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Abstract

There is an increasing interest in crowd scene analysis in video surveillance

due to the ubiquitously deployed video surveillance systems in public places

with high density of objects amid the increasing concern on public security

and safety. A comprehensive crowd scene analysis approach is required to

not only be able to recognize crowd events and detect abnormal events,

but also update the innate learning model in an online, real-time fashion.

To this end, a set of approaches for Crowd Event Recognition (CER) and

Abnormal Event Detection (AED) are developed in this thesis.

To address the problem of curse of dimensionality, we propose a video man-

ifold learning method for crowd event analysis. A novel feature descriptor

is proposed to encode regional optical flow features of video frames, where

adaptive quantization and binarization of the feature code are employed

to improve the discriminant ability of crowd motion patterns. Using the

feature code as input, a linear dimensionality reduction algorithm that pre-

serves both the intrinsic spatial and temporal properties is proposed, where

the generated low-dimensional video manifolds are conducted for CER and

AED.

Moreover, we introduce a framework for AED by integrating a novel in-

cremental and decremental One-Class Support Vector Machine (OCSVM)

with a sliding buffer. It not only updates the model in an online fashion

with low computational cost, but also adapts to concept drift by discard-

ing obsolete patterns. Furthermore, the framework has been improved by

introducing Multiple Incremental and Decremental Learning (MIDL), ker-

nel fusion, and multiple target tracking, which leads to more accurate and

faster AED.
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In addition, we develop a framework for another video content analysis task,

i.e., shot boundary detection. Specifically, instead of directly assessing the

pairwise difference between consecutive frames over time, we propose to

evaluate a divergence measure between two OCSVM classifiers trained on

two successive frame sets, which is more robust to noise and gradual tran-

sitions such as fade-in and fade-out. To speed up the processing procedure,

the two OCSVM classifiers are updated online by the MIDL proposed for

AED.

Extensive experiments on five benchmark datasets validate the effectiveness

and efficiency of our approaches in comparison with the state of the art.
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Mathematical Notation

Because there is a considerable overlap from Chapter 5 to Chapter 7, we

use a consistent notation throughout these chapters.
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E Error support vector set
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Chapter 1

Introduction

1.1 Background

There is a rapid expansion of video surveillance systems due to the fact that recent ad-

vances in digital imaging, compression, transmission, and storage technologies have rev-

olutionized the manner in which video information is analyzed, archived, and managed.

Furthermore, the reduction in equipment prices resulting from the commoditization of

video hardware further facilitates the proliferation of video surveillance systems.

Ubiquitous video surveillance systems bring about an exponential growth of raw,

digital video data, exerting increasing pressure on conventional video monitoring and

analysis processes, which are usually highly manpower intensive, inefficient and costly.

Meanwhile, with the rapid advances of computer technologies, the ever-growing com-

putational speed and memory capacity of computers has opened up new research di-

rections that are intractable before due to various resource limits. As a result, there

is an increasing interest in intelligent video surveillance research (Valera and Velastin,

2005; Kim et al., 2010; Liu et al., 2013; Wang, 2013).

Given a huge amount of videos collected by a set of surveillance cameras, an in-

telligent video surveillance system aims at detecting, tracking and recognizing objects

of interest, and further analyzing and understanding the visual events of the scene. It

has a wide range of applications both in public and private environments, e.g., access

control, traffic enforcement (Tseng et al., 2002), anomaly detection (Sodemann et al.,

2012), and health care (Rougier et al., 2011).

Nowadays, video surveillance systems have been widely deployed in public places

such as airports, train stations, shopping malls. Even though the high density of

objects remains a challenge of tracking, recognizing and analysing the behaviours of
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Video clips

Feature extraction

Machine learning models

Crowd event recognition Abnormal event detection

Figure 1.1: The flowchart of a conventional crowd scene analysis approach.

multiple objects in crowd, the research on crowd scene analysis (Li et al., 2015) in

video surveillance is attracting increasing attention along with the increasing concern

on public security and safety. While crowd scene analysis may cover a wide range of

research topics, this thesis mainly focuses on Crowd Event Recognition (CER) and

Abnormal Event Detection1 (AED).

A conventional crowd scene analysis approach is depicted in Figure 1.1. Given a

set of video clips collected by a surveillance camera, the first step is to extract useful

features from them. While a conventional intelligent video surveillance system would

normally aim at tracking interest points on an individual object (Zhu et al., 2006;

Nguyen et al., 2007), it cannot cope with frequently occurring conditions in crowd

scene, e.g., severe occlusions, small object sizes, and strong similarity among objects.

To overcome these difficulties, features that characterize crowd motions have been

proposed, including optical flow (Andrade et al., 2006; Adam et al., 2008), spatial-

temporal gradient (Kratz and Nishino, 2009), and volumetric shape matching (Ke

et al., 2007), to name a few. Some approaches may have a pre-processing step, e.g.,

1In the rest of the thesis, “abnormal event detection” is equivalent to “anomaly detection” in the

context of crowd scene analysis. Likewise, “abnormal event” equals to “anomaly”.
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background subtraction, to filter noise and reduce computational cost simultaneously.

With the extracted features as input, various machine learning models can be learnt in

the training process, and applied to CER and/or AED in the testing process. Those

models include social force model (Mehran et al., 2009), sparse coding (Lee et al.,

2006), probabilistic graphical model (Koller and Friedman, 2009), etc. Besides, a post-

processing step, e.g. conditional random field (Li et al., 2014), may be involved to

improve the detection result.

1.2 Challenges

In general, there are a few challenges for crowd scene analysis in video surveillance:

• As the high-dimensional video data suffer from the so-called problem entitled

“curse of dimensionality” (Bellman and Corporation, 1957), various dimension

reduction algorithms (Belkin and Niyogi, 2003) have been employed to generate

low-dimensional manifolds for crowd scene analysis (Tziakos et al., 2009, 2010;

Thida et al., 2010, 2012). However, the existing manifold learning research on

crowd scene analysis is non-linear and operates in a batch mode, therefore, it

is unclear how to embed new arriving video data and unsuitable for real-world

applications.

• Most existing anomaly detection algorithms (Breunig et al., 2000; Roth, 2006;

Liu et al., 2014) cannot be directly applied to AED as they operate by nature in

batch mode, which requires the entire dataset to be made available in advance

so that these algorithms can proceed. This not only makes the analysis of large-

size video data rather time-consuming, it does not align well with the nature

of video surveillance, where video data arrive sequentially and is required to be

processed in real-time. Furthermore, changes in the monitoring environment also

demand online adaptability of the detector. Essentially, an ideal video anomaly

detection algorithm should be able to handle so-called “online learning” (Diethe

and Girolami, 2013), namely, updating the innate models of the algorithms while

streaming data arrive incrementally. In addition, it is required to be able to track

slow changes of normal patterns, i.e., concept drift adaption (Gama et al., 2014),

as well as detect abrupt changes of abnormal patterns in real-time.

• Apart from the challenges of handling large amounts of streaming data, there are

several challenges that have to be faced in AED exclusively. Firstly, the motion

3



feature of same object from different locations may vary due to perspective of a

camera. As a result, an anomaly in distant view, for example, may be ignored

due to small scale motion. Secondly, the diversity of crowd events increases the

complexity of AED. For instance, a “normal” event appearing at a location where

is has never occurred before is supposed to be detected as an anomaly in certain

scenarios.

• An intelligent video surveillance system is supposed to provide real-time and

automatic event and alarm notification. In other words, it should require less

labor to supervise while monitoring and taking action from anywhere, anyhow

and anywhere. To meet the requirement, a simple but effective feature extraction

process combined with a fast online learning algorithm are required.

1.3 Research questions

Our main research questions hence emerge as follows:

1. Can we develop an efficient dimension reduction algorithm to consider both spa-

tial and temporal similarities between frames when generating video manifolds?

2. Can we find a simple but efficient feature descriptor to capture the motion infor-

mation in a crowded video surveillance stream?

3. Can an online learning algorithm be developed so that the learnt model can evolve

on-the-fly from continuous data streams?

4. Combining the feature descriptor with the online learning algorithm, can we pro-

pose a unified framework for AED so that it meets the aforementioned challenges

while providing real-time response?

1.4 Contributions

In this thesis, aiming at solving these research questions, there are four main contri-

butions summarized within the respective chapters:

1. Proposing a novel manifold learning algorithm for crowd scene analysis

in video surveillance in Chapter 4.
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(a) A novel feature descriptor is proposed to encode regional optical flow fea-

tures of video frames, where adaptive quantization and binarization of the

feature code are employed to improve the discriminant ability of crowd mo-

tion patterns.

(b) We propose a novel linear dimension reduction algorithm to generate low-

dimensional video manifolds that preserve both the intrinsic spatial and

temporal properties.

(c) The foundation of this work has been published in Lin et al. (2013).

2. Developing an online adaptive One-Class Support Vector Machines

(OCSVM) algorithm for AED in Chapter 5.

(a) Integrating the incremental and decremental OCSVM with a sliding buffer

offers an efficient and effective scheme, which not only updates the model in

an online fashion with low computational cost, but also discards outdated

patterns.

(b) Providing a unified framework to detect both global and local anomalies.

(c) The foundation of this work has been published in Lin et al. (2014, 2015).

3. Improving efficiency and effectiveness of the proposed online adaptive

OCSVM for AED in Chapter 6.

(a) To reduce the computational cost while enhancing the robustness of the

anomaly detector, a background subtraction approach is adopted to detect

regions of interest, in which two different features have been extracted, i.e.,

motion information and spatial location.

(b) A novel feature descriptor is proposed to represent motion information,

which adaptively decides its scale binning using a clustering process.

(c) By combining motion information as well as spatial location information

through kernel fusion, the proposed framework is able to detect motion

anomalies as well as spatial location anomalies even under perspective dis-

tortions.

(d) The processing speed has also been increased by replacing the single in-

stance incremental and decremental algorithm with Multiple Incremental

and Decremental Learning (MIDL) algorithm.
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(e) The final detection result is further improved by a linear Multiple Target

Tracking (MTT) approach.

4. Proposing a computational framework for Shot Boundary Detection

(SBD) on the basis of the MIDL algorithm in Chapter 7.

(a) Instead of comparing the difference between pair-wise consecutive frames

at a specific time, we measure the divergence between two OCSVM clas-

sifiers, which are learnt from two contextual sets, i.e., immediate past set

and immediate future set. The approach, which inherits the advantages of

OCSVM, is robust to noises such as abrupt illumination changes and large

object or camera movements, and capable of detecting gradual transitions

as well.

(b) The two OCSVM classifiers are updated in an online fashion by our proposed

MIDL algorithm to speed up the processing procedure.

(c) The foundation of this work has been published in Lin et al. (2016).

1.5 List of publications

Some parts of the thesis have been published in the following conferences/workshop:

• H. Lin, J. D. Deng, B. J. Woodford, and A. Shahi Online Weighted Clus-

tering for Real-time Abnormal Event Detection in Video Surveillance.

Accepted by ACM Multimedia 2016.

• H. Lin, J. D. Deng, and B. J. Woodford Shot Boundary Detection Using

Multi-instance Incremental and Decremental One-Class Support Vec-

tor Machine. In Advances in Knowledge Discovery and Data Mining (PAKDD)

2016 Apr 19 (pp. 165-176). Springer International Publishing.

• H. Lin, J. D. Deng, and B. J. Woodford Anomaly detection in crowd scenes

via online adaptive one-class support vector machines. In Image Process-

ing (ICIP), 2015 IEEE International Conference on 2015 Sep 27 (pp. 2434-2438).

IEEE.

• H. Lin, J. D. Deng, and B. J. Woodford Spatial-Temporal Pyramid Match-

ing for Crowd Scene Analysis. In Proceedings of the MLSDA 2014 2nd
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Workshop on Machine Learning for Sensory Data Analysis 2014 Dec 2 (p. 12).

ACM.

• H. Lin, J. D. Deng, and B. J. Woodford Event detection using quantized

binary code and spatial-temporal locality preserving projections. In

AI 2013: Advances in Artificial Intelligence 2013 Dec 1 (pp. 123-134). Springer

International Publishing. (Best paper and best student paper nomination)

• H. Lin, J. D. Deng, and B. J. Woodford Video manifold modelling: finding

the right parameter settings for anomaly detection. In Proceedings of the

27th Conference on Image and Vision Computing New Zealand 2012 Nov 26 (pp.

168-173). ACM.

1.6 Organization of the thesis

The rest of the thesis is organized as follows:

Chapter 2 Literature review

Some fundamentals techniques about spatial-temporal feature detectors and descriptors

are reviewed. Next, we review some classical machine learning models that have been

employed for crowd scene analysis. Finally, we provide a comprehensive literature

review on state-of-the-art approaches for CER and AED.

Chapter 3 Research methodology

We introduce a new generic approach adopted in this thesis. The performance eval-

uation methodologies correspond to different tasks are discussed here. Five different

datasets with different tasks, i.e., CER, AED and SBD, that are conducted through

the thesis are also introduced.

Chapter 4 Crowd Scene Analysis using adaptive quantization and manifold

learning

A novel manifold learning algorithm for crowd scene analysis in video surveillance is

proposed. We propose a novel feature descriptor to improve the discriminant ability

of crowd motion patterns. A linear dimension reduction algorithm that preserves both

intrinsic spatial and temporal properties of those feature descriptors is developed.

Chapter 5 Online Adaptive OCSVM for AED

In this chapter, a novel incremental and decremental OCSVM algorithm is proposed.

Anomalies are divided into two categories, global anomalies and local anomalies. A

unified framework that integrates the incremental and decremental OCSVM with a
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sliding buffer to detect both anomalies is introduced as well.

Chapter 6 Multiple Incremental and Decremental Learning OCSVM for

AED

An improved framework for AED is proposed in this chapter. We adopt a background

subtraction approach to filter noise and extract two different type of features, namely

motion feature and spatial location information, where kernel fusion is employed to

improve detection results. Furthermore, the MIDL algorithm that replaces the sin-

gle incremental and decremental algorithm is proposed. Finally, a MTT approach is

introduced to improve the final detection results.

Chapter 7 MIDL OCSVM for Shot Boundary Detection

In this chapter, we extend the MIDL to another video content analysis application

- SBD. A literature review on SBD is conducted. Later on, we define a function

to measure the divergence between two OCSVM classifiers, which correspond to two

consecutive but non-overlapping sets of frames. SBD is conducted on the divergence

output.

Chapter 8 Conclusion and future work

We draw a conclusion of the research work carried out in this thesis, and some possible

research directions for future work that extends this thesis are also discussed.
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Chapter 2

Literature Review

2.1 Overview

Because a promising computer vision analysis model heavily relies on feature extraction

and how to make use of the features for object detection, in this chapter we first discuss

some fundamental techniques regarding video feature extraction, which is separated

into two parts: feature detectors and feature descriptors. The feature detectors that

are discussed here include Harris3D (Laptev, 2005), Cuboid (Dollár et al., 2005), and

dense sampling; and feature descriptors such as SIFT3D (Scovanner et al., 2007) are

also highlighted. Later on, we review a set of machine learning models that have been

adopted for crowd scene analysis. Finally, a broad spectrum of approaches for crowd

scene analysis proposed in the literature are reviewed. On the basis of the research

objectives, these approaches are categorized into two types: Crowd Event Recognition

(CER) and Abnormal Event Detection (AED).

2.2 Feature extraction

In general, a very short video can even generate a huge amount of feature descriptors

(Boiman and Irani, 2007). How to detect those effective features and represent them

is the crucial prerequisite for further video content analysis. In this section, we will

introduce some well-known spatial-temporal interest point detectors briefly, and some

representative spatial-temporal feature descriptors are discussed as well.
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2.2.1 Feature detectors

The earliest exploration of feature detection occurred in image processing domain, e.g.,

Harris corner detector (Harris and Stephens, 1988), where points with a significant lo-

cal variation and relative stability with respect to perspective transformation in image

intensities, have been detected. Such points are referred to as “interest points”. A

decade later, due to the enhancement of computational power, these points have been

extensively investigated (Schmid et al., 2000; Lowe, 2004; Mikolajczyk and Schmid,

2004, 2005; Bay et al., 2006; Nistér and Stewénius, 2008; Rublee et al., 2011; Leuteneg-

ger et al., 2011; Alahi et al., 2012; Yu et al., 2013). Among them, Scale Invariant

Feature Transform (SIFT) (Lowe, 2004) is a significant milestone, where both a novel

scale invariant feature detector and the corresponding feature descriptor are proposed.

Following a similar idea, these local interest points have been extended to the

spatial-temporal domain, namely video (Laptev, 2005; Dollár et al., 2005; Ke et al.,

2005; Willems et al., 2008; Bregonzio et al., 2009).

Harris3D

Harris3D (Laptev, 2005), which extends the 2D scale-invariant Harris-Laplace corner

detector (Mikolajczyk and Schmid, 2004), has been extensively applied to action recog-

nition (Laptev and Pérez, 2007; Laptev et al., 2008). The basic concept is introducing

a spatial-temporal second-moment matrix :

µ = g(·;σ2
i , τ

2
i ) ∗


L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt LtLt

 , (2.1)

where g(·;σ2
i , τ

2
i ) is the Gaussian weighting function, given by:

g(x, y, t;σ2
l , τ

2
l ) =

1√
(2π)3σ4

l τ
2
l

exp

(
− (x2 + y2)

2σ2
l

− t2

2τ 2l

)
. (2.2)

Lx, Ly, and Lt are the first order spatial and temporal derivatives, defined as:

Lx(·;σ2
l , τ

2
l ) = ∂x(g ∗ f),

Ly(·;σ2
l , τ

2
l ) = ∂y(g ∗ f),

Lt(·;σ2
l , τ

2
l ) = ∂t(g ∗ f),

(2.3)

where σl and τl are the spatial and temporal scale, with σ2
i = sσ2

l and τ 2i = sτ 2l .
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As a result, the interest points in a video sequence f correspond to the regions

having significant eigenvalues λ1, λ2, and λ3 of µ, i.e.,

H = det(µ)− k trace3(µ), (2.4)

with the requirement of H ≥ 0 and a typical value of k = 0.005. Eventually, the

spatial-temporal interests points are given by the local maxima of H.

Cuboid

Let’s assume a stationary camera or a process can remove the effect of camera motion,

Cuboid (Dollár et al., 2005) defines the response function as follows:

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2, (2.5)

where g(x, y;σ) is the 2D Gaussian smoothing kernel, applied on the spatial dimensions

only. hev and hod are a quadrature pair of 1D Gabor filters applied along temporal

dimension, defined as:

hev(t; τ, ω) = −cos(2πtω)e−t
2/τ2 ,

hod(t; τ, ω) = −sin(2πtω)e−t
2/τ2 ,

(2.6)

where the default setting of ω is equal to 4/τ , and σ and τ correspond to the spatial

and temporal scales of the detector. The spatial-temporal interest points correspond

to the local maxima of R.

Generally speaking, Cuboid is able to extract more dense interest points than Har-

ris3D, and has been employed for AED (Zhao et al., 2011; Dutta and Banerjee, 2015).

Dense sampling

Although Cuboid is able to extract more interest points than Harris3D, the overall

extracted points are still sparse. This is unsuitable for our work as in crowd scenes,

we would like to detect as many features as possible to cover the whole scene so all

the whole motion features can be captured and located accurately. Therefore, dense

sampling, which extracts features at regular positions and scales, is the most common

scheme to extract features in crowd scenes.

The same as these keypoint detectors, dense sampling is employed in image domain

initially, such as object detection and categorization (Viola and Jones, 2001; Lazebnik

et al., 2006; Bosch et al., 2007), face detection (Viola and Jones, 2004), human detection
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(Dalal and Triggs, 2005; Viola et al., 2005; Dalal et al., 2006; Felzenszwalb et al.,

2010). Later on, this idea was extended to video domain, such as action recognition

(Wang et al., 2009; Tian et al., 2013), AED (Boiman and Irani, 2007; Roshtkhari and

Levine, 2013b). Empirical evidence in both object categorization (Bosch et al., 2007)

as well as action recognition (Wang et al., 2009) indicates that dense sampling usually

outperforms keypoint detectors even though some noisy features exist.

2.2.2 Feature descriptors

In recent years, a number of feature descriptors have been proposed in image process-

ing, including color and texture (Manjunath et al., 2001; Van De Sande et al., 2010),

wavelet (Torrence and Compo, 1998), Histogram of Oriented Gradient (HOG) (Dalal

and Triggs, 2005), Local self-similarity (Shechtman and Irani, 2007), to name a few.

To extend it for video processing, scholars and researchers proposed a series of

spatial-temporal feature descriptors, e.g., Grundmann et al. (2008). Given a sample

point (x, y, t), a cube which contains the spatial-temporal windowed pixel values around

that point is extracted, where various features, e.g., gradient, optical flow, have been

investigated to describe the shape and/or motion information.

Gradient based descriptor

SIFT3D (Scovanner et al., 2007) is an extension of the popular SIFT to video pro-

cessing. It computes spatial-temporal gradients Lx, Ly, Lt of each pixel in a spatial-

temporal cube. Correspondingly, the gradient magnitude and orientations in 3D are

estimated as:

m3D(x, y, t) =
√
L2
x + L2

y + L2
t ,

θ(x, y, t) = tan−1(Ly/Lx),

φ(x, y, t) = tan−1(
Lt√

L2
x + L2

y

),

(2.7)

where each pixel contains a single magnitude value m3D and two orientation angles

θ and φ, which is different from SIFT, containing only one orientation value θ. The

spatial-temporal cube is divided into n × n × n sub-volumes, in each sub-volumes a

weighted 8×4 sub-histogram is constructed by dividing θ and φ into equally sized bins.

