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Abstract

Concurrency control has been thoroughly studied in the context of traditional database applications such as banking

and airline reservations systems. There are relatively few studies, however, that address the concurrency control

issues of advanced database applications such as CAD/CAM and software development environments.  The concur-

rency control requirements in such applications are different from those in conventional database applications; in

particular, there is a need to support non-serializable cooperation among users whose transactions are long-lived and

interactive, and to integrate concurrency control mechanisms with version and configuration control. This paper

outlines the characteristics of data and operations in some advanced database applications, discusses their concur-

rency control requirements, and surveys the mechanisms proposed to address these requirements.
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INTRODUCTION
Many advanced computer-based applications, such as computer-aided design and manufac-

turing (CAD/CAM), network management, financial instruments trading, medical informatics,
office automation, and software development environments (SDEs), are data-intensive in the
sense that they generate and manipulate large amounts of data (e.g., all the software artifacts in
an SDE).  It is desirable to base these kinds of application systems on data management
capabilities similar to those provided by database management systems (DBMSs) for traditional
data processing.  These capabilities include adding, removing, retrieving and updating data from
on-line storage, and maintaining the consistency of the information stored in a database.  Consis-
tency in a DBMS is maintained if every data item satisfies specific consistency constraints,
which are typically implicit in data processing, although known to the implementors of the ap-
plications, and programmed into atomic units called transactions that transform the database
from one consistent state to another.  Consistency can be violated by concurrent access by mul-
tiple transactions to the same data item.  A DBMS solves this problem by enforcing a concur-
rency control policy that allows only consistency-preserving schedules of concurrent transactions
to be executed.

We use the term advanced database applications to describe application systems, such as
the ones mentioned above, that utilize DBMS capabilities.  They are termed advanced to distin-
guish them from traditional database applications, such as banking and airline reservations sys-
tems, in which the nature of the data and the operations performed on the data are amenable to
concurrency control mechanisms that enforce the classical transaction model.  Advanced ap-
plications, in contrast, place different kinds of consistency constraints, and, in general, the clas-
sical transaction model is not applicable.  For example, network management, financial instru-
ments trading and medical informatics may require real-time processing, while CAD/CAM, of-
fice automation and SDEs involve long interactive database sessions and cooperation among
multiple database users. Conventional concurrency control mechanisms appropriate for tradi-
tional applications are not applicable "as is" in these new domains.  We are concerned in this
paper with the latter class of advanced applications, which involve computer-supported coopera-
tive work, and their requirements are elaborated in section 5.

Some researchers and practitioners question the adoption of terminology and concepts from
on-line transaction processing (OLTP) systems for advanced applications.  In particular, these
researchers feel that the terms ‘‘long transactions’’ and ‘‘cooperating transactions’’ are an in-
appropriate and misleading use of the term ‘‘transaction’’, since they do not carry the atomicity
and serializability properties of OLTP transactions.  We agree that atomicity, serializability and
the corresponding OLTP implementation techniques are not appropriate for advanced applica-
tions. However, the term ‘‘transaction’’ seems to conjure up a nice intuition regarding the needs
for consistency, concurrency control and fault recovery, and that some basic OLTP supports such
as locks, versions and validation provide a good starting point for implementation of ‘‘long
transactions’’ and ‘‘cooperating transactions’’ mechanisms. In any case, nearly all the relevant
literature uses the term ‘‘transaction’’, so it is necessary that we do likewise in our survey.
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The goals of this paper are to provide a basic understanding of how concurrency control in
advanced database applications involving computer-supported cooperative work differs from that
in traditional data processing applications, to outline some of the mechanisms used to control
concurrent access in these advanced applications, and to point out some problems with these
mechanisms. We assume that the reader is somewhat familiar with database concepts, but do not
assume in-depth understanding of transaction processing and concurrency control issues.
Throughout the paper, we try to define the concepts that we use, give practical examples of the
formal concepts, and explain the various mechanisms at an intuitive level rather than a detailed
technical level.

The paper is organized as follows.  We start with an example to motivate the need for new
concurrency control mechanisms.  Section 2 describes the data handling requirements of ad-
vanced database applications and shows why there is a need for capabilities like those provided
by DBMSs.  Section 3 gives a brief overview of the consistency problem in traditional database
applications and explains the concept of serializability.  Section 4 presents the main
serializability-based concurrency control mechanisms.  Readers who are familiar with conven-
tional concurrency control schemes could skip sections 3 and 4.  Section 5 enumerates the con-
currency control requirements of advanced database applications.  The discussion in that section
focuses on software development environments, although many of the problems of CAD/CAM
and office automation systems are similar.  Sections 6, 7, and 8 survey the various concurrency
control mechanisms proposed for this class of advanced database applications.  Section 9 dis-
cusses some of the shortcomings of these mechanisms.

1 A MOTIVATING EXAMPLE
We motivate the need for extended concurrency control policies by a simple example from

the software development domain.  Variants of the following example will be used throughout
the paper to demonstrate the various concurrency control models.

Two programmers, John and Mary, are working on the same software project.  The project
consists of four modules A, B, C and D. Modules A, B and C consist of procedures and declara-
tions that comprise the main code of the project; module D is a library of procedures called by
the procedures in modules A, B and C. Figure 1 depicts the organization of the project.

When testing the project, two bugs are discovered.  John is assigned the task of fixing one
bug that is suspected to be in module A, so he "reserves" A and starts working on it.  Mary’s task
is to explore a possible bug in the code of module B and so she starts browsing B after "reserv-
ing" it. After a while, John finds out that there is a bug in A caused by bugs in some of the
procedures in the library module, so he "reserves" module D to modify a few things in it.  After
modifying a few procedures in D, John proceeds to compile and test the modified code.

Mary finds a bug in the code of module B and modifies various parts of the module to fix it.
Mary now wants to test the new code of B. She is not concerned with the modifications that John
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Figure 1: Organization of example project

made in A because module A is unrelated to module B, but she wants to access the modifications
that John made in module D because the procedures in D are called in module B and the
modifications that John has made to D might have introduced inconsistencies with the code of
module B. But since John is still working on modules A and D, Mary will have to access module
D at the same time that John is modifying it.

In the above example, if the traditional concurrency control scheme of two-phase locking
was used, for example, John and Mary would not be able to access the modules in the manner
described above.  They would be allowed to concurrently lock module B and module A, respec-
tively, since they work in isolation on these modules. Both of them, however, need to work
cooperatively on module D and thus neither of them can lock it.  Even if the locks were at the
granularity of procedures, they would still have a problem because both John and Mary might
need to access the same procedures, in order to recompile D, for example, before releasing the
locks (after reaching a satisfactory stage of modification of the code such as the completion of
unit testing).  Other traditional concurrency control schemes would not solve the problem be-
cause they would require the serialization of Mary’s work with John’s.

The problem might be solved by supporting parallel versions of module D (Mary would
access the last compiled version while John works on a new version), but this requires Mary to
later retest her code after the new version of D is released.  What is needed is a flexible concur-
rency control scheme that allows cooperation among John and Mary.  In the rest of this paper,
we explain the basic concepts behind traditional concurrency control mechanisms, show how
these mechanisms do not support the needs of advanced applications, and describe several con-
currency control mechanisms that provide some of the necessary support.
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2 ADVANCED DATABASE APPLICATIONS
Many large multi-user software systems, such as software development environments,

generate and manipulate large amounts of data, e.g., in the form of source code, object code,
documentation, test suites, etc.  Traditionally, users of such systems managed the data they
generate either manually or by the help of special-purpose tools.  For example, programmers
working on a large-scale software project use system configuration management (SCM) tools
such as Make [Feldman 79] and RCS [Tichy 85] to manage the configurations and versions of
the programs they are developing.  Releases of the finished project are stored in different direc-
tories manually.  The only common interface between all these tools is the file system, which
stores project parts in text or binary files regardless of their internal structures.  This significantly
limits the ability to manipulate these objects in desirable ways, causes inefficiencies as far as
storage of collections of objects is concerned, and leaves data, stored as a collection of related
files, susceptible to corruption due to incompatible concurrent access.

More recently, researchers have attempted to utilize database technology to uniformly
manage all the objects belonging to a system.  Design environments, for example, need to store
the objects they manipulate (design documents, circuit layouts, programs, etc.) in a database and
have it managed by a DBMS for several reasons [Bernstein 87; Dittrich et al. 87; Nestor 86;
Rowe and Wensel 89]:

1. Data integration: providing a single data management and retrieval interface for all
tools accessing the data.

2. Application orientation: organizing data items into structures that capture much of
the semantics of the intended applications.

3. Data integrity:  preserving consistency and recovery, to ensure that all the data
satisfy the integrity constraints required by the application.

4. Convenient access: providing a powerful query language to access sets of data
items at a time.

5. Data independence: hiding the internal structure of data from tools so that if that
structure is changed, it will have a minimal impact on the applications using the
data.

Since there are numerous commercial database systems available, several projects have
tried to use them in advanced applications.  Researchers discovered quite rapidly, however, that
even the most sophisticated of today’s DBMSs are inadequate for requirements of advanced ap-
plications [Korth and Silberschatz 86; Bernstein 87].  One of the shortcomings of traditional
general-purpose databases is the inability to provide flexible concurrency control mechanisms
that can support the needs of users in advanced applications.  To understand the reasons behind
this, we need to explain the concept of serializable transactions that is central to all conventional
concurrency control mechanisms.
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3 THE CONSISTENCY PROBLEM IN CONVENTIONAL DATABASE SYSTEMS
Database consistency is maintained if each data item in the database satisfies some

application-specific consistency constraints.  For example, in a distributed airline reservation
system, one consistency constraint might be that each seat on a flight can be reserved by only
one passenger.  It is often the case, however, that not all consistency constraints are known be-
fore hand to the designers of general-purpose DBMSs, because of the lack of information about
the computations in potential applications.

Given the lack of knowledge about the application-specific semantics of database opera-
tions, and the need to design general mechanisms that cut across many potential applications, the
best a DBMS can do is to abstract all operations on a database to be either a read operation or a
write operation, irrespective of the particular computation. Then it can guarantee that the
database is always in a consistent state with respect to reads and writes regardless of the seman-
tics of the particular application.  Ignoring the possibility of bugs in the DBMS program and the
application program, inconsistent data then results from two main sources: (1) software or
hardware failures such as bugs in the operating system or a disk crash in the middle of opera-
tions, and (2) concurrent access of the same data item by multiple users or programs.

3.1 The Transaction Concept
To solve these problems, the operations performed by a process that is accessing the

database are grouped into sequences called transactions [Eswaran et al. 76].  Thus, users would
interact with a DBMS by executing transactions.  In traditional DBMSs, transactions serve three
distinct purposes [Lynch 83]: (1) they are logical units that group together operations that com-
prise a complete task; (2) they are atomicity units whose execution preserves the consistency of
the database; and (3) they are recovery units that ensure that either all the steps enclosed within
them are executed, or none are.  It is thus by definition that if the database is in a consistent state
before a transaction starts executing, it will be in a consistent state when the transaction ter-
minates.

In a multi-user system, users execute their transactions concurrently, and the DBMS has to
provide a concurrency control mechanism to guarantee that consistency of data is maintained in
spite of concurrent accesses by different users.  From the user’s viewpoint, a concurrency control
mechanism maintains the consistency of data if it can guarantee: (1) that each of the transactions
submitted to the DBMS by a user eventually gets executed; and (2) that the results of the com-
putation performed by each transaction are the same whether it is executed on a dedicated system
or concurrently with other transactions in a multi-programmed system [Bernstein et al. 87;
Papadimitriou 86].

Let us follow up on our previous example to demonstrate the concept of transactions.  John
and Mary are assigned the task of fixing two bugs that were suspected to be in modules A and
B. The first bug is caused by an error in procedure p1 in module A, which is called by procedure
p3 in module B (thus fixing the bug might affect both p1 and p3).  The second bug is caused by
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T TJohn Mary
|
| reserve(A)
| modify(p1)
| write(A)
| reserve(A)
| modify(p2)
| write(A)
| reserve(B)
| modify(p3)
| write(B)
| reserve(B)
| modify(p4)
| write(B)
\/
Time

Figure 2: Serializable schedule

an error in the interface of procedure p2 in module A, which is called by procedure p4 in B. John
and Mary agree that John will fix the first bug and Mary will fix the second.  John starts a
transaction T and proceeds to modify procedure p1 in module A. After completing theJohn
modification, he starts modifying procedure p3 in module B. At the same time, Mary starts a
transaction T to modify procedure p2 in module A and procedure p4 in module B.Mary

Although T and T are executing concurrently, their outcomes are expected to be theJohn Mary
same, had each of them been executed on a dedicated system.  The overlap between T andMary
T results in a sequence of actions from both transactions, called a schedule. Figure 2 showsJohn
an example of a schedule made up by interleaving operations from T and T . A scheduleJohn Mary
that gives each transaction a consistent view of the state of the database is considered a consis-
tent schedule.  Consistent schedules are a result of synchronizing the concurrent operations of
users by allowing only those operations that maintain consistency to be interleaved.

3.2 Serializability
Let us give a more formal definition of a consistent schedule.  Since transactions are consis-

tency preserving units, if a set of transactions T , T , ..., T are executed serially (i.e., for every1 2 n
i= 1 to n-1, transaction T is executed to completion before transaction T begins), consistencyi i+1
is preserved.  Thus, every serial execution (schedule) is correct by definition.  We can then estab-
lish that a serializable execution (one that is equivalent to a serial execution) is also correct.
From the perspective of a DBMS, all computations in a transaction either read or write a data
item from the database.  Thus, two schedules S1 and S2 are said to be computationally equiv-
alent if [Korth and Silberschatz 86]:
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1. The set of transactions that participate in S and S are the same.1 2

2. For each data item Q in S , if transaction T executes read(Q) and the value of Q1 i
read by T is written by T , then the same will hold in S (i.e., read-writei j 2
synchronization).

