11,276 research outputs found

    Semantic linking of complex properties, monitoring processes and facilities in web-based representations of the environment

    Get PDF
    Where a virtual representation of the Earth must contain data values observed within the physical Earth system, data models are required that allow the integration of data across the silos of various Earth and environmental sciences domains. Creating a mapping between the well-defined terminologies of these silos is a stubborn problem. This paper presents a generalised ontology for use within Web 3.0 services, which builds on European Commission spatial data infrastructure models. The presented ontology acknowledges that there are many complexities to the description of environmental properties which can be observed within the physical Earth system. The ontology is shown to be flexible and robust enough to describe concepts drawn from a range of Earth science disciplines, including ecology, geochemistry, hydrology and oceanography. This paper also demonstrates the alignment and compatibility of the ontology with existing systems and shows applications in which the ontology may be deployed

    Programming patterns and development guidelines for Semantic Sensor Grids (SemSorGrid4Env)

    No full text
    The web of Linked Data holds great potential for the creation of semantic applications that can combine self-describing structured data from many sources including sensor networks. Such applications build upon the success of an earlier generation of 'rapidly developed' applications that utilised RESTful APIs. This deliverable details experience, best practice, and design patterns for developing high-level web-based APIs in support of semantic web applications and mashups for sensor grids. Its main contributions are a proposal for combining Linked Data with RESTful application development summarised through a set of design principles; and the application of these design principles to Semantic Sensor Grids through the development of a High-Level API for Observations. These are supported by implementations of the High-Level API for Observations in software, and example semantic mashups that utilise the API

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    Sensor data and metadata standards review for UKCEH

    Get PDF
    This report contains a review and summary of a number of technical specifications originating with the ISO, OGC and W3C standards bodies in the field of earth observations and sensor networks, with the aim of developing a data model appropriate for CEH sensor data. In particular it recommends the development of a JSON-LD based format built around core concepts drawn jointly from ISO19156 Observations and Measurements and W3C Semantic Sensor Networks (SSN)/Sensor, Observation, Sample and Actuator (SOSA); the use of the Complex Property Model for semantically grounded property descriptions; OGC Sensor ML for the description of sensor instances and types; and INSPIRE Environmental Monitoring Facilities for describing sites and their monitoring capabilities. For time series representation it recommends the use of observation collections (a SSN/SOSA extension) which also serve as a point of attachment for property/values shared by all observations in a collection
    • 

    corecore