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Abstract

Constant-curvature Riemannian manifolds (CCMs) have been shown to be
ideal embedding spaces in many application domains, as their non-Euclidean
geometry can naturally account for some relevant properties of data, like hi-
erarchy and circularity. In this work, we introduce the CCM adversarial au-
toencoder (CCM-AAE), a probabilistic generative model trained to represent
a data distribution on a CCM. Our method works by matching the aggre-
gated posterior of the CCM-AAE with a probability distribution defined on
a CCM, so that the encoder implicitly learns to represent data on the CCM
to fool the discriminator network. The geometric constraint is also explicitly
imposed by jointly training the CCM-AAE to maximise the membership de-
gree of the embeddings to the CCM. While a few works in recent literature
make use of either hyperspherical or hyperbolic manifolds for different learn-
ing tasks, ours is the first unified framework to seamlessly deal with CCMs
of different curvatures. We show the effectiveness of our model on three dif-
ferent datasets characterised by non-trivial geometry: semi-supervised clas-
sification on MNIST, link prediction on two popular citation datasets, and
graph-based molecule generation using the QM9 chemical database. Results
show that our method improves upon other autoencoders based on Euclidean
and non-Euclidean geometries on all tasks taken into account.

Keywords: adversarial learning, constant-curvature manifolds, image
classification, link prediction, molecule generation

∗Corresponding author
Email address: daniele.grattarola@usi.ch (Daniele Grattarola)

Preprint submitted to Applied Soft Computing April 12, 2019

ar
X

iv
:1

81
2.

04
31

4v
2 

 [
cs

.L
G

] 
 1

1 
A

pr
 2

01
9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/224783912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

Many works in recent literature have highlighted that non-Euclidean geome-
try can naturally arise in many application domains, with constant-curvature
Riemannian manifolds (CCMs), e.g., hyperspherical and hyperbolic mani-
folds, playing a prominent role as embedding spaces for a variety of data
distributions. Among these, representation learning models for images [1],
hierarchical data structures like trees and text [2, 3], relational networks [4],
brain functional connectivity networks [5], and dissimilarity-based datasets
[6] have been shown to benefit from non-Euclidean embedding manifolds.
Analysing non-Euclidean data via unsupervised deep learning, in particular,
has been object of study by several recent works, with interesting results
from both theoretical and practical perspectives [7]. Among the most recent
works studying the latent space of autoencoders we cite [8, 9, 10], highlight-
ing the non-Euclidean nature of the unsupervised representations learned on
various datasets. In the more specific area of CCMs, [1, 11] propose hyper-
spherical variational autoencoders to better model data on a hypersphere,
whereas [5, 12] exploit CCMs with different curvatures to perform change
detection on sequences of graphs. Several other works, however, show how
different types of data can greatly benefit from being embedded on CCMs,
with literature going as far back as [13], and the more recent notable con-
tributions of [2] and [6]. However, since the application of non-Euclidean
geometry to deep representation learning is a fairly recent development in
machine learning [7], most methods are specific to only one type of CCM
(i.e., either hyperbolic or hyperspherical) and a unified model dealing with
the general family of CCMs is still missing.

In this paper, we propose a general framework for embedding a data
distribution on CCMs. The proposed solution uses adversarial learning to
impose a soft constraint on the latent space of an autoencoder, training the
network to produce a representation on the CCM. This work builds on the
autoencoder model introduced in [5], which uses adversarial learning to map
a stream of graphs on a CCM for performing change detection. Here, we give
a novel formulation of the model that is not restricted to operate on sequences
of graphs and show its effectiveness on different learning tasks not considered
in [5]. The model introduced here is characterised by a novel learning scheme
that consists of optimising a combination of two objectives during the regu-
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larisation training phase of an adversarial autoencoder [14]. First, we match
the aggregated posterior of the autoencoder’s latent representation with a
prior distribution defined on the CCM. Second, in order to further impose
the geometric constraint on the latent space, we train the encoder to max-
imise the (non-parametric) membership function of the embeddings to the
CCM. In the experimental section, we consider three tasks: semi-supervised
classification on the MNIST dataset, link prediction on citation networks and
molecule generation using the QM9 dataset.

The rest of the article is structured as follows: in Section 2.1 we briefly
introduce adversarial autoencoders; in Section 3 we introduce our methodol-
ogy and discuss some of its advantages w.r.t. other equivalent state-of-the-art
solutions; in Section 4 we provide details of the three different application
scenarios that we considered in our study and discuss experimental results;
in Section 5 we summarise our contribution and provide some future research
directions.