3. For each data item Q in S , if transaction T executes the last write(Q) instruction,1 i
then the same holds also in S (i.e., write-write synchronization).2

For example, the schedule shown in figure 2 is equivalent to the serial schedule T ,John
T (execute T to completion and then execute T ) because: (1) the set of transactionsMary John Mary
in both schedules are the same; (2) both data items A and B read by T are written by T inMary John
both schedules; and (3) T executes the last write(A) operation and the last write(B) operationMary
in both schedules.

The consistency problem in conventional database systems reduces to that of testing for
serializable schedules because it is accepted that the consistency constraints are unknown. Each
operation within a transaction is abstracted into either reading a data item or writing it. Achiev-
ing serializability in DBMSs can thus be decomposed into two subproblems: read-write
synchronization and write-write synchronization, denoted rw and ww synchronization,
respectively [Bernstein and Goodman 81]. Accordingly, concurrency control algorithms can be
categorized into those that guarantee rw synchronization, those that are concerned with ww
synchronization, and those that integrate the two.  Rw synchronization refers to serializing trans-
actions in such a way so that every read operation reads the same value of a data item as that it
would have read in a serial execution.  Ww synchronization refers to serializing transactions so
that the last write operation of every transaction leaves the database in the same state as it would
have left it in some serial execution. Rw and ww synchronization together result in a consistent
schedule.

When more than one transaction is involved in reading and writing the same object at the
same time, one of the transactions is guaranteed to complete its task while other transactions
must be prevented from executing the conflicting operations until the continuing transaction is
complete and a consistent state is guaranteed.  Thus, even though a DBMS may not have any
information about application-specific consistency constraints, it can guarantee consistency by
allowing only serializable executions of concurrent transactions.  This concept of serializability
is central to all the concurrency control mechanisms described in the next section.  If more
semantic information about transactions and their operations were available, schedules that are
not serializable but that do maintain consistency can be produced.  That is exactly what the ex-
tended transaction mechanisms discussed later try to achieve.
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4 TRADITIONAL APPROACHES TO CONCURRENCY CONTROL
In order to understand why conventional concurrency control mechanisms are too restric-

tive for advanced applications, it is necessary to be familiar with the basic ideas of the main
serializability-based concurrency control mechanisms that have been proposed for, and im-
plemented in, conventional database systems.  Most of the mechanisms follow one of five main
approaches to concurrency control: two-phase locking, which is the most popular example of
locking protocols, timestamp ordering, optimistic concurrency control, multiversion concur-
rency, and nested transactions, which is relatively orthogonal to the first four mechanisms.  In
this section, we briefly describe these five approaches.  For a comprehensive discussion and sur-
vey of the topic, the reader is referred to [Bernstein and Goodman 81] and [Kohler 81].

4.1 Locking Mechanisms

4.1.1 Two-Phase Locking
The two-phase locking mechanism (2PL) introduced by Eswaran et al. is now accepted as

the standard solution to the concurrency control problem in conventional database systems. 2PL
guarantees serializability in a centralized database when transactions are executed concurrently.
The mechanism depends on well-formed transactions, which (1) do not relock entities that have
been locked earlier in the transaction, and (2) are divided into a growing phase, in which locks
are only acquired, and a shrinking phase, in which locks are only released [Eswaran et al. 76].
During the shrinking phase, a transaction is prohibited from acquiring locks.  If a transaction
tries during its growing phase to acquire a lock that has already been acquired by another trans-
action, it is forced to wait.  This situation might result in deadlock if transactions are mutually
waiting for each other’s resources.

2PL allows only a subset of serializable schedules. In the absence of information about
how and when the data items are accessed, however, 2PL is both necessary and sufficient to
ensure serializability by locking [Yannakakis 82].  If we have prior knowledge about the order of
access of data items, which is often the case in advanced applications, we can construct locking
protocols that are not 2PL but ensure serializability.  One such protocol is the tree protocol,
which can be applied if there is a partial ordering on the set of items that are accessed by concur-
rent transactions.  To illustrate this protocol, assume that a third programmer, Bob, joined the
programming team of Mary and John and is now working with them on the same project.  Sup-
pose that Bob, Mary and John want to modify modules A and B concurrently in the manner
depicted in schedule S1 of figure 3.  The tree protocol would allow this schedule to execute
because it is serializable (equivalent to T T T ) even though it does not follow the 2PLBob John Mary
protocol (because T releases the lock on A before it acquires the lock on B).  It is possible toJohn
construct S1 because all of the transactions in the example access (write) A before B. This infor-
mation about the access patterns of the three transactions was used to construct the non-2PL
schedule shown in the figure.  This example demonstrates why 2PL is in fact not appropriate for
advanced applications.
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Schedule S1:

T T TJohn Mary Bob

| lock(A)
| read(A)
| modify(A)
| write(A)
| unlock(A)
| lock(A)
| read(A)
| modify(A)
| write(A)
| lock(B)
| read(B)
| modify(B)
| write(B)
| unlock(B)
| lock(B)
| read(B)
| modify(B)
| write(B)
| unlock(B)
| lock(B)
| read(B)
| modify(B)
| write(B)
| unlock(A)
| unlock(B)
\/
Time

Figure 3: Serializable but not 2PL schedule

4.2 Timestamp Ordering
One of the problems of locking mechanisms is deadlock, which occurs when two or more

transactions are mutually waiting for each other’s resources.  This problem can be solved by
assigning each transaction a unique number, called a timestamp, chosen from a monotonically
increasing sequence, which is often a function of the time of the day [Kohler 81].  Using times-
tamps, a concurrency control mechanism can totally order requests from transactions according
to the transactions’ timestamps [Rosenkrantz et al. 78].  The mechanism forces a transaction re-
questing to access a resource that is being held by another transaction to either (1) wait until the
other transaction that has hold of the requested resource at that time terminates, (2) abort itself
and restart if it cannot be granted the request, or (3) preempt the other transaction and get hold of
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the resource.  A scheduling protocol decides which one of these three actions to take after com-
paring the timestamp of the requesting transaction with the timestamps of conflicting trans-
actions. The protocol must guarantee that a deadlock situation will not arise.

Two of the possible alternative scheduling protocols used by timestamp-based mechanisms
are: (1) the WAIT-DIE protocol, which forces a transaction to wait if it conflicts with a running
transaction whose timestamp is more recent, or to die (abort and restart) if the running
transaction’s timestamp is older; and (2) the WOUND-WAIT protocol, which allows a trans-
action to wound (preempt by suspending) a running one with a more recent timestamp, or forces
the requesting transaction to wait otherwise.  Locks are used implicitly in this technique since
some transactions are forced to wait as if they were locked out.

4.3 Multiversion Timestamp Ordering
The timestamp ordering mechanism above assumes that only one version of a data item

exists. Consequently, only one transaction can access a data item at a time.  This mechanism can
be improved in the case of read-write synchronization by allowing multiple transient versions of
a data item to be read and written by different transactions, as long as each transaction sees a
consistent set of versions for all the data items that it accesses.  This is the basic idea of the
multiversion scheme introduced by Reed [Reed 78].  In Reed’s mechanism, each transaction is
assigned a unique timestamp when it starts; all operations of the transaction are assigned the
same timestamp.  For each data item x there is a set of read timestamps and a set of <write
timestamp, value> pairs, called transient versions.

The existence of multiple versions eliminates the need for write-write synchronization since
each write operation produces a new version and thus can not conflict with another write opera-
tion. The only possible conflicts are those corresponding to read-from relationships [Bernstein et
al. 87], as demonstrated by the following example.

Let R(x) be a read operation with timestamp TS(R).  R(x) is processed by reading the value
of the version of x whose timestamp is the largest timestamp smaller than TS(R).  TS(r) is then
added to the set of read timestamps of item x. Similarly, let W(x) be a write operation that
assigns value v to item x, and let its timestamp be TS(W).  Let interval(W) be the interval from
TS(W) to the smallest timestamp of a version of x greater than TS(W) (i.e., a version of x that
was written by another transaction whose timestamp is more recent than TS(W)). A situation
like this occurs because of delays in executing operations within a transaction (the write opera-
tion might have been the last operation after many other operations in the same transaction).
Because of those delays, an operation O belonging to transaction T might be executed after Ti i i
had started by a period of time.  In the meanwhile, other operations from a more recent trans-
action might have been performed.  If any read timestamps lies in the interval (i.e., a transaction
has already read a value of x written by a more recent write operation than W), then W is
rejected (and the transaction is aborted).  Otherwise, W is allowed to create a new version of x.
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4.4 Optimistic Non-Locking Mechanisms
In many applications, locking has been found to constrain concurrency and to add an un-

necessary overhead.  The locking approach has the following disadvantages [Kung and Robinson
81]:

1. Lock maintenance represents an unnecessary overhead for read-only transactions,
which do not affect the integrity of the database.

2. Most of the general-purpose deadlock-free locking mechanisms work well only in
some cases but perform rather poorly in other cases. There are no locking
mechanisms that provide high concurrency in all cases.

3. When large parts of the database resides on secondary storage, locking of objects
that are accessed frequently (referred to as congested nodes), while waiting for
secondary memory access, causes a significant decrease in concurrency.

4. Not permitting locks to be unlocked until the end of the transaction, which al-
though not required is always done in practice to avoid cascaded aborts, decreases
concurrency.

5. Most of the time it is not necessary to use locking to guarantee consistency since
most transactions do not overlap; locking may be necessary only in the worst case.

To avoid these problems, Kung and Robinson presented the concept of "optimistic" concur-
rency control by introducing two families of concurrency control mechanisms (serial validation
and parallel validation) that do not use locking. They require each transaction to consist of two
or three phases: a read phase, a validation phase and possibly a write phase.  During the read
phase, all writes take place on local copies (also referred to as transient versions) of the records
to be written.  Then, if it can be established during the validation phase that the changes the
transaction made will not cause loss of integrity, i.e., that they are serializable with respect to all
committed transactions, the local copies are made global and thus accessible to other transactions
in the write phase.

Validation is done by assigning each transaction a timestamp at the end of the read phase
and synchronizing using timestamp ordering.  The correctness criteria used for validation are
based on the notion of serial equivalence.  Any schedule produced by this technique ensures that
if transaction T has a timestamp less than the timestamp of transaction T then the schedule isi j
equivalent to the serial schedule T followed by T . This can be ensured if any one of the follow-i j
ing three conditions holds:

1. T completes its write phase before T starts its read phase.i j

2. The set of data items written by T does not intersect with the set of data items readi
by T , and T completes its write phase before T starts its write phase.j i j

3. The set of data items written by T does not intersect with the set of data items readi
or written by T , and T completes its read phase before T completes its read phase.j i j
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Although optimistic concurrency control allows more concurrency under certain cir-
cumstances, it decreases concurrency when the read and write sets of the concurrent transactions
overlap. For example, Kung and Robinson’s protocol would cause one of transactions in the
simple 2PL schedule in figure 2 to be rolled back and restarted.  From the viewpoint of advanced
applications, the use of rollback as the main mechanism of achieving serializability is a serious
disadvantage. Since operations in advanced transactions are generally long-lived (e.g., compil-
ing a module), rolling them back and restarting them wastes all the work that these operations
did (the object code produced by compilation). The inappropriateness of rolling back a long
transaction in advanced applications is discussed further in section 5.

4.5 Multiple Granularity Locking
All the concurrency control protocols described so far operate on individual data items to

achieve synchronization of transactions.  It is sometimes desirable, however, to able to access a
set of data items as a single unit, e.g., to effectively lock each item in the set in one operation
rather than having to lock each item individually.  Gray et al. presented a multiple granularity
concurrency control protocol, which aims to minimize the number of locks used while accessing
sets of objects in a database [Gray et al. 75].  In their model, Gray et al. organize data items in a
tree where items of small granularity are nested within larger ones.  Each non-leaf item
represents the data associated with its descendants.  This is different from the tree protocol
presented above in that the nodes of the tree (or graph) do not represent the order of access of
individual data items but rather the organization of data objects.  The root of the tree represents
the whole database. Transactions can lock nodes explicitly, which in turn locks descendants
implicitly. Two modes of locks were defined: exclusive and shared. An exclusive (X) lock
excludes any other transaction from accessing (reading or writing) the node; a shared (S) lock
permits other transaction to read the same node concurrently, but prevents any updating of the
node.

To determine whether to grant a transaction a lock on a node (given these two modes), the
transaction manager would have to follow the path from the root to the node to find out if any
other transaction has explicitly locked any of the ancestors of the node.  This is clearly in-
efficient. To solve this problem, a third kind of lock mode called intention lock mode was
introduced [Gray 78].  All the ancestors of a node must be locked in intention mode before an
explicit lock can be put on the node.  In particular, nodes can be locked in five different modes.
A non-leaf node is locked in intention-shared (IS) mode to specify that descendant nodes will be
explicitly locked in shared (S) mode.  Similarly, an intention-exclusive (IX) lock implies that
explicit locking is being done at a lower level in an exclusive (X) mode.  A shared and intention-
exclusive (SIX) lock on a non-leaf node implies that the whole subtree rooted at the node is
being locked in shared mode, and that explicit locking will be done at a lower level with
exclusive-mode locks.  A compatibility matrix for the five kinds of locks is defined as shown in
figure 4.  The matrix is used to determine when to grant lock requests and when to deny them.

Finally, a multiple granularity protocol based on the compatibility matrix was defined as
follows:
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IS IX S SIX X

IS yes yes yes yes no

IX yes yes no no no

S yes no yes no no

SIX yes no no no no

X no no no no no

Figure 4: Compatibility matrix of granularity locks

1. Before requesting an S or IS lock on a node, all ancestor nodes of the requested
node must be held in IX or IS mode by the requester.

2. Before requesting an X, SIX or IX lock on a node, all ancestor nodes of the re-
quested node must be held in SIX or IX mode by the requester.

3. Locks should be released either at the end of the transaction (in any order) or in
leaf to root order.  In particular, if locks are not held to the end of a transaction, it
should not hold a lock on a node after releasing its ancestors.

