Section 5.3.3)

revealed more powerful relationships, it was nontrivial to create new problems that

captured the proper transformation between variables.

5.3 Scalable multivariate analysis framework

Once tasks have been chosen for joint learning, we can step through the large-scale

learning approach in detail.

Our framework relies on the Alternating Structure Optimization (ASO) algorithm

of Ando and Zhang (2005). The approach was designed to support semi-supervised
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learning through a multi-task learning framework, in which so-called auxiliary tasks

that are present in unlabeled data can assist in the discovery of predictive structures

relevant to the target problem. In the original work, the notion was for an expert to

define relevant tasks for which the labels were always available. In addition, the goal

was to choose auxiliary tasks that would be relevant to the target problem.

The construction of learning tasks can be varied, and in Ando and Zhang (2005)

there are a two main themes in the construction. The first is to follow an expert-

derived task construction approach, and the second is to follow the inspiration of

co-training Blum and Mitchell (1998) to propagate labels. However, unlike in co-

training, error propagation is not very problematic, since the goal is to learn predictive

structures from the propagated labels, as opposed to learning a final model from them.

Algorithm 4 Alternating Structure Optimization (Ando and Zhang, 2005)

Input: {(X l
i , Y

l
i )}, (l = 1, . . . ,m)

Parameters: h and λ1, . . . , λm

Output: h× p matrix θ
Initialize ul = 0, (l = 1, . . . ,m) and θ
iterate
for l = 1 to m do
Fix θ and vl = θul, and solve for wl:

wl = argminwl

[

1
nl

∑nl

i=1 L(w
T
l X

l
i + (vTl θ)X

l
iY

l
i ) + λl‖wl‖22

]

Let ul = wl + θTvl
end for
Compute the SVD of U =

[√
λ1u1, . . . ,

√
λmum

]

U = V1DV T
2

θ := first h rows of V T
1

until convergence

When following Algorithm 4, the bulk of the computational time (after task

construction) is spent on the learning of the individual tasks. Although we initially

thought that the SVD computation would take a long time, this turned out to not

be the case in relative terms. However, for scales at which the SVD does become

problematic, scalable solutions are available, see below. Fortunately, the task ranking

and construction is trivially parallelizable, as is the work comprising the set of
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individual model training events. Thus, the framework scales nearly linearly, and

should continue do so to much larger scales than we attempted. It can be observed

that the algorithm should perform better as both the unlabeled data, u, and the

number of tasks, m, grow. In other words, the more related tasks that are available,

and the more labels available for each of those related tasks, the more likely that the

structure discovery process will be able to avoid making spurious connections among

potentially predictive variables based on noise.

5.3.1 Internal learners

As proposed, the method only requires that the internal learners be parametric, so

that parameter weights can be compared to find common structure. As in Ando

and Zhang (2005), our implementation relies on Stochastic Gradient Descent (SGD)

(Zhang, 2004) to quickly learn weight-based models. In the case of regression, Y ∈ R,

we use the Huber loss, and in the binary case, Y ∈ {−1,+1}, we use the modified

Huber loss. The Huber loss is less sensitive to outliers than the standard square loss

for regression problems.

• Huber loss:

φ(h(x), y) =







(h(x)− y)2, if |h(x)− y| ≤ 1

2|h(x)− y| − 1, otherwise
(5.1)

• Modified Huber loss:

φ(h(x), y) =







max(0, 1− h(x)y)2, if h(x)y ≥ −1

−4h(x)y, otherwise
(5.2)

5.3.2 Feature set expansion

One of the goals of using the system’s inter-relatedness is to increase the ground truth

such that the roles of a larger number of potentially predictive variables can be more
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reliably estimated. Therefore, it makes sense to find efficient ways to select higher-

order variables for exploration. While there is a large body of work on deep-learning

(Bengio, 2009; Arel et al., 2010) that does this in an unsupervised manner, we focus

once again on relevance to the target problem as a means for constraining our search

for useful variables.

In order to take full advantage of the additional information on which features’

predictive power can be assessed, we have the capability to construct higher-order

features that we believe should be considered. While we occasionally do this in a brute

force approach, we also use measures fromMaximal Information-based Nonparametric

Exploration (MINE) statistics Reshef et al. (2011) to explore feature construction

based on combining Maximal Information Content (MIC) with other MINE statistics

that arise from the characteristic matrix. For example, the Maximum Edge Value

(MEV) measures how close a relationship is to being a function, such that when a

high MIC score showing dependence between two variables is combined with a low

MEV score indicating the relationship is not function-like, the value of the information

may be hard to capture without creating a higher-order feature from the variables

(see below).

5.3.3 MINE statistics

Maximal Information-based Nonparametric Exploration (MINE) statistics (Reshef

et al., 2011) are a set of techniques that allow the discovery of a large variety of

relationships between variable pairs. These statistics are generated from a matrix of

mutual information scores generated by binning the data points into a variety of grids

of various sizes. The primary MINE statistic is known as the Maximal Information

Coefficient (MIC) score. This score is equivalent to the largest mutual information

score that arises from any of the grids into which the samples can be placed. Unlike

a mutual information score, the maximal information coefficient is comparable across

datasets, since the score is normalized to fall between 0 and 1, inclusive.
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In addition to the MIC score, there are three other MINE statistics available:

the Maximum Edge Value (MEV); the Maximum Asymmetry Score (MAS), and the

Minimum Cell Number (MCN). The Maximum Edge Value measures how function-

like a relationship is. In other words, if the relationship is not a functional mapping,

then this score will be low. The Maximum Asymmetry Score measures the deviation

from monotonicity of the relationship. The value will be low if the relationship is

highly monotonic. Finally, the Minimum Cell Number measures the complexity of

the relationship by looking at the number of cells required to reach the MIC score.

The MEV and MAS scores will fall between 0 and 1, inclusive, just like the MIC

score. However, the MCN value is not normalized. Note that MINE statistics are

calculated between pairs of variables. Therefore, once again applying the algorithm

to assess multiple pairs is trivially parallelizable.

5.3.4 Parallel Processing

All code for this project was written in Java, which supports threading across multi-

core CPUs by using the native threads provided by the underlying operating system.