The final descriptor is the concatenation and normalization of the sub-histograms.

Analogous to SIFT3D, Klaser et al. (2008) proposed the HOG3D on the basis

of HOG (Dalal and Triggs, 2005) as well. It first computes each mean gradient us-
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ing integral videos, where the gradient orientation is quantized by means of regular

polyhedrons. The histograms of oriented gradients, which are computed in each cell

separately, are concatenated and normalized as a final descriptor.

Kratz and Nishino (2009) proposed a 3D Gaussian distribution N (µ,Σ) to model

the distribution of spatial-temporal gradients in a cube:

µ =
1

N

N∑
i

OIi,

Σ =
1

N

N∑
i

(OIi − µ)(OIi − µ)T ,

(2.8)

where OIi = [Lx, Ly, Lt] is the spatial-temporal gradients of pixel i. Eventually, a cube

at spatial location s and temporal location t is defined as Os
t = {µst ,Σs

t}.

Optical-flow based descriptor

Figure 2.1: (A) The process of MHOF extraction. (B) Different event types based on

anomaly scenarios. This figure is reproduced from Cong et al. (2013).

Optical flow (Lucas et al., 1981; Horn, 1986), defined as the observed apparent

motion of objects caused by the relation motion between an observer and the objects,
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has been extensively used in computer vision tasks, such as background subtraction

(Chen et al., 2014), motion estimation (Liu et al., 2008; Wedel et al., 2011), etc.

To characterize the motion pattern, Kim and Grauman (2009) first computed a

9-dimensional optical flow vector, i.e., 8 orientations bin and 1 speed bin, for each

pixel. Then a cube is divided into M × N cells, where each cell is represented as a

9 dimension vector by summing the flow from all pixels within it. Finally, a 9MN

dimensional descriptor is constructed by concatenating the flow from all cells.

Cong et al. (2013) propose a Multi-scale Histogram of Optical Flow (MHOF) de-

scriptor, as depicted in Figure 2.1. The spatial location of an image is partitioned into

a few basic units, where a 16-bin MHOF is extracted in each unit. Specifically, all

the flows in each unit are quantized into 16 bins, where the first 8 bins denote eight

directions with motion magnitude less than a threshold, and the second 8 bins denote

eight directions with motion magnitude equal and greater than a threshold. Three dif-

ferent event types are defined to model motion patterns with spatial and/or temporal

structure, i.e., spatial basis, temporal basis, and spatial-temporal basis.

Dynamic texture

Dynamic texture (Doretto et al., 2003) represents a video clip of moving scenes as cer-

tain stationarity properties in time. More specifically, a dynamic texture is a generative

probabilistic model that is represented as a linear dynamic system: yt = Axt + wt

xt+1 = Bxt + vt
(2.9)

where yt ∈ Rm is the vector of pixels in video frame at time t, xt ∈ Rn is a hidden

state variable (n < m) that represents the dynamic of yt, with the independent and

identically distributed noise wt and vt. The observation matrix A ∈ Rm×n projects the

hidden state space to the observation, and the transition matrix B ∈ Rn×n controls

the evolution of the hidden state over time. The optimal parameters can be estimated

by a second-order stationary process (Ljung, 1998).

2.2.3 Discussion

On the one hand, although the spatial-temporal key point detectors such as Harris3D

have achieved promising performance in human action recognition, the extracted points

are still sparse. Under the scenario of action recognition, this may work well because
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there is usually one or two humans in a video clip. However, these detectors are not

suitable for our work because they may result in some missing detection as there are

so many moving objects are in a crowd scene. On the other hand, the gradient based

descriptor as well as the dynamic texture have shown the discriminative power but

are computation-intensive. As a result, the feature extraction process employed in our

work is dense sampling together with an optical-flow based descriptor.

2.3 Machine learning models

After some key spatial-temporal feature detectors and descriptors are introduced, the

machine learning models that are commonly utilized for crowd scene analysis will be

reviewed in this section.

2.3.1 k-Nearest Neighbours

k-Nearest Neighbours (k-NN) (Larose, 2005) is a non-parametric and data-driven algo-

rithm used for multi-class classification. Given a testing data, k-NN seeks to find out

its k nearest neighbours from the entire labelled training set with a pre-defined distance

metric. The testing data is classified by a majority vote of its k nearest neighbours.

In other words, the testing data is assigned to the dominant class among its k nearest

neighbours. The special case is k = 1, where the testing data is simply assigned to the

class of its nearest neighbour.

The advantages of k-NN are twofold. Firstly, it is easy to implement as in the

training phase the only step is storing the training set and their class labels. Secondly,

it is flexible to handle diverse data by using specific distance metrics. However, it is

computationally intensive when training set is very large because it has to identify the

k nearest neighbour for each testing data.

2.3.2 Sparse coding

Recently, sparse coding (Lee et al., 2006; Mairal et al., 2010) has been applied to a

considerable amount of multi-disciplinary research (Mairal et al., 2014). Generally

speaking, given a set of n training data X = [x1, . . . ,xn], sparse coding aims to repre-

sent xi ∈ Rm approximately as the product of a sparse weight vector αi and a learnt

dictionary D = [d1, . . . ,dk], i.e., xi ≈ Dαi.
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To acquire the optimal A = [α1, . . . ,αn] and D, one may solve the following

optimization problem:

min
A,D

:
n∑
i=1

1

2
||xi −Dαi||22 + λψ(αi)

s.t. : dTj dj ≤ 1, ∀j = 1, . . . , k

(2.10)

where ψ(·) is a sparsity function, defined by a user.

There are two steps to optimize D and A alternatively. The first step is learning

dictionary D while fixing A. The second step is reconstructing xi given a learnt

dictionary D. In other words, learning A while fixing D. The optimization of Eq. (2.10)

is equivalent to iteratively undertaking the two steps.

2.3.3 Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) (Koller and Friedman, 2009) compactly en-

code a complex distribution over a high-dimensional space by a graph model, which

is composed of nodes and edges between the nodes. Each node corresponds to a vari-

able, and a edge between two nodes means a direct probabilistic interaction between

them. The PGMs are generally divided into two families: directed graph models and

undirected graph models.

One of the most important directed graph models is Bayesian network, in which

a directed edge from node X to node Y is represented as the conditional probability

P (Y |X). One notable example of the Bayesian network is Latent Dirichlet Allocation

(LDA) (Blei et al., 2003). Another directed graph model is Hidden Markov Model

(HMM) (Baum and Petrie, 1966), which has been commonly used in temporal pattern

recognition (Rabiner, 1989).

Because the influence between two nodes are symmetric, the undirected graph

model, also known as a Markov Random Field (MRF) (Geman and Graffigne, 1986;

Chen and Tang, 2007), uses an undirected edge to model the interaction between them.

One notable variant of MRF is Conditional Random Field (CRF) (Lafferty et al., 2001;

He et al., 2004).

PGMs are the mainstream of machine learning, and their applications include

speech recognition, computer vision, etc. However, most of existing PGMs are re-

quired to label the dataset manually before training, which is highly manpower inten-

sive. Moreover, it remains a challenge to learn a PGM online even though there are

some attempts (Hoffman et al., 2010).
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2.3.4 Manifold learning

Because of the curse of dimensionality (Bellman and Corporation, 1957), a broad spec-

trum of dimension reduction algorithms (Hotelling, 1933; Fisher, 1936; Schölkopf et al.,

1998; Tenenbaum et al., 2000; Roweis and Saul, 2000; Belkin and Niyogi, 2003; Niyogi,

2004) have been employed to generate low-dimensional manifolds for visualization and

preprocessing purposes.

The earliest exploration in manifold learning linearly projects high-dimensional data

into a low-dimensional subspace. Principal Component Analysis (PCA) (Hotelling,

1933) is the mainstay of the linear dimension reduction algorithms. Given a set of data

with m dimensions, PCA aims to find the most l (l � m) meaningful bases, called

principal components, to represent the data set. By solving an eigenvalue problem,

namely, computing eigenvector and eigenvalues of the sample covariance matrix, PCA

finds a linear low-dimensional embedding of data that best preserves their variance.

Another example is the Fisher’s Linear Discriminant (FLD) (Fisher, 1936). It intro-

duces two matrices, a within-class scatter matrix Sw and a between-class scatter matrix

Sb, to preserve as much as of the class discrimination information as possible. This

is implemented by maximizing the between-class measure and minimizing within-class

measure, i.e. maximizing the ratio of det|Sb|/det|Sw|.
Methods that generate non-linear manifolds have also been considered. Tenenbaum

et al. (2000) propose Isometric feature mapping (Isomap). It seeks to preserve the

intrinsic geometry of the data by constructing neighbourhood graph and computing

geodesic distance between all pairs of data, thus has the capability to discover the

non-linear degrees of freedom that underlie complex natural observations.

Belkin and Niyogi (2003) propose Laplacian Eigenmaps (LE) to preserve local neigh-

bourhood information. Given a set of X = {x1, . . . ,xn} in Rm, the LE tries to find a set

of points Y = {y1, . . . ,yn} in Rl, where l � m such yi “represents” xi. The algorith-

mic procedure is composed of three steps. Firstly, an adjacency graph is constructed

using either ε-neighbourhoods or k-NN. Specifically, let G be a graph of n nodes, if

xi and xj are close to each other, we put an edge between node i and j. Secondly,

a weight matrix W is constructed on the basis of the adjacency graph. If there is an

edge between node i and j, we put a weight on Wij either Heat kernel Wij = e−
||xi−xj ||

σ ,

where σ determines the width of the kernel, or simple-minded, i.e., Wij = 1 if node i

and j is connected, otherwise is 0. Finally, eigenvectors and eigenvalues are computed
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for the following generalized eigenvector problem (Golub and van Loan, 1996):

Lv = λDv, (2.11)

where D is a diagonal matrix whose entries are column (or row) sums of W , i.e., dii =∑
j wij; L = D −W is the Laplacian matrix. Let v0,v1, . . . ,vn−1 are the solution of

Eq. (2.11) with ascending order of their corresponding eigenvalues 0 = λ0 < · · · < λn−1,

the l low-dimensional data representation yi equals to (v1(i), . . . ,vl(i)).

While LE explores the non-linear data representation, Locality Preserving Projec-

tions (LPP) (Niyogi, 2004) extends the similar idea to a linear embedding subspace.

As a linear approximation of LE, LPP aims to find the transformation matrix V such

that yi = V xi. The major difference of LPP lies computing a variant generalized

eigenvector problem:

XLXTv = λXDXTv, (2.12)

where D and L have the same definitions in Eq. (2.11), and X denotes the data matrix

whose i-th column corresponds to xi. As a result, the transformation matrix V is

represented as (v0,v1, . . . ,vl−1), where v0,v1, . . . ,vl−1 are the solution of Eq. (2.12)

with ascending order of their corresponding eigenvalues λ0 < · · · < λl−1.

2.3.5 Support Vector Machines

Support Vector Machines (SVM) (Cortes and Vapnik, 1995; Schölkopf et al., 2000;

Chang and Lin, 2011) is a supervised learning model, which has been widely employed

in a number of real-world applications, e.g., text categorization (Joachims, 1998), image

categorization (Csurka et al., 2004).

Optimal margin 

Optimal hyperplane 

Figure 2.2: A simple example of SVM, where the support vectors, located on the

margin, define the optimal hyperplane.
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SVM originates from the two-class classification problem. Given a set of labelled

two class training data {(y1,x1), . . . , (yn,xn)},∀yi ∈ {−1, 1}, SVM seeks to find an

optimal hyperplane w · xi + b which maximizes the margin between the two classes -

Figure 2.2. To acquire the optimal parameters w and b, one can solve the following

quadratic programming problem:

min
w,ξ,b

:
1

2
‖w‖2 + C

∑
i

ξi

s.t. : yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0,

(2.13)

where ξi are slack variables, and C is a regularization parameter, controlling the trade-

off between structure and empirical risk.

Using Lagrange multipliers, we can solve the following dual problem instead:

min
α

:
1

2

∑
ij

αiαjyiyjx
T
i xj −

∑
i

αi

s.t. : 0 ≤ αi ≤ C,
∑
i

αiyi = 0.
(2.14)

One significant property of SVM is the kernel method (Scholkopf and Smola, 2001).

That is, replacing xTi xj in Eq. 2.14 with a kernel function k(x,xj), classification can

be conducted in a non-linear feature space.

Following the similar idea, SVM has also been extended to one-class problem,

namely OCSVM (Schölkopf et al., 2001; Tax and Duin, 2004), and multi-class problem

(Hsu and Lin, 2002). Because one of our work is to extend OCSVM for online learning,

we will introduce the concept of OCSVM and its batch mode solution in Chapter 5,

and its online learning solution and improved variant will be discussed in Chapter 5

and Chapter 6 respectively.

2.4 Crowd scene analysis

Existing work of crowd scenes analysis can be categorized into two classes: CER

(Garate et al., 2009; Chan et al., 2009; Thida et al., 2012; Su et al., 2012, 2013)

and AED (Boiman and Irani, 2007; Adam et al., 2008; Mehran et al., 2009; Benezeth

et al., 2009; Wu et al., 2010; Mahadevan et al., 2010; Cui et al., 2011; Cong et al., 2011;

Shi et al., 2010; Zhao et al., 2011; Saligrama and Chen, 2012; Roshtkhari and Levine,

2013b,a; Dutta and Banerjee, 2015; Yuan et al., 2015; Antić and Ommer, 2015).

The CER is a multi-class classification problem. One possible solution is to train

all the crowd event class in a single model, e.g., LDA. Another possible solution is to
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train a number of two-class classifiers, where each classifier models a crowd event type

separately, the classification is based on a one-against-all scheme (Csurka et al., 2004).

The AED is somewhat different from CER, where only normal crowd events are

trained for detection. In other words, it is an one-class classification problem (Khan

and Madden, 2009).

2.4.1 Crowd event recognition

Garate et al. (2009) propose a novel tracker, based on the HOG descriptor, to track

the feature points that are detected in video clips. The crowd events are recognized

by a pre-defined model considering both speed and direction of these tracked feature

points. Although the trajectory-based approach is simple, it is however impractical for

crowd scenes analysis under extremely crowded environments with occlusions.

Chan et al. (2009) adopt a holistic representation to capture the variability of the

motion field. A video sequence is divided into a set of video clips, where each video

clip is modelled by a dynamic texture. The classification is performed by either the

nearest neighbour approach measured by the Kullback-Leibler (KL) divergence (Chan

and Vasconcelos, 2005b) or the SVM with the KL kernel (Moreno et al., 2003).

Su et al. (2013) model crowd motion patterns as a Spatio-Temporal Viscous Fluid

Field (STVFF), in which the interaction forces between pedestrians are estimated and

designed by a Bag-of-Words (BoW) (Sivic and Zisserman, 2009) model. Crowd events

are recognized by utilizing a LDA model.

To address the problem of curse of dimensionality, Thida et al. (2010, 2012) project

the video frames into an embedded low-dimensional subspace. Specifically, a weighted

adjacency matrix is constructed, in which an element measures spatial similarity using

histogram of optical flow and temporal similarity between two frames. By solving an

eigenvalue problem with the notion of Laplacian, the first k eigenvectors with the k

smallest non-zero eigenvalues are their corresponding low-dimensional representation.

Crowd scene analysis is carried out on the low-dimensional trajectories with machine

learning models.

2.4.2 Abnormal event detection

AED in video surveillance (Sodemann et al., 2012) is attracting more attention along

with the growing importance of public security and safety. We divide abnormal event

into global abnormal event and local abnormal event on the basis of scale. Global
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abnormal events are those abnormal events that occur in the whole frame, and local

abnormal events are those that occur in the local part of a frame.

In Wu et al. (2010), the largest Lyapunov exponents and correlation dimensions

of the particle trajectories are extracted for chaotic dynamics analysis and anomaly

detection in crowd scenes. An interaction energy potential function is adopted in

Cui et al. (2011) to capture the typical behaviors of pedestrians, whereas abnormal

activities are indicated as unusual energy-velocity patterns.

Adam et al. (2008) propose a real-time approach to detect unusual event using

multiple fixed-location monitors, where the monitors are deployed evenly in the spatial

location of a frame. In each monitor, the Sum of Square Differences (SSD) (Shechtman

and Irani, 2007) error matrix corresponding to discrete shifts in a certain window sur-

rounding the monitor pixel is computed and transform into a probability distribution.

An event is normal only if the distribution difference between the new observed event

and the pre-set most likely event is less than a threshold, otherwise is abnormal. This

algorithm is especially effective in detecting abrupt change of speed or direction of

pedestrian. However, it is not adaptive and cannot detect more complicated abnormal

events without considering temporal context.

Mehran et al. (2009) use the social force model (Helbing and Molnar, 1995) to

estimate the interaction force between pedestrians. Specifically, a grid of particles over

a image is deployed, where the average optical flow is computed in each particle. The

particles are moved with the flow field they overlay, an approach termed as particle

advection (Ali and Shah, 2007). The interaction force is estimated as the difference

between the desired velocity of a particle and its actual velocity. After the interaction

force has been extracted in every particle, BoW is built to represent a video clip, LDA

is used for AED. While the social force model is very effective in detecting a global

abnormal event, i.e., abnormal event in the whole frame, it is still challenging to detect

a local abnormal event.

PGMs have also widely deployed for AED. Boiman and Irani (2007) try to compose

a new video clip by means of chunks of video data that are extracted from training data.

Regions in the new video that can be composed by large contiguous chunks of video

data in training set are considered as normal, otherwise are suspicious/abnormal. This

approach, which is termed as “inference by composition”, implements by a Bayesian

network to incorporate both the appearance and spatial location of chunks of video

data. It shows a good performance in detecting suspicious behaviour, nevertheless,

the huge size of the example database results in high computational cost for spatial-
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temporal patch searching. A similar idea is found in Roshtkhari and Levine (2013b)

as well. By constructing a hierarchical codebook model, the approach speeds up the

process significantly.

Another Bayesian network model, entitled “Video parsing”, is proposed in Antić

and Ommer (2011). Given a frame, the foreground probability for every pixel is com-

puted using a background subtraction approach. A linear SVM classifier is trained on

the foreground probability map to distinguish background from anything else, where

a set of hypotheses are detected. As a result, a hypothesis is denoted as location,

scale, velocity, and appearance descriptor. Similar to the ’inference by composition’,

a hypothesis which has a high matching cost with any hypotheses in training data is

regarded as abnormal, otherwise is normal. Furthermore, foreground probability map

improves detection results by removing background pixels. It demonstrates promising

performance in anomaly detection. Nevertheless, because non-parametric and data-

driven, high computational cost is required to search data.

While most of existing approaches regard the motion features extracted from each

location independent and identically distributed, some approaches also model the

spatial/spatial-temporal dependencies between them. For example, Kratz and Nishino

(2009) capture the spatial relationships between local spatial-temporal motion patterns,

represented as statistical spatial-temporal gradient in Eq. (2.8), by HMM. Another ex-

ample is in Kim and Grauman (2009), where the Mixture of Probabilistic Principal

Component Analyzers (MPPCA) (Tipping and Bishop, 1999) models the local activ-

ity patterns and a spatial-temporal MRF model detects abnormal events in video by

considering spatial and temporal dependencies.

Sparse coding is another hot research topic for AED. The basic concept (Wright

et al., 2009) is based on the idea that normal events are more easily to be reconstructed

from a learnt dictionary than abnormal events. In other words, the reconstruction cost

for abnormal events is much higher than that for normal events. In Cong et al. (2011);

Zhu et al. (2014), motion patterns are represented as Multi-scale Histogram of Optical

Flow (MHOF), where a dictionary D is learnt, with the L2,1 norm as the sparsity

function. The major difference of Zhu et al. (2014) from Cong et al. (2011) lies in

that replacing Euclidean distance with wavelet Earth Movers Distance (EMD) as the

objective function. A similar idea is proposed in Zhao et al. (2011), where motion

features are detected through Cuboid (Dollár et al., 2005); and the sparsity function

is defined as the L1 norm. Sparse Combination Learning (SCL) is proposed in Lu

et al. (2013) to speed up the learning process. While the processing cost is reduced
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significantly by SCL as well as resizing the frame resolution to a really small scale (i.e.,

120×160), SCL is still a batch mode learning algorithm, thus it cannot handle concept

drift which is a common occurrence in real-time video surveillance.

In Mahadevan et al. (2010); Li et al. (2014), Mixture of Dynamic Textures (MDT)

(Chan and Vasconcelos, 2005a) is adopted to detect both spatial anomaly and temporal

anomaly. To improve the detection performance, Li et al. (2014) propose a Hierarchical

Mixture of Dynamic Texture (H-MDT) to detect temporal anomaly. The spatial loca-

tion of a frame is divided into various subregions with multi-scale. A MDT is learnt

from the spatial-temporal patches extracted from each subregion. As a result, multi-

scale temporal anomaly maps are generated by the H-MDT. Inspired by the concept of

saliency detection (Itti et al., 1998; Hou and Zhang, 2007; Mahadevan and Vasconcelos,

2010) that comparing the difference between the feature of a location and its surround-

ing features, spatial anomalies are the locations whose dynamic textures are different

from those of their surrounding. The hierarchy of spatial anomaly maps are generated

by employing the various surrounding window size. Finally, the abnormal events are

detected using an online CRF to fuse anomaly maps that across time, space, and scale.