The multiple granularity protocol increases concurrency and decreases overhead especially
when there is a combination of short transactions with a few accesses and transactions that last
for a long time accessing a large number of objects such as audit transactions that access every
item in the database. The Orion object-oriented database system provides a concurrency control
mechanism based on the multi-granularity mechanism described above [Kim et al. 88; Garza and
Kim 88].

4.6 Nested Transactions
A transaction, as presented above, is a set of primitive atomic actions abstracted as read and

write operations.  Each transaction is independent of other transactions. In practice, there is a
need to compose several transactions into one unit (i.e., one transaction) for two reasons: (1) to
provide modularity; and (2) to provide finer grained recovery.  The recovery issue maybe the
more important one, but it is not addressed in detail here since the focus of this paper is on
concurrency control. The modularity problem is concerned with preserving serializability when
composing two or more transactions.  One way to compose transactions is gluing together the
primitive actions of all the transactions by concatenating the transactions in order into one big
transaction. This preserves consistency but decreases concurrency because the resulting trans-
action is really a serial ordering of the subtransactions.  Interleaving the actions of the trans-
actions to provide concurrent behavior, on the other hand, can result in violation of serializability
and thus consistency.  What is needed is to execute the composition of transactions as a trans-
action in its own right, and to provide concurrency control within the transaction.

The idea of nested spheres of control, which is the origin of the nested transactions concept,
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was first introduced by Davies [Davies 73] and expanded by Bjork [Bjork 73].  Reed presented a
comprehensive solution to the problem of composing transactions by formulating the concept of
nested transactions [Reed 78].  A nested transaction is a composition of a set of subtransactions;
each subtransaction can itself be a nested transaction.  To other transactions, the top-level nested
transaction is visible and appears as a normal atomic transaction.  Internally, however, subtran-
sactions are run concurrently and their actions are synchronized by an internal concurrency con-
trol mechanism.  The more important point is that subtransactions fail and can be restarted or
replaced by another subtransaction independently without causing the whole nested transaction
to fail or restart.  In the case of gluing the actions of subtransactions together, on the other hand,
the failure of any action would cause the whole new composite transaction to fail.  In Reed’s
design, timestamp ordering is used to synchronize the concurrent actions of subtransactions
within a nested transaction.  Moss designed a nested transaction system that uses locking for
synchronization [Moss 85].  Moss’s design also manages nested transactions in a distributed sys-
tem.

Figure 5: Scheduling nested transactions

As far as concurrency is concerned, the nested transaction model presented above does not
change the meaning of transactions (in terms of being atomic) and it does not alter the concept of
serializability. The only advantage is performance improvement because of the possibility of
increasing concurrency at the subtransaction level, especially in a multiprocessor system.  To
illustrate this, consider transactions T and T of figure 2.  We can construct each as aJohn Mary
nested transaction as shown in figure 5.  Using Moss’s algorithm, the concurrent execution of
John’s transaction and Mary’s transaction will produce the same schedule presented in figure 2.
Within each transaction, however, the two subtransactions can be executed concurrently, im-
proving the overall performance.
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It should be noted that combinations of optimistic concurrency control, multiversion ob-
jects, and nested transactions is the basis for many of the concurrency control mechanisms
proposed for advanced database applications.  To understand the reasons behind this, we have to
address how the nature of data and computations in advanced database applications imposes new
requirements on concurrency control.  We explore these new requirements in the next section,
and then present several approaches that take these requirements into consideration in rest of the
paper.

5 CONCURRENCY CONTROL REQUIREMENTS IN ADVANCED DATABASE
APPLICATIONS

Serializable executions of transactions with respect to reads and writes on the database, for
example, are enforced in conventional transaction management schemes because of the lack of
semantic knowledge about the application-specific operations, which leads to the inability to
specify or check consistency constraints on data, as well as the desire to provide a general trans-
action processing scheme that does not depend on application details.  But there is nothing that
makes a non-serializable schedule inherently inconsistent.  If enough information is known about
the transactions running concurrently, a non-serializable but consistent schedule can be con-
structed.

In fact, equating the notions of consistency with serializability causes a significant loss of
concurrency in advanced applications, where it is often possible to define specific consistency
constraints. Several researchers have thus studied the nature of concurrent behavior in advanced
applications, and have arrived at new requirements for concurrency control [Bancilhon et al. 85;
Yeh et al. 87]:

1. Supporting long transactions: Long-lived operations on objects in design en-
vironments (such as compiling and circuit layout) imply that the transactions, in
which these operations may be embedded, are also long-lived. Long transactions
need different support than short transactions.  In particular, blocking a transaction
until another commits is rarely acceptable for long transactions. It is worthwhile
noting that the problem of long transactions has also been addressed in traditional
data processing applications (bank audit transactions, for example).

2. Supporting user control: In order to support user tasks that are nondeterministic
and interactive in nature, the concurrency control mechanism should provide the
user with the ability to start a transaction, interactively execute operations within it,
dynamically restructure it, and commit or abort it at any time.  The nondeterminis-
tic nature of transactions implies that the concurrency control mechanism will not
be able to determine whether or not the execution of a transaction will violate
database consistency, except by actually executing it and validating its results
against the changed database.  This might lead to situations in which the user might
have invested many hours running a transaction, only to find out later when he
wants to commit it that some of the operations he performed within the transaction
have violated some consistency constraints; he would definitely oppose the dele-
tion of all his work (by rolling back the transaction) in order to prevent the viola-
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tion of consistency. He might, however, be able to explicitly reverse the effects of
some operations in order to regain consistency.  Thus, what is needed is the provi-
sion of more user control over transactions.

3. Supporting synergistic cooperation: Cooperation among programmers to develop
versions of project components has significant implications on concurrency con-
trol. In CAD/CAM systems and SDEs, several users share knowledge collectively
and through this knowledge, they are able to continue their work.  Furthermore, the
activities of two or more users working on shared objects may not be serializable.
They may pass the shared objects back and forth in a way that cannot be ac-
complished by a serial schedule.  Also, two users might be modifying two com-
ponents of the same complex object concurrently, with the intent of integrating
these components to create a new version of the complex object, and thus they
might need to look at each others’ work to make sure that they are not modifying
the two components in ways that would make integration difficult.  Such coopera-
tion was coined synergistic interaction by Yeh et al. To insist on serializable con-
currency control in design environments might thus decrease concurrency or more
significantly actually disallow desirable forms of cooperation among developers.

There has been a flurry of research to develop new approaches to transaction management
that meet the requirements of advanced applications.  In the rest of the paper, we survey the
mechanisms that address the requirements listed above.  We categorize these mechanisms into
three categories according to which requirement they support best.  All the mechanisms that ad-
dress the problems introduced by long transactions are grouped in one section.  Of the
mechanisms that address the issue of cooperation, some achieve only coordination of the ac-
tivities of multiple users while others do allow synergistic cooperation; the two classes of
mechanisms are separated into two different sections.  Issues related to user control are slightly
addressed by mechanisms in both categories, but we did not find any mechanism that provide
satisfactory support for user control over transactions.

In addition to the three requirements listed above, many advanced applications require sup-
port for complex objects.  For example, objects in a software project might be organized in a
nested object system (projects consisting of modules that contain procedures), where individual
objects are accessed hierarchically.  We do not survey mechanisms that support complex objects
because we felt that describing these mechanisms would require explaining concepts from
object-oriented programming and object-oriented database systems, both of which are outside
the scope of this paper.  It is worthwhile noting, however, that the complexity of the structure
and the size of objects in advanced applications strongly suggest the appropriateness of concur-
rency control mechanisms that combine and extend multiversion and multiple granularity
mechanisms.

It might be interesting to note that many of the ideas implemented in the mechanisms we
survey in the rest of the paper have actually been discussed earlier in other contexts.  For in-
stance, some of the ideas related to multilevel transactions, long transactions and cooperative
transactions were discussed by Davies in [Davies 78].
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6 SUPPORTING LONG TRANSACTIONS
Many of the operations performed on data in advanced database applications are long-lived.

Some last for several minutes or hours such as compiling code or printing a complete layout of a
VLSI chip.  When these operations are part of a transaction, they result in a long transaction
(LT), which lasts for an arbitrarily long period of time (ranging from hours to weeks). Such
transactions occur in traditional domains (e.g., printing the monthly account statements at a
bank) as well as in advanced applications, but they are usually an order of magnitude longer in
advanced applications.  LTs are particularly common in design environments, and the length of
their duration causes serious performance problems if these transactions are allowed to lock
resources until they commit.  Other short or long transactions wanting to access the same
resources are forced to wait even though the LT might have finished using the resources.  LTs
also increase the likelihood of automatic aborts (rollback), in order to avoid deadlock, or in the
case of failing validation in optimistic concurrency control.

Two main approaches have been pursued to solve these problems: (1) extending
serializability-based mechanisms while still maintaining serializable schedules; and (2) relaxing
serializability of schedules containing LTs. These alternative approaches utilize the application-
specific semantics of operations in order to increase concurrency. Several examples of each ap-
proach are presented in this section. Some of the schemes were proposed to support LTs for
traditional DBMSs, but the techniques themselves seem applicable to advanced applications and
thus they are discussed in this section rather than earlier.

6.1 Extending Serializability-based Techniques
In traditional transaction processing, all database operations are abstracted into read and

write operations.  This abstraction is necessary for designing general-purpose concurrency con-
trol mechanisms that do not depend on the particulars of applications.  Two-phase locking, for
example, can be used to maintain consistency in any database system, regardless of the intended
application, because it maintains serializability, and thus consistency, of transaction schedules by
guaranteeing the atomicity of all transactions.

Given the requirement of supporting long transactions in advanced applications, however,
the performance of two-phase locking becomes unacceptable because it would force LTs to lock
resources for a long time even after they have finished using them, while blocking other short
and long transactions that need to access the same resources.  Optimistic mechanisms that use
timestamp ordering would cause repeated rollback of transactions given that the rate of conflicts
would increase significantly in the context of long transactions.  One paradigm for solving the
problems introduced by LTs is to make use of any additional information that can be extracted
and use that information with one of the traditional techniques, while maintaining the same tradi-
tional scheme in case the additional information is not available (i.e., it might be available for
some transactions but not for others).  This paradigm is the basis for extending both two-phase
locking and optimistic concurrency control in order to address the requirements of long trans-
actions.
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6.1.1 Altruistic Locking
One piece of information that can be used to increase concurrency is when resources are no

longer needed by a transaction, so that they can be released and used by other transactions.  This
information can be used to allow a long transaction, that otherwise follows a serializable
mechanism such as two-phase locking, to conditionally unlock some of its resources so that they
can be used by other transactions that meet certain requirements.

One formal mechanism that follows this approach is altruistic locking, which is an exten-
sion of the basic two-phase locking algorithm [Salem et al. 87].  Altruistic locking makes use of
information about access patterns of a transaction to decide which resources it can release.  In
particular, the technique uses two types of information: (1) Negative access pattern information,
which describes objects that will not be accessed by the transaction; and (2) Positive access pat-
tern information, which describes which, and in what order, objects will be accessed by the
transaction. Taken together, these two types of information allow long transactions to release
their resources after they are done with them.  Releasing a resource is a conditional unlock
operation because it allows other transactions to access the released resource as long as they
follow certain restrictions that ensure serializability.  The set of all data items that have been
locked and then released by an LT is called the wake of the transaction.

A two-phase with release schedule is then defined as any schedule that adheres to two
restrictions:

1. No two transactions hold locks on the same data item simultaneously unless one of
them locked and released the object before the other locked it; the later lock-holder
is said to be in the wake of the releasing transaction.

2. If a transaction is in the wake of another transaction, it must be completely in the
wake of that transaction.  This means that if John’s transaction locks a data item
that has been released by Mary’s transaction, then any data item, that is accessed
by both John and Mary and that is currently locked by John, must have been
released by Mary before it was locked by John.

This definition maintains serializability of transactions without altering the structure of
transactions. The mechanism assumes that transactions are programmed and not user-controlled
(i.e., the user cannot make up the transactions as he goes along).  In the following example,
however, we will assume an informal extension to this mechanism that will allow user-controlled
transactions.

Consider the project depicted in figure 1 in the introduction where each module in the
project contains a number of procedures (subobjects).  Suppose that Bob, who joined the pro-
gramming team of Mary and John, wants to familiarize himself with the code of all the
procedures of the project, so he starts a long transaction, T , that accesses all of theBob
procedures, one procedure at a time.  Bob needs to access each procedure only once to read it
and add some comments about the code of each procedure; as he finishes accessing each proce-
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dure he releases it.  In the meanwhile, John starts a short transaction, T that accesses onlyJohn
two procedures, p1 and then p2, from module A. Let us assume that T has already accessedBob
p2 and released it, and is currently reading p1. T has to wait until T is finished with p1John Bob
and releases it, at which point T can start accessing p1 by entering the wake of T , becauseJohn Bob
all the objects that T needs to access (p1 and p2) are in the wake of T . After finishingJohn Bob
with p1, T can start accessing p2 without delay.John

Figure 6: Access patterns of three transactions

Now assume that Mary starts another short transaction, T , that needs to access both p2Mary
and a third procedure p3 that is not in the wake of T yet. T can access p2 after TBob Mary John
terminates, but then it must wait until either p3 has been accessed by T (i.e., until p3 entersBob
the wake of T ) or until T terminates. If T never accesses p3, T is forced to waitBob Bob Bob Mary
until T terminates (which might take a long time since it is a long transaction).  To improveBob
concurrency in this situation, Salem et al. introduced a mechanism for expanding the wake of a
long transaction dynamically in order to enable short transactions that are already in the wake of
a long transaction to continue running.  The mechanism uses the negative access information
provided to it in order to only add objects that will not be accessed by the long transactions to its
wake. Following up on the example, the expanding mechanism would add p3 to the wake of
T (by issuing a release on p3 even if T had not locked it).  This would allow T toBob Bob Mary
access p3 and thus continue executing without delay.
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Figure 6 depicts the example above.  Each data object is represented along the vertical axis
whereas time is represented along the horizontal axis.  The transactions belonging to Bob, John,
and Mary are represented by solid lines.  T accesses p2 at time t since the line of T passesiBob Bob
through a black dot at the point (t , p2). As shown, T is totally in the wake of T whilei John Bob
T is not.  The transaction manager can dynamically expand the wake of T by adding p3Mary Bob
to it (as shown by the thick line) and then T would be totally in the wake of T . In thisMary Bob
case, the schedule of the three transactions is equivalent to the serial execution of T , followedBob
by T , followed by T .John Mary

The basic advantage of this scheme is its ability to utilize the knowledge that a transaction
no longer needs access to a data object that it has locked.  It maintains serializability and as-
sumes that the data stored in the database is of the conventional form.  Furthermore, if access
information is not available, any transaction, at any time, can run under the conventional 2PL
protocol without performing any special operations.  However, as observed earlier, because of
the interactive nature of transactions in design environments, the access patterns of transactions
are not predictable.  In the absence of this information, altruistic locking reduces to two-phase
locking. Altruistic locking also suffers from the problem of cascaded rollbacks; the problem is
that when a long transaction aborts, all the short transactions in its wake have to be aborted even
if they already terminated.