2. Background

2.1. Adversarial autoencoders

Adversarial autoencoders (AAEs) are probabilistic models for perform-
ing variational inference, based on the framework of generative adversarial
networks (GANs) [15]. In AAEs the encoder network of an autoencoder is
used as generator, and the aggregated posterior of the latent representation
of the network is matched with an arbitrary prior distribution, by training
the encoder to fool a discriminator network.

Training of AAEs occurs in two phases, namely reconstruction and regu-
larisation. During the former phase, the AE is trained to reconstruct samples
from the data distribution. During the regularisation phase, the discrimina-
tor is trained to distinguish between samples coming from the encoder and
those coming from the true prior. Finally, the encoder is updated to fool the
discriminator. The repetition of these training steps results in a min-max
game between the encoder and the discriminator [15], where both networks
compete against each other to improve at their respective tasks.

Let E(x) be the encoder network of the AAE, D(z) the decoder network,
C(z) the critic network, pdata(x) the data distribution on which the AAE is
trained for the reconstruction phase, and finally p(z) the prior distribution
used for regularising the representation. At first, during the reconstruction
phase, the AAE is trained to minimize some loss function (e.g., the mean
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squared error) between the input data x ∼ pdata(x) and the output of the
network, D(E(x)). Then, during the regularisation phase, the adversarial
optimisation can be formulated as in [14], i.e.:

min
E

max
C

Ez∼p(z) [logC(z)] + Ex∼pdata(x) [log(1− C(E(x))] (1)

The two training steps are then repeated iteratively until convergence.
AAEs are intuitively similar to variational autoencoders (VAEs), with the

key difference that AAEs replace the Kullback-Leibler divergence penalty of
VAEs with the adversarial training procedure outlined above. However, his
means that AAEs do not need an exact functional form of the prior in order
to perform backpropagation, but only a way to sample from the prior. This
makes them more flexible in the choice of prior, as it was also originally
discussed by Makhzani et al. in [14]. In this work, we leverage this property
of AAEs to constrain the latent space of the network to a CCM through a
custom prior.

2.2. Constant-Curvature Manifolds

A d-dimensional CCM M is a Riemannian manifold characterised by a
constant sectional curvature κ ∈ R. We consider an extrinsic representation
of M in its ambient space and define the CCM as

M = {x ∈ Rd+1|〈x, x〉 = κ−1}. (2)

The scalar product 〈·, ·〉 in (2) defines the geometry of the CCM. For
κ > 0, the geometry is said to be spherical, and it is defined by the inner
product:

〈x, y〉 = xyT . (3)

In this case, the geodesic distance between points is computed using (3) as
ρ(x, y) = arccos(〈x, y〉). For κ < 0, the geometry is said to be hyperbolic,
and the formulation of Equation (2) provides the hyperboloid model. The
geometry in this case is defined from the pseudo-Euclidean scalar product:

〈x, y〉 = xT
(
Id×d 0

0 −1

)
y. (4)

Geodesics are computed from (4) as ρ(x, y) = arccosh(〈x, y〉).
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Figure 1: Schematic view of the spherical CCM-AAE. From left to right: the encoder
produces embeddings z ∈ Rd+1 in the ambient space, which are (optionally) projected
onto the CCM before being fed to the decoder. The discriminator is trained to distinguish
between embeddings and samples coming from the spherical uniform prior (blue path).
Finally, the membership degree of the embeddings (yellow path) is averaged with the
discriminator in order to compute the loss and update the encoder. Best viewed in colour.

2.3. Priors on CCMs

The methodology presented in this paper is based on the concept of prob-
ability distributions on CCMs, which are essential to train the proposed au-
toencoder and impose a geometric constraint on the representation.

Let PM(θ) be a probability distribution with support onM and parametrised
by vector θ. Given the tangent plane TxM∈ Rd at x, a general approach to
compute PM(θ) is to take a probability distribution P (θ) with support on
TxM, and compute PM(θ) as the push-forward distribution of P (θ) through
the Riemannian exponential map (exp-map) Expx(·) [16, 6]. Intuitively, a
sample from PM(θ) is obtained by first sampling from P (θ) and then map-
ping the sample to M using the exp-map. This provides a way to compute
a distribution on a CCM starting from any distribution on the Euclidean
tangent space, but in general one may use any known prior with support on
M. For instance, mapping the uniform distribution to the spherical manifold
via exp-map may lead to counter-intuitive results, whereas one correct way
of computing a spherical uniform distribution it is to orthogonally project
samples from a Gaussian distribution in the ambient space onto the hyper-
sphere.
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3. Adversarial Autoencoders on CCMs

We consider the problem of mapping a data distribution to a d-dimensional
CCM M with curvature κ ∈ R, as well as learning a map from M to the
data space in order to generate new samples. Using adversarial learning, the
latent representation of the CCM-AAE is matched to a prior distribution de-
fined on the CCM, while jointly training the encoder to produce embeddings
that lie on the CCM via an explicit regularisation term in the loss, penalising
the encoder when the embeddings are far from the manifold. This facilitates
the network in converging to the target manifold, making it easier to match
the aggregated posterior to the prior. A schematic view of the proposed
architecture is shown in Figure 1.