It demonstrates that combining H-MDT with CRF improves the performance signif-

icantly compared with Mahadevan et al. (2010). However, the learning of the CRF

filter requires training data annotated manually beforehand, making it impractical for

real-time application.

Tziakos et al. (2009, 2010) employ a manifold learning algorithm to detect abnormal

events. Motion descriptors are extracted from a region of interest, where the LE

algorithm is adopted to project those features into a embedding space, the frames in a

testing video clip are labelled as abnormal if their Mahalanobis distances to the training

samples are greater than a threshold.

2.5 Summary

This chapter reveals some basic but popular feature detectors and descriptors in video

content analysis, manifold learning algorithms in computer vision together with some

machine learning techniques that are used for crowd scenes analysis. Overall, there are

still some limitations need to be addressed.

Firstly, each feature detector/descriptor has its own strengths and weaknesses, and

may be applied to a specific scenario. However, most of them are not applicable to

crowd scene analysis due to the following reasons. Firstly, while video surveillance in
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crowd scene displays high density of pedestrians, the feature detectors, e.g., Harris3D,

usually generate sparse interest points, which may result in some missing detection.

As a result, dense sampling combined with some preprocessing technique such as back-

ground subtraction to filter out noise is the most effective feature detecting scheme.

Secondly, most of the aforementioned feature descriptors exhibit discriminative power

while increasing computational cost, which cannot meet the real-time response require-

ment in video surveillance.

Secondly, while LE has been employed for crowd scene analysis, it is a non-linear

manifold learning algorithm which operates in a batch mode. In other words, it is

unclear how to embed new coming frames into the subspace unless re-training the

model. This is much more important as in video surveillance, the video data is usually

very large and arrives in a stream fashion. As a result, there is demand for replacing

the non-linear algorithm with a linear dimension reduction algorithm.

Finally, although the existing work for crowd scene analysis has achieved satisfac-

tory results, they still cannot meet all the challenges in crowd scene analysis, namely,

online learning as well as real-time response. Therefore, we aim to address the afore-

mentioned limitations in the remaining chapters.
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Chapter 3

Research Methodology

3.1 General approach

Video clips

Feature extraction

Machine learning models

Crowd event recognition Abnormal event detection

Feature projection

Online learning

Figure 3.1: The flowchart of a general approach in the thesis.

A general approach proposed in the thesis is displayed in Figure 3.1. Compared

with the conventional approach in Figure 1.1, there are two modifications. Firstly, in

Chapter 4, considering the temporal correlation between frames in video clips as well as

the curse of dimensionality resulted from the high-dimensional features, we propose a

dimension reduction algorithm to compute the low-dimensional feature representations,
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a step called “feature projection”. Those low-dimensional feature representations are

utilized for CER and AED with machine learning models. Secondly, as video data is

usually very large and arrive sequentially, we propose an online learning approach of

OCSVM classifier for AED. The details of the “online learning” step are discussed in

Chapter 5 and 6.

3.2 Performance evaluation

Various criteria that evaluate the performance for different tasks have been considered

in this thesis.

As the CER is a multi-class classification problem, we adopt accuracy to measure

the performance, i.e.,

accuracy =
correct recognized events

total number of events
. (3.1)

For one-class classification problem, namely AED, the performance is evaluated by

drawing the Receiver Operating Characteristic (ROC) curve and computing the area

under the ROC curve (AUC) (Fawcett, 2006) - Figure 3.2(a). More specifically, we

tune the threshold on the detection result and draw the ROC curve, where x and y

axis are False Positive Rate (FPR) and True Positive Rate (TPR), defined as:

FPR =
false positive

false positive + true negative
,

TPR =
true positive

true positive + false negative
,

where “true positive” and “true negative” correspond to the numbers of correctly

detected normal and abnormal frames respectively, “false negative” is the number of

false alarm frames, and “false positive” is the number of missed abnormal frames.

On the basis of ROC curve, AUC and/or Rate of Detection (RD) are employed

to compare with other approaches. The latter is defined as RD = 1 − EER, where

EER stands for the Equal Error Rate (EER), corresponds to the point on the ROC

curve where true positive rate equals to true negative rate (i.e., 1 - false positive rate)

- Figure 3.2(b). A good performance is supposed to have a low EER and hence a high

RD.

For comparison purposes, three criteria are selected to evaluate the Shot Boundary

Detection (SBD) performance, i.e., recall, precision, and F1, given as:

recall =
true positive

true positive + false positive
,
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Figure 3.2: (a) A ROC curve example, where the yellow area corresponds to its AUC.

(b) The EER corresponds to the intersection point of true positive rate curve and true

negative rate curve.

precision =
true positive

true positive + false negative
,

F1 = 2 · recall · precision

recall + precision
,

where “true positive” and “false positive” correspond to the numbers of correctly and

falsely detected shot boundaries respectively, and “false negative” is the number of

missed shot boundaries. Following the TRECVID practice, a SBD outcome is consid-

ered “correct” if there is at least a one frame overlap between the detected transition

and the annotated transition.

3.3 Datasets

To evaluate the performance of the proposed approaches, extensive experiments have

been conducted on five different datasets throughout this thesis. Among them, PETS

2009 dataset1 is used for CER. Meanwhile, UMN dataset 2, Subway Exit dataset (Adam

et al., 2008), and UCSD anomaly dataset3 are used for AED. In addition, we adopt

TRECVID 2007 SBD data4 for SBD.

We adopt the five datasets for several reasons. Firstly, they have been widely used

for evaluation in their individual topic. Secondly, it is very convenient to compare with

1http://www.cvg.rdg.ac.uk
2http://mha.cs.umn.edu
3http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
4http://trecvid.nist.gov/trecvid.data.html
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Table 3.1: Ground truth for CER in the PETS dataset

Classes Timestamp [frames]

Walking 14-16 [0-36, 108-161] 14-31[0-50]

Running 14-16 [37-107, 162-223]

Local dispersion 14-16 [0-184, 280-333]

Local movement 14-33 [197-339] 14-27 [185-279]

Crowd splitting 14-31 [51-130]

Crowd formation 14-33 [0-196]

Evacuation 14-33 [340-377]

the state-of-the-art approaches on them as most of them have complete annotations.

Details of these datasets are introduced as follows.

3.3.1 PETS 2009 dataset

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Sample frames in the PETS dataset. (a) Walking. (b) Running. (c) Local

dispersion. (d) Splitting. (e) Formation. (f) Evacuation.

The PETS 2009 dataset contains four video clips (1066 frames in total) of four views

with timestamps 14-16, 14-27, 14-31 and 14-33 (here we use view “001”). Crowd

events vary over time as follows: walking, running, local movement, local dispersion,
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splitting, formation and evacuation. Figure 3.3 illustrates some sample frames of these

categories. For comparison purpose, we use the same ground truth as in Thida et al.

(2012), as shown in Table 3.1. However, one drawback of PETS is that it is synthetic

for data collection. In other words, all the shots are staged.

3.3.2 UMN dataset

The UMN dataset contains eleven video clips of three different scenes. More precisely,

two clips of Scene 1 (outdoor), six clips of Scene 2 (indoor), and three clips of Scene 3

(outdoor). The total length of the UMN dataset is 7, 739 frames with a resolution of

320×240 pixels. Each clip starts with normal activities and ends with some anomalies

– see Figure 3.4. Motion patterns in different clips vary.

(a) (b) (c)

(d) (e) (f)

Figure 3.4: Sample frames in the UMN dataset. The top row represents normal frames

in the dataset, and the bottom row corresponds abnormal frames. (a)(d): Scene 1;

(b)(e) Scene 2; (c)(f) Scene 3.

However, as mentioned in Li et al. (2014), the UMN shows some limitations. Firstly,

the same as PETS, all shots are staged. Secondly, the abnormal event happens in the

whole frame and produce salient motion changes, which is easy to detect and thus

achieve promising performance.
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3.3.3 Subway Exit dataset

(a)

X: 177 Y: 281
RGB: 177, 177, 177

(b)

X: 147 Y: 249
RGB: 52, 52, 52

(c)

Figure 3.5: Examples of abnormal events in Subway Exit dataset, where red boxes

correspond to abnormal events.

The length of Subway Exit video is about 43 minutes of 64, 901 frames in total. To

make a qualitative comparison with other state-of-the-art methods, we define the same

three types of abnormal events: wrong direction, loitering, and miscellaneous (including

cleaning the wall, etc.). Although the above definitions of abnormal events are rather

subjective, we have 19 abnormal events in total as ground-truth - Table 3.2. Some

abnormal events are illustrated in Figure 3.5.

Following Zhao et al. (2011), anomaly detection is considered as correct if at least

one abnormal event is detected in an annotated frame range, whereas detection is

deemed as a false alarm if at least one anomaly event is triggered outside the annotated

range.

Compared with the UMN dataset, this dataset is much more natural. However, the

main limitations are twofold. Firstly, most of frames in video sequence is redundant as

no pedestrian appear in them. Secondly, the evaluation metric is too coarse because

lack of accurate groundtruth annotation.

Table 3.2: Groundtruth of Subway Exit dataset.

Wrong direction Loitering Misc Total

Ground truth 9 3 7 19

3.3.4 UCSD anomaly detection dataset

The UCSD anomaly detection dataset contains two subsets, acquired by a stationary

camera from two different pedestrian walkways - Figure 3.6. The first set, denoted as
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“Ped1”, has 34 training clips and (6, 800 frames) and 36 testing clips (7, 200 frames),

each with 158 × 238 resolution and a fixed length of 200 frames, while the second,

denoted as “Ped2”, has 16 training clips (2, 550 frames) and 12 testing clips (2, 010

frames), each with a resolution of 240 × 360, and the length varying from 120 to

180 frames. In general, Ped1 is more challenging than Ped2 as the angle of camera

results in larger perspective distortion and more significant scale variation of motion

objects. Furthermore, abnormal events in Ped1 include not only motion anomalies

caused by bikers, skateboarders and small carts etc., but also contextual anomalies,

e.g., pedestrian walking across the lawn. The composition of abnormal events in each

set is illustrated in Table 3.3.

Table 3.3: Composition of abnormal events in the UCSD dataset.

Bike Skater Cart Walk across Other Total

Ped1 28 13 6 4 3 54

Ped2 19 3 1 0 0 23

The same as the UMN dataset, AUC and RD are employed for evaluation. However,

Mahadevan et al. (2010); Li et al. (2014) propose to evaluate on two levels: frame level

and pixel level. For the former an anomaly detection is counted correct if a frame

is related to an abnormal event regardless of the anomaly location within the frame,

while for the latter the anomaly detection is counted correct only if at least 40% of

the truly anomalous pixels are detected. As frame-level can only measure temporal

localization accuracy, the pixel-level evaluation is much more accurate as it rules out

some arbitrary anomaly detection, i.e., a random location in an anomaly frame is

detected as an anomaly.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Sample frames in the UCSD dataset, where top row correspond to Ped1

data, and bottom row correspond to Ped2 data. Red boxes correspond to annotated

abnormal events.

The Ped1 dataset published by (Mahadevan et al., 2010) has only 10 clips (out

of 36 clips) annotated with pixel-level ground truth. To enhance the utilization of

this dataset, more annotations were given by (Antić and Ommer, 2011) for the rest

of the clips5. We denote the former as “partial annotation”, while the latter as “full

annotation”.

Compared with UMN data and Subway Exit data, UCSD data is much more chal-

lenging due to a broad spectrum of abnormal event types. Meanwhile, due to the

complete annotation, it is convenient to compare the evaluation results with the state-

of-the-arts approaches. Therefore, the experiments for AED are mainly carried on this

dataset.

3.3.5 TRECVID 2007 SBD dataset

The TREC Video Retrieval Evaluation (TRECVID) is an annual worldwide bench-

marking activity, whose goal is to encourage research on content-based information

retrieval in digital video. SBD task is one of the many evaluation tasks between 2001

and 2007 (Smeaton et al., 2010). The TRECVID 2007 SBD dataset contains 17 video

5http://hciweb.iwr.uni-heidelberg.de/compvis/research/parsing
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sequences of 637, 805 frames, where 2, 463 shots are annotated - Table 3.4. Among

them, 90% shots are hard cuts, and the rest are gradual transitions. Contents of

the dataset are diverse, covering a wide range from news broadcast clips to archived

grayscale videos, which is different from previous years, where only news report videos

are included.

Table 3.4: Shot composition in TRECVID 2007 SBD dataset.

Video ID Number of frames Hard cut Gradual transition Total

BG 2408 35,892 101 20 121

BG 9401 50,049 89 3 92

BG 11362 16,416 104 4 108

BG 14213 83,115 106 61 167

BG 34901 34,389 224 16 240

BG 35050 36,999 98 4 102

BG 35187 29,025 135 23 158

BG 36028 44,991 87 0 87

BG 36182 29,610 95 14 109

BG 36506 15,210 77 6 83

BG 36537 50,004 259 30 289

BG 36628 56,564 192 10 202

BG 37359 28,908 164 6 170

BG 37417 23,004 76 12 88

BG 37822 21,960 119 10 129

BG 37879 29,019 95 4 99

BG 38150 52,650 215 4 219

Total 637,805 2236 227 2463
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Chapter 4

Crowd Scene Analysis using

adaptive quantization and manifold

learning

4.1 Overview

Recently, manifold learning in computer vision has become a popular research topic

(Turk and Pentland, 1991; Tenenbaum et al., 2000; He et al., 2005; Wang and Suter,

2007, 2008; Elgammal and Lee, 2009; Tziakos et al., 2010; Torki and Elgammal, 2010b;

Thida et al., 2010; Saghafi and Rajan, 2012). Earlier work concentrated on dimension

reduction algorithms for face recognition (Turk and Pentland, 1991; He et al., 2005).

Originally Turk and Pentland (1991) adopt PCA to embed high-dimensional face im-

ages into a linear low-dimensional subspace. These significant features in subspace they

termed as “eigenfaces”. Using the eigenfaces, a new face image is embedded into the

subspace initially and determined if it is a face image by checking if the image is suffi-

ciently close to “face space”. If it is a face image, it is classified either a known person

or not. Kim et al. (2002) extends the same idea for face recognition from PCA to kernel

PCA (Schölkopf et al., 1998). To address the limitations of large variation in lighting

direction and facial expression, Belhumeur et al. (1997) propose fisherfaces on the basis

of FLD. Compared with eigenfaces, fisherfaces achieve greater between-class scatter,

thus simplify face recognition problem. More than a decade later, He et al. (2005) build

on the “eigenfaces” concept and propose Laplacianfaces based on the LPP algorithm.

Unlike analysing the sample covariance matrix in eigenfaces, Laplacianfaces is aiming

at preserving local information and obtaining a face subspace that best detects the
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essential face manifold structure.

Extending face recognition to other computer vision topics, Isomap is used to rep-

resent a set of images as a set of points in a low dimensional space (Pless, 2003). In

this way a video can be considered to have two parts: a space of possible images and

a trajectory through the image space. This gives rise to a new tool for video analysis

by examining the video trajectory, from which events can be segmented and anomalies

can be detected. Following a similar idea, explicit representations for dynamic shape

manifolds of moving humans can also be learnt through LPP, which is used for action

recognition (Wang and Suter, 2007). Other attempts that apply LE to object cate-

gorization and feature-spatial matching have been proposed in Torki and Elgammal

(2010a,b). To maintain the discrimination of local features while keeping their spatial

arrangement information, an adjacency graph that preserves intra-image spatial struc-

ture and inter-image feature affinity is constructed. Focusing on the analysis of crowd

scenes, Tziakos et al. (2009, 2010) detect unusual events in highway by combining LE

with temporal information. In Thida et al. (2010, 2012), a framework was proposed for

event detection using optical flow and Spatio-Temporal Laplacian Eigenmaps (ST-LE).

However, the major drawback of LE is that it is a non-linear algorithm which operates

in a batch mode. In other words, the generalized eigenvalue problem of LE has to

be re-computed when new frames are arriving, which is computationally intensive and

unsuitable for video analysis.

To automatically recognize different type of crowd events and detect anomalous

crowd events, in this chapter, we propose a framework for crowd scene analysis in

video surveillance by learning video manifolds. A new feature code designed by ap-

plying adaptive quantization and binarization is adopted so as to increase the dissim-

ilarity between motion patterns. We propose a novel linear dimensionality reduction

algorithm that considers both spatial and temporal similarities between frames when

generating the video manifold. Experimental results demonstrate that our new method

outperforms the state-of-the-art methods.

4.2 The computational framework

Our computational framework is shown in Figure 4.1. Given a video clip, a Histogram

of Optical Flow (HOF) descriptor is first extracted between two successive frames. On

the basis of HOF, we generate a Quantized Binary Code (QBC) for every frame. Then

all the QBCs are embedded into a low-dimensional manifold using a novel algorithm
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called “Spatial-Temporal Locality Preserving Projections” (STLPP). CER and AED

are eventually conducted on the low-dimensional manifolds using 1-Nearest Neighbour

(1-NN) and OCSVM respectively. Compared with the conventional crowd scene analy-

sis approach, we use STLPP to embed high-dimensional features into low-dimensional

subspaces while incorporating both spatial and temporal similarities. Details of these

algorithmic steps are explained as follows.

HOF extraction

Video clip

QBC generation

STLPP

OCSVM1-NN

CER AED

Figure 4.1: The computational framework for crowd scenes analysis.

4.2.1 HOF extraction

We adopt a matrix of size W×H×L for a video clip, where W and H are the width and

height of the video frame respectively, and L is the total number of frames of the clip.

Optical flow between successive frames is estimated according to Horn and Schunck

(1981). The optical flow vector of the frame at time t is denoted as: {(fx,t, fy,t)}. Then,

insignificant values due to camera motion or noise are removed based on a predefined

threshold.
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Figure 4.2: The splitting of frames into 6 by 8 regions (a) and the corresponding

generation of HOF (b).

The orientation α of a nonzero optical flow vector is determined as:

α =



tan−1(
fy
fx

) fx > 0

tan−1(
fy
fx

) + π fy ≥ 0, fx < 0

tan−1(
fy
fx

)− π fy < 0, fx < 0

+
π

2
fy > 0, fx = 0

−π
2

fy < 0, fx = 0

(4.1)

with −π < α < π. Following the same idea of previous work (Dalal and Triggs, 2005;

Chaudhry et al., 2009), we then construct a 8-bin histogram for α.

We compute the average magnitude of optical flows in each bin, and a histogram

stacking average flows within m × n regions is formed. Figure 4.2 shows an example

of the feature extraction process. We partition a frame into 48 (i.e., 6 × 8) regions -

Figure 4.2(a), and every region has 8 bins. This results in a 2-D histogram in Fig-

ure 4.2(b). The corresponding direction with higher magnitudes in the histogram

indicates the main directions of crowd motions, and the region index indicates the

position of the crowd in the frame.

4.2.2 QBC generation

Although HOF features were successfully applied for the purpose of CER and AED

(Thida et al., 2010, 2012), there are questions around the stability and performance
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of this encoding scheme under different degrees of temporal similarity. Furthermore,

as our overall objective is to move towards real-time analysis of on-line video stream

data, we are also interested in how we can create more compact representations for

video manifold learning with a view to reducing the computational complexity whilst,

maintaining or improving the discriminant ability of crowd motion patterns.

Given this motivation and based on the 2-D optical flow histogram, we next pro-

pose a novel feature scheme called Quantized Binary Code (QBC). Rather than using

the optical flow histogram vectors directly for further computational procedures, we

transform the histogram code through quantization and binarization. Our intention is

to make the transformed feature code more discriminative for different motion types.

For each region we have a 8-dimension flow vector, f , after feature extraction. QBC

scheme first discretizes the continuous flow value into n discrete intervals

{(0, θ1], (θ2, θ3], . . . , (θn−1,+∞)}, where n is the quantization level and θi(i = 1, · · · , n−
1) are threshold vectors. The flow vector is then expanded into a QBC vector as a n-

tuple t = {ci|i = 1,. . . , n}, where the length of each tuple ci is the same as the number

of dimension of flow vector, i.e., 8. The binary element values in each tuple are assigned

with the help of threshold vector θi:

c1j = 1, IF 0 < fj 6 θ1;

cn−1j = 1, IF θn−2 < fj 6 θn−1;

cnj = 1, IF fj > θn−1;

(4.2)

where j = 1, 2, . . . , 8. Otherwise, these elements will remain 0 as initialized.

Figure 4.3 shows an example of QBC generation. The QBC has 16 binary elements

(i.e., n = 2), the first 8 of them corresponding to c1 whether the magnitude of optical

flow on 8 directions is less than the threshold θ respectively, and the next 8 elements

corresponding to c2 whether the magnitude of optical flow is equal to or greater than

θn. Threshold θ1 is indicated by the red dotted line in the diagram.

As can be seen in this figure, similar activities in different regions generate about

the same scale of flow values setting bits 1–8 of the QBC feature to 1 and leaving bits

9–16 at 0. Where the activities are different, this causes the magnitude of optical flow

to become greater than the threshold, θi, therefore in the instances where this occurs,

specific elements of the latter 8 bits of the QBC feature are set to 1. In the case of

Figure 4.3 as bins 1, 5, and 8 exceed the threshold, θi, then bits 9, 13, and 16 of the

QBC feature are set to 1 and bits 1, 5, and 8, of the same feature remain, as initialized,

at 0.