6.1.2 Snapshot Validation
Altruistic locking assumes two-phase locking as its basis, and thus suffers from the over-

head of locking mechanisms as noted in section 4.  An alternative approach that avoids this over-
head is to assume an underlying validation mechanism. As presented in section 4, validation
(also called optimistic) techniques allow concurrent transactions to proceed without restrictions.
Before committing a transaction, however, a validation phase, which establishes that the trans-
action did not produce conflicts with other committed transactions, has to be passed.  The main
shortcoming of the traditional validation technique is its weak definition of conflict, which
causes some transactions, such as those in figure 2, to be restarted unnecessarily (i.e., the trans-
actions might have been actually serializable but the conflict mechanism did not recognize them
as such).  This is not a serious problem in conventional applications where transactions are short.
It is very undesirable, however, to restart a long transaction that has done a significant amount of
work. Pradel et al. observed that the risk of restarting a transaction can be reduced by distin-
guishing between serious conflicts, which require restart, and non-serious conflicts, which do
not. One mechanism that uses this approach is called snapshot validation [Pradel et al. 86].

Going back to our example, let us assume that Bob, John, and Mary start three transactions
T , T and T simultaneously. T modifies (i.e., writes) procedures p1 and p2 duringBob John Mary Bob
the read phase of T and T as shown in figure 7.  The validation phases of T andJohn Mary John
T will thus consider T operations. According to the traditional optimistic concurrencyMary Bob
control protocol, both T and T would have to be restarted because of conflicts; i.e.,John Mary
procedures p1 and p2 that they read have been updated by T . T read p1, which was laterBob John



21

Figure 7: Validation conflicts

changed by T , and thus what T read was out of date.  This conflict is "serious" since itBob John
violates serializability and must be prevented. In this case, T has to be restarted, thus readingJohn
the updated p1. The conflict between T and T , however, is not serious since the concur-Mary Bob
rent schedule presented in figure 7 is equivalent to the serial schedule of T followed byBob
T . This schedule is not allowed under the traditional protocol, but the snapshot techniqueMary
allows T to commit because the conflict is not serious.Mary

Pradel et al. presented a simple mechanism for determining whether or not conflicts are
serious. In the example above, T terminates while T is still in its read phase.  EachBob Mary
transaction has a read set that is ordered by the time of access of each object (i.e., if object p1 is
accessed before object p2 by a transaction, then p1 appears before p2 in the read set).  When
T terminates, T takes note of the termination in its read set.  During its validation phase,Bob Mary
T has to consider only the objects that were read before T terminated. Any conflicts thatMary Bob
occur after that in the read set are considered not serious.  Thus, the conflict between T andBob
T regarding procedure p2 is not serious because T read p2 after T has terminated.Mary Mary Bob

Pradel et al. also analyzed the starvation problem in the conventional optimistic protocol
and discovered that the risk of starvation is greater the longer the transaction is.  Starvation oc-
curs when a transaction that is restarted because it had failed its validation phase keeps failing its
validation phase due to conflicts with other transactions.  Starvation is detected after a certain
number of trials and restarts. The classical optimistic concurrency control protocol solves the
starvation problem by locking the whole database for the starving transaction, thus allowing it to
proceed uninterrupted.  Such a solution is clearly not acceptable for advanced applications.
Pradel et al. present an alternative solution based on the concept of a substitute transaction.

If a transaction T is starving, a substitute transaction ST is established such thatJohn John
ST has the same read set and write set of T . At this point, T is restarted.  STJohn John John John
simply reads its transaction number (the first thing that any transaction does) and then im-
mediately enters its validation phase.  This will force all other transactions to validate against
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ST . Since ST has the same read and write sets of T , it will make sure that any otherJohn John John
transaction T that conflicts with T would not pass its validation against ST and thusj John John
would have to restart.  This "clears the way" for T to proceed with its execution with a muchJohn
decreased risk of restart.  ST terminates only after T commits.John John

6.1.3 Order-Preserving Serializability for Multilevel Transactions
The two mechanisms presented above extend traditional single-level protocols, in which a

transaction is a flat computation made up of a set of atomic operations.  In advanced applica-
tions, however, most computations are long-duration operations that involve several lower-level
suboperations. For example, linking the object code of a program involves reading the object
code of all its component modules, accessing system libraries, and generating the object code of
the program.  Each of these operations might itself involve suboperations that are distinguish-
able. If traditional single-level protocols are used to ensure atomicity of such long transactions,
the lower-level operations will be forced to be executed in serial order, resulting in long delays
and a decrease in concurrency.

Beeri, Weikum and Schek have observed that concurrency can be increased if long-duration
operations are abstracted into subtransactions that are implemented by a set of lower-level opera-
tions. If these lower-level operations are themselves translated into yet more lower-level opera-
tions, then the abstraction can be extended to multiple levels [Beeri et al. 88].  This is distinct
from the traditional nested transactions model presented in section 4 [Reed 78; Moss 85] in two
main respects: (1) a multilevel transaction has a fixed number of levels, of which each two ad-
jacent pairs define a layer of the system, whereas nested transactions have no predefined notion
of layers; and (2) in contrast to nested transactions where there need not be a notion of abstrac-
tion, in a multilevel transaction, the higher the level, the more abstract the state.

These two distinctions lead to a major difference between transaction management for
nested transactions and for multilevel transactions.  In nested transactions, a single global
mechanism must be used because there is no predefined notion of layers. The existence of layers
of abstraction in multilevel transactions opens the way to a modular approach to concurrency
control where different concurrency control protocols (schedulers) can be applied at different
layers of the system; i.e., layer-specific mechanisms can be used.  Each of these protocols must
ensure serializability with respect to its layer.  Unfortunately, not all combinations of concur-
rency control schedulers lead to correct executions.  To illustrate, assume we have a 3-level mul-
tilevel transaction and that the protocol between the second and third levels is commutativity-
based, i.e., if two adjacent operations at the third level can commute, their order in the schedule
can be changed.  Changing the order of operations at the third level, however, might change the
order of subtransactions at the second level, and since the protocol only considers operations at
the third level, it may change the order of operations in such a way so as to result in a non-
serializable order of the subtransactions at second level.

The example above shows that serializability is too weak a correctness criterion to use for a
"handshake" between the protocols of adjacent layers in a multilevel system, and that it must be
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extended to take into account the order of transactions at the adjacent layers.  Beeri, Bernstein
and Goodman introduced the notion of order-preserving correctness as the necessary property
that layer-specific protocols must use to guarantee consistency [Beeri et al. 86; Beeri et al. 89].
This notion was used earlier in a concurrency control model for multilevel transactions im-
plemented in the DASDBS system [Weikum and Schek 84; Weikum 86]. A combined report on
both of these efforts appears in [Beeri et al. 88]

The basic idea of order-preserving serializability is to extend the concept of commutativity
which states that order transformation cannot be applied to two operations belonging to the same
transaction because that changes the order of execution of operations within a transaction.  This
notion can be translated to multilevel systems by allowing the order of two adjacent commuting
operations to change only if their least common ancestor does not impose an order on their ex-
ecution. If commuting operations leads to serializing the operations of a subtransaction in one
unit (i.e., they are not interleaved with operations of other subtransactions), and thus making it an
atomic computation, the tree rooted at the subtransaction can be replaced by a node representing
the atomic execution of the subtransaction.  The pruning of serial computations, and thus reduc-
ing the number of levels in a multilevel transaction by one, is termed reduction.

To illustrate, assume that Mary is assigned the task of adding a new procedure p10 to
module A and recompiling the module to make sure that the addition of procedure p10 did not
introduce any compile-time errors. Bob is simultaneously assigned the task of deleting proce-
dure p0 from module A. Adding or deleting a procedure from module A is an abstraction that is
implemented by two operations: updating the attribute that maintains the list of procedures con-
tained in A (i.e., updating the object containing module A), and updating the documentation D to
describe the new functionality of the module A after adding/deleting a procedure.  Recompiling a
module is an abstraction for reading the source code of the module and updating the object con-
taining the module (to update its timestamp, for example). Consider the concurrent execution of
T and T in figure 8(a).  Although the schedule is not serializable, it is correct because theMary Bob
operations at the lower level can be commuted so as to produce a serializable schedule while
preserving the order of the subtransactions at the second level.  The results of successive com-
mutations is shown in figures 8 (b) and (c).  The result of applying reduction is shown in (d) and
the final result of applying commutation to the reduced tree, which is a serial schedule, is shown
in (e).

Beeri, Schek and Weikum have shown that order preservation is only a sufficient condition
to maintain consistency across layers in a multilevel system.  They present a weaker condition,
conflict-based order-preserving serializability. This condition states that a layer-specific
protocol need only preserve the order of conflicting operations of the top level of its layers.  For
example, consider the schedule in figure 9(a) which shows a concurrent execution of three trans-
actions initiated by Mary, Bob and John.  Compiling module A and compiling module B are
non-conflicting operations since they do not involve any shared objects.  Linking the subsystem
containing both A and B, however, conflicts with the other two operations.  Although the
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Figure 8: Order-Preserving Serializable Schedule

schedule is not order-preserving serializable, it is correct because it could be serialized as shown
in figure 9(b) by changing the order of the two compile operations, and since these are non-
conflicting subtransactions, the change of order preserves correctness.

Martin [Martin 87] presented a similar model based on the paradigm of nested objects,
which models hierarchical access to data by defining a nested object system.  Each object in the
system exists at a particular level of data abstraction in the system.  Operations are specified for
objects at all levels where operations at level i are specified in terms of operations at level i-1.
Thus, the execution of operations at level i result in the execution of perhaps several
suboperations at level i-1. The objects accessed by suboperations at level i-1 on behalf of an
operation on an object at level i are called subobjects of the object at level i.
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Figure 9: Conflict-Based Order-Preserving Serializable Schedule

Martin’s model allows two kinds of schedules that are not serializable, externally
serializable schedules and semantically verifiable schedules. Externally serializable computa-
tions allow only serializable access to top-level objects while allowing nonserializable access to
subobjects. Subobjects are thus left in a state that cannot be produced by any serial execution.
Semantically verifiable schedules allow nonserializable access to objects at all levels.  Non-
serializable behavior can be proven to be correct if the operation semantics at all levels are given
and considered.  In Martin’s model, weakening an object’s conflict specification may produce a
correct nonserializable schedule.  For example, it can be specified that a write operation on a
specific object at a specific level does not conflict with a read operation on the same node in
figure 9, the scheduler would have allowed the link operation and the compile operations to be
commuted. Such a schedule might be considered correct if the semantics of linking the object
codes of two modules does not prohibit it from reading different versions of the two modules.

6.2 Relaxing Serializability
The approaches presented in the previous section extend traditional techniques while main-

taining serializability as a basis for guaranteeing consistency.  Another approach that aims at
supporting long transactions is based on relaxing the serializability requirement by using the
semantics of application-specific operations.  Relaxing serializability increases the level of con-
currency in a system of concurrent transactions, and thus improves its performance.

6.2.1 Semantics-Based Concurrency Control
Garcia-Molina observed that by using semantic information, a DBMS can replace the

serializability constraint by the semantic consistency constraint [Garcia-Molina 83]. The gist of
this approach is that from a user’s point of view, not all transactions need to be atomic.  Garcia-
Molina introduced the notion of sensitive transactions to guarantee that users see consistent data
on their terminals.  Sensitive transactions are those which output only consistent data to the user,
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and thus must see a consistent database state in order to produce correct data.  Not all trans-
actions that output data are sensitive since some users might be satisfied with data that is only
relatively consistent.  For example, say that a manager of a software project wants to get an idea
about the progress of his programming team by browsing the modules and procedures that exist
in the project.  He might be satisfied with information returned by a read-only transaction that, in
order to avoid delays resulting from waiting for in-progress transactions to finish before reading
their updates, does not take into consideration the updates being made by these in-progress trans-
actions.

A semantically consistent schedule, which transforms the database from one semantically
consistent state to another, is one that guarantees that all sensitive transactions obtain a consistent
view of the database in the sense that they appear to be atomic transactions with respect to all
other transactions.

When the notion of serializability is replaced by that of semantic consistency, it becomes
difficult for a general concurrency control mechanism to decide which schedules preserve con-
sistency. Even if all the consistency constraints were given to the system (which is not possible
in the general case), there is no way for the concurrency control mechanism to guess which
schedules maintain semantic consistency without running the schedules and checking the con-
straints on the resulting state of the database [Garcia-Molina 83].  Doing that, however, would be
equivalent to implementing an optimistic concurrency control scheme which suffers from the
problem of rollback.  Thus, the concurrency control mechanism must be provided with infor-
mation about which transactions are compatible with each other (i.e., their operations can be
interleaved at certain points without violating semantic consistency). Having the user provide
this information, of course, is not a good idea in the general case because it burdens the user with
having to understand the details of applications.  However, in some applications, this kind of
burden might be acceptable in order to avoid the performance penalty of traditional general-
purpose mechanisms.  If this is the case, the question remains what kind of framework should the
user be provided for supplying semantic information that can be used to relax serializability, thus
allowing more concurrency among long transactions.

