35,326 research outputs found

    The logic and linguistic model for automatic extraction of collocation similarity

    Get PDF
    The article discusses the process of automatic identification of collocation similarity. The semantic analysis is one of the most advanced as well as the most difficult NLP task. The main problem of semantic processing is the determination of polysemy and synonymy of linguistic units. In addition, the task becomes complicated in case of word collocations. The paper suggests a logical and linguistic model for automatic determining semantic similarity between colocations in Ukraine and English languages. The proposed model formalizes semantic equivalence of collocations by means of semantic and grammatical characteristics of collocates. The basic idea of this approach is that morphological, syntactic and semantic characteristics of lexical units are to be taken into account for the identification of collocation similarity. Basic mathematical means of our model are logical-algebraic equations of the finite predicates algebra. Verb-noun and noun-adjective collocations in Ukrainian and English languages consist of words belonged to main parts of speech. These collocations are examined in the model. The model allows extracting semantically equivalent collocations from semi-structured and non-structured texts. Implementations of the model will allow to automatically recognize semantically equivalent collocations. Usage of the model allows increasing the effectiveness of natural language processing tasks such as information extraction, ontology generation, sentiment analysis and some others

    A COMPARATIVE STUDY ON ONTOLOGY GENERATION AND TEXT CLUSTERING USING VSM, LSI, AND DOCUMENT ONTOLOGY MODELS

    Get PDF
    Although using ontologies to assist information retrieval and text document processing has recently attracted more and more attention, existing ontology-based approaches have not shown advantages over the traditional keywords-based Latent Semantic Indexing (LSI) method. This paper proposes an algorithm to extract a concept forest (CF) from a document with the assistance of a natural language ontology, the WordNet lexical database. Using concept forests to represent the semantics of text documents, the semantic similarities of these documents are then measured as the commonalities of their concept forests. Performance studies of text document clustering based on different document similarity measurement methods show that the CF-based similarity measurement is an effective alternative to the existing keywords-based methods. Especially, this CF-based approach has obvious advantages over the existing keywords-based methods, including LSI, in dealing with text abstract databases, such as MEDLINE, or in P2P environments where it is impractical to collect the entire document corpus for analysis

    Using distributional similarity to organise biomedical terminology

    Get PDF
    We investigate an application of distributional similarity techniques to the problem of structural organisation of biomedical terminology. Our application domain is the relatively small GENIA corpus. Using terms that have been accurately marked-up by hand within the corpus, we consider the problem of automatically determining semantic proximity. Terminological units are dened for our purposes as normalised classes of individual terms. Syntactic analysis of the corpus data is carried out using the Pro3Gres parser and provides the data required to calculate distributional similarity using a variety of dierent measures. Evaluation is performed against a hand-crafted gold standard for this domain in the form of the GENIA ontology. We show that distributional similarity can be used to predict semantic type with a good degree of accuracy

    PowerAqua: fishing the semantic web

    Get PDF
    The Semantic Web (SW) offers an opportunity to develop novel, sophisticated forms of question answering (QA). Specifically, the availability of distributed semantic markup on a large scale opens the way to QA systems which can make use of such semantic information to provide precise, formally derived answers to questions. At the same time the distributed, heterogeneous, large-scale nature of the semantic information introduces significant challenges. In this paper we describe the design of a QA system, PowerAqua, designed to exploit semantic markup on the web to provide answers to questions posed in natural language. PowerAqua does not assume that the user has any prior information about the semantic resources. The system takes as input a natural language query, translates it into a set of logical queries, which are then answered by consulting and aggregating information derived from multiple heterogeneous semantic sources

    Biomedical ontology alignment: An approach based on representation learning

    Get PDF
    While representation learning techniques have shown great promise in application to a number of different NLP tasks, they have had little impact on the problem of ontology matching. Unlike past work that has focused on feature engineering, we present a novel representation learning approach that is tailored to the ontology matching task. Our approach is based on embedding ontological terms in a high-dimensional Euclidean space. This embedding is derived on the basis of a novel phrase retrofitting strategy through which semantic similarity information becomes inscribed onto fields of pre-trained word vectors. The resulting framework also incorporates a novel outlier detection mechanism based on a denoising autoencoder that is shown to improve performance. An ontology matching system derived using the proposed framework achieved an F-score of 94% on an alignment scenario involving the Adult Mouse Anatomical Dictionary and the Foundational Model of Anatomy ontology (FMA) as targets. This compares favorably with the best performing systems on the Ontology Alignment Evaluation Initiative anatomy challenge. We performed additional experiments on aligning FMA to NCI Thesaurus and to SNOMED CT based on a reference alignment extracted from the UMLS Metathesaurus. Our system obtained overall F-scores of 93.2% and 89.2% for these experiments, thus achieving state-of-the-art results

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Abstraction as a basis for the computational interpretation of creative cross-modal metaphor

    Get PDF
    Various approaches to computational metaphor interpretation are based on pre-existing similarities between source and target domains and/or are based on metaphors already observed to be prevalent in the language. This paper addresses similarity-creating cross-modal metaphoric expressions. It is shown how the “abstract concept as object” (or reification) metaphor plays a central role in a large class of metaphoric extensions. The described approach depends on the imposition of abstract ontological components, which represent source concepts, onto target concepts. The challenge of such a system is to represent both denotative and connotative components which are extensible, together with a framework of general domains between which such extensions can conceivably occur. An existing ontology of this kind, consistent with some mathematic concepts and widely held linguistic notions, is outlined. It is suggested that the use of such an abstract representation system is well adapted to the interpretation of both conventional and unconventional metaphor that is similarity-creating

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects
    corecore