7 research outputs found

    Semi-Supervised Eigenbasis Novelty Detection

    Get PDF
    Recent discoveries in high-time-resolution radio astronomy data have focused attention on a new class of events. Fast transients are rare pulses of radio frequency energy lasting from microseconds to seconds that might be produced by a variety of exotic astrophysical phenomena. For example, X-ray bursts, neutron stars, and active galactic nuclei are all possible sources of short-duration, transient radio signals. It is difficult to anticipate where such signals might appear, and they are most commonly discovered through analysis of high-time- resolution data that had been collected for other purposes. Transients are often faint and difficult to detect, so improved detection algorithms can directly benefit the science yield of all such commensal monitoring. A new detection algorithm learns a low-dimensional linear manifold for describing the normal data. High reconstruction error indicates a novel signal that does not match the patterns of normal data. One unsupervised portion of the manifold model adapts its representation in response to recent data. A second supervised portion of the model is made of a basis trained in advance using labeled examples of RFI; this prevents false positives due to these events. For a linear model, an orthonormalization operation is used to combine these bases prior to the anomaly detection decision. Another novel aspect of the approach lies in combining basis vectors learned in an unsupervised, online fashion from the data stream with supervised basis vectors learned in advance from known examples of false alarms. Adaptive, data-driven detection is achieved that is also informed by existing domain knowledge about signals that may be statistically anomalous, but are not interesting and should therefore be ignored. The method was evaluated using data from the Parkes Multibeam Survey. This data set was originally collected to search for pulsars, which are astronomical sources that emit radio pulses at regular periods. However, several non-pulsar anomalies have recently been discovered in this dataset, making it a compelling test case. By explicitly filtering known false alarm patterns, the approach yields significantly better performance than current transient detection methods

    NASA Tech Briefs, June 2013

    Get PDF
    Topics include: Cloud Absorption Radiometer Autonomous Navigation System - CANS, Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis, Discrete Data Qualification System and Method Comprising Noise Series Fault Detection, Simple Laser Communications Terminal for Downlink from Earth Orbit at Rates Exceeding 10 Gb/s, Application Program Interface for the Orion Aerodynamics Database, Hyperspectral Imager-Tracker, Web Application Software for Ground Operations Planning Database (GOPDb) Management, Software Defined Radio with Parallelized Software Architecture, Compact Radar Transceiver with Included Calibration, Software Defined Radio with Parallelized Software Architecture, Phase Change Material Thermal Power Generator, The Thermal Hogan - A Means of Surviving the Lunar Night, Micromachined Active Magnetic Regenerator for Low-Temperature Magnetic Coolers, Nano-Ceramic Coated Plastics, Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use, Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO, Dual-Compartment Inflatable Suitlock, Modular Connector Keying Concept, Genesis Ultrapure Water Megasonic Wafer Spin Cleaner, Piezoelectrically Initiated Pyrotechnic Igniter, Folding Elastic Thermal Surface - FETS, Multi-Pass Quadrupole Mass Analyzer, Lunar Sulfur Capture System, Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use, Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter, Qualification of UHF Antenna for Extreme Martian Thermal Environments, Ensemble Eclipse: A Process for Prefab Development Environment for the Ensemble Project, ISS Live!, Space Operations Learning Center (SOLC) iPhone/iPad Application, Software to Compare NPP HDF5 Data Files, Planetary Data Systems (PDS) Imaging Node Atlas II, Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit, Translating MAPGEN to ASPEN for MER, Support Routines for In Situ Image Processing, and Semi-Supervised Eigenbasis Novelty Detection

    Crowd Scene Analysis in Video Surveillance

    Get PDF
    There is an increasing interest in crowd scene analysis in video surveillance due to the ubiquitously deployed video surveillance systems in public places with high density of objects amid the increasing concern on public security and safety. A comprehensive crowd scene analysis approach is required to not only be able to recognize crowd events and detect abnormal events, but also update the innate learning model in an online, real-time fashion. To this end, a set of approaches for Crowd Event Recognition (CER) and Abnormal Event Detection (AED) are developed in this thesis. To address the problem of curse of dimensionality, we propose a video manifold learning method for crowd event analysis. A novel feature descriptor is proposed to encode regional optical flow features of video frames, where adaptive quantization and binarization of the feature code are employed to improve the discriminant ability of crowd motion patterns. Using the feature code as input, a linear dimensionality reduction algorithm that preserves both the intrinsic spatial and temporal properties is proposed, where the generated low-dimensional video manifolds are conducted for CER and AED. Moreover, we introduce a framework for AED by integrating a novel incremental and decremental One-Class Support Vector Machine (OCSVM) with a sliding buffer. It not only updates the model in an online fashion with low computational cost, but also adapts to concept drift by discarding obsolete patterns. Furthermore, the framework has been improved by introducing Multiple Incremental and Decremental Learning (MIDL), kernel fusion, and multiple target tracking, which leads to more accurate and faster AED. In addition, we develop a framework for another video content analysis task, i.e., shot boundary detection. Specifically, instead of directly assessing the pairwise difference between consecutive frames over time, we propose to evaluate a divergence measure between two OCSVM classifiers trained on two successive frame sets, which is more robust to noise and gradual transitions such as fade-in and fade-out. To speed up the processing procedure, the two OCSVM classifiers are updated online by the MIDL proposed for AED. Extensive experiments on five benchmark datasets validate the effectiveness and efficiency of our approaches in comparison with the state of the art
    corecore