In some advanced applications such as CAD, where the different parts of the design are
stored in a project database, it is possible to supply semantic information in the form of integrity
constraints on database entities.  Design operations incrementally change those entities in order
to reach the final design [Eastman 80; Eastman 81].  By definition, full integrity of the design, in
the sense of satisfying its specification, exists only when it is complete.  Unlike in conventional
domains where database integrity is maintained during all quiescent periods, the iterative design
process causes the integrity of the design database to be only partially satisfied until the design is
complete. There is a need to define transactions that maintain the partial integrity required by
design operations.  Kutay and Eastman proposed a transaction model that is based on the concept
of entity state, which describes the degree of integrity satisfied by an entity [Kutay and Eastman
83]
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Each entity in the database is associated with a state that is defined in terms of a set of
integrity constraints.  Like a traditional transaction, an entity state transaction is a collection of
actions that read an entity set {e}R and potentially write into an entity set {e}W.  Unlike tradi-
tional transactions, however, entity state transactions are instances of transaction classes, each of
which defines: (1) the set of entities {e}R that instance transactions read; (2) the set of entities

+ B{e}W that instance transactions write; (3) the set of constraints {c } that must be satisfied on
- D{e}R and {e}W prior to the invocation of a transaction; (4) the set of constraints {c } that can

+ Abe violated during the execution of a transaction; and (5) the set of constraints {c } that hold
- Aafter the transaction execution is completed; and (6) the set of constraints {c } that are violated

after the transaction execution is completed.  A very simple example of a transaction class is the
class of browsing transactions that have all the entities in the database as their read set, and all
other sets are empty since these transactions do not transform the database in any way.

The integrity constraints associated with transaction classes define a partial ordering of
these classes in the form of a precedence ordering.  Transaction classes can thus be depicted as a
finite state machine where the violation or satisfaction of specific integrity constraints defines a
transition from one database state to another.  Based on this, Kutay and Eastman define a concur-
rency control protocol that detects violations to the precedence ordering defined by the
application-specific integrity constraints. Violations are resolved by communication among
transactions to negotiate the abortion of one or more of the conflicting transactions.  Kutay and
Eastman did not provide any details of inter-transaction communication.

6.2.2 Semantic Atomicity
Garcia-Molina presented a framework similar in some respects to Kutay and Eastman’s in

that it explicitly defines semantics of database operations.  Garcia-Molina defines four kinds of
semantic information:  (1) transaction semantic types; (2) compatibility sets associated with each
type; (3) division of transactions into smaller steps (subtransactions); and (4) countersteps to
compensate for some of the steps executed within transactions. The first three kinds of infor-
mation are declarative, while the fourth piece of information consists of a procedural description.
Transactions are categorized into types depending on the specifics of the application, in par-
ticular, the kinds of data objects, and operations on them, supported by the application.  Each
transaction type is divided into steps with the assumption that each step must be performed as an
indivisible unit.  A compatibility set associated with a transaction type defines allowable inter-
leavings between steps of transactions of the particular kind with the same or other kinds of
transactions. Countersteps specify what to do in case a step needs to be undone.

Using these definitions, Garcia-Molina defines an alternative concept to atomicity called
semantic atomicity. A transaction is said to be semantically atomic if all its steps are executed,
or if any executed steps are eventually followed by their countersteps.  An atomic transaction, in
contrast, is one in which all or none of the steps are executed.  In the context of a DBMS, the
four pieces of information presented above are used by a locking mechanism that uses two kinds
of locks: local locks, which ensure the atomicity of transaction steps; and global locks, which
guarantee that the interleavings between transactions do not violate semantic consistency.
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Thus, depending on the compatibility sets of different types of transactions, various levels
of concurrency can be achieved.  In one extreme, if the compatibility sets of all kinds of trans-
actions are empty, the mechanism reverts to a traditional locking mechanism that enforces
serializability of the long transactions.  In the other extreme, if all transaction types are com-
patible, the mechanism only enforces the atomicity of the small steps within each transaction,
and thus the mechanism reverts to a system of short atomic transactions (i.e., the steps).  In
advanced applications where this kind of mechanism might be the most applicable, allowable
interleavings would be between these two extremes.

In Garcia-Molina’s scheme, transactions are statically divided into atomic steps and com-
patibility sets that define the allowable interleavings with respect to those steps.  Thus if trans-
actions of type X are compatible with transactions of types Y and Z, then any two transactions
T , of type Y, and T , of type Z, can arbitrarily interleave their steps with a transaction T , of typei j k
X. There is thus no distinction between interleaving with respect to Y and interleaving with
respect to Z. Lynch observed that it might be more appropriate to have different sets of inter-
leavings (in the form of specific breakpoints) with respect to different transaction types [Lynch
83].

This observation seems to be valid for systems in which activities tend to be hierarchical in
nature, for example, software development environments.  Transactions in such systems can of-
ten be nested into levels, where at each level, transactions that have something in common, in
terms of access to data items, are grouped.  Level one groups all the transactions in the system
while subsequent levels group transactions that are more strongly related to each other.  A strong
relation between two transactions might be that they often need to access the same objects at the
same time in a non-conflicting way.  A set of breakpoints (defining interleavings) is then
described for each level of the nesting where the higher order sets (for the higher levels) always
includes the lower order sets.  This results in a total ordering of all sets of breakpoints. This
means that the breakpoints that specify interleavings at a level cannot be more restrictive than
those that define interleavings at a higher level.

Let us illustrate this concept by following up on our example from the software develop-
ment domain. To remind the reader, Bob, John and Mary are cooperatively developing a
software project.  In their development effort, they need to modify objects (code and documen-
tation) as well as get information about the current status of development (e.g., the latest cross-
reference information between procedures in modules A and B).  Let us suppose that Mary starts
two transactions (in two different windows, for example) T and T to modify a proce-Mary1 Mary2
dure in module A, and get cross-reference information, respectively; Bob starts a transaction
T to update a procedure in module B; John starts two transactions T to modify moduleBob1 John1
A, and T to get cross-reference information.John2

A hierarchy of transaction classes can be set up as shown in figure 10.  The top level in-
cludes all transactions.  Level 2 groups all modification transactions (T , T and T )Mary1 Bob1 John1
together and all cross-reference transactions (T and T ) together. Level 3 separates theMary2 John2
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Figure 10: Multilevel Transaction Classes

transactions according to which modules they affect; for example, it separates the transactions
that modify module A (T and T ) from those modifying module B (T ). Level fourMary1 John1 Bob1
contains all the singleton transactions.  At

Then, the sets of breakpoints are specified by describing the transaction segments between
the breakpoints.  For example, the top level set might specify that no interleaving is allowed; the
second-level set might specify that all modification transactions might interleave at some
granularity, and that cross-reference transactions might similarly interleave, but that modification
and cross-reference transactions cannot interleave (to guarantee that cross-reference information
does not change while a modification transaction is in progress).

The gist of multilevel atomicity is for the concurrency control mechanism to use the sets of
breakpoints to provide as much concurrency as defined by the allowed interleaving between
these breakpoints at each level.  Atomicity with respect to breakpoints and allowed interleaving
is maintained at each level.  Thus, the mechanism in our example might allow transactions
T and T to interleave their steps while modifying module A (i.e., allow some level ofMary1 John1
cooperation so as not to block out module A for a long time by one of them), but it will not allow
T and T to interleave their operations.Mary1 John2

6.2.3 Sagas
Both semantic atomicity and multilevel atomicity are theoretical concepts that are not im-

mediately practical.  For example, neither Garcia-Molina [Garcia-Molina 83] nor Lynch [Lynch
83] explain how a multilevel atomicity scheme might be implemented (e.g., it is not clear how
the user decides on the levels of atomicity and breakpoint sets).  Simplifying assumptions are
needed to make these concepts practical.  One restriction that simplifies the multilevel atomicity
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concept is to allow only two levels of nesting: the LT at the top level and simple transactions.
Making this simplifying restriction, Garcia-Molina and Salem introduced the concept of sagas
[Garcia-Molina and Salem 87], which are LTs that can be broken up into a collection of sub-
transactions that can be interleaved in any way with other transactions.

A saga is not just a collection of unrelated transactions because it guarantees that all its
sub-transactions will be completed or they will be compensated (explained shortly).  A saga thus
satisfies the definition of a transaction as a logical unit; they are similar to Moss’s nested trans-
actions and Lynch’s multilevel transactions in that respect.  Sagas are different from nested
transactions, however, in that, in addition to there being only two levels of nesting, they are not
atomicity units since sagas may view the partial results of other sagas.  By structuring long trans-
actions in this way, non-serializable schedules that allow more concurrency can be produced.
Mechanisms based on nested transactions as presented in section 4 produce only serializable
schedules.

In traditional concurrency control, when a transaction is aborted for some reason, all the
changes that it introduced are undone and the database is returned to the state that existed before
the transaction began.  This operation is called rollback. The concept of rollback is not ap-
plicable to sagas because unlike atomic transactions, sagas permit other transactions to change
the same objects that its committed sub-transactions have changed.  Thus, it would not be pos-
sible to restore the database to its state before the saga started without cascaded and transitive
aborts of all the committed transactions that viewed the partial results of the aborted transaction.
Instead, user-supplied compensation functions are executed to compensate for each transaction
that was committed at the time of failure or automatic abort.

A compensation function undoes the actions performed by a transaction from a semantic
point of view.  For example, if a transaction reserves a seat on a flight, its compensation function
would cancel the reservation.  We cannot say, however, that the database was returned to the
state that existed before the transaction started, because in the meantime, another transaction
could have reserved another seat and thus the number of seats that are reserved would not be the
same as it was before the transaction.

Although sagas were introduced to solve the problem of long transactions in traditional ap-
plications, their basic idea of relaxing serializability is applicable to design environments.  For
example, a long transaction to fix a bug in a design environment can be naturally modeled as a
saga that consists of subtransactions to edit a file, compile source code, and run the debugger.
These subtransactions can usually be interleaved with subtransactions of other long transactions.
The three transactions in figure 9 can be considered as sagas, and the interleavings shown in the
figure can be allowed under the sagas scheme.  Using compensation functions instead of cas-
caded aborts is also suitable for advanced applications.  For example, if one decided to abort the
modifications introduced to a file, one can revert to an older version of the file and delete the
updated version.
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One shortcoming of sagas, however, is that it limits nesting to two levels.  Most design
applications are multilevel, that is, several levels of nesting are needed to support high-level
operations that are translated into a set of component sub-operations [Beeri et al. 89].  In
software development, for example, a high-level operation such as modifying a subsystem trans-
lates into a set of operations to modify its component modules, each of which in turn is an
abstraction for modifying the procedures that make up the module.

Realizing the multilevel nature of advanced applications, several researchers have proposed
models and proof techniques that address multilevel transactions.  We have already described
three related models in the previous subsection [Weikum and Schek 84; Beeri et al. 89; Beeri et
al. 88]. Two other nested transaction models [Walter 84; Kim et al. 84] are described in section
7, since these two models address the issue of groups of users and coordinated changes.  We now
describe a formal model of correctness without serializability that is based on multilevel trans-
actions.

6.2.4 Conflict Predicate Correctness
Korth and Speegle have presented a formal model that allows mathematical characteriza-

tion of correctness without serializability [Korth and Speegle 88].  Their model combines three
features that lead to enhancing concurrency over the serializability-based models: (1) versions of
objects; (2) multilevel transactions; and (3) explicit consistency predicates, similar to Kutay and
Eastman’s predicates, described earlier.  We describe their model intuitively.

The database in Korth and Speegle’s model is a collection of entities, each of which has
multiple versions (i.e., multiple values), which are persistent and not transient like in the tradi-
tional multi-version schemes.  A specific combination of versions of entities is termed a unique
database state. A set of unique database states that involve different versions of the same en-
tities forms one database state, i.e., each database state has multiple versions.  The set of all
versions that can be generated from a database state is termed the version state of the database.
A transaction in Korth and Speegle’s model is a mapping from a version state to a unique
database state, i.e., it transforms the database from one consistent combination of versions of
entities to another.  Consistency constraints are specified in terms of pairs of input and output
predicates on the state of the database.  A predicate, which is a logical conjunction of com-
parisons between entities and constants, can be defined on a set of unique states that satisfy it.
Each transaction guarantees that if its input predicate holds when the transaction begins, its out-
put predicate will hold when it terminates.

Instead of implementing a transaction by a set of flat operations, it is implemented by a pair
of a set of subtransactions and a partial ordering on these subtransactions.  Any transaction that
cannot be divided into subtransactions is a basic operation such as read and write. Thus, a trans-
action in Korth and Speegle’s model is a quadruple (T, P, I , O ) where T is the set of subtran-t t
sactions, P is a partial order on these subtransactions, I is the input predicate on the set of allt
database states, and I is the output predicate.  The input and output predicates define three setst
of data items related to a transaction:  the input set, the update set, and the fixed-point set, which
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is the set of entities not updated by the transaction.  Given this specification, Korth and Speegle
define a parent-based execution of a transaction as a relation on the set of subtransactions T that
is consistent with the partial order P, and which encodes dependencies between subtransactions
based on their three data sets.  This definition allows independent executions on different ver-
sions of database states.

Finally, they define a new multilevel correctness criteria: an execution is correct if at each
level, every subtransaction can access a database state that satisfies its input predicate and the
result of all of the subtransactions satisfies the output predicate of the parent transaction.  But
since determining whether an execution is in the class of correct executions is NP-complete,
Korth and Speegle consider subsets of the set of correct executions that have efficient protocols.
One of these subsets is the conflict predicate correct class (CPC) in which the only conflicts that
can occur are a read of a data item followed by a write of the same data item (this is the same as
in traditional multi-version techniques). In addition, if two data items are in different conjuncts
of the consistency predicate, execution order must be serializable only with respect to each con-
junct individually; if for each conjunct the execution order is serializable, then the execution is
correct. The protocol that recognizes the CPC class creates a graph for each conjunct where each
node is a transaction.  An arc is drawn between two nodes if one node reads a data item in the
conjunct and the other node writes the same data item in the same conjunct.  A schedule is cor-
rect if the graphs of all conjuncts are acyclic. This class contains executions that could not be
produced by any of the mechanisms mentioned above except maybe for sagas.