To ensure that any computationally intensive section uses the available cores, we use

the Java ExecutorService class as follows:

pr i va t e s t a t i c f i n a l i n t NTHREADS = Runtime . getRuntime ( ) .

a v a i l a b l eP r o c e s s o r s ( ) ;

p r i va t e ExecutorServ i ce exec = Executors . newFixedThreadPool (NTHREADS) ;

Then, sections that should use different threads can be parallelized using the

execute method. For example, the following code would send individual learning

tasks to their own threads to populate the matrix U in Algorithm 4.

exec . execute (new Runnable ( ) {
pub l i c void run ( ) {

ASO SGD stochast icGD = new ASO SGD( currentProblem ) ;

Hyperplane hPlane = stochast icGD . optimizeAsInZhang05 ( ) ;

I t e r a t o r<Feature> f I t e r = hPlane . f e a t u r e I t e r a t o r ( ) ;
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whi le ( f I t e r . hasNext ( ) ) {
Feature f = f I t e r . next ( ) ;

uMatrix . s e t ( i Index , f ea tureFac to ry . getID ( f ) ,

hPlane . f e a tu r eS co r e ( f ) ∗Math . sq r t ( lambda ) ) ;

}
}

}) ;

In addition, to Java threads, we use the Mahout machine learning library, an

Apache Software Foundation project that overlays machine learning algorithms on

top of Apache’s Hadoop distributed computation library. For, example, the following

code allows Singular Value Decomposition of the above-mentioned U matrix to be

computed.

org . apache . mahout . math . SingularValueDecomposit ion svd = new org . apache .

mahout . math . SingularValueDecomposit ion ( uMatrix ) ;

However, we use the Parallel Colt library for routine calculation of the SVD, since

it constituted only a negligible amount of the computation time in our experiments.

DenseDoubleSingularValueDecomposit ion svd = new

DenseDoubleSingularValueDecomposit ion ( uMatrix , true , t rue ) ;

5.3.5 Scalability Results

It turns out that nearly all of the computation time for our complex systems analysis

is taken by two stages. The first consists of the selection of tasks, and the second

comprises the training of the models for the chosen tasks. Fortunately, both of

the heavy computation stages are trivially parallelizable. In our tests, we achieve

superlinear speedup of these code sections on multicore machines. See Figure 5.1 for

timing results.
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Table 5.1: Parallel ASO: Training time speedup of heavy computation phases for
the Multi-Task Learning Framework. 2 × 2.93 GHz 6-core Intel Xeon processors with
hyper-threading and 16GB 1333 MHz DDR3 RAM.

Phase # Tasks Serial Run Time Parallel Run Time Speedup

Task Construction 100 263.9min 11.3min 23.4×
Task Training 100 19.3min 1.5min 12.9×
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Chapter 6

Major application areas

The overarching theme of this work is the goal of integrating information to address

the curse of dimensionality in large-scale learning. All of the research was driven by

actual problems in which large amounts of potentially informative data is available

in forms that do not allow simple integration through standard learning or statistical

analysis approaches. This section describes a few of the major applications addressed

in this work, and describes many results not presented to this point in the thesis.

6.1 Network intrusion detection

Cyber security is one of the major areas where large scale learning approaches appear

to hold great promise. In this section we focus on the area of cyber security known

as network intrusion detection (Lippmann et al., 2000; Mell et al., 2003; Sommer and

Paxson, 2010) and expand on work published in Symons and Beaver (2012). In this

domain, labeled data specific to the network of interest must be obtained for any

new deployment. In the past, the potential costs of obtaining large amounts of such

data have stymied efforts to apply machine learning algorithms to network intrusion

detection. However, we are able to show that by using large amounts of unlabeled

data, certain algorithms are able to produce dramatic results using very little labeled

data.
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Learning systems are becoming increasingly pervasive in network intrusion

detection research and practice. Although there are many examples of the potential

promise of these methods, a variety of factors combine to make both research advances

and practical deployment of machine learning systems difficult in the intrusion

detection domain. Many of these factors are related to the lack of available labeled

data on operational networks. Attacks captured in the wild are rarely made available,

and even then, they cannot be directly leveraged to learn models that will be applied

to different networks. The critical nature of the i.i.d. assumption (that all points

used in training and to which the model will be applied are pulled independently

and identically from the same distribution) underlying almost all machine learning

methods, is often neglected due to the belief that training a model in situ (in this

context we mean where it will be deployed) is too costly or impractical. Prior results

on synthetic datasets have utilized hundreds of thousands or millions of training

examples. Even previous semi-supervised learning experiments in this domain have

utilized thousands of labeled examples. Obtaining examples in a new network is

typically considered too costly to support models that require such large numbers of

labeled events, particularly when they aren’t guaranteed to dramatically outperform

alternate methods.

Since guarantees on the generalization performance of machine learning ap-

proaches are based on theoretical error bounds, they do not apply if the assumptions of

the method do not match the reality of its utilization. In other words, when deploying

a learning system in an environment with its own idiosyncrasies, and keying off of

network statistics and other variables that are intertwined with the noise peculiar to

the network, the standard assumptions upon which the learning algorithm depends

need to be recognized. In nearly all cases, the theoretical performance guarantees

depend on the i.i.d. assumption. In practice, this means that effective learning

systems would ideally always be trained in situ, or using examples from the network

environment in which they are deployed. Therefore, discriminative learning based on

known attack data is potentially limited by the cost inherent in identifying and/or
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generating real attacks in a new environment. In addition, there is some cost involved

in ensuring that normal traffic in an existing network is indeed innocuous. There are

often model-specific assumptions that must be recognized as well, and many model

types are not well suited to the intrusion detection domain.

Given recent improvements in semi-supervised learning, a practical question that

arises is the following: Can we learn an effective intrusion-detection model using

a small number of labeled examples? If so, the costs associated with training in

situ become less prohibitive. Having a penetration testing team perform attacks

on a network for a few hours as opposed to weeks or months, or manually verifying

dozens of network transactions as opposed to tens of thousands, becomes a much more

manageable requirement to place on an organization for proper instrumentation of a

system.

In this section, we show that when the learning algorithm has several implicit

assumptions that match the data generation process in the network intrusion detec-

tion domain, generalization performance based on very few labels can dramatically

outperform existing defense methods. We justify the use of the LapRLS model (Belkin

et al., 2006) both theoretically and experimentally and use the algorithm to provide

strong evidence on data derived from large-scale operational network data (Song

et al., 2011) that we can indeed build very effective models using a small number of

labeled examples. In addition to comparing it to several other supervised and semi-

supervised models, we compare our results to published results using sophisticated

anomaly detection methods and to the output of a signature-based intrusion detection

system (IDS) applied to the same data. An ability to generalize very effectively based

on few observations is confirmed, demonstrating clear potential to augment current

IDS tools with very realistic training requirements in a way that can potentially

provide strong alerting coverage against unknown attacks with trivial false positive

rates.

