3,207 research outputs found

    Adversarial Attack and Defense on Graph Data: A Survey

    Full text link
    Deep neural networks (DNNs) have been widely applied to various applications including image classification, text generation, audio recognition, and graph data analysis. However, recent studies have shown that DNNs are vulnerable to adversarial attacks. Though there are several works studying adversarial attack and defense strategies on domains such as images and natural language processing, it is still difficult to directly transfer the learned knowledge to graph structure data due to its representation challenges. Given the importance of graph analysis, an increasing number of works start to analyze the robustness of machine learning models on graph data. Nevertheless, current studies considering adversarial behaviors on graph data usually focus on specific types of attacks with certain assumptions. In addition, each work proposes its own mathematical formulation which makes the comparison among different methods difficult. Therefore, in this paper, we aim to survey existing adversarial learning strategies on graph data and first provide a unified formulation for adversarial learning on graph data which covers most adversarial learning studies on graph. Moreover, we also compare different attacks and defenses on graph data and discuss their corresponding contributions and limitations. In this work, we systemically organize the considered works based on the features of each topic. This survey not only serves as a reference for the research community, but also brings a clear image researchers outside this research domain. Besides, we also create an online resource and keep updating the relevant papers during the last two years. More details of the comparisons of various studies based on this survey are open-sourced at https://github.com/YingtongDou/graph-adversarial-learning-literature.Comment: In submission to Journal. For more open-source and up-to-date information, please check our Github repository: https://github.com/YingtongDou/graph-adversarial-learning-literatur

    Behavioral analysis in cybersecurity using machine learning: a study based on graph representation, class imbalance and temporal dissection

    Get PDF
    The main goal of this thesis is to improve behavioral cybersecurity analysis using machine learning, exploiting graph structures, temporal dissection, and addressing imbalance problems.This main objective is divided into four specific goals: OBJ1: To study the influence of the temporal resolution on highlighting micro-dynamics in the entity behavior classification problem. In real use cases, time-series information could be not enough for describing the entity behavior classification. For this reason, we plan to exploit graph structures for integrating both structured and unstructured data in a representation of entities and their relationships. In this way, it will be possible to appreciate not only the single temporal communication but the whole behavior of these entities. Nevertheless, entity behaviors evolve over time and therefore, a static graph may not be enoughto describe all these changes. For this reason, we propose to use a temporal dissection for creating temporal subgraphs and therefore, analyze the influence of the temporal resolution on the graph creation and the entity behaviors within. Furthermore, we propose to study how the temporal granularity should be used for highlighting network micro-dynamics and short-term behavioral changes which can be a hint of suspicious activities. OBJ2: To develop novel sampling methods that work with disconnected graphs for addressing imbalanced problems avoiding component topology changes. Graph imbalance problem is a very common and challenging task and traditional graph sampling techniques that work directly on these structures cannot be used without modifying the graph’s intrinsic information or introducing bias. Furthermore, existing techniques have shown to be limited when disconnected graphs are used. For this reason, novel resampling methods for balancing the number of nodes that can be directly applied over disconnected graphs, without altering component topologies, need to be introduced. In particular, we propose to take advantage of the existence of disconnected graphs to detect and replicate the most relevant graph components without changing their topology, while considering traditional data-level strategies for handling the entity behaviors within. OBJ3: To study the usefulness of the generative adversarial networks for addressing the class imbalance problem in cybersecurity applications. Although traditional data-level pre-processing techniques have shown to be effective for addressing class imbalance problems, they have also shown downside effects when highly variable datasets are used, as it happens in cybersecurity. For this reason, new techniques that can exploit the overall data distribution for learning highly variable behaviors should be investigated. In this sense, GANs have shown promising results in the image and video domain, however, their extension to tabular data is not trivial. For this reason, we propose to adapt GANs for working with cybersecurity data and exploit their ability in learning and reproducing the input distribution for addressing the class imbalance problem (as an oversampling technique). Furthermore, since it is not possible to find a unique GAN solution that works for every scenario, we propose to study several GAN architectures with several training configurations to detect which is the best option for a cybersecurity application. OBJ4: To analyze temporal data trends and performance drift for enhancing cyber threat analysis. Temporal dynamics and incoming new data can affect the quality of the predictions compromising the model reliability. This phenomenon makes models get outdated without noticing. In this sense, it is very important to be able to extract more insightful information from the application domain analyzing data trends, learning processes, and performance drifts over time. For this reason, we propose to develop a systematic approach for analyzing how the data quality and their amount affect the learning process. Moreover, in the contextof CTI, we propose to study the relations between temporal performance drifts and the input data distribution for detecting possible model limitations, enhancing cyber threat analysis.Programa de Doctorado en Ciencias y Tecnologías Industriales (RD 99/2011) Industria Zientzietako eta Teknologietako Doktoretza Programa (ED 99/2011

    The New Abnormal: Network Anomalies in the AI Era

    Get PDF
    Anomaly detection aims at finding unexpected patterns in data. It has been used in several problems in computer networks, from the detection of port scans and DDoS attacks to the monitoring of time-series collected from Internet monitoring systems. Data-driven approaches and machine learning have seen widespread application on anomaly detection too, and this trend has been accelerated by the recent developments on Artificial Intelligence research. This chapter summarizes ongoing recent progresses on anomaly detection research. In particular, we evaluate how developments on AI algorithms bring new possibilities for anomaly detection. We cover new representation learning techniques such as Generative Artificial Networks and Autoencoders, as well as techniques that can be used to improve models learned with machine learning algorithms, such as reinforcement learning. We survey both research works and tools implementing AI algorithms for anomaly detection. We found that the novel algorithms, while successful in other fields, have hardly been applied to networking problems. We conclude the chapter with a case study that illustrates a possible research direction

    Adversarial Autoencoders with Constant-Curvature Latent Manifolds

    Get PDF
    Constant-curvature Riemannian manifolds (CCMs) have been shown to be ideal embedding spaces in many application domains, as their non-Euclidean geometry can naturally account for some relevant properties of data, like hierarchy and circularity. In this work, we introduce the CCM adversarial autoencoder (CCM-AAE), a probabilistic generative model trained to represent a data distribution on a CCM. Our method works by matching the aggregated posterior of the CCM-AAE with a probability distribution defined on a CCM, so that the encoder implicitly learns to represent data on the CCM to fool the discriminator network. The geometric constraint is also explicitly imposed by jointly training the CCM-AAE to maximise the membership degree of the embeddings to the CCM. While a few works in recent literature make use of either hyperspherical or hyperbolic manifolds for different learning tasks, ours is the first unified framework to seamlessly deal with CCMs of different curvatures. We show the effectiveness of our model on three different datasets characterised by non-trivial geometry: semi-supervised classification on MNIST, link prediction on two popular citation datasets, and graph-based molecule generation using the QM9 chemical database. Results show that our method improves upon other autoencoders based on Euclidean and non-Euclidean geometries on all tasks taken into account.Comment: Submitted to Applied Soft Computin
    • …
    corecore