T TJohn Mary
|
| read(B)
| read(A)
| write(A)
| write(A)
| write(B)
| write(B)
\/
Time

Figure 11: Non-serializable but Conflict Predicate Correct Schedule

Figure 12: Graphs built by CPC protocol
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To illustrate, consider the schedule shown in figure 11 (which is adapted from [Korth and
Speegle 88]). This schedule is clearly not serializable and is not allowed by any of the tradi-
tional protocols.  However, suppose that the database consistency constraint is a conjunct of the
form P1 OR P2, and P1 is over A while P2 is over B. In this case, the schedule is in CPC since
the data items A and B are in different conjuncts of the database consistency constraint and the
graphs for both conjuncts P1 and P2 individually, as shown in figure 12, are acyclic.

6.2.5 Commit-Serializability
In many advanced database applications, such as design environments, operations are inter-

active. The operations a user performs within a transaction might be: (1) of uncertain duration;
(2) of uncertain development, i.e., it cannot be predicated which operations the user will invoke a
priori; and (3) dependent on other concurrent operations.  Both altruistic locking and sagas ad-
dress only the first and third of these characteristics. They do not address the uncertainty of the
development of a transaction (i.e., the user makes it up as he goes along).  Specifically, neither
sagas nor long transactions in the altruistic locking scheme can be restructured dynamically to
reflect a change in the needs of the user.  To solve this problem, Pu et al. introduced two new
operations, split-transaction and join-transaction, which are used to reconfigure long trans-
actions while in progress [Pu et al. 88].  These two mechanisms are the basis of a concurrency
control policy that they now call commit-serializability [Kaiser 89].

The basic idea of commit-serializability is that all sets of database actions that are included
in a set of concurrent transactions are performed in a schedule that is serializable when the ac-
tions are committed. The schedule however is made up of new transactions that result from
splitting and joining the original transactions.  The new set of transactions may not correspond in
a simple way to the originally initiated set.  Split-transaction divides an ongoing transaction into
two or more serializable transactions by dividing the actions and the resources between the new
transactions. The resulting transactions can proceed independently from that point on.  More
important, the resulting transactions behave as if they had been independent all along, and the
original transaction disappears entirely, as if it had never existed.  Thus, the split-transaction
operation can be applied only when it is possible to generate two serializable transactions.

One advantage of splitting a transaction is the ability to commit one of the new transactions
and, therefore, release all of its resources so that they can be used by other transactions. The
splitting of a transaction reflects the fact that the user who controlled the original transaction has
decided that he is done with some of the resources reserved by the transaction, and this set of
resources can be treated as part of a separate transaction.  Note that the splitting of a transaction
in this case has resulted from new information about the dynamic access pattern of the trans-
action, i.e., the fact that it no longer needs some resources.  This is different from the static
access pattern that altruistic locking uses to determine that a resource can be released.  Another
difference from altruistic locking is that rather than only allowing resources to be released by
committing one of the transactions that result from a split, the transactions can proceed in paral-
lel and be controlled by different users.  Join-transaction does the reverse operation of merging
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the results of two or more separate transactions, as if these transactions had always been a single
transaction, and releasing their resources atomically.

T T TMary MaryA John

|
| initiate
| read(A)
| read(B)
| write(A) initiate
| request read(A)
| corresponding notify(A)
| split((B), (A))
| commit(A)
| write(B) actual read(A)
| commit(B) write(A)
| read(B)
| write(B)
| commit(A, B)
\/
Time

Figure 13: Example of Split-Transaction

To clarify this technique, suppose that both Mary and John start two long transactions
T and T to modify the two modules A and B. After a while, John find out that he needsMary John
to access module A. Being notified that T needs to access module A, Mary decides that sheJohn
can "give up" the module since she has finished her changes to it, so she splits up T intoMary
T and T . Mary then commits T , thus committing her changes to A while con-Mary MaryA MaryA
tinuing to retain B. Mary can do that only if the changes committed to A do not depend in any
way on the previous or planned changes to B, which might later be aborted.  T can now readJohn
A and use it for testing code.  Mary independently commits T thus releasing B. T canMary John
then access B and finally commit changes to both A and B. The schedule of T , T andMary MaryA
T is shown in figure 13.John

Commit-serializability relaxes the traditional concept of serializability by allowing trans-
actions to be dynamically restructured.  Eventually, the restructuring produces a set of trans-
actions that are serialized.  Unlike all the other approaches described earlier in this section, this
approach addresses the issue of user control over transactions since it allows users to dynami-
cally restructure their long transactions.
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7 SUPPORTING COORDINATION AMONG MULTIPLE DEVELOPERS
When a group of designers works on a large project, there arises a need to coordinate the

access of its member designers to the project database.  The designers work independently most
of the time on the parts of the project they are responsible for, but they need to interact at various
points to integrate their work.  Thus, a few coordination rules, which moderate the concurrent
access to the project database by multiple designers, need to be enforced in order to guarantee
that designers do not either duplicate or invalidate the work of other designers.

In this section, we describe some mechanisms that coordinate the efforts of multiple desig-
ners. It is important to emphasize that all the mechanisms described in this section fall short of
supporting synergistic cooperation among designers in the sense of being able to pass incomplete
but relatively stable data objects between them in a non-serializable fashion.  It is also important
to note that unlike the mechanisms that were presented in the previous section, most of the
models presented here were not developed as formal transaction models, but rather as practical
systems to support design projects.  The behavior of these systems, however, can be formulated
in terms of a transaction model, as we do in this section.

7.1 Pessimistic Coordination
The simplest form of supporting coordination among members of a programming team is to

control their access to shared files so that only one developer can modify any file at any one
time. One approach that has been implemented by widely-used software development tools like
version control tools, such as SCCS [Rochkind 75] and RCS [Tichy 85], is the reserve/deposit
mechanism (also called reserve/replace and checkout/checkin).  Each data object is considered to
be a collection of different versions, where each version represents the state of the object at some
time in the history of its development.  The versions are usually stored in the form of a compact
representation that allows the full reconstruction of any version, if needed.  Once the original
version of the object has been created, it becomes immutable, i.e., it cannot be modified.  Instead,
a new version can be created after explicitly reserving the object, which makes a copy of the
original version of the object (or the latest version thereafter) and gives the owner of the reser-
vation exclusive access to the copy so that he can modify it and deposit it as a new version.

Other users who need to access the same object must either wait until the new version is
deposited, or choose another version, if that exists, and reserve that instead.  Thus, two or more
users can modify the same object only by creating branches, which create different versions that
can coexist. Branching ensures write serializability by guaranteeing that only one write per ver-
sion of an object exists.  The result of consecutive reserves, deposits, and branches is a version
tree that records the full history of development of the object. When two branches of the version
tree are merged (by manually merging the latest version of each branch into one version), the
tree becomes a dag. This scheme is pessimistic since it does not allow access conflicts to occur
(rather than allowing them to occur and then correcting them as in optimistic schemes).

The basic reserve/deposit mechanism provides minimal coordination between multiple
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developers because it does not use semantic information about the objects it manipulates or the
operations performed on these objects.  It suffers from two main problems as far as concurrency
control is concerned.  First, it does not support any notion of aggregate or composite objects,
forcing the user to reserve and deposit each object individually.  This can lead to problems if a
programmer reserves several objects, all of which belong to one aggregate object, creates new
versions of all of them, makes sure that they are consistent as a set, and then forgets to deposit
one of the objects.  This will lead to an inconsistent set of versions being deposited.  Second, the
reserve/deposit mechanism does not provide any support for reserved objects beyond locking
them in the public database.  Thus, once an object has been reserved by a programmer, it is not
controlled by the concurrency control mechanism but by the owner of the reservation who can
decide to let other random programmers access that object.

Two mechanisms that provide partial solutions to both of the problems described above are
the conversational transactions mechanism provided as an extension to System R [Lorie and
Plouffe 83; William et al. 81], and the design transactions mechanism [Katz and Weiss 84].  In
both mechanisms, the database of a design project consists of a public database, which is shared
among all designers, and several private databases, each of which is only accessed by a single
designer. Each designer starts a long transaction in his private databases that lasts for the dura-
tion of the design task he is responsible for. Both models are referred to as the conversational
transactions model hereafter.

When a designer needs to access an object from the public database, he requests to check
out the object in a particular mode, either to read it, write it, or delete it.  This request initiates a
short transaction on the public database, which sets a short-lived lock on the object that is re-
quested, and checks if the object has been checked out by another transaction in a conflicting
mode. If it has not, the short transaction sets a permanent lock for the duration of the long
transaction on the object, copies the object to the specific private database, removes the short-
lived lock, and commits.  Otherwise, it removes the short-lived lock, notifies the user that he
cannot access the object, and aborts.  The short-lived locks that are created by check out and
check in transactions on the public database are used to prevent other check out or check in
transactions from accessing the same object at the same time.  The permanent locks prevent long
transactions from checking out an object that has already been checked out in an exclusive mode.

All objects that are checked out by a long transaction are checked back in by initiating short
check-in transactions on the public database at the end of the long transaction.  A check-in trans-
action copies the object to the public database, and deletes the old version of the object that was
locked by the corresponding check-out transaction.  The new version of the object does not in-
herit the long-lived lock from its predecessor.  Thus, each conversational transaction ensures that
all the objects that it checked out will be checked back in before it commits.  This mechanism
solves the first problem described above with the reserve/deposit model.

A concurrency control mechanism similar to conversational transactions is used in Smile, a
multi-user software development environment [Kaiser and Feiler 87].  Smile adds semantics-
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based consistency preservation to the conversational transactions model by enforcing global con-
sistency checks before allowing a set of objects to be checked back in.  Smile also maintains
semantic information about the relations among objects, which enables it to reason about collec-
tions of objects rather than individual objects, thus providing more support to composite objects
such as modules or subsystems.

Like the conversational transactions model, Smile maintains all information about a
software project in a main database, which contains the baseline version of a software project.
Modification of any part of the project takes place in private databases called experimental
databases. To illustrate Smile’s transaction model, assume that John wants to modify modules
A and B; he starts a transaction T and reserves A and B in an experimental databaseJohn
(EDB ). When a module is reserved, all of its subobjects (e.g., procedures, types, etc.) areJohn
also reserved. Reserving A and B guarantees that other transactions will not be able to modify
these modules until John has deposited them.  Other transactions, however, can read the baseline
version of the modules from the main database.  John then proceeds to modify the body of the
modules. When the modification process is complete, he requests a deposit operation to return
the updated A and B to the main database and make all the changes available to other trans-
actions.

But before a set of modules is deposited from an experimental database to the main
database, Smile compiles the set of modules together with the unmodified modules in the main
database, to make sure that they do not contain errors (i.e., that the set is self-consistent, and that
it did not introduce any errors that would prevent integrating it with the rest of the main
database). If the compilation succeeds (i.e., no errors are detected), the modules are deposited
and T commits. Otherwise, John is informed of the errors and the deposit operation isJohn
aborted. In this case, John has to fix the errors in the modules and repeat the deposit operation
when he is done. T commits only when the set of modules that were reserved are success-John
fully compiled and then deposited.

Smile’s model of consistency does not only enforce self-consistency of the set of modules,
but it also enforces global consistency with the baseline version of all other modules.  Thus, John
will not be permitted to make a change to the interface of module A (to the number or types of
parameters of a procedure, for example) within EDB unless he has reserved all otherJohn
modules that may be affected by the change.  For example, if procedure p1 of module A is called
by procedure p7 of module C, then John has to reserve module C (in addition to A and B, which
he has already reserved) before he can modify the interface of p1. If another transaction TMary
has module C reserved in another experimental database, EDB , the operation to change p1 isMary
aborted and T is forced to either wait until T deposits C, at which point T canJohn Mary John
reserve it, or to continue working on another task that does not require C. From this example, it
should be clear that by enforcing semantics-based consistency, Smile restricts cooperation even
more than both the reserve/deposit model and conversational transactions because two users can-
not simultaneously access objects that are semantically related to each other at the interface
level.
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Although the two-level database hierarchy of Smile and the conversational transactions
mechanism provides better coordination support than the basic reserve/deposit model, it does not
allow for a natural representation of hierarchical design tasks in which groups of users par-
ticipate. Supporting such a hierarchy requires a nested database structure similar to the one
provided by the multilevel transaction schemes described in the previous section.

7.2 Multilevel Pessimistic Coordination
A more recent system, Infuse, supports a multilevel hierarchy of experimental databases

rather than a two-level hierarchy, and relaxes application-specific consistency constraints by en-
forcing only that modules in an experimental database have to be self-consistent before they are
deposited to the parent database [Kaiser and Perry 87]. More global consistency is enforced only
when the modules reserved in top level experimental databases are deposited to the main
database.

Figure 14: Experimental databases in Infuse

Returning to our example, let us assume that both Bob and Mary are involved in a task that
requires modifying modules A and C. Figure 14 depicts the situation. An experimental database
(EDB ), in which both A and C are reserved, is created.  Between themselves, they decide thatA,C
Bob should modify module A while Mary should work on module C. Bob creates a child ex-
perimental database (EDB ) in which he reserves A, and Mary creates EDB in which sheA C
reserves C. Bob decides that his task requires changing the interface of procedure p1 by adding a
new parameter. At the same time, Mary starts modifying module C in her database (remember
that procedure p7 of module C calls p1 in module A).  After Bob completes his changes, he
deposits module A to EDB . No errors are detected at that point because Infuse only checks thatA
A is self-consistent.  This is possible because Infuse assumes that any data types or objects that
are used in the module but not defined in it, must be defined elsewhere.  If they are not defined
anywhere in the system, the final attempt to deposit into the main database will detect that, In-
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fuse however checks that all uses of a data type or object in the same module are consistent with
each other.