Note that when an optical flows amplitude is too low or zero, it will result in 0
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among both the 1-8 bits and the 9-16 bits. Therefore the two parts here in QBC are not

complementary: A 0 in a lower bit does not necessarily mean a 1 in the corresponding

higher bit, and a 0 in a higher bit does not imply a 1 in the lower bit either.

Despite the quantization and binarization operations, the QBC feature not only

still preserves both the directional and magnitude information of local motions, but

also is more discriminative for different motion types than the optical flow histogram.

When n > 2, more quantization levels are used, resulting in a QBC code of higher

dimensionality, which may contribute to potentially better discriminant ability. The

effect of n on performance will be examined in Section 4.3.1.

Figure 4.3: Generating QBC from HOF.

4.2.3 STLPP

Here we extend the original LPP algorithm (Niyogi, 2004) by considering both spatial

and temporal similarities of events in crowd scenes. LPP provides a good foundation

for our work as it has a number of interesting characteristics which can be subsequently

leveraged for real-time video analysis. Firstly, LPP differs from other dimensionality

reduction algorithms in that it is a linear transformation which makes it less compu-

tationally expensive. Secondly, it has reported good performance in terms of discrimi-

nating power. This is an important feature as we require a representation to facilitate

clearer separation between “normal” and “abnormal” video frames. And thirdly, the

most advantageous feature of LPP is that not only can it be defined on the training

points, it can also accommodate any new incoming data points locating them in the

reduced representation space (Niyogi, 2004); this is however is a weakness of other di-

39



mensionality reductions methods such as LE. Such desirable feature is important since

we are dealing with a stream of video data so we need to consider what computationally

efficient dimensionality reduction methods, which can map all data points, could be

used for incremental learning algorithms such as online OCSVM (Wang et al., 2013)

as this is our ultimate goal.

Unlike the original LPP algorithm, however, STLPP utilizes both spatial and tem-

poral information for manifold learning. We argue that the inclusion of temporal

information should result in improved recognition performance. Although we could

have adopted ST-LE (Thida et al., 2010, 2012) to incorporate this temporal informa-

tion, LPP has a number of advantages over LE which have been previously described.

Furthermore we argue that ST-LE amplifies the effect of temporal information to such

a degree that it reduces the contribution of the spatial component as discussed in ex-

perimental results, therefore an alternative method for preserving local structure needs

to be considered. The algorithm is presented as follows.

Constructing the weight matrix

Suppose there are m frames in a clip, and each frame has its QBC vector xi extracted,

i = 1, . . . ,m. Let W be a symmetric m×m matrix, with the weight between frame i

and frame j given as:

wij = SSij × TSij, (4.3)

where SSij denotes the spatial similarity between xi and xj, i.e., the QBC vectors of

frame i and frame j respectively:

SSij =
xi · xj

‖ xi ‖‖ xj ‖
, (4.4)

and TSij denotes the temporal similarity between the two frames:

TSij = e−
(i−j)2

σ2 , (4.5)

where σ is a parameter controlling the effective scope for temporal similarity.

Generating eigenmaps

Having obtained the similarity matrix W , we deal with the following generalized eige-

nanalysis problem:

XLXTv = λXDXTv, (4.6)
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where D is a diagonal matrix whose entries are column (or row) sums of W , i.e.,

dii =
∑

j wij; L = D −W is the Laplacian matrix; and X denotes the data matrix

whose i-th column xi corresponds to the QBC vector of frame i.

Let column vectors v0, . . . ,vl−1 be the solutions of Eq. (4.6), with the corresponding

eigenvalues in ascending order: λ0 <, . . . , < λl−1. Then, the l-dimensional embedding

vector yi corresponding to xi is estimated by:

yi = V Txi, (4.7)

where V = (v0,v1, . . . ,vl−1). One significant advantage of STLPP is that it is a linear

dimensionality reduction algorithm. For a new arriving clip, we could simply embed it

into low dimensional subspace using Eq. (4.7).

4.2.4 Machine learning models

Now the high-dimensional video frames are embedded into a low-dimensional manifold.

A frame in a video clip is represented as a data point in the embedding space. A

trajectory si is constructed as si = {y1, . . . ,yT}, where T denotes the temporal window

size, and yt is the l-dimensional embedding vector obtained in Eq. (4.7). We employ

learning models on the embedded manifolds for CER and AED.

1-NN for CER

To recognize crowd events, we measure the distance between the reference trajectory

and the test trajectory in the low-dimensional embedding space. Specifically, given

two trajectories s1 and s2, Hausdorff Distance (Huttenlocher et al., 1993) is used to

compute their distance:

H(s1, s2) = max(h(s1, s2), h(s2, s1)), (4.8)

where

h(s1, s2) = max
y1
i∈s1

min
y2
j∈s2
‖y1

i − y2
j‖, (4.9)

and ‖ · ‖ is the Euclidean norm.

Crowd events are classified by the 1-NN algorithm. Denote the training set of

trajectories as TR. For a test trajectory ste, it is classified as Class c if it finds the

nearest match in TR with a class label c:

c = arg min
c
H(ste, s

c), ∀ sc ∈ TR, class(sc) == c. (4.10)
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Note that a more sophisticated classifier could be employed, but here we concentrate

on evaluating the 1-NN discriminative ability of QBC and STLPP.

OCSVM for AED

We adopt the OCSVM for AED, which has already been applied for the purposes of

document classification (Manevitz and Yousef, 2002), time-series novelty detection (Ma

and Perkins, 2003), and handwritten signature verification (Guerbai et al., 2014).

Given a sample of normal trajectories S = {s1, . . . , sn}, OCSVM aims to find an

optimal hyperplane that separates the data points from the origin in the feature space:

f(s) = w · Φ(s)− ρ, (4.11)

where Φ is a feature map that transforms s from the input space S to the feature space

F .

To acquire the optimal parameters w and ρ, one can solve the following quadratic

programming problem:

min
w,ξ,ρ

:
1

2
‖w‖2 + C

∑
i

ξi − ρ

s.t. : w · Φ(si) ≥ ρ− ξi, ξi ≥ 0,

where ξi are slack variables, and C is a regularization parameter, controlling the trade-

off between structure and empirical risks.

Through analysis employing Lagrangians, the problem can be transformed to the

following dual problem:

min
α

:
1

2

∑
ij

αiαjk(si, sj)

s.t. : 0 ≤ αi ≤ C,
∑
i

αi = 1,
(4.12)

where αi represents the weight on vector si, and k(si, sj) = Φ(si) · Φ(sj) is a kernel

function that measures the similarity between the two trajectories si and sj, with a

maximum of 1 and a minimum of 0.

4.3 Experimental result

To evaluate the performance of the proposed STLPP framework, we conduct experi-

ments using two benchmark datasets: the PETS 2009 dataset and the UMN dataset.
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Table 4.1: The quanta matrix for a histogram bin.

Class Interval Sum of class

(0, θ1] . . . (θj−1, θj] . . . (θn−1,+∞)

C1 a11 . . . a1j . . . a1n A1+

...
... . . .

... . . .
...

...

Ci ai1 . . . aij . . . ain Ai+
...

... . . .
... . . .

...
...

Cm am1 . . . amj . . . amn Am+

Sum of intervals A+1 . . . A+j . . . A+n A

In general we adopt the same or similar experiment settings to the relevant literature

so as to make the results comparable. Details of experimental settings and results are

presented here, for CER and AED respectively.

4.3.1 CER result

Evaluation of QBC

Our first experiment is to investigate the effects of QBC, compared with that of the

plain optical flow histograms as in previous work. In our implementation, the bina-

rization threshold is derived individually for each region, based on which the QBC for

each frame is obtained.

We assess the quality of QBC using two measurements: the Class-Attribute Inter-

dependence Redundancy (CAIR) (Ching et al., 1995; Tsai et al., 2008) and the Infor-

mation Gain (IG) (Kullback, 1968). Both measurements are widely used for feature

selection, and for evaluating the quality of discretization schemes as they can effectively

represent the interdependency between the target class and discretized attributes.

Assume for a histogram bin b, the n − 1 discretization thresholds, θ1, · · · , θn−1
are used to create n intervals for a region. The intervals, and the occurrences of the

feature value for each class form a so-called “quanta matrix”, as shown in Table 4.1.

The occurrence accumulation for each class is Ai+ =
∑

j aij, and the accumulation

per interval is calculated as A+j =
∑

iAij, i = 1, · · · ,m, j = 1, · · · , n. The total

accumulation is denoted as A. Hence the probabilities for Class i regarding the j-th

interval is then pij =
aij
A

, the probability for Class i is pi+ = Ai+
A

, and the probability

for Interval j is p+j =
A+j

A
.
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Figure 4.4: The CAIR (b) and IG (c) performance comparision in terms of quantization

level n from three randomly selected regions (a).

Using the above definitions, the CAIR and the IG for the current bin are defined

as:

CAIR =

m∑
i=1

n∑
j=1

pijlog2
pij

pi+p+j

m∑
i=1

n∑
j=1

pijlog2
1
pij

(4.13)

IG = H(C)−H(C|A)

= −
m∑
i=1

pi+log2pi+ +
m∑
i=1

n∑
j=1

p+jpijlog2pij
(4.14)
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Eventually we obtain the average CAIR and IG across all histogram bins.

Figure 4.4 illustrates the CAIR and the IG performance with different quantization

levels (n = 2, . . . , 6) from three random selected regions (Region 9, 20 and 35). It is

shown that even though their performance in each region is different from each other, it

achieves better performance with n = 3 (Figure 4.4(b)) or 4 (Figure 4.4(c)). Moreover,

the experiment shows that the higher quantization level does not lead to a significant

improvement in performance.
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Figure 4.5: QBC vs HOF. Best viewed in colour.

Next, we set the embedding dimension l and the temporal window size T both to

3, obtaining trajectories of 9 dimensions; then a 4-fold cross-validation is employed

on these trajectories to compute recognition accuracy with σ increasing exponentially

(σ = 2−5, 2−4, . . . , 29), and the scale with the best cross-validation accuracy is chosen.

Meanwhile, the QBC (n = 1, . . . , 4) and the HOF are tested respectively to verify the

effectiveness of the QBC. The outcome is illustrated in Figure 4.5. It shows that, over

a large range of σ values (from 1
4

to 64), the performance of the QBC is more robust

and better. Meanwhile, the performance of the QBC reaches its peaks when σ is set

as 8 and 16 (i.e., 23 and 24), where the quantization level of n = 3 is sufficient to give

competitive outcome.
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Figure 4.6: 3-D manifolds of PETS crowd events generated by different algorithms. (a)

PCA. (b) ST-LE. (c) LPP. (d) STLPP. (Event keys: blue × - walking, red ◦ - running,

green + - local dispersion, magenta � - local movement, cyan M - splitting, black ? -

formation, yellow ∗ - evacuation)

Evaluation of STLPP

Furthermore, we evaluate the capability of STLPP when QBC is employed. Figure 4.6

shows the 3-D manifolds of four dimension reduction algorithms: LPP, PCA, ST-LE,

and STLPP. For STLPP, σ is set to 16 (i.e., 24), and the quantization level n is set to 3.

It can be seen that STLPP and ST-LE show better visual clustering effects. However,

the effect of temporal information in ST-LE is too strong, shaping the generated video

manifold almost into a line structure over time. For STLPP - Figure 4.6(d), similar

motion patterns still cluster well even though temporal similarity is integrated. Note

that the same event have different clusters, e.g., walking event (blue ×). By looking
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through the dataset, this is because the two walking events have different direction, as

depicted in Figure 4.7.

(a) (b)

Figure 4.7: Same events generate different video manifolds due to different motion

directions. (a) Walking event from right to left. (b) Walking event from left to right.

To evaluate the classification performance, a training/testing split ratio is set to

1/2 for the dataset (the same as in (Thida et al., 2012)). The average results from 10

randomized runs are reported.

We first evaluate the effect of temporal window size T and embedding dimensions

l. Embedding dimension and temporal window size are both tuned from 1 to 10 in the

experiment. The average error rate is reported in Figure 4.8. Clearly, the performance

has been improved significantly when temporal window size and embedding dimension

are adjusted from 1 to 3. Larger embedding dimension settings seem to further reduce

the error. Nevertheless, long temporal window size (i.e., from 7 to 10) results in

deterioration performance. In the following, considering both computational cost and

performance, embedding dimension and temporal window size are both set to 5.
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Table 4.2: Confusion matrix for event recognition in the PETS dataset (l = 5, T = 5).

Walking (W) 1.00 0 0 0 0 0 0

Running (R) 0.03 0.97 0 0 0 0 0

Local dispersion (LD) 0 0 0.95 0.05 0 0 0

Local movement (LM) 0 0 0.07 0.92 0 0.01 0

Splitting (S) 0.03 0 0 0 0.97 0 0

Formation (F) 0 0 0 0.02 0 0.98 0

Evacuation (E) 0 0 0 0.01 0 0 0.99
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Figure 4.8: Error rate in terms of embedding dimension and temporal window size.

The confusion matrix corresponding to the highest recognition accuracy, is shown

in Table 4.2.

48



Table 4.3: Comparison of event recognition accuracy on the PETS dataset.

Method Accuracy (%)

HOG Tracker (Garate et al., 2009) 82.83

Dynamic Textures (Chan et al., 2009) 84.33

ST-LE (Thida et al., 2012) 89.42

STVFF (Su et al., 2012) 90.20

STLPP with HOF 93.70

STLPP with QBC (n = 1) 93.64

STLPP with QBC (n = 2) 96.79

STLPP with QBC (n = 3) 96.85

STLPP with QBC (n = 4) 96.33

Clearly most crowd events have very good recognition performance. The high sim-

ilarity between Local Movement (LM) and Local Dispersion (LD) contributes to a

significant confusion, which is however consistent with the manifold shown in Figure

4.6(a), where the overlap of the two event classes in the manifold is obvious. Com-

pared with the state-of-the-art methods, including HOG Tracker (Garate et al., 2009),

Dynamic Texture (Chan et al., 2009), ST-LE (Thida et al., 2012), and STVFF (Su

et al., 2012), STLPP has increased the recognition accuracy by around 7%, as shown

in Table 4.3.

4.3.2 AED result

To compare with the state-of-the-art approaches, we follow the same settings as in

other works: 3/4 normal trajectories are selected randomly for training and the rest

(normal and abnormal) are used for testing. The results reported are averaged from 10

randomized runs. In this experiment, we split each frame (240 × 320) into 20 (4 × 5)

regions. Radial Basis Function (RBF) kernel (Chang and Lin, 2011) is adopted to

measure the similarity between two trajectories.

Similar to previous experiments, we first fix the embedding dimension and temporal

window size (both to 3) and compute the best detection accuracy while increasing σ

exponentially. The corresponding results are shown in Figure 4.9. The σ with the best

detection accuracy in three scenes are 2, 2−2 and 2−2 respectively. Their corresponding

3-dimension manifolds demonstrate that our proposed method separate normal and

abnormal events clearly in the low-dimensional embedding space.
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Table 4.4: Comparison of average AUC on the UMN dataset.

Method AUC

Chaotic Dynamics (Wu et al., 2010) 0.99

Social Force (Mehran et al., 2009) 0.96

SRC (Cong et al., 2011) 0.99

ST-LE (Thida et al., 2012) 0.97

Phase Correlation (Shi et al., 2010) 0.89

STLPP 0.99

Eventually, we compare our method using QBC and OCSVM with six other state-

of-the-art methods in Table 5.1, where the AUC values are reported. The performance

of our method is competitive, being the same as (Wu et al., 2010; Cong et al., 2011),

and outperforming others (Mehran et al., 2009; Thida et al., 2012; Shi et al., 2010).

4.4 Summary

In this chapter, we have proposed a novel method for crowd scene analysis in video

surveillance through video manifold learning. Based on using regional optical flow his-

tograms, we adopt the adaptive quantization and binarization coding scheme which

gives better event discriminant ability as revealed by increased information gain and

class-dependent redundancy indices. Furthermore, the improved feature codes are em-

bedded in a low-dimensional space using a manifold projection algorithm that inte-

grates both spatial and temporal similarities among frames. The proposed approach

is able to generate manifolds with well-shaped motion pattern clusters. Experimental

results obtained from two benchmark sets have verified that our proposed method gives

competitive performance for CER and AED.

Despite the competitive results and the linear property, the proposed framework

still works in batch-mode, hence cannot satisfy the demand of applications where data

are received incrementally from online video streams (Lu and He, 2005), which is much

more important for video surveillance application. To this end, we propose an online

adaptive OCSVM to detect abnormal events in the next chapter.
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Figure 4.9: STLPP manifolds for the UMN scenes (shown on the right) generated from

optimal σ values (indicated by red square markers shown on the left).(a)(b) Scene 1;

(c)(d) Scene 2; (e)(f) Scene 3. In (b)(d)(f), blue + indicates normal frames, and red ◦
indicates abnomal frames.
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Chapter 5

Online Adaptive OCSVM for AED

5.1 Overview

Anomalies are patterns in data that do not conform to a well-defined notion of normal

behaviour (Chandola et al., 2009). Correspondingly, anomaly detection refers to iden-

tifying those anomalous patterns given the normal patterns. Recently, in the context of

increased awareness of national security and public safety, Abnormal Event Detection

(AED), i.e., anomaly detection in crowd scenes, has attracted more and more attention

for the development of intelligent video surveillance systems.

Most existing machine learning algorithms for anomaly detection (Breunig et al.,

2000; Roth, 2006) operate by nature in batch mode, which cannot be directly applied to

AED due to the large volume and the stream fashion of the video data. To this end, we

propose an online adaptive One-Class Support Vector Machines (OCSVM) framework

to detect anomalies in crowd scenes, inspired by the work of (Cauwenberghs and Poggio,

2001; Laskov et al., 2006). To the best of our knowledge, our work is the first attempt

to apply incremental and decremental framework to AED. The main contributions are

as follows:

• We extend the incremental and decremental framework from binary classification

scenario to one-class scenario. By solving a linear system and recursively con-

structing new exact solutions to keep the Karush-Kuhn-Tucker conditions (Boyd

and Vandenberghe, 2004) satisfied for the updated data, this approach is capa-

ble of processing video streams in an online fashion with a reasonable degree of

efficiency.

• Using a sliding buffer technique to keep the recent data, our framework is able
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to handle concept drift.

• We provide a unified framework to detect both global and local anomalies.

5.2 Introduction to OCSVM

During the last few years, OCSVM has been widely applied to a number of studies,

including signature classification (Guerbai et al., 2014), anomaly detection (Manevitz

and Yousef, 2002; Ma and Perkins, 2003), and clustering (Ben-Hur et al., 2002) etc.

Here we briefly outline the OCSVM and introduce the notations to be used later for

presenting our framework. Given a set of unlabeled training data X = {x1, . . . ,xn},
OCSVM aims to find an optimal hyperplane that separates the data points from the

origin in the feature space:

f(x) = w · Φ(x)− ρ, (5.1)

where Φ is a feature map that transforms x from the input space X to the feature

space F .

To acquire the optimal parameters w and ρ, one can solve the following quadratic

programming problem:

min
w,ξ,ρ

:
1

2
‖w‖2 + C

∑
i

ξi − ρ

s.t. : w · Φ(xi) ≥ ρ− ξi, ξi ≥ 0,

where ξi are slack variables, and C is a regularization parameter, controlling the trade-

off between structure and empirical risks.

By introducing Lagrange multipliers αi, βi ≥ 0, the corresponding Lagrangian is

formulated as:

L =
1

2
‖w‖2 + C

∑
i

ξi − ρ−
∑
i

αi(w · Φ(xi)− ρ+ ξi)−
∑
i

βiξi. (5.2)

To minimize L, the derivatives of Eq. (5.2) with respect to the variables w, ξ, and

ρ are set to zero, giving
∂L

∂w
= 0⇒ w =

∑
i

αiΦ(xi), (5.3)

∂L

∂ξ
= 0⇒ αi = C − βi,

∂L

∂ρ
= 0⇒

∑
i

αi = 1.
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Substituting the above three equations into Eq. (5.2), we solve the dual problem

instead:

min
α

:
1

2

∑
ij

αiαjk(xi,xj)

s.t. : 0 ≤ αi ≤ C,
∑
i

αi = 1,
(5.4)

where k(xi,xj) = Φ(xi)·Φ(xj) is a kernel function that measures the similarity between

the two examples xi and xj, with a maximum of 1 and a minimum of 0.

The utilization of the kernel function k(xi,xj) means that the similarity between xi

and xj can be measured without exploiting the feature map Φ and the high-dimensional

space explicitly. Combining Eq. (5.3) and Eq. (5.1), the separating function is rewritten

as:

f(x) =
∑
j

αjk(x,xj)− ρ. (5.5)

The success of OCSVM stems from the kernel method as well as margin maximiza-

tion properties, both inherited from SVM. However, the conventional OCSVM model is

limited to batch mode, resulting in two difficulties for data stream based applications.

Firstly, the computational complexity of standard batch mode numeric techniques in-

creases quadratically with the size of the training data, which is unsuitable to video

data stream as the training set is usually very large (Thompson et al., 2013). Secondly,

although some more efficient approaches, e.g., (Platt, 1999; Keerthi et al., 2001; Son-

nenburg et al., 2006), have been proposed to tackle SVM training for large-scale data,

the streaming nature of the data, i.e., video frames arriving sequentially rather than

all at once, demands an OCSVM classifier that can learn in an online mode.