The methodology presented here is independent from the type of neural
network used to learn the representation of the data, and can in principle
be applied as a general regularisation technique for different tasks. In this
section, we provide a general outline of the approach, and leave the task-
specific details of implementation to the experimental section.

3.1. Method

Using the same notation adopted in Section 2.1, we denote with E(x) the
encoder network, D(z) the decoder, C(z) the discriminator, and pdata(x) the
data distribution, where samples x ∼ pdata(x) are in some input space X .
The CCM-AAE is then defined as the composition of two maps:

• E : X →M, mapping data to the manifold;

• D :M→ X , mapping embeddings back the data space.

In practice, the latent space of the autoencoder is taken as R(d+1) and
represents the ambient space of M.

During the reconstruction phase, the autoencoder is trained as usual to
reconstruct samples from the data distribution, minimising a loss function
between x ∈ X and D(E(x)). During the regularisation phase, we train
the critic network to discriminate between samples coming from the encoder
and samples from the true prior PM(θ), and then we update the encoder to
fool the critic network. By matching the posterior to PM(θ), the network is
implicitly constrained to embed input data on the CCM, and the solution to
the adversarial game can be obtained from Equation (1) as:

min
E

max
C

Ez∼PM(θ) [logC(z)] + Ex∼pdata(x) [log(1− C(E(x))] (5)
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Figure 2: Membership function of a hyperbolic (left) and a spherical (right) CCM in the
case of d = 1. Lighter colours indicate higher values (white = 1; best viewed in colour).

However, this implicit optimisation is often not sufficient for the network
to effectively learn the non-Euclidean geometry of the CCM, as also high-
lighted by the experimental results shown in [5]. Consequently, here we also
train the encoder network to maximise the membership degree of the em-
beddings to M, so that the loss landscape is explicitly modified in favour
of those embeddings that lie exactly on the CCM. For a manifold M with
κ 6= 0, the membership degree of a sample z is computed as (see Figure 2):

µ(z) = exp

(
−
(
〈z, z〉 − 1

κ

)2
2ς2

)
(6)

where ς 6= 0 controls the width of the membership function. In practice,
we optimise both regularisation objectives in parallel, by taking the average
of the critic’s output and the membership degree of the embeddings when
updating the encoder in the regularisation phase as:

C̃(z) =
C(z) + µ(z)

2
. (7)

The final form of the regularisation for the CCM-AAE can then be written
as:

min
E

max
C

Ez∼PM(θ)

[
log C̃(z)

]
+ Ex∼pdata(x)

[
log(1− C̃(E(x))

]
. (8)
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Projection to the CCM. When exact operations need to be computed on the
manifold (e.g., distances, sampling), we compute an orthogonal projection
of the embeddings onto M in order to account for the inevitable error in
the model. The projection can be embedded as a layer in the network or
computed only at test time. For instance, for KNN-based semi-supervised
classification, where we need to compute the pairwise geodesic distances of
the embeddings, we first let the network learn a representation and then
project the embeddings onto M to compute similarities at test time. Alter-
natively, when using the CCM-AAE for generating new samples in the data
space, we ensure that the decoder network learns a meaningful map between
M and the data space by always projecting the latent codes onto M. This
does not impact the regularisation of the encoder, and has only a marginal
effect on the convergence of the network.

3.2. Advantages

A key difference of our approach with other works in the literature is that
we do not impose the non-Euclidean geometry on the latent space by simply
projecting the embeddings onto the CCM, or otherwise explicitly limiting the
latent space (e.g., by sampling embeddings from the CCM prior [1]). The en-
coder has to learn the latent manifold autonomously, because the projection
is not performed during the regularisation step. Moreover, as highlighted in
previous sections, AAEs have the advantage w.r.t. to VAEs of not requiring
the explicit form of the prior in order to perform backpropagation. This is
especially relevant when dealing with non-Euclidean geometry, where func-
tional forms can be analytically complex, as any valid prior on an Euclidean
tangent space can be a suitable prior for the network (via exp-map). A rel-
evant effect of this is discussed in the experimental section, where we show
that the spherical version of our model is able to deal with high-dimensional
manifolds better than an equivalent VAE with spherical latent space. This
results in a more stable performance when using high-dimensional manifolds
on the considered applications (we show a specific example of this on a semi-
supervised classification task on MNIST), as our model does not suffer from
the same performance drop denoted by the spherical VAE.