Mary then finishes her changes and deposits C. Again no errors are detected at that level.
However, when either Bob or Mary proceeds to deposit the modules in EDB to the mainA,C
database, the compiler reports that modules A and C are not consistent with each other because
of the new parameter of procedure p1. At that point, either Bob or Mary has to create a child
experimental database in which he or she can fix the bug by changing the call to p1 in procedure
p7.

Infuse’s model allows greater concurrency at the cost of greater semantics-based inconsis-
tency — and the potential need for a later round of changes to re-establish consistency; but
serializability is always maintained by requiring sibling EDBs to reserve disjoint subsets of the
resources locked by the parent EDB.

7.3 Optimistic Coordination
The coordination models described thus far are pessimistic in that they do not allow concur-

rent access to the same object in order to prevent any consistency violations that might occur.  It
is often the case in design efforts, however, that two or more developers within the same team
would prefer to access different versions of the same data item concurrently rather than be
delayed. Since these developers are familiar with each other’s work, they can resolve any con-
flicts they introduced during their concurrent access by merging the different versions into a
consistent version.  One approach to providing such an optimistic coordination scheme is to sup-
port the notion of consistent sets of versions.

The schemes described above use immutable objects either implicitly or explicitly.  None of
them, however, supports consistent sets of version.  Thus, if a system has been built using the
latest version of each object in the database, when new versions of the objects are created, it
would be impossible to find out which versions of the objects actually participated in building
the system, in case we want to debug that system.  There is a need to group sets of versions that
are self-consistent into configurations that would enable programmers to reconstruct a system
using the correct versions of the objects that comprise the system. This notion of configurations
is supported by many software development systems(e.g., [Leblang and Chase, Jr. 87]). Thus,
immutability of versions of objects in design environments, where objects have multiple ver-
sions, reduces the problem of consistency to the problem of explicitly naming the set of consis-
tent versions in configuration objects.  This basically solves the problem of reserve/deposit
where only ad hoc ways (associating attributes with versions deposited at the same time) can be
used to keep track of which versions of different objects belong together.  Therefore, transaction
mechanisms are responsible for naming consistent groups of versions of related objects [Walpole
et al. 88a].
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7.3.1 Domain Relative Addressing
Walpole et al. have addressed the problem of consistency in immutable object systems and

introduced a consistency control notion called domain relative addressing that supports versions
of configuration objects [Walpole et al. 87; Walpole et al. 88b].  Domain relative addressing
extends the notion of time relative addressing (multiversion concurrency control) introduced by
Reed. Whereas Reed’s mechanism synchronizes accesses to objects with respect to their times-
tamps, domain relative addressing does so with respect to the domain of the data items accessed
by the transaction.  The database is partitioned into separate consistent domains where each
domain (configuration) consists of one version of each of the conceptual objects in a related set.

T TJohn Mary
|
| read(p1)
| read(p1)
| read(p2)
| modify(p1)
| write(p1)
| modify(p2)
| read(p2)
| modify(p2)
| write(p2)
| write(p2)
\/
Time

Figure 15: Domain relative addressing schedule

Figure 16: Maintaining consistency using domain relative addressing

To illustrate this technique, consider the two transactions T and T of figure 15.  TheBob John
schedule in the figure is disallowed by all the conventional concurrency control schemes.  Under
domain relative addressing, the schedule in figure 15 is allowed because T and T operateBob John
on different versions of procedures p1 and p2.  A similar scenario occurs if Bob wants to modify
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module A and then modify module B to make it consistent with the updated A. At the same time,
John wants to modify B keeping it consistent with A. This can be done if T and T useBob John
different versions of modules A and B as shown in figure 16.  This scheme captures the seman-

1tics of the operations performed (consistent updates) by maintaining that version A (the original
1 2version of module A) is consistent with B (the version of B modified by T ), while AJohn

2(module A after T has modified it) is consistent with B (new version of B that T hasBob Bob
1 2 1 2created). All of A , A , B , and B become immutable versions.  Domain relative addressing is

the concurrency control mechanism used in the Cosmos software development environment
[Walpole et al. 88a].

7.3.2 Copy/Modify/Merge
Like Infuse, Sun’s Network Software Environment (NSE) supports a nested transaction

mechanism that operates on a multilevel hierarchical database structure [Adams et al. 89].  Like
Cosmos (and unlike Infuse), NSE supports concurrent access to the same data objects by com-
bining the reserve/deposit model with an extension to the classical optimistic concurrency con-
trol policy, thus allowing limited cooperation among programmers.  Unlike Cosmos, however,
NSE provides some assistance to developers in merging different versions of the same data item.

NSE requires programmers to acquire (reserve) copies of the objects they want to modify in
an environment (not to be confused with a software development environment), where they can
modify the copies.  Programmers in other environments at the same level cannot access these
copies until they are deposited to the parent environment.  Environments, however, can have
child environments that acquire a subset of their set of copies.  Multiple programmers can
operate in the same environment where the basic reserve/deposit mechanism is enforced to coor-
dinate their modifications.

Several sibling environments can concurrently acquire copies of the same object and
modify them independently, thus creating parallel versions of the same object.  To coordinate the
deposit of these versions to the parent environment, NSE requires that each environment merge
its version (called reconcile in NSE’s terminology) with the previously committed version of the
same object.  Thus, the first environment to finish its modifications deposits its version as the
new version of the original object in the parent environment, the second environment to finish
has to merge its version with the first environment’s version, creating a newer version.  The third
environment to finish will merge its version with this newer version and so on.

Like the optimistic concurrency control (OCC) mechanism, NSE’s mechanism allows con-
current transactions (programmers in sibling environments in this case) to simultaneously access
private copies of the same object.  Before users can make their copies visible to other users (i.e.,
the write phase in the OCC mechanism), they have to reconcile (validate) the changes they made
with the changes that other users in sibling environments have concurrently made on the same
object. If conflicts are discovered, rather than rolling back transactions, the users of conflicting
updates have to merge their changes, producing a new version of the object.
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Figure 17: Layered development in NSE

To illustrate this mechanism, assume that the modules of the project depicted in figure 1 in
the introduction represent the following: module A comprises the user interface part of the
project, module B is the kernel of the project, module C is the database manager, while module
D is a library module. The development happens in three layers as shown in figure 17.  At the
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top layer, the environment PROJ-ENV represents the released project.  All the objects of the
project belong to this environment.  At the second level, two environments co-exist: one to de-
velop the user interface, FRONT_END, and the other to develop the kernel, BACK_END.
FRONT_END acquires copies of modules A and C, while BACK_END acquires copies of B and
C. John works on modifying the front end in his private environment, JOHN, while Mary works
on developing the back end in her private environment.

John starts by acquiring module A in order to modify it.  He creates a new version of p1 but
then finds out that in order to modify p2, he needs to modify p5.  Consequently, he acquires p5
into his environment and creates new versions of p2 and p5.  Finally he deposits all his changes
to FRONT_END, creating new versions of modules A and C as shown in figure 17.  Concur-
rently, Mary acquires module B and modifies it, and deposits the changes to BACK_END. Mary
can then test her code in BACK_END.  Let us suppose that before Mary starts testing her code,
John finishes testing his code and deposits all of his changes to the top-level environment, creat-
ing a new version of the project and making all of his changes visible to everybody.  Before
testing her code, Mary can check to see if any of the code that is relevant to her (modules B and
C) has been changed by some other programmer.  NSE provides a command, resync, to do that
automatically on demand. Resync will inform Mary that John has changed procedure p5.  At this
point, Mary can decide to acquire John’s new version and proceed to test her code.

In another scenario, the exact same series of actions as above occur except that Mary dis-
covers that she needs to modify procedure p5 in C, so she acquires it.  In this case, after the
resync command informs her that John has already deposited a new version of p5, Mary has to
merge her new version with John’s. This is done by invoking a special editor that facilitates the
merging process.  Merging produces a new version of p5, which Mary can use to test her code.
Finally, she can deposit all of her code, creating a new version of the whole project.

7.3.3 Backout and Commit Spheres
Both Infuse and NSE implicitly use the concept of nested transactions, and they enforce a

synchronous interaction between a transaction and its child subtransactions, in which control
flows from the parent transaction to the child subtransaction.  Subtransactions can access only
data items that the parent transaction can access, and they commit their changes only to their
parent transaction. A more general model is needed in order to support a higher level of coor-
dination among transactions.  Walter observed that there are three aspects that define the
relationship between a parent transaction and child subtransaction [Walter 84]: (1) the interface
aspect; (2) the dependency aspect; and (3) the synchronization aspect.

The interface between a parent transaction and a child subtransaction can either be single-
request, i.e., the parent requests a query from the child and waits until the child returns the result,
or conversational, i.e., the control changes between the parent that issues a sequence of requests
and the child that answers these requests.  A conversational interface, in which values are passed
back and forth between the parent and the child, necessitates grouping the parent and child trans-
actions in the same rollback domain because if the child transaction is aborted (for any reason) in
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the middle of a conversation, not only does the system have to rollback the changes of the child
transaction, but the parent transaction has to be rolled back to the point before the conversation
began. In this case, the two transactions are said to belong to the same backout sphere. A
backout sphere includes all transactions that are involved in chain of conversations and requires
that backing out (rollback) of all transactions in the sphere if any one of them is backed out.  A
single-request interface, which is what the traditional nested transaction model supports, does not
require rolling back the parent because the computation of the child transaction does not affect
the computation in-progress in the parent transaction.

The dependency aspect concerns a child transaction’s ability to commit its updates indepen-
dently of when its parent transaction commits.  If a child is independent of its parent, then it is
said to be in a different commit sphere. Any transaction within a commit sphere can commit
only if all other transactions in its sphere also commit.  If a child, which is in a different commit
sphere from its parent, commits, then the parent must either remember that the child committed
(e.g., by writing the committed values in its variables), or it must be able to execute the child
transaction again if the parent is restarted.

The synchronization aspect concerns the ability to support the concurrent execution of the
parent transaction and its subtransactions.  Such concurrency can occur if the child subtransac-
tion is called from the parent transaction asynchronously (i.e., the parent continues its execution
and fetches the results of the child subtransaction at a later time).  In this case, both the parent
and the child may attempt to access the same data items at the same time, and thus the need for
synchronization. If the child is called synchronously (i.e., the parent waits until the child ter-
minates), then it can safely access the data items locked by its parent.

Given these three aspects, Walter presented a nested transaction model in which each sub-
transaction has three attributes that must be defined when it is created.  The first attribute,
reflecting the interface criterion, can be set to either COMMIT or NOCOMMIT.  The depen-
dency attribute is set to either BACKOUT or NOBACKOUT, and the third attribute, reflecting
the synchronization mode, is set to either SYNC or NOSYNC.  The eight combinations of these
attributes define levels of coordination between a transaction and its subtransactions.  For ex-
ample, a subtransaction created with the attributes COMMIT, BACKOUT, SYNC, is independ-
ent of its parent since it possesses its own backout sphere, its own commit sphere and it can
access data items not locked by its parent.

Walter observes that it is possible to define all other nested transaction models in his model.
Moss’ model for example is defined as creating subtransactions with attributes set to BACK-
OUT, NOCOMMIT, SYNC.  Beeri, Schek and Weikum’s multilevel transaction model [Beeri et
al. 88], described in the previous section, supports the combination COMMIT, BACKOUT,
NOSYNC. No synchronization is needed between a transaction and its subtransactions because
they operate at two different levels of abstraction (e.g., if locking is used, different levels would
use different types of locks).
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The models presented in this section support limited cooperation among teams of
developers mainly by coordinating their access to shared data.  Both NSE and Cosmos allow two
or more environments to acquire copies of the same object, modify them and merge them.  NSE
also provides programmers with the ability to set notification requests on particular objects so
that they are informed of other programmers who acquire or reconcile these objects. Infuse
provides a notion of workspaces that cut across the hierarchy to permit grouping of an arbitrary
set of experimental databases.  This "cutting across" enables users to look at the partial results of
other users’ work, for the purpose of early detection of inconsistencies.  None of the models
described so far, however, support all the requirements of synergistic cooperation among teams
of developers.

8 SUPPORTING SYNERGISTIC COOPERATION
In the previous section, we addressed the issue of coordinating the access of a group of

developers to the shared project database. Although this coordination is often all what is needed
for small groups of developers, it is not sufficient when a large team of designers work on a
large-scale design project.  The teams are often subdivided into several groups, each responsible
for a part of the design task.  Members of each group usually cooperate to complete the part they
are responsible for. In this case, there is a need to support cooperation among members of the
same group, as well as coordination of the efforts of multiple groups. The mechanisms described
in the previous section address the coordination part, but most of them do not support any form
of cooperation.

Supporting synergistic cooperation necessitates relying on sharing the collective knowledge
of designers.  For example, in an SDE, it is common to have several programmers cooperate on
developing the same subsystem. Each programmer becomes an "expert" in a particular part of
the subsystem, and it is only through the sharing of the expertise of all the programmers that the
subsystem is integrated and completed.  In such a cooperative design environment, the prob-
ability of conflicting accesses to shared data is relatively high because it is often the case that
several users, with overlapping expertise, are working on related tasks concurrently.  Note that in
an SDE there is overlapping access to executables and status information even if not to source
code.

However, many of the conflicts that occur in design environments are not serious in the
sense that they can be tolerated by users.  In particular, designers working closely together often
need to exchange incomplete designs, knowing that they might change shortly, in order to coor-
dinate the development of various parts of the design. A DBMS supporting such an environment
should not obstruct this kind of cooperation by disallowing concurrent access to shared objects
or non-serializable interaction.

Instead, the concept of database consistency preservation needs to be refined along the lines
of the previous section to allow non-serializable cooperative interaction.  Such a refinement can
be based on four observations [Bancilhon et al. 85]: (1) design efforts are usually partitioned into
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separate projects, where each project is developed by a team of designers; (2) available worksta-
tions provide multiple windows, in which multiple tasks can be executed concurrently by the
same designer; (3) projects are divided into subtasks were a group of designers, each working on
a subtask, have a great need to share data among them; and (4) in complex design projects, some
subtasks are contracted to other design groups (subcontractors) that have only limited access to
the main project’s database.