The experimental analysis uses data from Kyoto University that was recently made

available to the public (see Song et al. (2011)). While this is a carefully curated,
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valuable new resource, it has limitations, and therefore, we only claim to provide

strong evidence that real tools with these characteristics are currently viable. Our

experiments are carefully designed to demonstrate true generalization performance

on unknown attacks using minimal training sets, and the results on the operational

data show that we can catch nearly all previously unseen attacks with a false positive

rate that is an order of magnitude lower than any of the alternatives (including the

signature IDS, which cannot identify previously unseen attacks).

6.1.1 Machine Learning in Intrusion Detection

Most operational network intrusion detections systems rely on very specific rules,

or signatures, to identify potentially malicious traffic. Human experts generate the

signatures after they have extensively analyzed an attack and determined the attack’s

indicative bit patterns and conditions. While signatures are effective at identifying a

specific instance of an attack, developing them is a time-consuming and manually

intensive process, during which the network remains vulnerable. Furthermore,

simple variants of the attack on which the signature is based will often not trigger

the signature pattern. As the frequency and diversity of attack attempts rise,

organizations are finding it increasingly difficult to keep pace in developing the raw

number of signatures required. A different process for attack analysis is necessary if

computer network defense systems are to remain effective.

The intrusion detection research community has responded to the problem of

signature development latency by exploring machine-learning methods capable of

learning the discriminating characteristics of malicious traffic from exemplar network

transaction data. The collective works cover a broad range of techniques and are

applied in various architectures in order to propose an optimum approach to network

traffic classification. See Dua and Du (2011); Tsai et al. (2009) for reviews of the

field. Despite this significant body of work, machine-learning approaches, and in

particular supervised learning systems, are sporadically deployed compared with the
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less sophisticated signature-based approaches. We attribute this phenomenon to both

a low confidence in the reported performance of machine-learning-based intrusion

detectors, and a poor understanding of how to operationally field them.

Contrast with Anomaly Detection

Outside of the machine learning community, the phrase anomaly detection Chandola

et al. (2009) is often used interchangeably with and regularly confused with machine

learning. For people who understand all of the subfields that lie within these domains,

this is not an issue, but a large portion of the community involved in cyber security

is unaware of differences. One early contributing factor to the intermixing of these

terms is due to a tendency to classify unsupervised learning, or clustering, as a form

of machine learning. Another factor is the use of machine learning techniques to

solve anomaly detection problems, e.g. where clusters are taken as ground truth

for learning classification models. However, we submit that there is a fundamental

distinction between the two areas of study based on theoretical foundations of

machine learning that have generalization performance as a critical concept. Thus,

while anomaly detection can be any mechanism that looks for unusual patterns,

machine learning looks to generalize an expert-defined distinction. Therefore, on

a fundamental level, it is perfectly natural in machine learning to build a model

purposely designed to distinguish between malicious and benign network traffic and

have optimal performance on previously unseen events. On the other hand, such

a problem definition has very little connection with a general definition of anomaly

detection, since attacks aren’t necessarily anomalous and normal behaviors often are.

In light of the above, it is important to point out that this paper is written in a gen-

eral context that differentiates learning from anomaly detection, in particular, based

on the use of classification labels and the emphasis on generalization performance in

machine learning. Thus, real ground-truth labels are a necessary component to the

model building process that we hope to address. The downside to using labels is the

cost of obtaining them, while the upside is the ability to steer a model in a desired
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direction. In addition, when we talk about using unlabeled data to augment label

information via semi-supervised learning, we do so based on a notion of compatibility

(see section 3.3) that uses concepts like regularization to achieve better generalization

performance on a classification task defined by the labeled data.

In Sommer and Paxson (2010), the authors provide a good summary of the

challenges inherent in the application of machine learning to intrusion detection, but

the problem being addressed is still defined to be ”outlier detection.” In other words,

one of the points being argued is that since the problem being solved is anomaly

detection, machine learning techniques, which operate well on notions of similarity,

are challenged. Our view is that normal traffic can often be completely different

from anything previously seen on the network. We also contend that previously

unseen attacks may not necessarily appear to be anomalous in the originally defined

feature space, yet have distinguishing characteristics such that they are more similar

to known attacks than normal traffic. If these assumptions are reasonably accurate,

then outlier detection is not the problem we want to solve. Instead, we operate

on the assumption that an expert-derived feature space can capture information

that allows previously unseen attacks, whether anomalous or not, to be identified as

sharing certain distinguishing characteristics with known attacks. The generalization

performance we observe when detecting previously unknown attacks on operational

data (see section 6.1.2) offers strong evidence that new attacks do indeed resemble

known attacks in ways that allow them to be distinguished from normal traffic, even

on data where anomaly-detection and signature-based systems struggle to reliably

discriminate.

The problem becomes one of finding the right view through which the desired

distinction can be seen. Therefore, our approach is to solve a classification problem

where experts have provided a small number of ground truth labels on the target

network. Our goal is to show the power of using a model whose assumptions very

closely match the data generation process in this domain (see section 3.4.3). We

use the availability of the labeled operational data in the Kyoto2006+ dataset Song
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et al. (2011) to help demonstrate that the label requirements for a machine learner

can be made small enough, using current methods, to realistically deploy effective

learning-based intrusion detectors.

Data Limitations

The lack of confidence that exists in academic evaluations of machine-learning

network intrusion detectors can be traced to a shortage of publicly available

data. Organizations typically keep their network intrusion data hidden to prevent

publicizing any vulnerability. As a result, the majority of academic studies present

results that explore a singular approach tailored to a specific environment, and are

difficult to verify or validate more generally. A significant gap in the literature that

applies machine-learning techniques to the network intrusion detection problem is

the absence of a relevant network intrusion data set that can be used as a basis

for comparison. While the 1999 KDD cup ”classification task” data Lippmann

et al. (2000) provided an initial surge of interest in machine-learning-based intrusion

detection, the background traffic was simulated and the data no longer accurately

represents modern network traffic. The lack of other relevant, public labeled data

sets has severely limited the exploration of machine learning methods in network

intrusion detection. The release of the Kyoto2006+ dataset Song et al. (2011), which

captures metric sets associated with real operational network flows, is therefore a very

promising step toward more accessible research in this area. We summarize some of

the most relevant characteristics of this dataset in section 6.1.2.