To address this limitation, researchers have proposed a series of online OCSVM

algorithms (Kivinen et al., 2004; Desobry et al., 2005; Laskov et al., 2006; Gómez-

Verdejo et al., 2011; Wang, 2013; Kolev et al., 2015). A straightforward method is to

apply the batch algorithm by using a sliding window (Desobry et al., 2005), but this

incurs a high computational cost for each batch computation. Kivinen et al. (2004)

adopt a stochastic gradient descent technique to develop a computationally efficient

algorithm while giving only approximate results. An analogous adaptive OCSVM is

proposed in Gómez-Verdejo et al. (2011) based on the solution of iterated re-weighted

least squares, where a forgetting factor parameter reflects the time impact on data. To

detect abnormal event in surveillance, Wang (2013) proposes both online Least Squares

One-Class Support Vector Machines (LS-OCSVM) and sparse online LS-OCSVM to

model covariance descriptors of frame behavior. Based on the work of incremental
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and decremental SVM (Cauwenberghs and Poggio, 2001), Laskov et al. (2006) propose

an incremental OCSVM for online learning. Following the same idea of Laskov et al.

(2006), Kolev et al. (2015) apply the incremental OCSVM to flight data analysis by

considering both false positive and false negative separately. The incremental OCSVM,

however, poses some weaknesses as follows. Firstly, its computational cost rockets up

as the dataset grows, which is unsuitable for real-time demanding system. Secondly,

it lacks a decremental procedure to abandon obsolete data. While analogous to the

incremental OCSVM, our online adaptive OCSVM overcomes the above drawbacks,

where the incremental and decremental scheme as well as the sliding buffer technique

cut down the processing time while handling concept drift (Gama et al., 2014) or slow

distribution changes effectively.

5.3 The computational framework

The flowchart of our proposed computational framework is illustrated in Figure 5.1.

Given a training set of video segments, each segment is divided into a set of video events.

Non-overlapping spatial-temporal patches are densely sampled from each event. For

each small patch, a Histogram of Optical Flow (HOF) descriptor vector is computed.

We then form a visual vocabulary by performing k-means clustering of a random subset

of descriptors extract from the training set. By assigning each descriptor to its closest

vocabulary word, the video events are represented as histograms and used to train an

OCSVM classifier. In the testing process, when a new test event arrives, its histogram

representation is verified by the learnt OCSVM model. If the test event is not detected

as an anomaly but satisfies the update criterion, the OCSVM model will be updated

for further detection.

5.3.1 Event representation and feature extraction

The proposed procedure of event representation and feature extraction is a Bag of

Words (BoW) approach, which has recently demonstrated impressive performance

on document classification (Hofmann, 2001; Blei et al., 2003), image categorization

(Csurka et al., 2004; Fei-Fei and Perona, 2005; Sivic et al., 2005; Moosmann et al.,

2008; van Gemert et al., 2010; Van De Sande et al., 2010) and action recognition

(Klaser et al., 2008; Niebles et al., 2008; Willems et al., 2008; Wang et al., 2009). More

specifically, a document, image or video clip is represented as the bag of its words, local
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Figure 5.1: The flowchart of online adaptive OCSVM for AED.

image features or local video features, discarding any information about their position

and structure.

However, due to the fact that locations and structure information are of vital im-

portance in image categorization and action recognition, some variant BoW approaches

(Lazebnik et al., 2006; Yang et al., 2009; Choi et al., 2013) are proposed to incorporate

the position information.

Event representation

Following Cong et al. (2011), we classify the anomaly in crowd scenes into two classes on

the basis of anomaly scale: Global Anomaly (GA) and Local Anomaly (LA). The GA

is defined for anomaly on the whole-scene level, while the LA refers to an individual’s

behaviour is different from that of historical and neighbouring individuals. To deal

with the two anomaly categories, we propose two separate representations.

As shown in Figure 5.2, video segments are firstly obtained using a sliding window.

We then extract the non-overlapping spatial-temporal patches and compute their HOF

descriptors to form a codebook. These video segments are divided into spatial-temporal

events or temporal events. Specifically, the video segment is partitioned into 2l × 2l

cells (l is called pyramid level, l = 0, 1, 2, 3). In each cell we compute its histogram

separately, and the spatial-temporal event is represented as a concatenated histogram.
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Figure 5.2: The framework of event representation.

The approach of spatial-temporal event representation, called Spatial-Temporal Pyra-

mid Matching (STPM) (Lin et al., 2014), has been proved effective for crowd event

recognition. As for LA, it usually happens in a rather compact region, so we ignore

the position information and only one histogram is computed.

Histogram of Optical Flow

Using a sliding window to get the video segments, we then compute optical flow using

Horn and Schunck’s method (Horn and Schunck, 1981). The flow vector containing

two directional components is denoted as {fx, fy}. The orientation α and magnitude

f of the flow vectors are calculated as:

α = arctan(
fy
fx

),

f =
√
f 2
x + f 2

y ,

(5.6)

where the range of α is (−π
2
, π
2
), and thus mapped to [0, 2π).
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Figure 5.3: Illustration of interpolating a flow vector into neighboring bins (N = 8).

Next, in each spatial-temporal patch, all flow vectors are quantized into N bins

by using a soft-assignment scheme (van Gemert et al., 2010). Figure 5.3 shows an

example with N = 8 bins. Each bin covers 360/8 = 45 degrees, and the dotted lines

correspond to bin centres. For a flow vector with orientation α = 75◦, its deviation

from Bin 2 centre (i.e., 45◦) and Bin 3 centre (i.e., 90◦) are 30◦ and 15◦ respectively.

Thus, the weights assigned to Bin 2 and Bin 3 are 1/3 (i.e. 15/45) and 2/3 (i.e.

30/45) respectively. Likewise, each flow vector is assigned to two neighbouring bins

with relevant, non-zero weights unless they align exactly with one of the dotted lines

(in which case the weight to the corresponding bin will be 1, and all others 0). A N -

dimensional HOF descriptor is then formed counting all flow vectors’ soft contribution.

Obviously, our approach is not restricted to the simple descriptor, which can be easily

replaced by some more complicated spatial-temporal feature descriptors, e.g., 3D HOG

(Klaser et al., 2008), or 3D SIFT (Scovanner et al., 2007).

5.3.2 Online adaptive OCSVM

Figure 5.4 illustrates the procedure of online adaptive OCSVM algorithm. From time

t to t + 1, we add the new arriving data (red circle) to the sliding buffer using the

incremental procedure, while removing the obsolete data (blue circle) from the sliding

buffer through the decremental procedure. The incremental procedure of the algorithm,

inspired by Cauwenberghs and Poggio (2001), is also the same as Laskov et al. (2006).

Nevertheless, the additional decremental procedure and sliding buffer techniques in

our approach reduce the computational cost significantly and discard obsolete data

patterns that no longer reflect the distribution of normal patterns.
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Figure 5.4: The framework of online adaptive OCSVM.

Karush-Kuhn-Tucker conditions

To elaborate our approach, we rewrite the dual problem Eq. (5.4) as a saddle-point

formulation:

max
ρ

min
0≤αi≤C

: W =
1

2

∑
ij

αiαjk(xi,xj)− ρ(
∑
i

αi − 1).

The first-order conditions on W reduce to the Karush-Kuhn-Tucker (KKT) condi-

tions:

gi =
∂W

∂αi
=
∑
j

αjk(xi,xj)− ρ

=⇒ f(xi)


≥ 0, if αi = 0,

= 0, if 0 < αi < C,

≤ 0, if αi = C,

(5.7)

∂W

∂ρ
=
∑
i

αi − 1 = 0. (5.8)

On the basis of Eq. (5.7), the indexes of training set IX are defined as three sets:

IX = IS ∪ IE ∪ IO,

IS = {i : xi ∈ X , 0 < αi < C},

IE = {i : xi ∈ X , αi = C},

IO = {i : xi ∈ X , αi = 0}.

In parallel, the training data X is divided into three subsets:

X = S ∪ E ∪ O,

S = {xi : ∀i ∈ IS},

E = {xi : ∀i ∈ IE},

O = {xi : ∀i ∈ IO},
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where S, E , and O are referred to margin support vector set, error support vector set,

and the remaining set. Figure 5.5 illustrates the three subsets in OCSVM model. From

now on, we will abbreviate k(xi,xj) to kij. For any two subsets denoted as X and Y ,

kXY is the kernel matrix whose rows are indexed by X , and the columns are indexed

by Y .

X

Y

−10 −5 0 5 10
−10

−5

0

5

10

Figure 5.5: In OCSVM, set S corresponds to data on the boundary (blue ⊗), set E
corresponds to the data outside boundary (red ∗), and setO is the data in the boundary

(black +).

Derivation

To add or remove a data xc to/from the trained OCSVM model, if we have gc > 0,

we add or remove xc straightforwardly and wait for processing the new incoming data

because it has no impact on the model. If we have gc ≤ 0, we update the coefficients of

margin support vectors S and ρ to keep the KKT conditions satisfied for the enlarged

or reduced data set:

∆gi = kic∆αc +
∑
j∈IS

kij∆αj + ∆ρ, ∀i ∈ IX ∪ c, (5.9)

0 = ∆αc +
∑
j∈IS

∆αj. (5.10)
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For all margin support vectors set S, gi ≡ 0, ∀i ∈ IS . Eq. (5.9) and (5.10) can be

rewritten as matrix notation:[
0 1

1 kSS

]
︸ ︷︷ ︸

K

[
∆ρ

∆αS

]
= −

[
1

kSc

]
∆αc,

=⇒

[
∆ρ

∆αS

]
=

[
β

βS

]
∆αc, (5.11)

with coefficient sensitivities given by[
β

βS

]
= −Q

[
1

kSc

]
, (5.12)

where Q = K−1. Note that we assume the kernel matrix K is nonsingular, namely

invertible.

Substitute Eq. (5.11) in Eq. (5.9):

∆gi = γi∆αc, (5.13)

with margin sensitivities:

γi = kic + kiSβS + β, ∀i /∈ IS . (5.14)

Incremental learning

Nevertheless, we cannot obtain the new OCSVM state directly as in Eq. (5.11) and

(5.13) the composition of the sets S, E and O changes relative to the change of ∆αc

and ∆gi.

In the incremental learning procedure, we have identified the following five condi-

tions that are most likely to occur (Cauwenberghs and Poggio, 2001; Laskov et al.,

2006):

1. gc becomes zero, namely xc joins to S. The corresponding increment is computed

as ∆αgc = −gc
γc

.

2. αc reaches C, corresponding to xc becomes an error support vector. The equiva-

lent incremental step is computed as ∆ααc = C − αc.

3. One gi in E becomes zero, equivalent to xi transferring from E to S. The most

likely occurred constraint ∆αEc equals to finding the minimal increment:

∆αEc = min
−gi
γi
, ∀i ∈ IE ∩ γi > 0.
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4. One gi in O becomes zero, equivalent to xi transferring from O to S. The most

likely occurred step is computed as:

∆αOc = min
−gi
γi
, ∀i ∈ IO ∩ γi < 0.

5. xi in S reaches a bound, αi with equality 0 is equivalent to transferring xi from

S to O, and equality C from S to E . The most likely increment equals:

∆αSc = min
∆αSi
βi

, ∀i ∈ IS ,

where

∆αSi =

{
C − αi, if βi > 0;

−αi, if βi < 0.

Finally, ∆αc is determined by finding the minimal value of the above conditions:

∆αc = min(∆αgc ,∆α
α
c ,∆α

E
c ,∆α

O
c ,∆α

S
c ). (5.15)

Once obtaining ∆αc, we can update ρ, αi, gi through Eq. (5.11) and (5.13). The

process repeats until the coefficient αc becomes C or gc reaches zero, i.e., the enlarged

data set satisfies the KKT condition. Algorithm 1 details the incremental learning

procedure.

Decremental learning

The single incremental procedure is reversible, when we remove a data xc (with

gc ≤ 0) from the trained OCSVM model, we decrease its coefficient ac from its orginal

value to 0 while checking the following four conditions that are most likely to happen:

1. αc reaches 0, namely xc transfers from S or E to 0. The equivalent decrement is

computed as ∆ααc = −αc.

2. One gi in E becomes zero, equivalent to xi transferring from E to S. The most

likely occurred decrease ∆αEc is computed as:

∆αEc = max
−gi
γi
, ∀i ∈ IE ∩ γi < 0.

3. One gi in O becomes zero, equivalent to xi transferring from O to S. The

corresponding decrement is computed as:

∆αOc = max
−gi
γi
, ∀i ∈ IO ∩ γi > 0.
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Algorithm 1 Incremental learning

Input: S, E , O, {αi}ni=1, {gi}ni=1, ρ, Q, xc

Output: S, E , O, {αi}n+1
i=1 , {gi}n+1

i=1 , ρ, Q

Initialize αc ← 0.

Compute gc using Eq. (5.7).

if gc > 0 then

O ← O ∪ xc
return

else

while true do

Compute β, βS and γi in terms of Eq. (5.12) and Eq. (5.14).

Compute ∆αc according to Eq. (5.15).

αc ← αc + ∆αc

αS ← αS + βS∆αc

gi ← gi + γi∆αc,∀i ∈ IE ∪ IO ∪ c
ρ← ρ− β∆αc

Update S, E , O according to occurred condition.

if S has changed then

Update Q according to Eq. (5.19) or Eq. (5.20).

end if

if ∆αc = ∆αgc then

S ← S ∪ xc
return

end if

if ∆αc = ∆ααc then

E ← E ∪ xc
return

end if

end while

end if

63



Algorithm 2 Decremental learning

Input: S, E , O, {αi}ni=1, {gi}ni=1, ρ, c ∈ IX
Output: S, E , O, {αi}n−1i=1 , {gi}n−1i=1 , ρ, Q

if xc ∈ O then

O ← O \ xc
return

end if

if xc ∈ S then

S ← S \ xc
Update Q according to Eq. (5.19) or Eq. (5.20).

else

E ← E \ xc
end if

while true do

Compute β, βS and γi in terms of Eq. (5.12) and (5.14).

Compute ∆αc according to Eq. (5.16).

αc ← αc + ∆αc

αS ← αS + βS∆αc

gi ← gi + γi∆αc ∀i ∈ IE ∪ IO
ρ← ρ− β∆αc

Update S, E , O according to occurred condition.

if S has changed then

Update Q according to Eq. (5.19) or Eq. (5.20).

end if

if ∆αc = ∆ααc then

return

end if

end while
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4. xi in S reaches a bound, αi with equality 0 is equivalent to transferring xi from

S to O, and equality C from S to E . The largest possible decrement is computed

as:

∆αSc = max
∆αSi
βi

, ∀i ∈ IS ,

where

∆αSi =

{
C − αi, if βi < 0;

−αi, if βi > 0.

On the contrary, ∆αc is determined by finding the maximal value of the above condi-

tions:

∆αc = max(∆ααc ,∆α
E
c ,∆α

O
c ,∆α

S
c ). (5.16)

The same as the single incremental procedure, it repeats until αc becomes zero. Algo-

rithm 2 details the decremental learning procedure.

Recursive update of Q

It is time-consuming if we compute the inverse matrix Q whenever the set S has

changed. Fortunately, by applying the Sherman-Morrison-Woodbury formula (Golub

and van Loan, 1996) for block matrix inversion, we can update the matrix Q in an

efficient way. More specifically, let Q̂ be the enlarged inverse matrix, when a data xi

transfers to S, the inversed kernel matrix expands to:

Q̂ =


0 1 1

1 kSS kTiS

1 kiS kii


−1

=

[
K V T

V kii

]−1
, (5.17)

where

V =
[

1 kiS

]
.

Using Sherman-Morrison-Woodbury formula, the expanded inversed kernel matrix

is rewritten as:[
K V T

V kii

]−1
=

[
K−1 0

0 0

]
+ (kii − V K−1V T )−1

[
−K−1V T

1

] [
−V K−1 1

]
.

(5.18)

To sum up, the update rule from Q to Q̂ is computed as:

Q̂ =

[
Q 0

0 0

]
+ (1− V QV T )−1

[
−QV T

1

] [
−V Q 1

]
, i /∈ IS . (5.19)
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It is analogous to remove a data xi from the set S. To distinguish from the shrinking

inverse matrix Q, let Q̂ be the original inverse matrix. Combining with Eq. (5.18), we

can write:

Q̂ =

[
Q̂SS Q̂T

iS

Q̂iS Q̂ii

]
=

[
Q 0

0 0

]
+

1

ζ

[
QV TV Q −QV T

−V Q 1

]
,

where ζ = 1− V QV T .

After matrix manipulation, the update rule is written as:

Q = Q̂SS − Q̂−1ii Q̂T
iSQ̂iS , i /∈ IS . (5.20)

5.4 Experimental result

We have conducted experiments on three benchmark datasets: ‘UMN’, ‘UCSD Ped2’,

and ‘Subway Exit’. The UMN dataset is used to verify the effectiveness of spatial-

temporal events for GA, while the UCSD Ped2 and Subway Exit datasets are used to

test temporal events for LA. In the following presentation, unless otherwise specified,

Radial Basis Function (RBF) kernel, i.e., k(xi, xj) = exp(− ||xi−xj ||
2

σ
) are adopted in the

experiments, and 50, 000 HOF descriptors are selected randomly from the training set

to form a codebook through the k-means algorithm. All experiments are repeated in

10 runs by selecting training and testing sets randomly, and the average performance

is reported.

The size of events and spatial-temporal patch is chosen considering both efficiency

and effectiveness. If the size of spatial-temporal patch is too small, more subtle motion

information will be detected while increasing computational cost, whereas enlarging

the size reduces the computation but may ignore some important motion information.

Likewise, the width and height for temporal event for LA correspond to the scale of the

scene, so that each event does not contain too many objects which may interfere with

each other. Furthermore, the selection of temporal size provides the trade-off between

the ability to detect anomaly and timely response.

5.4.1 UMN dataset

In the dataset, the size of spatial-temporal patch is set as 10×10×3 and the temporal

window size is set as to 12 with no overlap. The parameters σ and C in OCSVM are set

to 0.005 and 0.1 empirically. The update threshold θ is set as −0.05, which means for
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a new incoming data xc, if gc ≥ θ, the OCSVM model will be updated. The selection

of θ reflects what degree of slow, tiny change will be tracked.

l =
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Figure 5.6: The influence of parameter settings of k and l on AUC performance of

UMN dataset.

In the training process, we use the first 300 frames from each scene to train the initial

parameters using a batch OCSVM algorithm (e.g. sequential minimal optimization

(Platt, 1999)), and the rest of the frames for testing. To demonstrate the effectiveness

of event representation for GA, we first tune the size of codebook k from 50 to 400

while adjusting pyramid level l from 0 to 3, where the cell sizes are correspondingly split

from 1× 1 (i.e., 20× 20) to 8× 8 (i.e., 23× 23). Figure 5.6 displays how the parameter

settings impact on the Area Under the Curve (AUC) performance. It shows that the

performance rises by more than 2% when l increases from 0 to 2, but deteriorates

when l reaches 3. We assume this is because the video segments is partitioned so finely

that the GA representation is smoothed. On the other hand, increasing codebook size

improves performance by less than 2% at lower pyramid levels (e.g, l = 0, 1, 2). The

improvement, however, is eliminated when the codebook size increases from 200 to 400.

Based on the experiment, all the following experimental results are reported with k of

200 and l of 2.

The quantitative results for Scene 1, Scene 2, and Scene 3 are shown in Figure 5.7,

5.8, and 5.9 respectively, where the top row in each scene illustrates sample frames in the

dataset, and the green dots and red crosses in the bottom rows represent the normal

video events and abnormal video events respectively. It shows that most abnormal

events (red crosses) have lower decision values than normal events (green dots), which
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is consistent with the ground truth.

Method AUC

Optical flow (Mehran et al., 2009) 0.840

Social force (Mehran et al., 2009) 0.960

Chaotic invariant (Wu et al., 2010) 0.994

SRC (Cong et al., 2011) 0.996

H-MDT-CRF (Li et al., 2014) 0.995

ST-LE (Thida et al., 2012) 0.970

Phase Correlation (Shi et al., 2010) 0.892

Online adaptive OCSVM 0.985

Table 5.1: Comparison of AUC on the UMN dataset.

We also compared our method with the state-of-the-art methods, as shown in Table

5.1. The overall Area Under the Curve (AUC) performance of our approach in three

scenes are 0.9947, 0.9827, and 0.9856 (0.9853 overall), which is comparable to Chaotic

invariant (Wu et al., 2010), H-MDT-CRF (Li et al., 2014) and SRC (Cong et al., 2011),

better than other methods.

5.4.2 UCSD Ped2 dataset

In the Ped2 dataset, we empirical apply a 40×40×15 temporal event with 10×10×7

overlap in the training set and 20× 20× 7 overlap in the testing set. The parameters

σ, C, and θ are given as 0.3, 0.1, and 0.001 through cross validation.

We use the conventional batch OCSVM on the events extracted from the first

training clip (i.e., 120 frames) to obtain the initial parameters. Our online adaptive

OCSVM approach is then applied to the rest of 15 training clips and 12 testing clips.

Note that the update threshold θ is not triggered in the process of training so that our

approach is able to learn the distribution of all the normal patterns. As in (Li et al.,

2014), two measurements are used to evaluate the performance of anomaly detection:

frame-level and pixel-level. The former predicts which frames contain an anomaly

regardless of the anomaly location within the frame, while the latter labels the event

as an anomaly if at least 40% of the truly anomalous pixels are detected.

