24,801 research outputs found

    Integrating Distributed Sources of Information for Construction Cost Estimating using Semantic Web and Semantic Web Service technologies

    Get PDF
    A construction project requires collaboration of several organizations such as owner, designer, contractor, and material supplier organizations. These organizations need to exchange information to enhance their teamwork. Understanding the information received from other organizations requires specialized human resources. Construction cost estimating is one of the processes that requires information from several sources including a building information model (BIM) created by designers, estimating assembly and work item information maintained by contractors, and construction material cost data provided by material suppliers. Currently, it is not easy to integrate the information necessary for cost estimating over the Internet. This paper discusses a new approach to construction cost estimating that uses Semantic Web technology. Semantic Web technology provides an infrastructure and a data modeling format that enables accessing, combining, and sharing information over the Internet in a machine processable format. The estimating approach presented in this paper relies on BIM, estimating knowledge, and construction material cost data expressed in a web ontology language. The approach presented in this paper makes the various sources of estimating data accessible as Simple Protocol and Resource Description Framework Query Language (SPARQL) endpoints or Semantic Web Services. We present an estimating application that integrates distributed information provided by project designers, contractors, and material suppliers for preparing cost estimates. The purpose of this paper is not to fully automate the estimating process but to streamline it by reducing human involvement in repetitive cost estimating activities

    Semantic technologies for the domain specific and formal description of time series in databases

    Get PDF
    Messdaten werden zur effizienten Organisation und Weiterverarbeitung in relationalen Datenbanken gespeichert. Die in den letzten Jahren entstandenen Semantic Web Technologien bieten eine hervorragende Basis zur Wissensmodellierung und Beschreibung von DomĂ€neninhalten in Form von Ontologien. Aufgrund der offenen Architektur dieses Ansatzes können leicht fremde Ontologien und Ressourcen mit eingebunden und berĂŒcksichtigt werden. Semantic Web Technologien stellen eine formale Modellierungsgrundlage dar. Mittels Reasoning kann deshalb aus Ontologien implizites Wissen abgeleitet werden. In dieser Arbeit werden semantische (Datenbank-) Annotationen und deren Interpretation fokussiert. Sie verknĂŒpfen Datenbanken und das Semantic Web miteinander. Die Annotationen erlauben es, Inhalte von Datenbanken mit Semantic Web Technologien in verschiedenen Nutzungsszenarien zu beschreiben. Außerdem wird fĂŒr die gemeinsame Behandlung und den Einsatz beider Technologien eine Architektur entwickelt. Auf dieser Basis werden Konzepte zur Visualisierung und Interaktion mit den Annotationen eingefĂŒhrt. Weiterhin wird deren Einsatz zur formalen Modellierung von Ereignissen mittels Automaten betrachtet, sodass ein Reasoning zur Berechnung durchgefĂŒhrt werden kann. Mittels einer Implementierung werden die eingefĂŒhrten Konzepte demonstriert. Die Applikation Semantic Database Browser erlaubt die integrierte Verwendung von Messdaten und deren formaler Beschreibung. Modelle können ausgetauscht und wiederverwendet werden, sodass die Wiederverwendung von Wissen gefördert wird. Anhand des Beispiels von Ereignissen wĂ€hrend Autofahrten wird demonstriert, wie auf Basis der formalen Beschreibung Schlussfolgerungen gezogen werden können. So können durch das Schlussfolgern ohne zusĂ€tzlichen Aufwand neue Erkenntnisse ĂŒber auftretende Fahrmanöver generiert werden. Aufgrund des domĂ€nenunabhĂ€ngigen Charakters der skizzierten LösungsansĂ€tze wird gezeigt, dass diese sich leicht auf andere AnwendungsfĂ€lle anwenden lassen.Measurement data in form of time series of scientific experiments is stored in relational databases for efficient processing. Complementary, Semantic Web technologies have been developed in the last years for describing domain knowledge in form of ontologies. Due to their open architecture, foreign ontologies and resources can be easily referenced and integrated. Since Semantic Web technologies are based on predicate logic, they are suitable for formal modeling. Therefore, using reasoning implicit knowledge can be derived from ontologies. This work introduces semantic (database) annotations to link databases and ontologies to take advantage of both together by describing database contents with Semantic Web technologies. An architecture is developed for the combined handling and usage of these two technologies, which is designed in respect of scalability of large amounts of measurement data. Based on this architecture, concepts for visualizing and interacting with annotations are introduced. Furthermore, semantic annotations are used for formally modeling events in time series using finite state machines, which are computed using reasoning. An implementation is introduced to demonstrate the feasibility and advantages of the discussed concepts. The presented application Semantic Database Browser allows using semantic database annotations and interactively working with them for integrated handling of formally described measurement data. Formal models can be easily exchanged and reused to support reusability of knowledge and cooperation. By describing measurement data with models, data becomes much easier to understand. Using an example of events during driving, it is demonstrated how formal description can be used for automatic reasoning to generate additional knowledge about driving maneuvers without any additional effort. Because the presented approaches are domain independent, they can be easily adapted for other use cases

    The role of linked data and the semantic web in building operation

    Get PDF
    Effective Decision Support Systems (DSS) for building service managers require adequate performance data from many building data silos in order to deliver a complete view of building performance. Current performance analysis techniques tend to focus on a limited number of data sources, such as BMS measured data (temperature, humidity, C02), excluding a wealth of other data sources increasingly available in the modern building, including weather data, occupant feedback, mobile sensors & feedback systems, schedule information, equipment usage information. This paper investigates the potential for using Linked Data and Semantic Web technologies to improve interoperability across AEC domains, overcoming many of the roadblocks hindering information transfer currently

    Libraries and Information Systems Need XML/RDF... but Do They Know It?

    Get PDF
    This article presents an approach to the uses of XML (eXtensible Markup Language) and Semantic Web technologies in the field of information services, focusing mainly on the creation and management of digital libraries compared to traditional libraries, while paying special attention to the concept and application of metadata, and RDF based integration

    Dissemination of evidence-based standards of care.

    Get PDF
    Standards of care pertain to crafting and implementing patient-centered treatment interventions. Standards of care must take into consideration the patient's gender, ethnicity, medical and dental history, insurance coverage (or socioeconomic level, if a private patient), and the timeliness of the targeted scientific evidence. This resolves into a process by which clinical decision-making about the optimal patient-centered treatment relies on the best available research evidence, and all other necessary inputs and factors to provide the best possible treatment. Standards of care must be evidence-based, and not merely based on the evidence - the dichotomy being critical in contemporary health services research and practice. Evidence-based standards of care must rest on the best available evidence that emerges from a concerted hypothesis-driven process of research synthesis and meta-analysis. Health information technology needs to become an every-day reality in health services research and practice to ensure evidence-based standards of care. Current trends indicate that user-friendly methodologies, for the dissemination of evidence-based standards of care, must be developed, tested and distributed. They should include approaches for the quantification and analysis of the textual content of systematic reviews and of their summaries in the form of critical reviews and lay-language summaries

    Observation Centric Sensor Data Model

    Get PDF
    Management of sensor data requires metadata to understand the semantics of observations. While e-science researchers have high demands on metadata, they are selective in entering metadata. The claim in this paper is to focus on the essentials, i.e., the actual observations being described by location, time, owner, instrument, and measurement. The applicability of this approach is demonstrated in two very different case studies
    • 

    corecore