843 research outputs found

    Representing and coding the knowledge embedded in texts of Health Science Web published articles

    Get PDF
    Despite the fact that electronic publishing is a common activity to scholars electronic journals are still based in the print model and do not take full advantage of the facilities offered by the Semantic Web environment. This is a report of the results of a research project with the aim of investigating the possibilities of electronic publishing journal articles both as text for human reading and in machine readable format recording the new knowledge contained in the article. This knowledge is identified with the scientific methodology elements such as problem, methodology, hypothesis, results, and conclusions. A model integrating all those elements is proposed which makes explicit and records the knowledge embedded in the text of scientific articles as an ontology. Knowledge thus represented enables its processing by intelligent software agents The proposed model aims to take advantage of these facilities enabling semantic retrieval and validation of the knowledge contained in articles. To validate and enhance the model a set of electronic journal articles were analyzed

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Argumentation and Logic Programming for Explainable and Ethical AI

    Get PDF
    In this paper we sketch a vision of explainability of intelligent systems as a logic approach suitable to be injected into and exploited by the system actors once integrated with sub-symbolic techniques. In particular, we show how argumentation could be combined with different extensions of logic programming – namely, abduction, inductive logic programming, and probabilistic logic programming – to address the issues of explainable AI as well as to address some ethical concerns about AI

    Explainable and Ethical AI: A Perspective on Argumentation and Logic Programming

    Get PDF
    In this paper we sketch a vision of explainability of intelligent systems as a logic approach suitable to be injected into and exploited by the system actors once integrated with sub-symbolic techniques. In particular, we show how argumentation could be combined with different extensions of logic programming – namely, abduction, inductive logic programming, and probabilistic logic programming – to address the issues of explainable AI as well as some ethical concerns about AI

    Multi-agent planning using an abductive : event calculus

    Get PDF
    Temporal reasoning within distributed Artificial Intelligence Systems is faced with the problem of concurrent streams of action. Well known, logic-based systems using the SITUATION CALCULUS solve the frame problem in a purely linear manner. Recent research, however, has revealed that the EVENT CALCULUS under the abduction principle is capable of nonlinear planning. In this report, we present a planning service module which incorporates this approach into a constraint logic framework and even allows a notion of strong nonlinearity. The work includes the axiomatisation of appropriate versions of the EVENT CALCULUS, the development of a suitably sound and complete proof procedure that supports abduction and the implementation of both of these layers on the constraint platform OZ. We demonstrate prototypically how this module, EVE, can be integrated into an existing multi-agent architecture and evaluate the behaviour of such agents within an application domain, the loading dock scenario

    MetTeL: A Generic Tableau Prover.

    Get PDF

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Distributed Abductive Reasoning: Theory, Implementation and Application

    Get PDF
    Abductive reasoning is a powerful logic inference mechanism that allows assumptions to be made during answer computation for a query, and thus is suitable for reasoning over incomplete knowledge. Multi-agent hypothetical reasoning is the application of abduction in a distributed setting, where each computational agent has its local knowledge representing partial world and the union of all agents' knowledge is still incomplete. It is different from simple distributed query processing because the assumptions made by the agents must also be consistent with global constraints. Multi-agent hypothetical reasoning has many potential applications, such as collaborative planning and scheduling, distributed diagnosis and cognitive perception. Many of these applications require the representation of arithmetic constraints in their problem specifications as well as constraint satisfaction support during the computation. In addition, some applications may have confidentiality concerns as restrictions on the information that can be exchanged between the agents during their collaboration. Although a limited number of distributed abductive systems have been developed, none of them is generic enough to support the above requirements. In this thesis we develop, in the spirit of Logic Programming, a generic and extensible distributed abductive system that has the potential to target a wide range of distributed problem solving applications. The underlying distributed inference algorithm incorporates constraint satisfaction and allows non-ground conditional answers to be computed. Its soundness and completeness have been proved. The algorithm is customisable in that different inference and coordination strategies (such as goal selection and agent selection strategies) can be adopted while maintaining correctness. A customisation that supports confidentiality during problem solving has been developed, and is used in application domains such as distributed security policy analysis. Finally, for evaluation purposes, a flexible experimental environment has been built for automatically generating different classes of distributed abductive constraint logic programs. This environment has been used to conduct empirical investigation of the performance of the customised system
    corecore