Semi-Supervised Intrusion Detection

Semi-supervised learning has begun to be explored in intrusion detection. In Chen

et al. (2008), the authors explore the use of transductive spectral methods and

Gaussian random fields on the 1999 KDD Cup dataset Lippmann et al. (2000). The

transductive approach achieves the best results in that study, but unfortunately the
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use of transductive methods is not practical in real-time systems. Although it is

probably safe to assume that an out-of-sample extension would not suffer a major drop

in performance, the results only support incremental improvement over supervised

methods, and the authors lament that they do not reach a level of performance that

would be valuable in practice. For example, although the test setup is different, the

anomaly detection techniques used in Abe et al. (2006) appear to achieve significantly

better results on the same dataset.

In Lane (2006), semi-supervised concepts are explored, but in a very untraditional

manner, involving partially observable markov decision processes (POMDPs), an area

of reinforcement learning that suffers from scalability issues Roy et al. (2005). The

method is intended to be a proposed framework in which to place intrusion detection.

As such, it has merit, but it does not make significant strides toward practical usage.

Mao et al. Mao et al. (2009) take an interesting approach based on multi-view, semi-

supervised learning and active learning, which requires an interactive process with

the user, and apply it to the KDD Cup data. They show improvement over their

baseline, which is single view learning without active learning, but the amount of

labeled data used is still very high and the number of false positive alerts remains in

an unusable range.

Laplacian RLS for Intrusion Detection

As mentioned above, the main semi-supervised model that we focus on in the cyber

domain is the Laplacian RLS. The application of this model in this domain is

interesting from multiple perspectives. Recall from 3 that it is possible to arrive at

the same functional form for this model based both the Laplacian Regularized Least

Squares (Laplacian RLS) model in Belkin et al. (2006) and the Bayesian Kernel Model

in Liang et al. (2007a,b); Pillai et al. (2007) with a Dirichlet process prior. This is

relevant to our discussion because we hope to use models whose assumptions more

realistically match the realities of the data. And we can argue that both of these

derivations are in tune with how we hope to shape (or avoid shaping) the model.
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In the case of the Laplacian RLS Belkin et al. (2006), we are using unlabeled data

as a graph-based regularization term, which essentially means that we can use as

much unlabeled data as we want to penalize models that would assign points among

the unlabeled data that are extremely close together in our expert inspired feature

space as belonging to different classes. This makes sense as long as the features are

relatively important to the problem domain. We believe this to be true a priori due

to the fact that they were derived by experts.

Now, reconsider the case of the Bayesian Kernel Model Liang et al. (2007a,b);

Pillai et al. (2007), with a Dirichlet process prior. In network intrusion detection,

each event may be generated based on its own random process, and we don’t want to

restrict the form of each of these processes. In addition, we don’t want to restrict the

possible number of processes that could be generating the events we observe. This is

a typical case in which a Dirichlet process prior might be used. It also makes sense

because while we hope that the target function we are trying to learn lies in a dense

region that cuts through the original feature space, it also allows us to represent each

event as being generated by its own random process.

6.1.2 Experimental Results

We use the Kyoto2006+ dataset Song et al. (2011) for all of the experiments in this

section. The dataset covers nearly three years of network traffic through the end of

2008 over a collection of both honeypots and regular servers that are operationally

deployed at Kyoto University. The data is provided in the form of observations and

statistical features that characterize terminated connections. We only use the first 14

features since any system would have access to the information required to construct

these features, whereas the additional features are unlikely to be available. The fact

that the features are pre-calculated allows for more accurate comparison of different

model types, but it unfortunately restricts the possible features to those provided.
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Before using the data, we convert categorical features to binary, and normalize all

numeric data using a Softmax scaling approach (with r = 1), which is purported to

retain the most information Pyle (1999).

Unfortunately, the dataset does not provide information on specific attack types.

Therefore, we are unable to take advantage of a cost-sensitive learning scheme, and

we are unable to determine how well we are doing with regard to differentiating attack

types or prioritizing alerts. Moreover, there is a good deal of suspected labeling error.

Even though the number of errors is likely tiny compared to the size of the dataset,

this is an important point (see Song et al. (2011) for a detailed description of the

dataset).

The dataset essentially represents a two-class classification problem, where the

classes represent malicious traffic and non-malicious traffic in a network. There is

a distinction made between known and unknown attack types, which we leverage

in some of our experiments to test the ability to generalize knowledge to previously

unseen attacks. Unknown attacks are defined as those that were not flagged by the

signature IDS, but for which the Ashula tool detected shellcodes. The only packet

information available to our models is the number of bytes sent by the source and

destination.

Comparative Analysis

All tests in this section are performed across the test data used in Kishimoto et al.

(2011), which comprises 12 days of traffic pulled from the last six months of 2008.

Table 6.1 shows the initial results of training two supervised learners from the

Minorthird library Cohen (2004), a linear Support Vector Machine (SVM) and a

maximum entropy learner, using a full day’s labeled data from January 1, 2008.

For comparison, we also display the alerting results from the intrusion detection

system (IDS) that are included in the dataset, and we list the results from Kishimoto

et al. (2011), which employed an anomaly detection approach using multiple classifiers

trained over 10 million training examples.
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Table 6.1: Reported IDS results, multi-classifier anomaly detection results, and
results of using all (111,589) labeled examples from Jan. 1, 2008 for supervised
learning. Testing is performed across the same test data as in Kishimoto et al.
(2011), which comprises 12 days of traffic pulled from the last six months of 2008.
*The signature IDS alerts are recorded in the dataset. Anomaly detection results are
from Kishimoto et al. (2011).

