18,398 research outputs found

    Symbolic Exact Inference for Discrete Probabilistic Programs

    Full text link
    The computational burden of probabilistic inference remains a hurdle for applying probabilistic programming languages to practical problems of interest. In this work, we provide a semantic and algorithmic foundation for efficient exact inference on discrete-valued finite-domain imperative probabilistic programs. We leverage and generalize efficient inference procedures for Bayesian networks, which exploit the structure of the network to decompose the inference task, thereby avoiding full path enumeration. To do this, we first compile probabilistic programs to a symbolic representation. Then we adapt techniques from the probabilistic logic programming and artificial intelligence communities in order to perform inference on the symbolic representation. We formalize our approach, prove it sound, and experimentally validate it against existing exact and approximate inference techniques. We show that our inference approach is competitive with inference procedures specialized for Bayesian networks, thereby expanding the class of probabilistic programs that can be practically analyzed

    Bounded Model Checking for Probabilistic Programs

    Get PDF
    In this paper we investigate the applicability of standard model checking approaches to verifying properties in probabilistic programming. As the operational model for a standard probabilistic program is a potentially infinite parametric Markov decision process, no direct adaption of existing techniques is possible. Therefore, we propose an on-the-fly approach where the operational model is successively created and verified via a step-wise execution of the program. This approach enables to take key features of many probabilistic programs into account: nondeterminism and conditioning. We discuss the restrictions and demonstrate the scalability on several benchmarks

    Probabilistic abstract interpretation: From trace semantics to DTMC’s and linear regression

    Get PDF
    In order to perform probabilistic program analysis we need to consider probabilistic languages or languages with a probabilistic semantics, as well as a corresponding framework for the analysis which is able to accommodate probabilistic properties and properties of probabilistic computations. To this purpose we investigate the relationship between three different types of probabilistic semantics for a core imperative language, namely Kozen’s Fixpoint Semantics, our Linear Operator Semantics and probabilistic versions of Maximal Trace Semantics. We also discuss the relationship between Probabilistic Abstract Interpretation (PAI) and statistical or linear regression analysis. While classical Abstract Interpretation, based on Galois connection, allows only for worst-case analyses, the use of the Moore-Penrose pseudo inverse in PAI opens the possibility of exploiting statistical and noisy observations in order to analyse and identify various system properties

    Automatic Probabilistic Program Verification through Random Variable Abstraction

    Full text link
    The weakest pre-expectation calculus has been proved to be a mature theory to analyze quantitative properties of probabilistic and nondeterministic programs. We present an automatic method for proving quantitative linear properties on any denumerable state space using iterative backwards fixed point calculation in the general framework of abstract interpretation. In order to accomplish this task we present the technique of random variable abstraction (RVA) and we also postulate a sufficient condition to achieve exact fixed point computation in the abstract domain. The feasibility of our approach is shown with two examples, one obtaining the expected running time of a probabilistic program, and the other the expected gain of a gambling strategy. Our method works on general guarded probabilistic and nondeterministic transition systems instead of plain pGCL programs, allowing us to easily model a wide range of systems including distributed ones and unstructured programs. We present the operational and weakest precondition semantics for this programs and prove its equivalence

    Formal verification of higher-order probabilistic programs

    Full text link
    Probabilistic programming provides a convenient lingua franca for writing succinct and rigorous descriptions of probabilistic models and inference tasks. Several probabilistic programming languages, including Anglican, Church or Hakaru, derive their expressiveness from a powerful combination of continuous distributions, conditioning, and higher-order functions. Although very important for practical applications, these combined features raise fundamental challenges for program semantics and verification. Several recent works offer promising answers to these challenges, but their primary focus is on semantical issues. In this paper, we take a step further and we develop a set of program logics, named PPV, for proving properties of programs written in an expressive probabilistic higher-order language with continuous distributions and operators for conditioning distributions by real-valued functions. Pleasingly, our program logics retain the comfortable reasoning style of informal proofs thanks to carefully selected axiomatizations of key results from probability theory. The versatility of our logics is illustrated through the formal verification of several intricate examples from statistics, probabilistic inference, and machine learning. We further show the expressiveness of our logics by giving sound embeddings of existing logics. In particular, we do this in a parametric way by showing how the semantics idea of (unary and relational) TT-lifting can be internalized in our logics. The soundness of PPV follows by interpreting programs and assertions in quasi-Borel spaces (QBS), a recently proposed variant of Borel spaces with a good structure for interpreting higher order probabilistic programs
    corecore