4. Experiments

We perform experiments to validate our methodology in three relevant
settings. First, following the experimental setting of Davidson et al. [1], we
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report a performance comparison of different models on semi-supervised im-
age classification on MNIST and link prediction on citation networks. While
the link prediction task requires to compute embeddings of the citation net-
works only at the node level (i.e., the representation is learned for each node
of a single graph), for the third experiment we also evaluate our methodol-
ogy on a task that requires to process graphs as individual inputs. In this
case, we consider the problem of graph-based molecule generation, because
it represents an interesting open challenge that has attracted the interest of
the machine learning community [17, 18]. All of the considered settings have
been shown to benefit from non-Euclidean representations of the data [1, 5],
and therefore provide a good platform for testing our method and comparing
it to previous literature.

For each experiment, we test the two main configurations of CCM-AAE,
i.e., with spherical and hyperbolic geometry. The geometry of the CCM is
dependent only on the sign of the curvature, whereas the absolute value of
the curvature has only an effect on the scale of the representation. For this
reason, and in order to simplify the implementation of the CCM-AAE, here
we only consider κ = 1 and κ = −1.

For the prior, we follow Makhzani et al. [14], and adapt the standard
normal distribution N (0, 1) to our setting. For κ = −1 we use the push-
forward standard normal NM(0, 1), where the origin of the exp-map is taken
as the point x ∈ Rd+1 such that xi = 0, i = 1, . . . , d and xd+1 = 1 (the point
is chosen to simplify some implementation details, but any other point on
the manifold would be suitable).

For κ = 1 however, as the dimension d of the manifold grows, mapping
N(0, 1) to the CCM via exp-map quickly results in a uniform distribution on
the sphere. A similar consideration was also noted in [1] for the von Mises-
Fisher distribution. Therefore, a better choice is to use directly the spherical
uniform distribution as prior (c.f. Section 2.3).

All experiments were conducted on a machine with an Intel Core i7 CPU
with 4 cores and 8 threads, 16GB of RAM, and an Nvidia Titan Xp GPU with
12GB of VRAM, using the Keras library as high-level interface to Tensor-
Flow. The average duration of training epochs across the three experiments
is reported in Table 1. Note that training times for κ = −1 are substantially
higher than in the spherical case, because sampling from a hyperbolic space
requires computing the exp-map of the samples for each batch. On the other
hand, sampling from a uniform distribution on a spherical manifold is much
faster due the implementation described in Section 2.3.
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Table 1: Average duration of training epochs of the CCM-AAE on the hardware used
for experiments. We report the duration for the two tested values of κ across all three
experiments. For link prediction, the value refers to the duration on the Cora dataset.
For molecule generation, the value refers to the CCM-AAE without graph matching.

Experiment κ s / epoch

MNIST
1 1.73
−1 5.29

Link pred.
1 0.11
−1 0.32

Molecule gen.
1 35.69
−1 60.05

Table 2: Accuracy of semi-supervised K-NN classification on MNIST for 100, 600, and
1000 observed training labels per class w.r.t. the dimensionality of the latent manifold.
We report mean and standard deviation computed over 10 runs.

Method d l=100 l=600 l=1000

VAE 10 89.1 ±0.6 92.7 ±0.5 93.3 ±0.5

S-VAE 10 90.7 ±0.7 93.7 ±0.5 94.1 ±0.5

AAE 100 91.2 ±0.5 94.9 ±0.2 95.4 ±0.2

Ours (κ = 1) 20 91.4 ±0.4 95.0 ±0.5 95.6 ±0.3

Ours (κ = −1) 30 91.5 ±0.3 95.2 ±0.2 95.8 ±0.2

4.1. Semi-supervised Image Classification

Following the methodology of [19], we evaluate the quality of the embed-
dings produced by the CCM-AAE on a semi-supervised classification task on
dynamically binarised MNIST [20]. We train the CCM-AAE on a random
split of 55k samples for training, 10k for testing, and 5k for validation and
model selection.
After training, we draw for each class l = 100, 600, 1000 pairs of samples and
labels uniformly from the training set, and evaluate the test accuracy of a K-
NN classifier on the embeddings produced by hyperbolic and hyperspherical
CCM-AAEs.
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Table 3: Hyperparameter configuration of the CCM-AAE for MNIST. The Searched
columns indicates that the final value was found via grid search among the indicated
values, using the validation loss for model selection. Alternatively, when we did not per-
form a grid search, we indicate how the value was found (Keras default indicates that the
value was the default setting for the popular deep learning library Keras, which we used
for experiments). An emtpy final value in the Value column indicates that the grid search
was repeated for each combination of dataset and κ.