Classifier Recall | False Positive Rate | AUC Score

Signature IDS* 0.09004 0.01619 N/A

Anomaly Detection 0.8093 0.0590 N/A

Maximum Entropy 0.77292 0.02059 0.72044

Linear SVM 0.98952 0.03528 0.96295

Next, we compare the semi-supervised learners to the supervised learners using

very small labeled datasets. The semi-supervised learners are the Laplacian Eigenmap

(LEM) and the Laplacian Regularized Least Squares (RLS) algorithms described

above. The results are shown in Table 6.2. Subsets of 100 labeled examples and

approximately 3000 unlabeled examples from Jan. 1, 2008 are used for training,

and testing is performed across the same test data as above. There were 111,589

examples (terminated connections) on January 1, 2008. The classification results are

averaged over 10 random selection of the labeled data. We first randomly select 100

examples as our labeled training set and retain the rest as unlabeled examples for use

by the semi-supervised learners. However, we also remove redundancy through an

approximate similarity measure by hashing the examples based on label value, binary

feature values, and 10% ranges of the normalized numeric feature values. This leaves

an average of 56.6 labeled examples per experiment, with a high of 69 and a low of

19. It also preserves approximately 3000 unlabeled examples per experiment. We

report the average recall, false positive rate, and area under the ROC curve, which is

a plot of the tradeoff between false positive rate and recall as the decision threshold

of the binary classifier is varied (i.e. the AUC score, see Flach et al. (2011) for an

interesting discussion of this measure). Keep in mind that we purposely restricted
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Table 6.2: Classifier comparison using small training sets of fewer than 100 labeled
examples and approximately 3000 unlabeled examples from Jan. 1, 2008. Testing
is performed across the same test data as in Song et al. (2011), which comprises 12
days of traffic pulled from the last six months of 2008. Results are averaged over 10
random selections of labeled examples.

Classifier Recall | False Positive Rate | AUC Score

Maximum Entropy 0.77292 0.02059 0.72044

Linear SVM 0.96354 0.03029 0.94802

Laplacian Eigenmap 0.64112 0.08715 0.75926

Laplacian RLS 0.89144 0.02667 0.98651

the number of labeled examples to an extreme in order to demonstrate the viability

of training such models in their deployment environments.

Training on Known to Catch Unknown

Of particular interest is the ability to catch previously unobserved and unknown

attacks after training on a small or reasonable number of known attack types. Because

the Kyoto2006+ dataset Song et al. (2011) differentiates between known and unknown

attacks, we can test this ability directly. In Table 6.3, we examine the ability of the

Laplacian RLS learner to catch unknown attacks after being trained on normal traffic

and known attacks only. The setup is the same as before using data from Jan. 1,

2008, such that the results are averaged over 10 random selections of the labeled

data. Each set has 100 labeled data points total to begin with, thus after eliminating

redundancy, we observe a combined total of under 70 labeled examples (combined

number of normal and known-attack terminated connections) for each classifier, with

as few as 19 labeled examples. Once again, there are approximately 3000 unlabeled

examples per experiment. We also count how often the IDS results recorded in the

Kyoto2006+ dataset alerted on the data with normal and unknown attacks only.

There are a total of 398 unknown attacks that occur during the 12 days in the test

set.
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Table 6.3: Alerting on unknown attacks. The Laplacian RLS classifiers were trained
on subsets of fewer than 70 labeled data comprising only known attacks and known
normals. *The signature IDS alerts are recorded in the dataset Song et al. (2011).

Classifier Recall | False Positive Rate| AUC Score

Signature IDS* 0.00000 0.01619 N/A

Laplacian RLS 0.99975 0.02538 0.99987

Table 6.4: Performance of the individual classifiers (randomly selected training
sets). All classifiers require less tradeoff between precision and recall than classifier 1.
Therefore, they can all conceivably be tuned to achieve the same results: 178 or fewer
false positives, while alerting on 397 out of 398 unknown attacks. *The signature IDS
alerts are recorded in the dataset Song et al. (2011).

Classifier |Training Data| Recall |False Neg| |False Pos| AUC

Signature IDS* N/A 0.00000 398 13,074 N/A

Laplacian RLS 1 19 0.99749 1 178 0.99968

Laplacian RLS 2 57 1.0 0 14,753 0.99993

Laplacian RLS 3 58 1.0 0 28,498 0.99992

Laplacian RLS 4 60 1.0 0 28,498 0.99970

Laplacian RLS 5 64 1.0 0 25,621 0.99993

Laplacian RLS 6 65 1.0 0 17,456 0.99993

Laplacian RLS 7 59 1.0 0 18,278 0.99986

Laplacian RLS 8 69 1.0 0 28,498 0.99986

Laplacian RLS 9 57 1.0 0 28,498 0.99995

Laplacian RLS 10 58 1.0 0 14,707 0.99995
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Table 6.5: Alerting on unknown attacks. The Laplacian RLS classifiers were trained
on subsets of fewer than 70 labeled data comprising only known attacks and known
normals, and they were built using automatic threshold-finding functions intended to
reduce false positive alerts.. *The signature IDS alerts are recorded in the dataset
Song et al. (2011).

Classifier Recall | False Positive Rate| AUC Score

Signature IDS* 0.00000 0.01619 N/A

Laplacian RLS 0.99749 0.00166 0.99987

If we look more closely at the individual results, the real promise of the Laplacian

RLS, and potentially other semi-supervised methods whose assumptions match the

domain, shines through. In Table 6.4 we provide the results of each of the 10 runs

in order to demonstrate how low the number of false positives can be bounded. The

first run has the lowest AUC score of 0.99968, but has the lowest false positive rate

of 0.00022 (out of 808,108 normal events). It is also the only classifier to have a recall

of less than 100%, but it still catches 99.75% of the unknown attacks. The binary

Laplacian RLS model uses a threshold, so the AUC score indicates how much tradeoff

needs to occur between precision and recall. Therefore, since the model that catches

397 unknown attacks, while missing only one, only has 178 false positive alerts and

yet has the lowest AUC score, all of the other models should be tunable to allow them

to miss a single attack while keeping their false positive number at 178 or lower, as

well, since they require less of a tradeoff than the first model.

Given the AUC scores in Table 6.4, it makes sense to add an automatic threshold

selection routine to the training step in order to obtain better performance. Table 6.5

and Table 6.6 show the results of the Laplacian RLS classifiers when the thresholds are

tweaked during training (on training data) to eliminate false positives. In this case,

we used a method whereby we rank all labeled training data by the score assigned by

the model, and then we attempt to find a threshold that will guarantee a maximum

false positive rate of 0.00000001 on the training data with the hope that this will

transfer to the test data. We find the distance between this discovered threshold and
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Table 6.6: Performance of the individual classifiers (randomly selected training sets)
when using an automatic threshold-finding function during training. This function is
intended to raise the threshold to avoid false positive alerts, but it only uses training-
data to find the threshold. *The signature IDS alerts are recorded in the dataset
Song et al. (2011).