We report the ROC curve of the UCSD Ped2 dataset in Figure 5.10. Figure 5.11

shows some detected examples from UCSD Ped2 dataset. Note that the false alarm

(red rectangle) that is detected by our approach in Figure 5.11(d). It is labelled as
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Figure 5.7: Experimental results of the online adaptive OCSVMs model on UMN

dataset Scene 1.

normal event according to ground truth. However, our approach regards this event

(pedestrian walks from bottom to left) as anomaly because it never happened in the

training set, which is consistent with the definition of anomaly detection.

Compared with the state-of-the-art approaches in Table 5.2, the EER performance

of our proposed algorithm is comparable to that of H-MDT-CRF (Li et al., 2014) and

LDA (Weinshall et al., 2013) on the frame-level, but outperforms H-MDT-CRF on the

pixel-level.

Table 5.2: Quantitative comparison of our method and the state-of-the-art approaches.

Method Frame-level Pixel-level

EER (%) EER (%)

H-MDT-CRF (Li et al., 2014) 19 30

LDA (Weinshall et al., 2013) 16 −
Online adpative OCSVM 18 23
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Figure 5.8: Experimental results of the online adaptive OCSVMs model on UMN

dataset Scene 2.
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Figure 5.9: Experimental results of the online adaptive OCSVMs model on UMN

dataset Scene 3.
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Figure 5.10: The ROC curves of the frame-level and the pixel-level on Ped2 dataset.

Table 5.3: Comparison of the results on the Subway Exit dataset.

Wrong Loitering Misc False

direction alarm

Ground truth 9 3 7 0

Real-time (Adam et al., 2008) 9 - - 0

SRC (Cong et al., 2011) 9 - - 0

Sparse coding (Zhao et al., 2011) 9 3 7 2

Online adpative OCSVM 9 3 5 2

5.4.3 Subway Exit dataset

To reduce computational cost, the original frames are first down sampled from 384×512

to 240× 320, and we define the size of event as 50× 50× 15 with 20× 20× 7 overlap in

both training and testing dataset. The online adaptive OCSVM model has the same

settings as in UCSD Ped2 dataset. Following the practice in (Adam et al., 2008), the

first 6 minutes (9, 000 frames) are used for training, and the rest for testing. Figure

5.12 illustrates some detection results from the Subway Exit dataset, where the green,

red, and blue rectangles correspond to correct detection, false alarms and missing

detections. It should be noted that the normal events in Figure 5.12(c)(d) are detected

as an anomaly because the corresponding event type (pedestrians walking from right to

left) was not learned in the training process. The comparative experimental results are

shown in Table 5.3. It can be seen that our model has achieved a comparable result.
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(a) (b)

(c) (d)

Figure 5.11: Examples of detected abnormal events, where the green rectangles are true

negatives, the blue and red rectangle are false positive and false negative respectively.
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Our algorithm is implemented using MATLAB R2014a on a 2.7GHZ Intel Core i5

with 8GB RAM. The average computation time is 0.11 second/frame for the UMN

dataset, 0.19 second/frame for the UCSD Ped2 dataset, and 0.28 second/frame for the

Subway Exit dataset.

(a) (b) (c)

(d) (e) (f)

Figure 5.12: LA detection results on Subway Exit dataset. (a)(b) Correct detections.

(c)(d) False alarms. (e)(f) Missing detections.

5.5 Summary

This chapter presents a novel framework for AED on the basis of OCSVM. By keeping

the KKT conditions satisfied for the changing data set, our approach effectively updates

OCSVM classifier in an online fashion. The online algorithm along with the use of a

sliding buffer can adapt to new patterns and forget obsolete patterns at the same time.

Satisfactory performance is gained for the detection of both global and local anomalies

using benchmark datasets.

The proposed framework, however, still poses some drawbacks. First, the classifier

is trained and tested on whole video content exhaustively, which not only increases

computational cost, but also deteriorates the detection performance due to including

noise. Second, the motion features of same object from different locations may vary
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due to perspective of camera, anomaly in distant view may be ignored due to small

scale motion. One possible solution is to divide the spatial position of frame into grids,

in each grid a classifier is trained. However, how to set the threshold for performance

evaluation is still challenging. Last but not least, we may receive multiple data at

each time for LA detection, which is time-consuming to update data once each time,

namely, single update. In the next chapter, we will propose an improved framework to

address these limitations.
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Chapter 6

Multiple Incremental and

Decremental Learning OCSVM for

AED

6.1 Overview

In the previous chapter, we have proposed a novel online adaptive OCSVM model to

detect abnormal events in crowd scene. The algorithm solves a linear system and con-

structs a new exact solution to keep the KKT conditions satisfied for the updated data,

thus is able to add and remove data in an online fashion. Although it demonstrates

satisfactory performance, more challenges have to be met.

On the one hand, the feature extraction scheme of previous approach is densely

sampled, which requires high computational overhead and cannot meet the requirement

of real-time constraint in video surveillance application. On the other hand, while

the event representation scheme for GA detection is unable to localize the anomaly

in a frame, we may receive many data at a time in LA detection, which also raises

computational burden if we update one data each time.

Apart from the challenges of dealing with large amounts of streaming data, other

factors may also significantly affect the performance of abnormal event detection. For

instance, camera perspectives may result in scale variation of the extracted features.

An event occurring in a close range may produce significant optic flow features, hence

is likely to be recognized as anomaly, but due to perspective distortion, the same type

of events occurring in a remote location may be deemed as normal. Furthermore,

abnormal events in surveillance videos may not be confined to motion anomalies only.
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For example, a “normal” event appearing at a location where it has never occurred

before is supposed to be detected as an anomaly in certain scenarios, a case we will

refer to as “contextual anomaly” from now on.

To tackle the problem of AED in video surveillance, we propose a Multiple Incre-

mental and Decremental Learning with Kernel Fusion (MIDL-KF) framework. Com-

pared with the computational framework in Chapter 5, the main improvements are as

follows:

• We simplify the feature extraction scheme by extracting Region Of Interest (ROI)

and proposing an Adaptive Multi-scale Histogram of Optical Flow (AMHOF)

descriptor. The former decreases the computational cost and enhances robustness

of the anomaly detector, while the latter adapts to different environments by

adaptively deciding its scale binning using a clustering process.

• By combining motion information as well as spatial location information through

kernel fusion, the MIDL-KF framework is able to detect motion anomalies as well

as contextual anomalies even under perspective distortions.

• We extend the update scheme from single instance incremental and decremental

learning to multiple Incremental and Decremental Learning (MIDL). Specifically,

instead of updating one data after another, MIDL adopts a variable cache to store

the received data entries in each frame and updates them together, which reduces

computational cost effectively.

• The detection result has been improved further by a simplified Multiple Target

Tracking (MTT) algorithm.

6.2 The computational framework

The MIDL-KF framework is illustrated in Figure 6.1. Given a training video clip, we

first detect potential ROIs of each frame using a background subtraction approach.

Then we extract the corresponding motion information (i.e., AMHOF) and spatial

location from these ROIs. Combining the two sources of information using kernel

fusion, MIDL is employed to update the OCSVM classifier continuously. The procedure

is repeated until all the training data have been learnt. In the testing process, we have

the same steps to detect potential ROIs and extract multiple sources of features, where

the ROIs are detected as normal or abnormal by the learnt classifier.
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Figure 6.1: The MIDL-KF framework for abnormal event detection.

6.2.1 ROI extraction

(a) (b) (c)

Figure 6.2: ROI extraction based on background subtraction. (a) Incoming frame. (b)

Foreground. (c) ROIs. Best viewed in colour.

A large proportion of visual content in video surveillance is background. Train-

ing a detector using whole frame content increases the computational costs and may

compromise the detection performance due to excessive noise. Fortunately, for most

surveillance applications stationary cameras are used, hence applying background sub-

traction to extract ROIs is feasible.

After modeling the background via the Gaussian Mixture Model (GMM) model

(Stauffer and Grimson, 1999; Zivkovic, 2004), a sliding window is used to scan through

the detected foreground of current frame and detect ROIs which may be related to
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anomaly detection. Specifically, for all pixels inside the sliding window, if the propor-

tions of foreground pixels is greater than a threshold (i.e., empirically set as 0.2 in our

experiment), then the window is highlighted as a ROI.

Figure 6.2 displays the process of ROI extraction. As can been seen, this process

filters most of the background out, reducing the computational cost as well as enhancing

robustness of the anomaly detector. Obviously, background subtraction approach is

not restricted to the model, which can be easily replaced by other ones, e.g., Kernel

Density Estimation (KDE) (Elgammal et al., 2000). This is however not the focus of

the thesis.

6.2.2 Multiple feature extraction

After identifying the ROIs, we extract motion information and contextual information

from them.

Due to the fact that an anomaly does not occur only in one frame, we employ a

sliding window centred at time t – {t − n, · · · , t − 1, t, t + 1, · · · , t + n} – to extract

the AMHOF descriptor. Specifically, in each ROI optical flow of each pixel is calcu-

lated using Horn and Schunck’s method (Horn and Schunck, 1981). The flow vector

containing two directional components is denoted as {fx, fy}. The orientation α and

magnitude f of the flow vectors are calculated as:

α = arctan(
fy
fx

),

f =
√
f 2
x + f 2

y ,

where the range of α is [−π/2, π/2], and thus mapped to [0, 2π).

Next, all flow vectors are quantized into M ×N bins, where M is number of direc-

tions, and N is the discretization level of motion intensities. The discretization centres

of motion intensities are determined by performing k-means clustering (k = N) of a

random subset of magnitude f of flow vectors from the training set. This step is a

simplified BoW model, where each flow vector is treated as a word, thus reducing com-

putations compared with our previous BoW model. Our AMHOF adapts to different

scenarios by adjusting the centres automatically, which is different from the Multi-

scale Histogram of Optical Flow (MHOF) in Cong et al. (2013), where the threshold

of 2-level MHOF was empirically set to a fixed value.

Besides motion information, we also consider the contextual information, i.e., spa-

tial location (i.e., x and y coordinates) of each ROI in the frame. Figure 6.3 shows
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(151,141)

(221,121)

Figure 6.3: Multiple feature extraction from three different ROIs (M = 8, N = 3),

where the colours Yellow, Green and Blue correspond to biker, pedestrian, and skate-

boarder, respectively. Best viewed in colour.

multiple features extracted from three ROIs, where the AMHOF discriminates different

motion patterns by capturing both direction and motion intensity information.

6.2.3 Kernel Fusion

It has been demonstrated that using a kernel method to combine multiple sources of

information improves classification performance (Joachims et al., 2001; Camps-Valls

et al., 2006; Lanckriet et al., 2004). It is also demonstrated in a case study (Das et al.,

2010) that the use of multiple kernels leads to a more powerful anomaly detection learn-

ing scheme. The basic idea of the kernel method is to define a kernel function k(xi,xj)

to measure the similarity between data xi and xj in the feature space F . Rather than

selecting only one specific kernel function, Multiple Kernel Learning (MKL) (Rako-

tomamonjy et al., 2008; Gönen and Alpaydın, 2011; Kembhavi et al., 2009) defines a

combination function to fuse multiple kernels:

k(xi,xj) = f({kn(xni ,x
n
j )}Sn=1),

where xni and xnj denote the relevant data from feature source n, and S is the number

of multiple kernels.

We define the combination function as follows. Let (di, li) and (dj, lj) be the fea-

tures extracted from ROIs xi and xj, where di and dj correspond to motion descriptors,

namely AMHOF, and li and lj correspond to the spatial locations. The similarity be-
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tween xi and xj is given as:

k(xi,xj) = k1(di,dj) · k2(li, lj), (6.1)

where k1(di,dj) measures motion similarity, and k2(li, lj) measures spatial similarity.

We evaluate four kernel functions to measure the similarity between two AMHOF

descriptors di and dj:

1. Linear kernel

k1(di,dj) = di · dj, (6.2)

2. Radial Basis Function (RBF) kernel

k1(di,dj) = exp

(
−‖di − dj‖2

2σ2
d

)
, (6.3)

3. χ2 kernel (Vedaldi and Zisserman, 2012)

k1(di,dj) =
∑
b

2dbid
b
j

dbi + dbj
, (6.4)

4. Histogram Intersection (HI) kernel (Swain and Ballard, 1991)

k1(di,dj) =
∑
b

min(dbi ,d
b
j), (6.5)

where b in Eq. (6.4) and (6.5) is the corresponding bin in di and dj.

To measure the contextual similarity, we use the RBF kernel:

k2(li, lj) = exp

(
−‖li − lj‖2

2σ2
l

)
(6.6)

where σl is the span of the kernel.

To sum up, Eq. (6.1) indicates any two ROIs are similar only when they produce

similar motion features and they are spatially close to each other. Experimental results

verify that MIDL-KF not only overcomes the difficulty of perspective distortion, but

also has the capability to detect spatial location anomalies.

6.2.4 MIDL framework

The framework of our MIDL algorithm is illustrated in Figure 6.4. An OCSVM clas-

sifier can be initialized by training it over a mini-batch of the data stream. Suppose

we have trained the OCSVM classifier using the data in a variable buffer at time t.

80



… 

Buffer 

Multiple decremental Multiple incremental 

Variable cache 

Figure 6.4: The MIDL framework. New arriving data instances to be added into the

buffer are indicated by red solid circles, while the obsolete instances to be removed

from the buffer are indicated by blue dashed circles.

From t to t + 1, a variable cache is deployed to store incoming data. Then we add

these incoming data into the buffer and remove those obsolete data while updating the

classifier. Note that MIDL is flexible in the sense that we can choose to adopt multi-

ple incremental learning with or without multiple decremental learning, depending on

which is appropriate for the application scenario.

MIDL extends the work in Karasuyama and Takeuchi (2009) from a binary clas-

sification scenario to a one-class scenario. Compared with our previous work where

each time the learning model can only update on a single data entry, our approach

exhibits the ability to update multiple data simultaneously, thus effectively reducing

the computational cost.

Derivation

For the multiple incremental and decremental learning process, suppose we add p new

arriving data and remove q obsolete data simultaneously. Let A = {x1, . . . ,xp} and

R = {x1, . . . ,xq} ⊂ X be the sets of addition and removal, in parallel IA and IR denote

index sets of A and R.

We first initialize the coefficients of addition set A as zeros, i.e., αi = 0,∀i ∈ IA,

and remove R from X , i.e., X ← X \ R. For gi > 0,∀i ∈ IA, we append these data

directly to O because they already satisfy the KKT conditions. Likewise, we discard

the data in R with corresponding αi = 0,∀i ∈ IR. For any xi having gi ≤ 0 in A and

R, the KKT conditions are to be kept:

∆gi =
∑
j∈IA

kij∆αj +
∑
j∈IR

kij∆αj +
∑
j∈IS

kij∆αj + ∆ρ, (6.7)

∀i ∈ IX ∪ IA,
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0 =
∑
j∈IA

∆αj +
∑
j∈IR

∆αj +
∑
j∈IS

∆αj.

For margin support vector set S, gi ≡ 0,∀i ∈ IS . The above equations can be

rewritten as the matrix notation:[
0 1

1 kSS

]
︸ ︷︷ ︸

K

[
∆ρ

∆αS

]
= −

[
1 1

kSA kSR

][
∆αA

∆αR

]
, (6.8)

where ∆αS , ∆αA, and ∆αR denote the changes of coefficients in sets S, A, and R.

The same as in Karasuyama and Takeuchi (2009), the change directions of ∆αA

and ∆αR are given as:

∆αA = η(C1− αA),

∆αR = −ηαR,
(6.9)

where η is a step length. Together with Eq. (6.8), we can write:[
∆ρ

∆αS

]
= ηΦ, (6.10)

where

Φ =

[
φρ

φS

]
= −K−1︸︷︷︸

Q

[
1 1

kSA kSR

][
C1− αA
−αR

]
. (6.11)

Substituting Eq. (6.9) and Eq. (6.11) into Eq. (6.7):

∆gi = ηΨi, (6.12)

where

Ψi = kiA(C1− αA)− kiRαR +
[

1 kiS

]
Φ, ∀i /∈ IS . (6.13)

As shown in Eq. (6.10) and Eq. (6.12), the composition of the sets S, E and O
changes relative to the change of ∆αS and ∆gi. To decide the learning step η, we

consider the following cases:

1. gi in A reaches zero, corresponding to xi transfering from A to S. The largest

step is computed as:

ηA = min
−gi
Ψi

, ∀i ∈ IA ∩Ψi > 0.

2. gi in E becomes zero, equivalent to xi transferring from E to S. The largest step

ηE equals to finding the minimal increment:

ηE = min
−gi
Ψi

, ∀i ∈ IE ∩Ψi > 0.
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3. gi in O becomes zero, equivalent to xi transferring from O to S. The largest

possible step is computed as:

ηO = min
−gi
Ψi

, ∀i ∈ IO ∩Ψi < 0.

4. xi in S reaches a bound, αi with equality 0 is equivalent to transferring xi from

S to O, and equality C from S to E . The largest possible increment is:

ηS = min
∆αSi
φi

, ∀i ∈ IS ,

where

∆αSi =

{
C − αi, if φi > 0;

−αi, if φi < 0.

The largest possible step length η is determined as:

η = min(ηA, ηE , ηO, ηS , 1). (6.14)

Once obtaining η, we can update ρ, αi, and gi through Eq. (6.9), (6.10) and (6.12).

The procedures are repeated until η becomes 1, where all the data in A, R, and X
satisfy the KKT conditions. Algorithm 3 details the learning process of MIDL.

6.3 Experimental result

The UCSD dataset and UMN dataset have been used for performance evaluation. As

video clips in these datasets are fairly short in length, we employ incremental but

no decremental learning to train the OCSVM. In the following presentation, unless

otherwise specified, we empirically set parameter C in OCSVM as 0.1. Meanwhile, in

the training process, we first use the conventional batch mode algorithm (Schölkopf

et al., 2001) on a small number events (i.e., 2, 000 in the following experiments) to

obtain the initial parameters. Then incremental learning is deployed on the rest of the

training data stream.

6.3.1 UCSD anomaly detection dataset

Setup

We set the orientation bin number M in AMHOF as 8 empirically. For the Ped1

dataset, we apply a 20× 10 (i.e., height × width) sliding window with 1/2 overlap to

83



Algorithm 3 MIDL

Input: S, E , O, {αi}ni=1, {gi}ni=1, ρ, Q, A, IR ∈ IX
Output: S, E , O, {αi}n+p−qi=1 , {gi}n+p−qi=1 , ρ, Q

Initialize αA ← 0, compute gA using Eq. (5.7).

A ← A \ xi O ← O ∪ xi, ∀i ∈ IA ∩ gi > 0

Initialize R ← ∅
R ← R∪ xi S ← S \ xi E ← E \ xi O ← O \ xi, ∀i ∈ IR
if S has changed then

Update Q according to Eq. (5.19) or Eq. (5.20).

end if

R ← R \ xi, ∀i ∈ IR ∩ αi = 0

while true do

Compute Φ and Ψi using Eq. (6.11) and Eq. (6.13).

Compute the largest possible step η according to Eq. (6.14).

ρ← ρ− ηφρ
αS ← αS + ηφS

αA ← αA + η(C1− αA)

αR ← αR − ηαR
gi ← gi + ηΨi, ∀i /∈ IS
Update A, S, E , and O according to occurred condition.

if S has changed then

Update Q according to Eq. (5.19) or Eq. (5.20).

end if

if η = 1 then

E ← E ∪ A R ← ∅
return

end if

end while
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Figure 6.5: Parameter tuning for the Ped1 dataset. (a) EER variation over different

quantization levels N . (b) The pixel-level (full annotation) ROC curves with various

kernel metrics.

extract ROIs, and the temporal length of an event is set as 6. We resize the frame size

to 160 × 240 so that the sliding window is able to scan whole frame. For Ped2, we

apply a 30 × 30 sliding window with 2/3 overlap, while the temporal length is set to

8. The selection of the temporal lengths is aimed at the trade-off between detection

accuracy and timely response.

UCSD Ped1 dataset

First, we need to find out the optimal parameter settings. There are three parameters

to be considered, namely, the quantization level N of AMHOF, the kernel metric for

motion similarity, and the bandwidth of the RBF kernel σl for contextual similarity
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(a) (b) (c)

Figure 6.6: Detection results on Ped1. First row: MIDL. Second row: MIDL-KF.

Third row: H-MDT-CRF, where the red masks are predicted by the CRF filter, and

blue masks are predicted by simple thresholding. Best viewed in colour.

control. A simple approach is adopted by tuning one parameter while fixing the other

parameters. We first change N from 2 to 12 while using motion feature only and

the HI kernel for similarity measure. This simplified version without using kernel

fusion is denoted as “MIDL” to differentiate it from MIDL-KF. As shown in Figure

6.5(a), the frame-level EER does not show any significant improvement as frame-level

only measures temporal location accuracy, some arbitrary anomaly detection (i.e., a

random location in an anomaly frame is detected as anomaly) may compensate for loss

of performance. Instead, the full annotation pixel-level EER is more convincing. It

decreases with N increasing from 2 to 10, and saturates when N enlarges from 10 to 12.

With N equal to 10, Figure 6.5(b) illustrates the RBF kernel is superior to the other

three kernels, where the bandwidth σd is acquired through cross validation. Using the

same scheme, we obtain the optimal settings for the Ped1 dataset, i.e., N = 10, RBF

kernel (σd = 0.05), and σl = 40.