Hparam. Value Searched

d - 2, 5, 10, 20, 40, 60, 100

h 64 32, 64, 128
LeakyReLU α 0.3 Keras default

L2 reg. (for C̃(z)) 0.01 Keras default

ς (for µ(z)) 5 1, 2, 5, 10

Learning rate 0.001 0.001, 0.005, 0.01
Batch size 1024 Empirically

Setting. Similarly to the experimental setting of [1], the encoder is a two-
layer, fully connected network of 256 and 128 neurons with ReLU activa-
tions, followed by a linear layer with d + 1 neurons to produce the latent
representation. The decoder has two ReLU layers with 128 and 256 units,
followed by an output layer with sigmoid activations.

For hyperparameters specific to the CCM-AAE (and other hyperparam-
eters), we perform a brief grid search using the validation loss to perform
model selection. The tested values and final configuration are reported in
Table 3. We adopt a fully connected discriminator with two layers of h
units, leaky ReLUs, and L2 regularisation, followed by an output layer with
sigmoid activation. We train both networks using Adam until convergence,
using early stopping on the autoencoder’s validation loss with a look-ahead
of 50 epochs (value taken from [1]). For both networks we optimise the
cross-entropy loss between the inputs and reconstructed images.

The embeddings of the network are exactly projected onto the manifold
only at test time, to compute the mutual geodesic distances for K-NN (for
which we setK = 5 as in [1]). We compare our results using the same network
architecture and configuration to train a standard adversarial autoencoder
with Gaussian prior (AAE) [14], a variational autoencoder with Gaussian
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Figure 3: Traversing the latent space of a spherical CCM-AAE (d = 2) along an equator
of the sphere (samples are arranged left-to-right, top-to-bottom). Note how the digits are
smoothly represented in a circular way, suggesting how the data can be naturally encoded
on a sphere.

prior (VAE) [21], and the hyperspherical variational autoencoder proposed
by [1] (S-VAE). For S-VAE, we use the open source implementation provided
by the authors in the original paper1.

Results. The best results obtained by each method are summarised in Ta-
ble 2. We note that the adversarial setting consistently outperforms its
variational counterparts, even when considering the non-Euclidean S-VAE
method. The CCM-AAE also performs slightly better on average w.r.t.
to the Euclidean AAE, with no significant statistical differences observed

1https://github.com/nicola-decao/s-vae-tf
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Figure 4: Embeddings produced by the CCM-AAE on MNIST, for d = 2. We report the
Poincaré disk model of the latent CCM for κ = −1, and the Aitoff projection for κ = 1.

between spherical and hyperbolic embeddings. However, we note that the
Euclidean model requires a significantly higher d in order to match the per-
formance of the non-Euclidean ones, with the spherical model being the most
efficient in this regard. This confirms an already observed fact in the litera-
ture [1], and a possible explanation for this phenomenon can be intuitively
seen in Figure 3, where MNIST is shown to have a natural representation on
a spherical domain.

Finally, we show in Figure 4 that the CCM-AAE is able to learn a suffi-
ciently good representation of the data even at very low dimensions (pictured
for d = 2 in order to visualise it on paper), with no substantial differences
between hyperbolic and spherical geometries, as also highlighted by the per-
formance of KNN.

4.2. Link Prediction

For the link prediction task, we follow the methodology of [22] and eval-
uate the performance of the CCM-AAE on the popular Cora and Citeseer
citation network datasets2. In this task, we train the CCM-AAE to predict

2The Pubmed dataset is often considered alongside the other two, but the high number
of nodes in the network caused GPU memory issues with all tested algorithms, and we
therefore do not report results for it.
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Table 4: Best average AUC and AP of semi-supervised link-prediction on the Cora and
Citeseer datasets. We report mean and standard deviation over 5 runs. Best results are
not highlighted due to the differences between the best algorithms not being statistically
significant.