Classifier |Training Data| Recall |False Neg| |False Pos| AUC

Signature IDS* N/A 0.00000 398 13,074 N/A

Laplacian RLS 1 19 0.99749 1 164 0.99968

Laplacian RLS 2 57 0.99749 1 173 0.99993

Laplacian RLS 3 58 0.99749 1 676 0.99992

Laplacian RLS 4 60 0.99749 1 9807 0.99970

Laplacian RLS 5 64 0.99749 1 166 0.99993

Laplacian RLS 6 65 0.99749 1 167 0.99993

Laplacian RLS 7 59 0.99749 1 1779 0.99986

Laplacian RLS 8 69 0.99749 1 166 0.99986

Laplacian RLS 9 57 0.99749 1 203 0.99995

Laplacian RLS 10 58 0.99749 1 151 0.99995

the maximum score of 1, multiple it by 0.75, and add it to the old threshold to obtain

a new one. Unfortunately, our choice of 0.75 is rather arbitrary, so despite the fact

that the threshold is set on the training data, it is likely that such a method would

need to be tweaked manually in practice based on the number of false positives that a

user could tolerate. However, it is clear that these models are very powerful methods

of finding unknown attacks, and it is equally clear that if the intention is to find

previously unseen attacks, then these methods hold great promise for the defense of

large networks. As mentioned above, the optimal threshold for each of these learners

should guarantee fewer than 178 false positives for any of the the classifiers. Thus,

the improvements shown in Table 6.6 can be improved upon as well. Therefore,

future work will include better methods of automatic threshold generation, which is a

particular challenge when the size of the training data is limited to realistic numbers

as in this paper.
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6.1.3 Scaling graph-based learners

While graph based learning methods are particularly useful for encoding alternate

information into the learning process, they are not inherently scalable. In this section,

we explore a couple of ways in which these methods can be adapted to large-scale

problems. Straightforward parallel processing is possible, and we provide some results

using such an approach, but we also demonstrate that a linear version of learning can

be quite powerful when the graph is only used for regularization.

6.1.4 Linear Laplacian Regularized Least Squares

The Linear Laplacian Regularized Least Squares (Linear LapRLS) algorithm (Sind-

hwani et al., 2005b) is a very scalable approach for problems with sparse feature

spaces, meaning that most values are zero, but it is also a viable replacement for the

standard LapRLS when the number of examples is extremely large. The formulation

is similar to the LapRLS (Belkin et al., 2006) with the graph Laplacian still serving

as a regularization term based on the unlabeled points. However, instead of using

the Gram matrix as a regularization term for the labeled points, the algorithm uses

the standard L2 regularization of the coefficient vector. In other words, it penalizes

models that disagree with the graph, and it penalizes models with large weights.

Where standard manifold regularization attempts to minimize Equation 3.11,

linear manifold regularization attempts to minimize the following function (see

Sindhwani et al. (2005b)):

(w∗, b∗) = argmin
w,b

γAw
Tw + γIw

TXTLXw +
1

l

l
∑

i=1

V (yi, w
Txi + b) (6.1)

Here, X is the n×d data matrix, where the rows are the training examples. Thus,

the Linear LapRLS algorithm, using the standard squared loss function V (y, wTx +

b) = (y − wTx− b)2, solves the following equation to obtain a weight vector, w:
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(XT
l Xl + γAlI + γI lX

TLX)w = XT
l Y (6.2)

where X is the data matrix with examples as rows, Xl is the labeled data matrix, Y

is the label vector, and L is the Laplacian matrix. For the regularization parameters,

we set γAl = 0.005 and γII = 0.045, so that 90% of the regularization is from the

Laplacian matrix.

6.1.5 Scaling Results

While the LapRLS demonstrates great potential for network intrusion detection,

such nonparametric models are extremely slow, since every new test point must

be compared with every labeled and unlabeled sample in the training set. This

is particularly problematic when attempting to use extremely large amounts of

unlabeled data. Therefore, we experimented with methods for speeding up the

algorithms, including implementing the Linear LapRLS (Sindhwani et al., 2005b)

described above. Again, for our tests, we use the data from the Kyoto2006+ dataset

(Song et al., 2011). The utilized portion of the data consists of example types from

three classes; normal connections, known attacks identified by the deployed intrusion

detection system, and unknown attacks discovered by running a shellcode detection

tool, Ashula. The training sets consist of all connections from January 1, 2008 minus

any unknown attacks. There are 111,563 connections. The test set is the same data

used in Kishimoto et al. (2011), which consists of over 1.2 million connections observed

over the course of 12 days spread over the latter half of 2008.

Our initial scaling attempts focused on parallelization of the graph construction

during training and the model application during testing. See Figures 6.7 and 6.8 for

timing results.

In Table 6.9, we report the times and accuracy levels of the Linear LapRLS in

comparison with the standard LapRLS. We observe that accuracy is maintained with

the scalable approach, while reducing test time by nearly three orders of magnitude.
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Table 6.7: Parallel graph building: Training time speedup on the graph construction
phase (which is the majority of the training time) by computing nearest neighbors on
different threads. 2 × 2.93 GHz 6-core Intel Xeon processors with hyper-threading
and 16GB 1333 MHz DDR3 RAM.

Method Graph Size Graph Construction Time Speedup

Serial 3037 34504msec n/a

Parallel 3037 4967msec 7×

Table 6.8: Parallel testing: Test phase speedup by setting up duplicate models on
different threads. 2 × 2.93 GHz 6-core Intel Xeon processors with hyper-threading
and 16GB 1333 MHz DDR3 RAM.

Classifier Test Time Speedup

LapRLS 8456sec n/a

Parallel LapRLS 435sec 19×

Note that a model’s runtime is particularly important in this domain, where one

must be able to keep up with large bursts of network traffic, including during denial

of service (DOS) attacks. In addition, we compare results with and without the

unlabeled data to demonstrate how much the unlabeled data affects the resulting

model. See Table 6.10 for results.

6.2 Text processing

Language processing involves applications on which multi-task learning has proven

extremely valuable. Although the complex systems assumptions do not hold as

Table 6.9: Scaling with Linear LapRLS. Single processor testing for both models.

Classifier Recall False Positive % AUC Score Test Time Speedup

LapRLS 0.99749 0.000220 0.99968 140min n/a

Linear LapRLS 0.99749 0.000412 0.99861 12sec 700×
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Table 6.10: Effect of Unlabeled Data

Classifier Recall False Positive % AUC Score

Linear LapRLS 0.99749 0.000412 0.99861

Linear LapRLS (no unlabeled) 1.00 0.035265 0.80755

strongly, it is still possible to find structure in the data by looking at relations among

the variables. In the case of Ando and Zhang (2005), auxiliary tasks were used to find

useful structures for prediction in Named Entity Recognition (Tjong Kim Sang and

De Meulder, 2003). These additional problems primarily involved prediction of some

features given others, which allows semi-supervised application to unlabeled data.