Figure 6.6 illustrates the superiority of MIDL-KF over MIDL as well as H-MDT-

86



Figure 6.7: Detection results of MIDL-KF on Ped1. First row: cars. Second row:

skateboarders. Third row: bikes. Fourth row: others. Best viewed in colour.

CRF (Li et al., 2014). By comparison with detection results of MIDL, it demonstrates

that MIDL-KF not only overcomes the shortcoming of perspective distortion, namely,

detecting abnormal event in distant view (Figure 6.6(a)(b)), but also detects spatial

location anomalies (Figure 6.6(c)). On the other hand, apart from detecting the con-

textual abnormal event (Figure 6.6(c)), MIDL-KF achieves more accurate abnormal

event localization than H-MDT-CRF. More detection results are displayed in Figure

6.7.

Figure 6.8 shows the ROC curves comparison of frame-level and pixel-level (partial

annotation and full annotation) between MIDL-KF and the state-of-the-art approaches,

including MDT (Mahadevan et al., 2010), H-MDT-CRF (Li et al., 2014), Video Pars-

ing (Antić and Ommer, 2011), and Sparse Reconstruction Cost (SRC) (Cong et al.,
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Figure 6.8: Comparison of ROC curves for Ped1: (a) frame-level, (b) pixel-level: partial

annotation, and (c) pixel-level: full annotation.
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Table 6.1: Performance comparison with the state-of-the-art on Ped1.

Frame-level Pixel-level (%)

% Partial Full

Method AUC RD AUC RD AUC RD

MDT (Mahadevan et al., 2010) 83.8 75.6 44.0 49.4 - -

H-MDT-CRF (Li et al., 2014) - 82.2 66.2 64.9 82.7 75.1

Video Parsing (Antić and Ommer, 2011) 90.5 81.9 75.6 67.6 83.6 76.7

SRC (Cong et al., 2013) 90.2 80.8 47.1 46.0 - -

SRC with EMD (Zhu et al., 2014) - 85.0 - 53.0 - -

SCL (Lu et al., 2013) 91.8 85.0 63.8 59.1 - -

MIDL 87.9 80.7 83.0 76.1 76.5 73.4

MIDL-KF 93.4 87.2 90.1 83.7 86.1 80.2

2013). In short, our approach achieves the best AUC both in frame-level and pixel-level

evaluations.

For frame-level performance, MIDL-KF also compares favourably with the state of

the art, including SCL (Lu et al., 2013) and SRC with EMD (Zhu et al., 2014), on

the RD metric given in Table 6.1. As for pixel-level performance, we gain the RD

of 83.7% in partial annotation and 80.2% in full annotation, both outperforming the

other approaches.

UCSD Ped2 dataset

Similar to the Ped1 dataset, we first obtain the optimal settings by tuning one pa-

rameter while fixing the other parameters. As depicted in Figure 6.9, we compare our

results with the state-of-the-art approaches using the obtained optimal settings, i.e.,

N = 5, RBF kernel (σd = 0.5), and σl = 100.

Figure 6.10 displays both the frame-level and pixel-level ROC curves of MIDL-

KF in comparison with the state-of-the-art. Compared with MIDL, there is only a

slight improvement using MIDL-KF. By looking through the Ped2 dataset, we believe

this is due to the fact that the anomaly is mostly related to fast motions only and

the perspective distortion is insignificant, therefore using AMHOF alone is sufficient

to detect the abnormal events. Figure 6.11 shows the detection results on a sample

frame comparing with MIDL and H-MDT-CRF. More detection results are illustrated

in Figure 6.12.
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Figure 6.9: Parameter tuning for Ped2. (a) EER variation over different quantization

levels N . (b) The pixel-level ROC curves with various kernel metrics.

The comparison with the state-of-the-art approaches is presented in Table 6.2. Our

frame-level RD has been improved by around 7.1% over Video Parsing (Antić and

Ommer, 2011). We also improve the pixel-level RD by about 17.8% over H-MDT-

CRF, attaining 87.9%.

6.3.2 UMN dataset

We empirically set the sliding window size as 12 × 16 with an overlap of 6 × 8, and

the temporal length is set as 10. The direction information in the dataset is useless,

so we set the direction bin M as 1, namely we only consider motion magnitude. The

quantization level N is set as 10 to differentiate the motion intensities. The abnormal

events happen in the whole scene and the perspective distortion is insignificant, so
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Figure 6.10: Comparison of ROC curves for Ped2: (a) frame-level, and (b) pixel-level.

here we only adopt MIDL for simplicity. For comparison purposes, we use the first

400 frames of each scene for training, and the rest for testing. Figure 6.14 displays

detection results on some sample frames in the UMN dataset. Like (Li et al., 2014),

our approach detects and localizes anomalies simultaneously, which is different from

our previous work, where the GA detection cannot localize the position of anomalies.

The UMN seems an easier dataset and the state of the art results are very good.

Figure 6.13 presents the comparison between our MIDL and previous results in the

literature. The AUC and RD results are given in Table 6.3. We gained an AUC

of 99.5% and a RD of 96.5%, which are better than most of previous work and are

comparable to Cong et al. (2013).
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(a) (b) (c)

Figure 6.11: Detection results on Ped2: (a) MIDL, (b) MIDL-KF, and (c) H-MDT-

CRF. Best viewed in colour.

Table 6.2: Performance comparison with the state-of-the-art on Ped2.

Frame-level (%) Pixel-level (%)

Method AUC RD AUC RD

MDT (Mahadevan et al., 2010) 84.8 74.0 - 45.0

H-MDT-CRF (Li et al., 2014) - 81.5 - 70.1

Video Parsing (Antić and Ommer, 2011) 91.0 85.8 - -

LDA (Weinshall et al., 2013) - 16 - -

MIDL 97.6 92.2 92.4 87.3

MIDL-KF 97.7 92.9 93.3 87.9

6.3.3 Computational efficiency analysis

Our framework is implemented using MATLAB R2014a and runs on a 2.7GHz Intel

Core i5 with 8GB RAM.

To validate the computational efficiency of multiple incremental learning, we change

the cache size from 1 to 150, and evaluate the detection performance as well as average

processing time for each instance update. Note here the multiple incremental learning

is equivalent to single instance incremental learning in Laskov et al. (2006); Lin et al.

(2015) when cache size is equal to 1. The experimental results of the cache size effect

are shown in Figure 6.15. As depicted in Figure 6.15(a)(b), MIDL has negligible

effect on frame-level EER and pixel-level RD. On the other hand, although the average

processing time for each dataset in Figure 6.15(c) is different from each other depending

on the size of dataset, it constantly decreases with the cache size increasing from 1 to

20, and saturates from 30 to 150.

The overall computational time on UCSD and UMN dataset are shown in Table

6.4. In Ped1 dataset, the difference on testing time between MIDL and MIDL-KF are
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Figure 6.12: Detection results of MIDL-KF on Ped2. Best viewed in colour.
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Figure 6.13: Frame-level ROC curves for UMN data.

negligible. However, the training time has increased from 0.06 second/frame without

KF, to 0.25 second/frame with KF, which requires more iterations to converge. The

average computation time of our approach is 0.15 second/frame for the UCSD Ped1

dataset, 0.08 second/frame for the UCSD Ped2 dataset, and 0.12 second/frame for the

UMN dataset. Comparison with the computational time on UCSD Ped1 dataset, our

approach is much faster than MDT (Mahadevan et al., 2010), H-MDT-CRF (Li et al.,

2014), Video Parsing (Antić and Ommer, 2011), and SRC (Cong et al., 2013), among

which the best computational time is about 1.0 second/frame (H-MDT-CRF), with the

exception of the extremely fast SCL (0.007 second/frame). However, note that SCL

resizes the frame resolution from 158× 238 to 120× 160, which reduces computational

cost significantly.
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Table 6.3: Frame-level AUC and RD comparison for UMN data.

Frame-level (%)

Method AUC RD

Social force (Mehran et al., 2009) 94.9 87.4

Chaotic invariant (Wu et al., 2010) 99.4 94.7

SRC (Cong et al., 2013) 99.6 97.2

H-MDT-CRF (Li et al., 2014) 99.5 96.3

MIDL 99.5 96.5

(a) (b) (c)

Figure 6.14: Detection results of the MIDL on the UMN dataset: (a) Scene 1, (b)

Scene 2, and (c) Scene 3. Best viewed in colour.

6.4 Performance improvement by MTT

Although we have detected abnormal ROIs in each frame, there are still some false and

missing detections due to the high occlusion of moving objects. Furthermore, to carry

out further analysis, we would like to track an abnormal event from its appearance

until end. With the hypothesis that an abnormal event is supposed to appear in a

continuous spatial-temporal locations, we establish correspondence of abnormal ROIs

between frames by using a simplified linear Multiple Target Tracking (MTT) algorithm

Table 6.4: Computational time on UCSD and UMN dataset (second/frame).

MIDL MIDL-KF

Dataset Training Testing Avg. Training Testing Avg.

Ped1 0.06 0.05 0.06 0.25 0.06 0.15

Ped2 0.08 0.10 0.09 0.08 0.09 0.08

UMN 0.08 0.13 0.12 - - -
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Figure 6.15: The effect of cache size on detection performance. (a) Frame-level EER

comparison with various cache size. (b) Pixel-level RD comparison with various cache

size. (c) The average update time with different cache size.
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Figure 6.16: MTT flowchart.

(Blackman, 2004; Amditis et al., 2012).

Figure 6.16 displays the flowchart of MTT. At each frame, we have an available

set of existing tracks and a new set of blobs, which are extracted from the foreground

pixels of the detected abnormal ROIs by using blob extraction. These blobs, also called

measurements, can either be assigned to an existing track or initiates a new track by

measurement-to-track association scheme. Track maintenance provides the capability

of track initialization, continuation, and deletion, where the existing tracks are used

for measurement-to-track association of next frame.

6.4.1 Blob extraction

The foreground pixels are labeled from all the detected abnormal ROIs, where a set

of connected blobs are extracted by a connected-component labeling algorithm, e.g.,

Suzuki et al. (2003). As the background subtraction procedure has been employed

in ROIs extraction (Section 6.2.1), there isn’t any extra computation. However, the

benefits of background subtraction are twofold. First, false detections due to small

movement are removed. Second, it improves detection accuracy by filtering background

pixels. Figure 6.17 illustrates the blob extraction process.

6.4.2 Measurement-to-track association

To clarify the procedure of MTT, at time t, let T = {t1, . . . , tm} be the set of existing

tracks, where the state of each track is modelled by a Kalman filter (Kalman, 1960;

Welch and Bishop, 1995), denoted as ti = (xi,t−1, Pi,t−1, A,H,Q,R), given the notation

in Table 6.5. Meanwhile, let Z = {z1,t, . . . , zn,t} be the centroids of the blobs.

For an existing track ti, we first predict its new state x̂i,t and state covariance P̂i,t
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(a) (b) (c)

Figure 6.17: Blob extraction employed on the foreground pixels of the detected abnor-

mal ROIs. (a) Abnormal ROIs. (b) Foreground. (c) Result after blob extraction. Best

viewed in colour.

Table 6.5: Notation of the Kalman filter

Symbol Description

xi,t Estimated state of track i at time t

x̂i,t Predicted state of track i at time t

zj,t The centroid of blob j at time t

Pi,t Estimated state covariance of track i at time t

P̂i,t Predicted state covariance of track i at time t

K Kalman gain

A State transition matrix, constant

H Measurement matrix, constant

Q Process noise covariance, constant

R Measurement noise covariance, constant

I Identity matrix

using the estimated state xi,t−1 and estimated state covariance Pi,t−1 at time t− 1:

x̂i,t = Axi,t−1,

P̂i,t = APi,t−1A
T +Q.

(6.15)

Next, a distance matrix D is constructed, where Dij measures the squared Maha-

lanobis distance (McLachlan, 1999) between x̂i,t and zj,t:

Dij = (zj,t −Hx̂i,t)
T (HP̂i,tH

T +R)−1(zj,t −Hx̂i,t). (6.16)

A track ti is the candidate to be associated with a blob zj,t only if Dij ≤ G, where

G is the gate size. In other words, only the blobs within the gate are considered to be

assigned to that track.
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Figure 6.18: Illustration of 1-NN scheme. At time t, there are two tracks t1 and t2.

The predicted position of track t1 is Hx̂1,t, while the predicted position of track t2 is

Hx̂2,t. Based on the track gate, we associate z1,t, z2,t, and z3,t to t1, while z2,t and z3,t

to t2. Using the GNN scheme, z1,t is assigned to t1, while z3,t is assigned to t2.

However, there are multiple blobs within the gate of a track when some targets are

close to each other. Under this circumstances, we simply adopt the 1-NN scheme to

assign the nearest blob to the track. Figure 6.18 displays the 1-NN scheme. It works

well in our approach due to the sparse distributed abnormal events and the proposed

robust anomaly detector. However, Multiple Hypothesis Tracking (Reid, 1979; Cox and

Hingorani, 1996; Kim et al., 2015) may be considered under some more complicated

environments.

6.4.3 Track maintenance

Tracks are maintained as follows:

1. Track initialization: a blob isn’t assigned to any existing track, it initiates a new

track.

2. Track continuation:

(a) A blob zj,t is assigned to an existing track ti at time t, the track is updated

98



as:

K = P̂i,tH
T (HP̂i,tH

T +R)−1,

xi,t = x̂i,t +K(zj,t −Hx̂i,t),

Pi,t = (I −KH)P̂i,t,

(6.17)

(b) No blob is assigned to an existing track, the track is updated as:

xi,t = x̂i,t,

Pi,t = P̂i,t,
(6.18)

which provides a level of support for temporary occlusion.

3. Track deletion:

(a) It is invisible for a certain number of frames (e.g., 20 frames in our experi-

ments), i.e., disappear.

(b) It appears in a very short time, i.e., noise.

6.4.4 Evaluation

Setup

We have conducted experimental results on UCSD dataset to evaluate the performance

of MTT. The MTT algorithm is employed on the optimal result of MIDL-KF, which

is referred as MIDL-KF-MTT. The parameters A, H, Q, and R for Kalman filter is

predefined and given by:

A =


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1


H =

[
1 0 0 0

0 0 1 0

]

Q =


100 0 0 0

0 25 0 0

0 0 100 0

0 0 0 25


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R =

[
15 0

0 15

]
For a new blob zi,t, which is unable to assigned an existing track, we initiate a

track as follows. Let zi,t = {xi,t, yi,t} be the centroid of the blob, where xi,t and yi,t

correspond to its spatial location in frame. Then, the estimated state xi,t and estimated

state covariance Pi,t are initialized as:

xi,t =


xi,t

0

yi,t

0



Pi,t =


200 0 0 0

0 50 0 0

0 0 200 0

0 0 0 50


To filter out noise, we only keep the tracks whose length is greater than 20 and the

proportion of visible frames in a track is greater than 0.6.

Further experiments

Figure 6.19 and Figure 6.20 illustrate the detection result comparison between MIDL-

KF and MIDL-KF-MTT on UCSD data. As can be seen, MIDL-KF-MTT improves

the detection results on several aspects. First, with the help of background subtraction

and blob extraction, MIDL-KF-MTT displays more accurate anomaly localization than

MIDL-KF. Besides, MTT algorithm not only filters out noise (e.g., Fig. 6.19(a)(b)) by

removing short tracks, it also has the capability to support temporal occlusion or

missing detection; for instance, in Fig. 6.19(c), where the abnormal target disappears

in a few frames due to occlusion. This improvement, however, is unable to be measured

based on the evaluation methodology proposed by Li et al. (2014).

6.5 Summary

In this chapter, we have proposed an improved framework to address the problem of

AED in video surveillance. To handle the streaming video data we have employed

a MIDL algorithm for OCSVM, which is reinforced by the adoption of an adaptive
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feature descriptor, and a kernel fusion scheme that combines motion and spatial infor-

mation together. The outcome is competitive when compared with the state-of-the-art

approaches, and much improved computational efficiency compared with our previous

online adaptive OCSVM algorithm. An additional benefit is that our method can han-

dle both motion and contextual anomalies. Furthermore, the final detection results

have been improved by MTT.

The MIDL provides an efficient approach to update OCSVM in an online fashion,

in the next chapter, we will apply it to another video content analysis task - shot

boundary detection.
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(a) (b) (c)

(d) (e) (f)

Figure 6.19: Detection result comparison of MIDL-KF and MIDL-KF-MTT on Ped1

dataset. In each sub-figure, the top row is the result detected by MIDL-KF, while the

bottom row is the result detected by MIDL-KF-MTT. Best viewed in colour.
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(a) (b) (c)

(d) (e) (f)

Figure 6.20: Detection result comparison of MIDL-KF and MIDL-KF-MTT on Ped2

dataset. In each sub-figure, the top row is the result detected by MIDL-KF, while the

bottom row is the result detected by MIDL-KF-MTT. Best viewed in colour.
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Chapter 7

MIDL OCSVM for Shot Boundary

Detection

7.1 Overview

A video shot, which represents a continuous action in time and space, is composed of

a series of related, consecutive frames taken contiguously by a single camera (Hanjalic,

2002). Both pre-edited and unedited video footages may contain shots, and partition-

ing a video into shots automatically is the fundamental prerequisite for further video

content analysis, editing, browsing and retrieval applications, a term referred to as

Shot Boundary Detection (SBD). The shot boundary is divided into two types: abrupt

change (or hard cut) and gradual transition. While abrupt change is the concatena-

tion of two shots directly, gradual transition includes an artificial shot transition effect

between two shots, which could last for a few frames. The gradual transition consists

of dissolve, fade in/out, wipe, etc.

During the last decade, a broad spectrum of approaches (Fang et al., 2006; Chen

et al., 2011; Mohanta et al., 2012; Kowdle and Chen, 2012; Lu and Shi, 2013; Jiang et al.,

2013; Lakshmi Priya and Domnic, 2014) for SBD have been proposed. The simplest

approach to detect a shot boundary is to analyze the difference between two successive

frames (Huang and Liao, 2001). This is straightforward to implement and is effective to

detect abrupt changes. However, it is sensitive to noise such as flashlight frames, and it

cannot detect gradual transitions because the corresponding pair-wise frame difference

is rather small. Automatic thresholding is employed in Kowdle and Chen (2012), where

changes on optical flows of frames within a sliding window are thresholded by a value

that is equal to the change median plus two times of their standard deviation. In
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Yuan et al. (2007), the strength of using graph partition for SBD is discussed. To

deal with varying characteristics of videos that challenge the threshold setting, a SVM

based approach is adopted to treat the SBD as a classification problem. This approach

however has two deficiencies: firstly the requirement on frame-by-frame ground-truth

data for training, and secondly, the costly training time because of the use of SVM.

In Chen et al. (2011), decision trees and a finite state machine are adopted for abrupt

cut detection and dissolving detection respectively for compressed MPEG videos. A

novel feature extraction process using the Walsh-Hadamard Transform (WHT) kernel is

proposed in Lakshmi Priya and Domnic (2014). A promising performance is achieved

however at the high computing costs resulting from the sophisticated WHT kernel.

Another recent work (Lu and Shi, 2013) adopts a candidate segment and singular

value decomposition to cut down the processing time.

In this chapter, we propose a novel framework for SBD by means of MIDL OCSVM

framework. We regard a shot boundary as an anomaly in temporal space in a video,

thus our previous work can be extended to this scenario smoothly. However, due to

the various shot boundary types, we cannot apply OCSVM to SBD directly as it is

sensitive to object motion or flashlight frames. Fortunately, with the hypothesis that

most of the frames in one shot is supposed to be different from those in another shot, we

propose to measure the divergence between two OCSVM classifiers, which are learnt

from two contextual sets, i.e., Immediate Past Set (IPS) and Immediate Future Set

(IFS).

The proposed framework thus has the following advantages:

• We present a unified framework to detect different types of shot boundary rather

than adopting a set of classifiers for each specific shot boundary type. This

simplifies the computational complexity of the approach while maintaining a

high accuracy.

• Our approach, which inherits the advantages of OCSVM, is robust to noise such

as abrupt illumination changes and large object or camera movements.

• MIDL updates OCSVM classifier in an online fashion, requiring very low com-

putational cost.
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7.2 The computational framework

The flowchart is given in Figure 7.1. Given the IPS and IFS with fixed length M

at time t, we first extract corresponding feature descriptor for each frame in each set,

where an OCSVM classifier is trained respectively. We measure the divergence between

the two sets based on the concept of OCSVM. From t to t + 1, we add a new frame

and remove the oldest one in each set while updating the classifier using the MIDL

algorithm, with both incremental and decremental learning involved. Shot boundaries

are detected based on divergence output.

t t+1

Time

Decremental Incremental

OCSVM classifier

Feature extraction

OCSVM divergence

SBD

Feature extraction

OCSVM classifier

Immediate future setImmediate past set

Figure 7.1: The flowchart of SBD using OCSVM divergence.

7.2.1 Feature extraction and kernel selection

Following Yuan et al. (2007), we adopt a block-based histogram as our feature repre-

sentation. Specifically, a frame is divided into 2L×2L blocks, where L is the granularity

level, L = 0, 1, . . . , l. In each block a 48-bin (16 bins for each of RGB channels) colour

histogram is calculated, and the frame is represented by concatenating colour his-

tograms from all blocks. We chose this feature for several reasons. First, it is simple to

106



implement and has little computational cost. Secondly, it provides a trade-off between

sensitivity and invariance. Note that we have also investigated other feature schemes,

e.g., pixel-based (Huang and Liao, 2001), but the performance is worse than that of

the block-based histogram, so we will not report the results.