Cora Citeseer
Method d AUC AP d AUC AP

VGAE 20 91.8 ±0.8 92.9 ±0.6 16 90.6 ±1.3 91.7 ±1.1

AAE 64 93.4 ±0.6 93.8 ±0.7 64 94.0 ±0.8 94.6 ±1.0

Ours (κ = 1) 8 93.4 ±0.7 93.9 ±0.8 8 92.8 ±0.4 93.4 ±0.4

Ours (κ = −1) 64 89.4 ±0.9 90.4 ±1.0 8 91.0 ±0.4 91.6 ±0.4

connections on a subset of the network, and evaluate the area under the ROC
(AUC) and average precision (AP) of the model in predicting a test set of
held-out links. We split the data randomly, using 10% of the links for testing
and 5% for validation and model selection.

Graph data. Cora and Citeseer are two popular network datasets represent-
ing citation links between documents, with sparse node attributes represent-
ing text features found in the documents. Each node is also associated with a
class label, which we do not use here. We represent a network with N nodes
and F -dimensional node attributes as a tuple (A,X), where A ∈ {0, 1}N×N
is the symmetric adjacency matrix of the network, and X ∈ {0, 1}N×F is
the node attribute matrix. For the Cora dataset we have N = 2708 and
F = 1433, whereas for Citeseer we have N = 3327 and F = 3703. The
networks have an average degree of 4 and 2.84, respectively.

Setting. The CCM-AAE has the same structure of the variational graph
autoencoder (VGAE) in [22], with a graph convolutional encoder network
[23] followed by a scalar product decoder. The encoder consists of a graph
convolutional layer with 32 channels and ReLU activations, followed by a
d+1 dimensional graph convolutional linear layer. Dropout is applied before
every layer.

For the decoder, we first project the latent representation onto the tar-
get manifold, and then we reconstruct the adjacency matrix by computing
the scalar product between node embeddings, followed by an activation to
normalise the output between 0 and 1. In the spherical case, the scalar
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product can be interpreted as computing a cosine similarity between embed-
dings, which we then normalise with a sigmoid activation. For the hyper-
bolic CCM-AAE, the pseudo-Euclidean scalar product assumes values in the
(−∞,−1] range, so we normalise it to (0, 1] by applying a shifted exponential
as activation to the decoder’s output, σ(x) = exp(x + 1). In principle, any
normalisation function can be used here, but we leave further exploration
of this matter as future work. For instance, an obvious way of normalising
the output would be to add a final layer with sigmoid activations and let
the network learn how to map the scalar product to a prediction in (0, 1).
However, here we wanted to have the same number of parameters across all
models to report a fair comparison.

We keep most of the configuration used for MNIST unvaried, but we
perform a grid search over the dropout rate (0.0, 0.1, 0.2, 0.3, 0.4) for each
dataset and geometry. Additionally, we repeat the grid search over the di-
mension d using similar values to those reported in [1] (8, 16, 20, 32, 64,
128). Both networks are trained using Adam to optimise a cross-entropy loss
(when training the autoencoder, we apply the same re-weighting technique
used in [22]). We train the model using early stopping on the validation AUC
with a patience of 100 epochs (value taken from [22]).

Results. We report results in Table 4. We compare our results against VGAE
and an AAE, using the same network architecture for all models. The spher-
ical CCM-AAE is able to consistently outperform VGAE in both tasks, but
we highlight a drop in performance in the hyperbolic model. Once again,
the Euclidean AAE performs comparably to the spherical one, but requires
a significantly higher-dimensional latent space.

While the code used to implement S-VAE worked as intended on MNIST,
on the link prediction task we encountered numerical issues that made it im-
possible to replicate the results of [1] in our different experimental setting
with different data splits, re-weighting technique for the loss, and hyper-
parameters searched. When further investigating the instability of S-VAE,
we observed a computational issue in the model, which would saturate the
floating point representation of the GPU, resulting in invalid gradients being
propagated through the network. The numerical instability derives from the
sampling procedure of the von Mises-Fisher distribution on which the model
is based, as the exponentially scaled modified Bessel function used for sam-
pling causes a division by zero for higher values of d. On the other hand,
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Figure 5: Comparison between the spherical CCM-AAE and S-VAE considering the mean
test accuracy on MNIST w.r.t. manifold dimension. S-VAE denotes a performance col-
lapse as reported by [1], but the CCM-AAE maintains a stable performance even at higher
dimensions.

we note that the performance of the proposed spherical CCM-AAE does not
suffer from the same issue when using high-dimensional latent spaces (shown
in Figure 5 for MNIST).