However, the task construction method was chosen specifically for the data domain,

as opposed to automatically, as we do here. Using the unlabeled data as additional

information for finding predictive structures, the authors achieved the best known

results on the CoNLL 2003 task (Tjong Kim Sang and De Meulder, 2003; Ando and

Zhang, 2005), despite using very simple features as a base from which more complex

structures can be found. The ability to use extremely large amounts of unlabeled

data for text processing problems through our scalable framework should allow us to

build very effective models in this domain.

6.2.1 Text categorization

Text categorization is a common high-dimensional classification task that allows us to

investigate the feature discovery aspects of our approach in a straightforward manner.

Most text categorization tasks involve training a model over a corpus of documents

in which a human has sorted the documents into coarse, subject-based categories.

Our goal in this domain is to use large amounts of unlabeled data and multiple,

automatically selected tasks, to attempt to discover more complex predictive features

than we would normally consider if we had to construct such features manually. We
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test our approach on two binary classification tasks from the well-known 20 newsgroup

data.

In all cases, we preprocessed the data to remove headers and stopwords from the

documents. Stopwords are terms, like artcles (e.g. a and the), that are known a priori

to have no useful properties for the task at hand. Our stopwords were selected from

a standard list. Next, the terms were stemmed using the Porter stemming algorithm,

which reduces words to their base forms. For example, a stemmer would reduce

the word running to its base form, run. Finally, the stems were used as features

with values determined by their TF-IDF scores (term frequency / inverse document

frequency).

The first categorization task involved discriminating between the atheism and

religion newsgroup documents. This first task used 1424 documents and contained

21,140 features. Note that attempts to learn more complex feature combinations are

very problematic since consideration of all possible feature combinations would result

in 2n − 1 possible features. The second task was based on learning to discriminate

between the baseball and hockey newsgroups. This second task used 1992 documents

and contained 22,059 features. In both cases, we used 100 labeled documents to choose

joint learning tasks based on Spearman rank correlation coefficients. We simply find

the top ranked features based on correlation with the labels, and use those as our

joint learning tasks for discovery. Each of the experiments used 100 labeled examples,

and 100 automatically generated auxiliary learning tasks over the rest of the data.

6.2.2 Complex feature discovery in text

Feature discovery results are shown in Table 6.11. This is a domain that is well

understood by humans, and therefore, I would not necessarily expect an automated

method to derive better features than one might generate through manual feature

construction. However, at the top of the matrix, we already see very insightful

features being generated, and I was able to learn something about a domain in which I
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Table 6.11: Feature discovery in text categorization. The rows of a table contain
the highest scoring features (in absolute value) for a given row in the matrix.

Task Row Top Positive Terms Top Negative Terms

Religion vs. Atheism 1 elohim

Religion vs. Atheism 2 gammaray, collide, vibrate
galaxy, dwarf, photon binary
uncharged, larsonian, quasar
astrophysicist, accelerate

solar, pulsar

Baseball vs. Hockey 2 may gm, utica, springfield
june adirondack, rochester

binghamton, cape, moncton
breton, providence, cdi

considered my knowledge to be nearly complete. For example, elohim would appear to

be a very useful term for prediction of the religion category, since it is one of the Jewish

words for God. I was not aware of the term prior to this analysis. Furthermore, the

second row of the religion vs. atheism matrix contains a group of words from physics.

It would make sense that this group would make a good feature for prediction of the

atheism category. Even in the baseball vs. hockey matrix, I discovered some very

useful knowledge that I did not expect. The highest positive terms in the second

row, may and june are indeed relevant to baseball more than hockey, but the highest

negative weight terms appeared to be noise at first glance. However, after further

investigation, I found that almost all of those terms were names of cities that had

AAA or college hockey teams. This is the type of discovery I would expect in a

field that is more opaque to human knowledge, so to encounter such interesting and

relevant predictive terms in this domain is extremely significant.

6.3 Climate

Climate research involves one of the most complex systems known to man. Inter-

dependencies among variables can be strong based on a variety of factors, including
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some that span long distances and long periods of time (Steinhaeuser et al., 2011).

Traditionally, a prevalent trend in climate science has been to pull variables out of

their system context to evaluate their predictive importance due to the large size of

climate datasets. However, given the high interactivity of the variables, this does

not provide much confidence in the results. Only recently have climate scientists

begun to look at the data in a more realistic system context, but there are problems

scaling traditional multivariate analytical approaches, and better analysis methods

are needed (Ganguly, 2009).

If one considers the true dimensionality of the system, including unmeasured

variables, fine-grained climate observations, and complex variables that are non-linear

combinations of atomic measurements, then the sample complexity problem becomes

obvious despite the incredible amount of observational data. Further complicating

factors is the amount of missing data for each variable. Very few variables are actually

measured in every single global grid point or time period, so data imputation is

common in the climate domain, where it is often referred to as reification. Since our

methodology can be used to deal with sample complexity, computational complexity,

and missing data in the same framework, it has the potential to provide new insights

in climate science. In this domain it should be obvious that we care about multiple

target predictions at the same time, since it is important to understand the inter-

relations among temperatures, precipitation, crop yield, soil moisture, ozone content,

etc., if one hopes to understand our climate more fully. Since these targets interact

and influence one another and are influenced by many of the same variables, a multi-

task learning approach has great potential.

We tested our approach on an ozone prediction dataset (see Zhang and Fan

(2008)). The problem contains 72 variables, but simply by adding all possible

combinations of two features as both sums and differences to the atomic variables, we

end up with 10,296 features to consider. In this automatic feature expansion scenario,

we actually get improved performance when using the top 10 ranked complex features

as auxiliary prediction tasks. The best result (among 8 different learning models) from
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Zhang and Fan (2008) on the ozone prediction task had an AUC score of 0.495 using

cross-validation with ninety percent of the data being used for training. We tested

our approach given unlabeled data as well as labeled data, and we used 10% of the

labels during cross-validation, yet achieved an AUC score of 0.638.