Considering the histogram-based representation of our feature descriptor, we adopt

the Histogram Intersection kernel (Swain and Ballard, 1991) as the similarity measure

between two inputs:

k(xi,xj) =
∑
b

min(xbi ,x
b
j), (7.1)

where b indicates the corresponding bin in xi and xj.

7.2.2 OCSVM Divergence

To measure the divergence between two OCSVM classifiers, we analyse the represen-

tation of OCSVM in the feature space F . Using vi to denote Φ(xi), for any vi we have

‖vi‖ = k(xi,xi) = 1. In other words, the training set X are all mapped on a hyper-

sphere S with origin of o and radius r = 1. According to the definition of OCSVM in

Section 5.2, the OCSVM in F corresponds to finding the optimal hyperplane w such

that most mapped training set vi have w ·vi−ρ > 0 - as shown in Figure 7.2. Here the

optimal hyperplane corresponds to maximizing the margin ρ/‖w‖, namely, the distance

from o to w. The same as in Section 5.3.2, there are three types of different vectors:

margin support vectors, which are located on the edge of the segment; error support

vectors, which are located outside of the segment; and other support vectors, which

are located in the segment. On the basis of the definition, although the composition

of three different vectors between two OCSVM classifiers is different from each other,

they are in the same feature space and are comparable by computing the divergence

of their formed segments.

Let Bt
1 = {xt−m+1,xt−m+2, . . . ,xt} and Bt

2 = {xt+1,xt+2, . . . ,xt+m} be the IPS and

IFS at time t, where the length of both sets are M . If there is a shot boundary, their

segments in F should be different from each other. In other words, the size as well as

location of the two segments are different from each other. Figure 7.3 shows a simple

example of our approach. To this end, we employ a divergence function based on the

work of Desobry et al. (2005), which has been deployed to detect abrupt change of

music signals.

Let ct1 and ct2 be the centre points of segments learnt from Bt
1 and Bt

2 respectively,

and pt1 and pt2 be arbitrary points residing on the boundary of their corresponding
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Figure 7.2: In the feature space F , OCSVM aims to find the smallest segment while

enclosing the mapped training set vi as many as possible, i.e., maximizing the margin

ρ/‖w‖.

segments, as shown in Figure 7.4. The divergence function D between two OCSVMs,

trained on Bt
1 and Bt

2 respectively, is given as:

DOCSVM(Bt
1, B

t
2) =

_

ct1c
t
2

_

ct1p
t
1 +

_

ct2p
t
2

, (7.2)

where
_

ct1c
t
2 is the arc distance from ct1 to ct2, and

_

ct1p
t
1 (

_

ct2p
t
2) is the arc distance from

ct1 (ct2) to pt1 (pt2). Eq. (7.2) indicates the divergence is large if two segments are well

separated, whereas it is small for strongly overlapped segments.

However, we cannot calculate Eq. (7.2) directly in the feature space because we do

not know the explicit representation of the feature map Φ(x). The calculation of D

however can be done in the kernel space. Specifically, for any two points a and b lying

on an arbitrary sphere, the arc distance is given by:

_

ab= rθ, (7.3)

where r is the radius, and θ is the central angle between a and b.

Meanwhile, the dot product between vector a and vector b is given by:

a · b = ‖a‖‖b‖ cos θ, (7.4)
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Figure 7.3: A simple example of our proposed SBD algorithm. At time t1, B
t1
1 and Bt1

2

(green dotted rectangles in (a)) are in the same shot, the divergence (green circle in

(b)) between them is low. At time t2, there is a shot boundary between Bt2
1 and Bt2

2

(red dashed rectangles in (a)), hence the divergence (red diamond in (b)) is high. Best

viewed in colour.
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Figure 7.4: Two OCSVM classifiers in F , where wt
1 and wt

2 are the optimal hyper-

planes of the immediate past set Bt
1 and the immediate future set Bt

2. This situation

corresponds to a shot boundary as both segments get separated from each other.

where ‖a‖ = ‖b‖ = r.

Combining Eq. (7.3) and Eq. (7.4) together with r equal to 1, we have:

_

ab= arccos(a · b). (7.5)

Therefore, computing
_

ab is simplified to find coordinates of a and b that reside on the

sphere.

As seen in Figure 7.4, based on the concept of OCSVM, we know line oct1 is per-

pendicular to wt
1, and oct2 to wt

2, so we can replace ct1 (ct2) with wt
1/‖wt

1‖ (wt
2/‖wt

2‖)
after some geometric computations. The arc distance

_

ct1c
t
2 therefore is calculated as:

_

ct1c
t
2= arccos

(
wt

1 ·wt
2

‖wt
1‖‖wt

2‖

)
. (7.6)

By employing the kernel transform, we have:

_

ct1c
t
2= arccos

(
(αt

1)
Tkt12α

t
2√

(αt
1)
Tkt11α

t
1

√
(αt

2)
Tkt22α

t
2

)
, (7.7)

where αt
1 and αt

2 are the coefficient sets of the OCSVM classifier learnt from Bt
1 and

Bt
2 respectively. kt12 is the kernel matrix, where its rows are indexed by Bt

1, and its

columns are indexed by Bt
2.
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Similarly, the arc distance
_

ct1p
t
1 (

_

ct2p
t
2) is given as:

_

ctip
t
i= arccos

(
ρti√

(αt
i)
Tktiiα

t
i

)
, i = 1, 2. (7.8)

Compared with the traditional approach of comparing features of successive frames

directly, assessing the divergence between two OCSVMs trained on frame sets gives

two potential advantages. First, it is more robust to noises such as flashlight frames,

as these will be regarded as error support vectors and will not affect the OCSVM

classifiers. Second, it is effective to detect gradual transitions, e.g., dissolve, and wipe

etc. Even though the difference between two consecutive frames is not significant in

these gradual transitions, the divergence between two sets is supposed to be large as

the overall distribution will be quite different.

7.3 Performance evaluation

7.3.1 Experimental results

We have carried out experiments on the TRECVID 2007 SBD dataset. The process

of performance evaluation is as follows: we first compute the divergence output for

each video sequence, then we tune the threshold on the divergence to identify shot

boundaries.

To obtain the optimal performance, we first evaluate the impact of parameters

on SBD performance. Three parameters have to be evaluated, namely, parameter

C of OCSVM, set length M , and the granularity level L. The optimal settings are

acquired by fine-tuning one parameter while fixing the rest of them. The impact of

C on performance is displayed in Figure 7.5(a), where M and L are set as 20 and

2 randomly. It shows that the OCSVM classifier with C of 0.2 achieves the best

performance. With C of 0.2 and L of 2, Fig 7.5(b) illustrates the impact of M , where

20 attains the best recall and precision. Figure 7.5(c) shows the influence of different

L, where C and M are set as 0.2 and 20. It is improved with L increasing from 0 to

3, and saturates when L enlarges from 3 to 4. Therefore, we report our final results

and compare with the start-of-the-art approaches using the aforementioned optimal

settings, i.e., C = 0.2, M = 20, and L = 3.

Our final SBD results using OCSVM divergence are reported in Table 7.1, achieving

92.0% on the F1 metric. It is comparable to Kawai et al. (2007) (92.4%), Ren et al.

(2007) (93.0%), better than Mühling et al. (2007) (91.9%), Zhao et al. (2007) (90.6%),
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Table 7.1: Performance comparison on TRECVID 2007 SBD dataset.

Recall Precision F1 Running time

Method (%) (%) (%) (seconds)

Mühling et al. (2007) 93.1 90.7 91.9 7000

Zhao et al. (2007) 91.3 90.0 90.6 -

Kawai et al. (2007) 90.5 94.4 92.4 1697

Ren et al. (2007) 94.1 91.9 93.0 5185

Chen et al. (2011) 88.9 88.7 88.8 5358

Lakshmi Priya and Domnic (2014) 96.5 95.7 96.1 13800

OCSVM divergence 90.7 93.4 92.0 4468

and Chen et al. (2011) (88.8%), however, worse than Lakshmi Priya and Domnic (2014)

(96.1%).

On the other hand, the overall running time our approach is 4468 seconds, faster

than most of the state-of-the-art algorithms except Kawai et al. (2007). Specifically,

using the same platform, i.e., MATLAB R2014a on a 2.7GHz Intel Core i5 and 8GB

RAM, the speed has increased from 101 frames/second using batch mode OCSVM to

143 frames/second using MIDL, where the processing time for each OCSVM classifier

training has decreased from 5.4× 10−3 second to 2.5× 10−3 second.

7.3.2 Robustness evaluation

Finally we examine the robustness the proposed OCSVM divergence in dealing with

gradual transitions and noises. For this purpose two video clips each with a length

of 100 frames are generated using the TRECVID data. The first testing clip has

a hard-cut shot boundary at Frame 52, and three noise frames located at Frames

14, 34, and 78 respectively. The second clip includes two gradual transition shot

boundaries: fade-out and fade-in. The fade-out spans from Frames 31 to 40, the fade-

in from Frames 64 to 70. Three noise frames are also inserted, as Frames 12, 57,

and 89 respectively. For demonstration purposes we only consider two approaches:

the proposed OCSVM divergence using MIDL, and the pairwise consecutive frames

dissimilarity using histogram intersection. Figure 7.6 and 7.7 illustrate the results on

these two video clips. As can be seen from the results, the dissimilarity based on the

successive frames is very sensitive to those noise frames, whereas our approach can

effective detect both hard cuts and gradual transitions even though noise frames exist.
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7.4 Summary

In the chapter we propose a novel approach to address the problem of SBD. Instead of

comparing the difference between pair-wise consecutive frames at a specific time, we

propose a divergence metric to measure the difference between two OCSVM classifiers,

which are learnt from two contextual sets, i.e., immediate past set and immediate

future set. One significant advantage is our approach is a unified framework to detect

all types of shot boundaries. In addition, using the MIDL, we reduce the computational

cost effectively. By inheriting the properties of OCSVM, our method is robust to noises

while effective to gradual transitions. Experimental results on a challenging benchmark

dataset exhibit the competitive performance of our approach compared with the state-

of-the-art.

The future work of SBD is twofold. On the one hand, more datasets will be applied

and more extensive experiments will be carried out. On the other hand, as the shot

boundaries are identified exclusively by tuning the threshold on the divergence output

for each video sequence, we will further analyse the divergence output to improve the

SBD performance as well as classify the different types of boundaries.
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Figure 7.5: Parameter tuning on the TRECVID 2007 SBD dataset. (a) Different

settings of C in OCSVM; (b) Different set length M ; (c) Different granularity levels L.
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Figure 7.6: Testing scenario 1. (a) The testing video sequence with a hard-cut and three

noise frames, locations marked; (b) Divergence output of MIDL, where the threshold

for SBD is 0.905; (c) Pairwise consecutive frames dissimilarity output. The green circles

and red crosses in (b)(c) indicate the hard-cut and noise frames respectively.
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Figure 7.7: Testing scenario 2. (a) The testing video sequence with a fade-in, a fade-

out and three noise frames, locations marked; (b) Divergence output of MIDL, where

the threshold for SBD is 0.905; (c) Pairwise consecutive frames dissimilarity output.

In (b)(c), the green squares and diamonds indicate fade-out and fade-in respectively,

and red crosses indicate noise frames.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In recent years, the pervasive video surveillance systems deployed in crowded pub-

lic places bring about increasing research interest in crowd scene analysis in video

surveillance with the increasing importance of public security and safety. The general

theoretical literature on this topic is inconclusive on several vital questions. This thesis

aims to answer a few of these questions as follows:

1. Can we develop an efficient dimension reduction algorithm to consider both spa-

tial and temporal similarities between frames when generating video manifolds?

2. Can we find a simple but efficient feature descriptor to capture the motion infor-

mation in a crowded video surveillance stream?

3. Can an online learning algorithm be developed so that the learnt model can evolve

on-the-fly from continuous data streams?

4. Combining the feature descriptor with the online learning algorithm, can we pro-

pose a unified framework for AED so that it meets the aforementioned challenges

while providing real-time response?

We have answered these research questions either in a specific chapter, or in relevant

chapters collectively, as follows:

• Proposing a novel dimension reduction algorithm “STLPP” in Chap-

ter 4.

To meet the challenge of the curse of dimensionality while considering the strong
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correlation between frames in video surveillance, we propose the STLPP to gen-

erate video manifolds for crowd scene analysis. We introduce two metrics to

measure the similarity between two frames when constructing the weight matrix.

The former, called spatial similarity, measures the motion similarity using the

optical-flow based descriptor. The latter, called temporal similarity, measures

the temporal correlation between two frames. For two frames, the closer, the

more similar. The overall similarity between two frames is the product of the

spatial similarity and the temporal similarity. By incorporating both similarities,

the generated video manifolds not only cluster similar crowd events together, but

also explicitly display the temporal change of crowd events.

• Proposing three different optical-flow based feature descriptors.

Three optical-flow based feature descriptors are proposed to model the motion

information in crowd scenes. Firstly, in Chapter 4, a frame is divided intom×n re-

gions, in each region a 8 bin HOF is computed. As a result, a frame is represented

as a 8 ×m × n dimensional histogram. Next, the QBC is proposed to increase

the dissimilarity between motion patterns by applying adaptive quantization and

binarization. Because the temporal information is incorporated in manifold learn-

ing algorithm, here the QBC represent exclusively the motion information in each

frame. Secondly, in Chapter 5, we obtain a set of video segments using a sliding

window, in which a set of video events are extracted. Non-overlapping spatial-

temporal patches are densely sampled from each event and represented as HOG

descriptors. A video event is represented as a histogram using the BoW model.

Compared with the previous HOF descriptor, the HOF descriptor contains the

crowd motion information in a number of continuous frames, thus more stable.

Finally, to reduce computational cost, we optimize the feature extraction process

in Chapter 6. Rather than extract a HOF descriptor from each spatial-temporal

patch, the optical flow vectors in each video event are directly assigned to M×N
bins, where M is number of directions, and N is the discretization level of motion

intensities, determined by performing k-means clustering. Thus, a video event is

specified by a simplified descriptor, called AMHOF and used for AED.

• Developing an online adaptive learning of OCSVM for data stream

learning in Chapter 5 and 6.

Because of the large size as well as the streaming nature of video data, we develop

an online adaptive learning of OCSVM for data stream learning. The core part is
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to deploy an incremental and decremental OCSVM within a sliding buffer. From

time t to t+1, we add the new arriving data and remove the obsolete data to/from

the buffer through the incremental and decremental procedures respectively. By

solving a linear system and recursively constructing new exact solutions to keep

the KKT satisfied for the updated data, this approach is able to process video

stream in an online manner, thus increase computational efficiency significantly

compared with the batch mode manner. Later on, we improve the framework

by introducing MIDL. Instead of adding or removing each single data separately,

MIDL is capable of adding and removing multiple data simultaneously, which

requires less iterations to update the innate model and reduces computational

cost therefore.

• Proposing a comprehensive computational framework for AED in Chap-

ter 6.

To detect abnormal events in video surveillance, we propose a computational

framework by combining MIDL with KF. A background subtraction approach is

deployed to extract ROIs, which enhances the robustness of the OCSVM clas-

sifier and reduces computational time at the same time. Two types of features,

motion feature and spatial information, are extracted from these ROIs. The

motion feature descriptor entitled AMHOF adaptively decides its scale binning

using a cluster process. By incorporating motion information and spatial loca-

tion information via KF, the computational framework is capable of detecting

motion anomalies and contextual anomalies even under perspective distortion.

The MIDL adopts a variable cache to store the new arriving data in each frame

and updates them together, thus reduces update time significantly. In addi-

tion, we improve the detection result by a MTT algorithm. Experimental results

demonstrate the improvements of the framework on both effectiveness and effi-

ciency.

• Proposing a comprehensive computational framework for SBD in Chap-

ter 7.

Apart from the AED task, we extend the MIDL framework to another video con-

tent analysis task - Shot Boundary Detection (SBD). Two successive but non-

overlapping sets, i.e., immediate past set and immediate future set, are defined,

in which a block-based colour histogram is extracted from each frame. Two

OCSVM classifiers are trained based on these histograms in each set. Rather
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than measuring the difference between pair-wise consecutive frames at a specific

time, we propose a divergence metric to measure the difference between the two

OCSVM classifiers. Experimental results show that the advantages are twofold.

On the one hand, the framework, which inherits the advantages of OCSVM, is

robust to noise such as abrupt illumination changes and large object or camera

movements. On the other hand, the MIDL, which updates the OCSVM classifier

in an online fashion, reduces the computational cost effectively.

8.2 Limitations and future work

The scope of crowd scene analysis in video surveillance is extensive and multifaceted.

In the following, we intend to highlight a few promising future directions that may

extend from this thesis work, aiming to achieve a powerful solution for online, adaptive

crowd scene analysis system.

The literature in crowd scene analysis mostly used one training set and one testing

set for each experiment without any variances or any statistical significant information.

However, because of the temporal property of video, it should be noted that cross-

validation is not suitable here as it doesn’t make much sense to use later segments for

training, earlier segments for testing. Therefore, one future direction is to improve the

validation model.

The STLPP operates in a batch mode, which results in two limitations. Firstly, it re-

quires the the entire dataset to be made available before computing the low-dimensional

data representations. Secondly, it is infeasible to solve a generalized eigenvalue problem

when dealing with large scale video data. Therefore, it will be promising direction if

an online, incremental, STLPP-like dimension reduction algorithm can be developed.

On the other hand, since the two modifications in Figure 3.1 are separate steps, further

exploration that combined the feature projection with the online learning model will

be taken into consideration.

Following most of the state-of-the-art approaches, the abnormal event in this the-

sis is merely defined as an abnormal motion pattern with spatial context. In other

applications, however, an abnormal event may cover a variety of suspicious objects or

activity. For example, a pedestrian leaves a bag in train station and walks away. Under

this scenario, the bag is defined as an anomaly but our approach cannot detect it as it

is not an abnormal motion pattern. Therefore, another future work is to incorporate

object detection approaches within the framework using PGM (Koller and Friedman,
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2009).

Another limitation in AED is that most of the benchmark datasets are synthetic or

subjective. Namely, these datasets are collected based on the opinion of the published

authors or organisations, and the subjectivity of the ground truth can not be ruled out.

Therefore, a method with good performance for those datasets does not mean it will

work well in a real application. However, it should be noted that because of privacy, it

is very difficult to acquire real data. As a result, we would like to apply our framework

to some real environments, e.g., train station, airport, etc, to evaluate its performance.

The MTT with the 1-NN scheme works well in our approach because of the robust

anomaly detector and the sparse distributed abnormal events in datasets. However,

the performance of MTT will deteriorate quickly if there are multiple closely detected

abnormal events and many missed true abnormal events. To enhance the robustness of

our approach, Multiple Hypothesis Tracking (MHT) (Reid, 1979; Cox and Hingorani,

1996; Kim et al., 2015) will be considered in our future work. Instead of finding the

best assignment of detected observation to existing tracking, MHT propagates the

hypotheses into the future for anticipating so that the uncertainty will be resolved by

the subsequent observations. Furthermore, it will be possible to explore enhancing

the tracking performance by replacing the linear Kalman filter with nonlinear filtering

methods such as extended Kalman filter, or particle filters (Arulampalam et al., 2002).

As we already have the tracks for all abnormal events, one future work is to recognize

different abnormal events, e.g., pedestrian, bike, and car. To achieve this idea, we may

extract spatial-temporal features from those tracks. A visual vocabulary is formed

by performing k-means clustering of a random subset of those features. By assigning

each feature to its closest vocabulary word, those tracks are represented as histograms,

where “topic model” (Blei, 2012; Wang and Grimson, 2008) can be employed to group

these abnormal events.

While by adopting an abrupt forgetting scheme especially in the multiple decre-

mental learning part of the online OCSVM, this mechanism has the risk of capturing

noises (Gama et al., 2014). Therefore, a trade-off between quick adaptation to changes

and improved robustness to noises can be further explored.
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Gómez-Verdejo, V., Arenas-Garćıa, J., Lázaro-Gredilla, M., and Navia-Vazquez, A.

(2011). Adaptive one-class support vector machine. Signal Processing, IEEE Trans-

actions on, 59 (6), 2975–2981.

Gönen, M. and Alpaydın, E. (2011). Multiple kernel learning algorithms. The Journal

of Machine Learning Research, 12, 2211–2268.

Grundmann, M., Meier, F., and Essa, I. (2008). 3D shape context and distance trans-

form for action recognition. In Pattern Recognition, 2008. ICPR 2008. 19th Inter-

national Conference on, 1–4. IEEE.

Guerbai, Y., Chibani, Y., and Hadjadji, B. (2014). Writer-independent Handwrit-

ten Signature Verification based on One-Class SVM classifier. In Neural Networks

(IJCNN), 2014 International Joint Conference on, 327–331. IEEE.

Hanjalic, A. (2002). Shot-boundary detection: unraveled and resolved? Circuits and

Systems for Video Technology, IEEE Transactions on, 12 (2), 90–105.

Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Alvey

vision conference, Volume 15, 50. Citeseer.

He, X., Yan, S., Hu, Y., Niyogi, P., and Zhang, H.-J. (2005). Face recognition us-

ing Laplacianfaces. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 27 (3), 328–340.

127



He, X., Zemel, R. S., and Carreira-Perpiñán, M. Á. (2004). Multiscale conditional
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