4.3. Molecule Generation

Graph-based molecule generation is a fairly recent research area, which
is starting to get attention from the machine learning and cheminformatics
communities [17, 18]. Differently from past approaches in molecule genera-
tion, most of which relied on the SMILES string representation of molecules,
the graph-based approach represents atoms as nodes in a graph, with chem-
ical bonds represented as attributed edges. Therefore, this novel approach
considers graphs as objects in the data space (in contrast to the usual ap-
proach in graph-based deep learning where a single graph is embedded at the
node level) and is a relevant application scenario for our methodology.

We compare the proposed CCM-AAE against several molecule generation
models on the QM9 dataset of small molecules, and evaluate the performance
of our model following the methodology in [17]. QM9 contains ∼134k small
molecules of up to 9 heavy atoms, with 4 atomic numbers and 3 bond types.
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We split the data according to [17], using 10k samples for testing, and 10k
for validation and model selection.

To evaluate the quality of the model, we sample random points from the
latent CCM, and map them to the molecule space using the decoder. We
then compute three metrics for the generated molecules [24]: the validity
measure indicates the fraction of molecules that are chemically valid, the
novelty metric indicates the fraction of valid molecules that are not in the
original QM9 dataset, and finally the uniqueness metric indicates the frac-
tion of unique molecules among the valid ones. Finally, in order to quantify
the overall performance of a model, we aggregate the three metrics by multi-
plying them together. If we assume independence of uniqueness and novelty
given validity, this can be seen as computing the probability of generating
a valid, unique, and novel molecule. We use this aggregated joint metric to
compare different models between them. The assumption of independence
among the metrics was also validated empirically, by computing the true ra-
tio of valid, unique, and novel molecules generated by our algorithm. The
difference between the true ratio and the value obtained by multiplying valid-
ity, novelty, and uniqueness, was not statistically significant in the conducted
experiments.

Molecules representation. We represent molecules as attributed graphs fol-
lowing the approach of [17]. The representation is similar to the one used in
the link prediction setting, with the addition of attributed edges to describe
chemical bonds. We use a one-hot binary representation for the attributes,
where nodes are labelled with one of 4 possible atomic numbers, edges with
one of 3 possible types of bonds, and we also explicitly represent null node
and edge types with a dedicated class label. Therefore, graphs are repre-
sented as tuples (A,X,E), where A ∈ {0, 1}N×N and X ∈ {0, 1}N×5 have
the same meaning described above, and E ∈ {0, 1}N×N×4 is the edge at-
tributes matrix. Similarly to [17], we include support for smaller graphs (up
to N = 9) via zero-padding.

Setting. We structure the CCM-AAE according to the same architecture of
GraphVAE [17], of which we consider the unconditional version for simplic-
ity. The encoder is a graph-convolutional network based on edge-conditioned
graph convolutions [25], composed of two layers of 32 and 64 channels, with
ReLUs, batch normalisation, and a filter-generating network composed of a
single linear layer. The convolutions are followed by a global gated atten-
tion pooling layer [26] with 128 units, and a linear layer with d + 1 units to
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map the representation to the ambient space of the CCM. The decoder is a
fully connected network with three layers of 128, 256, and 512 neurons, with
ReLUs, and batch normalisation, followed by three parallel output layers to
produce the reconstructed A, X, and E. The first output layer has sigmoid
activations, whereas the latter two have node- and edge-wise softmax ac-
tivations, respectively. The embeddings are projected to the CCM before
being fed to the decoder. The configuration of the discriminator and train-
ing procedure is again unvaried. The network is trained until convergence,
monitoring the validation reconstruction loss with a look-ahead of 25 epochs
(i.e., the number of epochs used to train GraphVAE in [17]).

Following [17], we train the CCM-AAE using graph matching in order
to account for graphs with unidentified nodes. This consists of matching
the input graphs to the generated outputs before computing the loss for
backpropagation, so that the network learns a permutation-invariant repre-
sentation. We apply the same max-pooling matching algorithm [27] used for
GraphVAE, with 75 iterations and the same affinity function described in
[17]. We implemented the loss function as in [17], with the same tricks to
speed up training: (i) we impose the symmetry of the output matrices dur-
ing post-processing (by removing those edges for which Aij 6= Aji), (ii) we
include in the prediction the maximum spanning tree on the set of probable
nodes (Aii ≥ 0.5), and (iii) we ignore hydrogen atoms and only add them as
padding during chemical validation3. As final trick to speed up convergence,
we apply a re-weighting of the loss function to mitigate the importance of the
null nodes and edges, and to improve the reconstruction of the rarer edges.
The weight is computed from the dataset-wide inverse document frequency
(IDF) score of each element in A, X, and E. For instance, the IDF score of
the adjacency matrix across a dataset D is computed as:

IDFij = log

(
|D|

1 +
∑|D|

k A
(k)
ij

)
and the log-loss between A and its reconstruction A′ is reweighted as:

log(A′|A) =
∑
i,j

(1 + AijIDFij)
(
A′ij logAij + (1− A′ij) log(1− Aij)

)
3We used the RDKit framework for chemical validation and hydrogen padding.
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Table 5: Validity, uniqueness, and novelty metrics on QM9, with and without graph
matching. The “Joint” column shows the aggregated score computed as the product
of the three metrics, providing a general idea of the overall performance of the models.
Baseline results are taken from [17, 18]. The best individual metrics and the model with
the best aggregated score are highlighted in bold.