In addition, we show feature discovery results in Table 6.12. The primary features

discovered in the smaller Ozone subset are interesting because they appear to relate

to two of the eight variables used in a formula designed by experts in this domain,

i.e. wind speed near sunrise and wind speed mid-day (see Zhang and Fan (2008)).

On the other hand, the first row of the matrix in the larger set seems to have found

a very relevant, but more complex feature. HT70 is the geopotential height at the

700 hPa level, and HT85 is the geopotential at the 850 hPa level. Therefore, the

difference between the two is a measure of the geopotential thickness in that layer of

the atmosphere. This is interesting because there is evidence in other studies that

there is a relationship between geopotential thickness and ozone anomalies (Jiang

et al., 2008). The MINE statistics for the two variables are also listed in Table 6.13,

along with a few other relationships for comparison. The relationship does appear to

be fairly strong, but there are many other variables in the dataset with even stronger

relationships. The difference is that most of the other relationships don’t appear to

be predictive with respect to ozone anomalies. Thus, as one might expect, it appears

that the ability to center our discovery around prediction is vital. In addition, the

MINE statistics for some of the wind variable pairs are given in Table 6.14. These

statistics suggest that finding the wind variable combination from Table 6.12 would

be difficult without joint consideration of the target task.
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Table 6.12: Feature discovery in ozone prediction. The rows of a table contain the
highest scoring features (in absolute value) for a given row in the matrix.

Task # Labels # Features Row Top Pos Top Neg AUC

Ozone Predition 253 72 1 WSR5 WSR13 .638
WSR12 WSR9

WSR6

Ozone Prediction 1000 10296 1 HT85 HT70 0.806

Table 6.13: MINE statistics for select pairs of variables from the Ozone Prediction
dataset. For comparison purposes, several simpleX, Y relationships are also included.
HT: geopotential height; T: temperature; Precp: precipitation; PK: peak.

Relationship MIC MEV MAS MCN

HT70; HT85 0.637 0.637 0.024 2.6

HT50; Precp 0.900 0.900 0.359 3.6

T6; T8 0.929 0.929 0.046 3.6

Precp; T PK 0.878 0.878 0.342 3.3

Circle (x, y - plot) 0.677 0.333 0.022 3.2

y = sin(18πx) 1.0 1.0 0.915 5.2

y = 2x+ 3 1.0 1.0 0.0 2.0

Table 6.14: MINE statistics for select wind variable pairs from the Ozone Prediction
dataset.

Relationship MIC MEV MAS MCN

WSR5; WSR6 0.864 0.864 0.063 3.8

WSR12; WSR13 0.823 0.823 0.061 3.0

WSR12; WSR5 0.354 0.354 0.025 2.6

WSR12; WSR6 0.324 0.324 0.033 2.6

WSR13; WSR5 0.359 0.359 0.043 2.6

WSR13; WSR6 0.305 0.305 0.035 2.0
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Chapter 7

Conclusions

7.1 Summary

In this work, we have demonstrated multiple new methods for dealing with the curse

of dimensionality in many real world applications by integrating disparate sources

of information in more natural and scalable ways. In many important domains, we

are addressing some of these issues for the first time, and our hope is that this work

will lead to increased interest and progress in designing better solutions based on

structure-based learning methods.

Several major contributions of this work center around the expanded use of graph-

based semi-supervised learning. In particular, we expand on the ability to encode and

leverage complex knowledge by modifying the graph construction process. Robust

application in noisy domains becomes much more feasible by using carefully chosen

methods for encoding target-specific information into the graph. Included in this

work are results published in Symons et al. (2012), including very significant results

on an application to a Brain-Computer Interface problem that has been particularly

challenging for semi-supervised learning methods (Chapelle et al., 2006). Our method

demonstrated the best performance over a large set of previous semi-supervised results

(Chapelle et al., 2006) using a simplistic implementation of our approach. To the best
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of our knowledge, we also provide the first complete theoretical bound on sample

complexity in graph-based semi-supervised learning by combining existing semi-

supervised and supervised bounds that can only apply when the graph-construction

method uses label information.

These initial successes in graph modification suggested a new approach to encoding

information from multiple views into the graph. To the best of our knowledge, this was

the first real attempt to address a multi-view, budgeted learning problem motivated

by multiple real applications that we have been exposed to in our work. The results

demonstrated a consistent and significant ability to encode useful knowledge from

training-only views into a model that operated without access to them. Much of this

work was published in Symons and Arel (2011).

The graph modification approaches allowed us to leverage structure from multiple

views and unlabeled data to address the curse of dimensionality based on the

concentration of measure phenomenon. In addition, we showed that scalable

approaches using the graphs are viable, both in terms of speed and accuracy.

Subsequent work addressed the ability to leverage the interconnections in complex

systems to jointly address both the computational side and the sample complexity side

of the curse of dimensionality in complex systems. We described and demonstrated

a new, scalable framework for complex feature discovery via multi-task learning

in complex systems, including several compelling feature discovery examples in

application domains. We also demonstrated the ability to handle extremely high-

dimensional data while actually improving performance, despite label information

being limited.

In addition, we covered and expanded on work in Symons and Beaver (2012), and

demonstrated the use of learning methods for network intrusion detection that are

extremely effective, scalable, and practically trainable. To the best of our knowledge,

the results are the first on real operational data that demonstrate an ability to catch

most zero-day attacks, with negligible false positive rates that are orders of magnitude

lower than all alternatives. Perhaps most significant is that the models were obtained
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with trivial amounts of labeled data (by leveraging large amounts of unlabeled data).

This allows such models to be easily trainable in practice.

7.2 Future Directions

7.2.1 Missing data

We outlined how the approaches discussed in this work allow better use of data with

missing variables. In the case of graph modifications, auxiliary information can be

used to modify appropriate sections of the graph as availability permits, while sections

of the graph with missing information are simply left unchanged. In the multi-

task framework it is possible to divide data as finely as possible to create learning

problems without missing measurements. In this manner, available information can

be incorporated via the task matrix without the need for imputation of missing values.

Future work should involve more sophisticated data handling methods that can take

advantage of this ability seamlessly.

7.2.2 Supporting complex task transformations

As described in 5.2.1, leveraging joint learning tasks that have extremely complex

relationships is not a problem for our framework theoretically. However, from a

practical standpoint sophisticated methods for mapping the transformations between

tasks are required to allow more information to be leveraged effectively.

7.2.3 Additional applications

While we covered many application domains throughout the course of this work, we

believe that the learning frameworks developed here can play an important role in

many areas that we have not addressed to this point.
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