4,860 research outputs found

    Schema architecture and their relationships to transaction processing in distributed database systems

    Get PDF
    We discuss the different types of schema architectures which could be supported by distributed database systems, making a clear distinction between logical, physical, and federated distribution. We elaborate on the additional mapping information required in architecture based on logical distribution in order to support retrieval as well as update operations. We illustrate the problems in schema integration and data integration in multidatabase systems and discuss their impact on query processing. Finally, we discuss different issues relevant to the cooperation (or noncooperation) of local database systems in a heterogeneous multidatabase system and their relationship to the schema architecture and transaction processing

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability

    Self-adjusting multi-granularity locking protocol for object-oriented databases

    Get PDF
    Object-oriented databases have the potential to be used for data-intensive, multi-user applications that are not well served by traditional applications. Despite the fact that there has been extensive research done for relational databases in the area of concurrency control; many of the approaches are not suitable for the complex data model of object-oriented databases. This thesis presents a self-adjusting multi-granularity locking protocol (SAML) which facilitates choosing an appropriate locking granule according to the requirements of the transactions and encompasses less overhead and provides better concurrency compared to some of the existing protocols. Though there has been another adaptive multi-granularity protocol called AMGL [1] which provides the same degree of concurrency as SAML: SAML has been proven to have significantly reduced the number of locks and hence the locking overhead compared to AMGL. Experimental results show that SAML performs the best when the workload is high in the system and transactions are long-lived

    Exploiting method semantics in client cache consistency protocols for object-oriented databases

    Get PDF
    PhD ThesisData-shipping systems are commonly used in client-server object-oriented databases. This is in- tended to utilise clients' resources and improve scalability by allowing clients to run transactions locally after fetching the required database items from the database server. A consequence of this is that a database item can be cached at more than one client. This therefore raises issues regarding client cache consistency and concurrency control. A number of client cache consistency protocols have been studied, and some approaches to concurrency control for object-oriented datahases have been proposed. Existing client consistency protocols, however, do not consider method semantics in concurrency control. This study proposes a client cache consistency protocol where method se- mantic can be exploited in concurrency control. It identifies issues regarding the use of method semantics for the protocol and investigates the performance using simulation. The performance re- sults show that this can result in performance gains when compared to existing protocols. The study also shows the potential benefits of asynchronous version of the protoco
    • 

    corecore