Method d Valid Uniq. Novel Joint

N
o
m
a
tc
h
.

GraphVAE 80 81.0 61.0 24.1 11.9
CVAE 60 10.3 67.5 90.0 6.3
GVAE 20 60.2 9.3 80.9 4.5
MolGAN - 98.1 10.4 94.2 9.6
AAE 80 30.1 92.7 84.8 23.7
Ours (κ = 1) 80 36.3 92.6 87.1 29.2
Ours (κ = −1) 80 22.5 86.1 70.2 13.6

M
a
tc
h
.

GraphVAE 80 55.7 66.0 61.6 26.1
GraphVAE/imp 40 56.2 42.0 75.8 17.9
AAE 40 13.8 87.1 66.6 8.0
Ours (κ = 1) 20 18.0 91.7 78.3 12.9
Ours (κ = −1) 5 19.1 50.7 76.5 7.4

In order to account for the node permutations, the IDF weight matrices
are matched to their respective target matrices before computing the loss.

We report our results along the others of several models for molecule gen-
eration, namely GraphVAE, MolGAN [18], the character-based CVAE [28],
and the grammar-based GVAE [29] (the latter two use SMILES represen-
tations). Comparisons are reported for algorithms that include the graph
matching step, as well as those that do not, and we report the performance
of our model in both cases.

Results. A comparison of the tested models is reported in Table 5. We note
that the spherical CCM-AAE without graph matching denotes the best per-
formance for the joint metric, although the performance on individual metrics
is never better than the other models taken into account. All of the consid-
ered models have unbalanced performance across the three metrics (with
GraphVAE being the most balanced in this regard), and we note that the
CCM-AAE suffers from a low validity score. This confirms the effects of
graph matching observed for GraphVAE, and explains the poor performance
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Figure 6: Traversing the latent space of a spherical CCM-AAE (d = 80) along an equator
of the sphere (samples are arranged left-to-right, top-to-bottom). We show only valid,
unique, and novel molecules.
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of the CCM-AAE when graph matching is considered (validity is halved in the
spherical case). We note, however, that our model does not suffer from mode
collapse, a problem commonly observed in generative adversarial networks as
confirmed by the low uniqueness score of MolGAN. Finally, sampling from
the latent manifold learned with the CCM-AAE produces a smooth transi-
tion in molecule space (Figure 6); however, the properties of the generated
molecules are less interpretable than in the MNIST case, and we leave more
focused analyses as future research.

5. Conclusions

In this paper, we introduced an adversarial autoencoder to represent data
distributions on a CCM, thus going beyond the conventional Euclidean ge-
ometry usually adopted for the latent space. The proposed method consists
of jointly optimising the latent representation of CCM-AAEs to (i) match
a prior with support on a CCM (i.e., a hyperspherical or hyperbolic space)
and (ii) maximise the membership degree of the computed embedding vec-
tors to the target CCM. Experimental results on different tasks and data,
ranging from images to molecules, confirm that learning representations on
non-Euclidean spaces can be beneficial w.r.t. standard Euclidean spaces, and
that the CCM-AAE shows a notable performance improvement w.r.t. other
equivalent models in the literature. However, the CCM-AAE shows some
shortcomings w.r.t. simpler models (e.g., graph matching causes a severe
performance drop in molecule generation), and future work might wish to
address these issues by refining the architecture. Moreover, the performance
of the CCM-AAE depends on the particular geometry chosen for the latent
representation: it is difficult to decide a priori which is the best choice for a
given problem. To this end, it could be useful to perform an analysis of the
distortion introduced by embedding the data on CCMs w.r.t. some distance
function in the data space and then choosing the curvature κ that minimises
the distortion [12].

An interesting direction for future research would be to further gener-
alise the CCM-AAE, making the curvature of the latent space a learnable
parameter of the network. Moreover, we note that the CCM-AAE can be
easily extended to support any arbitrary non-Euclidean manifold, via a cus-
tom prior and membership function, but we leave this possibility to future
work.
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