In this section, we present two models that aim at defining the underlying primitives needed
for the implementation of cooperative concurrency control mechanisms. We then describe four
mechanisms, two from the CAD/CAM community and two from the SDE domain, that use com-
binations of these primitives to implement cooperative concurrency control policies.  It is
worthwhile to note that much of the work described in this section is very recent, and some of it
is preliminary.  We believe, however, that the models presented here provide a good sample of
the research efforts under way in the area of cooperative transaction models.

8.1 Cooperation Primitives
In order to address the four observations listed above, there is a need to introduce two new

primitives that can be used by mechanisms supporting cooperation.  The first primitive is
notification (mentioned in the previous section), which enables developers to monitor what is
going on as far as access to particular objects in the database is concerned.  The second is the
concept of a group of cooperating developers who are working on the same task (or at least
related tasks), and thus need to cooperate among themselves much more than with other groups.

8.1.1 Interactive Notification
One approach to maintaining consistency, while still allowing some kind of cooperation, is

to support notification and interactive conflict resolution rather than enforcing serialization [Yeh
et al. 87]. To do this, the Gordion database system provides a notification primitive that can be
used in conjunction with other primitives (such as different lock modes) to implement coopera-
tive concurrency control policies [Ege and Ellis 87]. Notification alerts users about "interesting"
events such as breaking a non-exclusive lock.

Two policies that use notification in conjunction with non-exclusive locks and versions
were implemented in the Gordion system; these are immediate notification and delayed
notification. Immediate notification alerts the user of any conflict (attempts to access an object
that has a non-exclusive lock on it or out of which a new version is being created by another
user) as soon as the conflict occurs.  Delayed notification alerts the user of all the conflicts that
have occurred only when one of the conflicting transactions attempts to commit. Conflicts are
resolved by instigating a ‘‘phone call’’ between the two parties with the assumption that they can
interact (hence the name interactive notification) to resolve the conflict.

Yeh et al. analyzed the performance of these two policies and concluded that the perfor-
mance of these two protocols is better than the conventional approach, mainly because of the
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avoidance of nested waiting [Yeh et al. 87].  These policies incorporate humans as part of the
conflict resolution algorithm.  This, on the one hand, enhances concurrency in advanced applica-
tions where many of the tasks are interactive.  But on the other hand, it can also degrade consis-
tency because humans might not really resolve conflicts, resulting in inconsistent data.  Like the
sagas model, this model also burdens the user with knowledge about semantics of applications.
This points to the need for incorporating some intelligent tools, similar to NSE’s merge tool, to
help the user resolve conflicts.

8.1.2 The Group Paradigm
Since developers of a large project often work in small teams, each responsible for a

specific task, there is a need to formally define the kinds of interactions that can happen among
members of the same team as opposed to interactions between teams.  Abbadi and Toueg defined
the concept of a group as a set of transactions, that when executed transforms the database from
one consistent state to another [El Abbadi and Toueg 89].  Groups, like nested transactions, is a
higher level abstraction than a transaction.  Abbadi and Toueg presented the group paradigm to
deal with consistency of replicated data in an unreliable distributed system, where they hierar-
chically divide the problem of achieving serializability into two simpler ones: (1) a local policy
that ensures a total ordering of all transactions within a group; and (2) a global policy that en-
sures correct serialization of all groups.

There are significant differences between groups and nested transactions.  A nested trans-
action is designed a priori in a structured manner as a single entity that may invoke subtran-
sactions, which may themselves invoke other subtransactions.  Groups do not have any a priori
assigned structure and no predetermined precedence ordering imposed on the execution of trans-
actions within a group.  Another difference is that the same concurrency control policy is used to
ensure synchronization among nested transactions at the root level and within each nested trans-
action. Groups, however, could use different local and global policies (an optimistic local
policy, for example, and a 2PL global policy).

Although the group paradigm was introduced to model inter-site consistency in a dis-
tributed database system, it can be used to model teams of developers, where each team is
modeled as a group with a local concurrency control policy that supports synergistic cooperation.
A global policy can then be implemented to coordinate the efforts of the various groups. Of
course, the local policies and the global policy have to be compatible in the sense that they do
not contradict each other. Toueg and Abbadi do not sketch the compatibility requirements be-
tween global and local policies.

Dowson and Nejmeh have applied the group concept to model teams of programmers.  The
have introduced the notion of visibility domains, which models groups of programmers executing
nested transactions on immutable objects [Dowson and Nejmeh 89].  A visibility domain is a set
of users who can share the same data items. Each transaction has a particular visibility domain
associated with it.  Any member of a visibility domain of a transaction may start a subtransaction
on the copy of data that belongs to the transaction. The only criterion for data consistency is that
the visibility domain of a transaction be a subset of the visibility domain of its parent.
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8.2 Cooperating Transactions
Variations of the primitives defined above have been the basis for several concurrency con-

trol mechanisms that provide various levels of cooperation.  In this section we present four
mechanisms that support some form of synergistic cooperation. Two of the mechanisms were
designed for CAD environments while the other two were designed for SDEs.  The notion of
cooperation in SDEs is similar to that in CAD.  There are differences, however, that arise from
the differences in the structure of projects in the two domains.  It seems that CAD projects are
more strictly organized than software development projects, with a more stringent division of
tasks, and with less sharing among tasks.

Designers working on the same subtask might need unconstrained cooperation, while two
designers working on different tasks of the same project might need more constrained coopera-
tion between them.  Designers working on two different projects (although within the same divi-
sion, for example) might be content with traditional transaction mechanisms that enforce isola-
tion. In software development, programmers working on different projects might still need
shared access to libraries, and thus might need more cooperation than is provided by traditional
mechanisms even if their tasks are unrelated.

One approach to provide such support is to divide users (designers or programmers) into
groups, and provide each group with a range of lock modes, similar to the range provided by
Observer, that allow various levels of isolation and cooperation among multiple users in the
same group, and among different groups.  Specific policies that allow cooperation can then be
implemented by the environment using the knowledge about user groups and lock modes. In this
section, we describe four mechanisms that are based on the group concept. It is worth mention-
ing that the four mechanisms avoid using blocking to synchronize transactions, thus eliminating
the problem of deadlock.

8.2.1 Group-Oriented CAD Transactions
An extension to the conversational transactions model, described in section 7, that provides

such a range of lock modes, is the group-oriented model [Klahold et al. 85].  Unlike the conver-
sational transactions model, which sets long-lived locks on objects that are reserved in a private
database for a long period of time (until they are deposited to the public database), the group-
oriented model avoids the problem of long-lived locks.

The model categorizes transactions into group transactions (GT) and user transactions
(UT), where any UT is a subtransaction of a GT, and provides primitives to define groups of
users with the intention of assigning each GT a user group.  Each user group develops a part of
the project in a group database. A GT reserves objects from the public database into the group
database of the user group it was assigned. Within a group database, individual designers create
their own user database, and they invoke UTs to reserve objects from the group database to their
user database.

In the group-oriented model, user groups are isolated from each other (i.e., one user group



49

cannot see the work of another user group until the work is deposited in the public database).
Group transactions are thus serializable. Within a group transaction, several user transactions
can run concurrently.  These transactions, however, are serializable unless users intervene to
make them cooperate in a non-serializable schedule.  The basic mechanism provided for relaxing
serializability is a version concept that allows parallel development (branching) and notification
(being told that intermediate results exist), two requirements for synergistic cooperation. Ver-
sions are derived, deleted, and modified explicitly by a designer only after being locked.  Not all
locks are exclusive, however.  Some of the lock modes allow more than one designer to
cooperate on modifying the same version.

The model supports five lock modes: (1) read-only, which makes a version available only
for reading; (2) read/derive, which allows the owner of the lock to read a version of an object
non-exclusively by allowing concurrent reads of the same version, and derivation of a new ver-
sion of the object in parallel with the read operations; (3) shared derivation, which allows the
owner to read a version of an object, and derive a new version of it, while allowing parallel reads
of the same version of the object and derivation of different new versions by other users; (4)
exclusive derivation, which allows the owner of the lock to read a version of an object and derive
a new version, and allows only parallel reads of the original version; and (5) exclusive lock,
which allows the owner to read, modify and derive a version, and allows no parallel operations
on the locked version.

Using these lock modes, several designers can cooperate on developing the same design
object. The exclusive lock modes allow for isolation of development efforts (as in traditional
transactions), if that is what is needed.  To guarantee consistency of the database, designers are
only allowed to access objects as part of a transaction.  Each transaction in the group-oriented
model is two-phase, consisting of an acquire phase and a release phase.  Locks can only be
strengthened (i.e., converted into a more exclusive mode) in the acquire phase, and weakened
(converted into a more flexible lock) in the release phase.  If a user requests a lock on a par-
ticular object and the object is already locked with an incompatible lock, the request is rejected
and the initiator of the requesting transaction is informed of the rejection. This avoids the
problem of deadlock, which is caused by blocking transactions that request unavailable
resources. The initiator of the transaction is notified when the object he requested becomes
available for locking.

In addition to this flexible locking mechanism, the model provides a read operation that
breaks any lock by allowing a user to read any version, knowing that it might have been changed
or is about to be changed.  This operation provides the designer (more often a manager of a
design effort) the ability to observe the progress of development of a design object, without af-
fecting the designers doing the development.
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8.2.2 Cooperating CAD Transactions
Like the group-oriented model, the cooperating CAD transactions model, introduced by

Bancilhon, Kim and Korth, envisions a design workspace to consist of a global database that
contains a public database for each project and private databases of active designers’ transactions
[Bancilhon et al. 85].  Traditional two-phase locking is used to synchronize access to shared
data among different projects in the database.  Within the same project, however, each designer
is responsible for a well-defined subtask and he invokes a long transaction to complete the sub-
task.

All the designers of a single project participate in one cooperating transaction, which is the
set of all long transactions initiated by those designers.  All the short-duration transactions in-
voked by all the designers within the same cooperating transaction are serialized as if they were
invoked by one designer.  Thus, if a designer invokes a short-transaction (within his long trans-
action) that conflicts with another designer’s short transaction, one of them has to wait only for
the duration of the short transaction.  Each cooperating transaction encapsulates a complete
design task.  Some of the subtasks within a design task can be "subcontracted" to another group
instead of being implemented by members of the project. In this case, a special cooperating
transaction called a client/subcontractor transaction is invoked for that purpose.  Each
client/subcontractor transaction can invoke other client/subcontractor transactions leading to a
hierarchy of such transactions spawned by a single client (designer).  This notion is similar to
Infuse’s hierarchy of experimental databases, discussed in the previous section.

A cooperating transaction is thus a nested transaction that preserves some consistency con-
straints defined as part of the transaction. Each subtransaction (itself a cooperating transaction)
in turn preserves some integrity constraints (not necessarily the same ones as its parent trans-
action). The only requirement here is that subtransactions have weaker constraints than their
ancestors but not vice versa.  Thus, the integrity constraints defined at the top level of a cooperat-
ing transaction imply all the constraints defined at lower levels.  At the lowest levels of the
nested transaction are the database operations, which are atomic sequences of physical instruc-
tions such as reading and writing of a single data item.

To replace the conventional concept of a serializable schedule for a nested transaction, Ban-
cilhon, Kim and Korth define the notion of an execution of a cooperating transaction to be a total
order of all the operations invoked by the subtransactions of the cooperating transaction that is
compatible with the partial orders imposed by the different levels of nested transactions.  A
protocol is a set of rules that restrict the set of admissible executions. Thus, if the set of rules are
strict enough, they would allow only serializable executions.  The set of rules can, however,
allow non-serializable, and even incorrect, executions.
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8.2.3 Transaction Groups
In order to allow members of the same group to cooperate and to monitor changes in the

database, there is a need to provide concurrency control mechanisms with a range of lock modes
of varying exclusiveness.  The transaction groups model proposed for the ObServer system
replaces classical locks with <lock mode, communication mode> pairs to support the implemen-
tation of a nested framework for cooperating transactions [Skarra and Zdonik 89; Fernandez and
Zdonik 89].  A transaction group (TG) is defined as a process that controls the access of a set of
cooperating transactions (members of the transaction group) to objects from the object server.
Since a TG can include other TGs, a tree of TGs is composed.

Within each TG, member transactions and subgroups are synchronized according to an
input protocol that defines some semantic correctness criteria appropriate for the application.
The criteria are specified by semantic patterns, and enforced by a recognizer, which makes sure
that a lock request from a member transaction matches an element in the set of locks that the
group may grant its members, and a conflict detector, which makes sure that a request to lock an
object in a certain mode does not conflict with the locks already held on the object.

If a transaction group member requests an object that is not currently locked by the group,
the group has to request a lock on the object from its parent. Because the input protocol (which
control access to objects) of the parent might be different from that of the child group, the group
might have to transform its request lock into a different lock mode accepted by the parent’s input
protocol. The transformation is carried out by an output protocol, which consults a lock trans-
lation table to determine how to transform a lock request into one that is acceptable by the parent
group.

The lock modes provided by Observer indicate whether the transaction intends to read or
write the object and whether it permits reading while another transaction writes, writing while
other transactions read, and multiple writers of the same objects.  The communication modes
specify whether the transaction wants to be notified if another transaction needs the object or if
another transaction has updated the object.  Transaction groups and the associated locking
mechanism provide suitable low-level primitives for implementing a variety of concurrency con-
trol policies.

To illustrate, consider the following example. Mary and John are assigned the task of up-
dating modules M and N that are strongly related (i.e., procedures in them call each other, and
type dependencies exist between the two modules), while Bob is assigned responsibility for up-
dating the documentation of the project.  Obviously, Mary and John need to cooperate while
updating the modules whereas Bob only needs to access the final result of the modification of
both modules in order to update the documentation.  Two transaction groups are defined, TG1
and TG2. TG1 has T and TG2 as its members, and TG2 has T and T as its members.Bob John Mary
The output protocol of TG2 states that changes made by the transactions within TG2 are com-
mitted to TG1 only when all the transactions of TG2 have either committed or aborted. The
input protocol of TG2 accepts lock modes that allow T and T to cooperate (e.g., seeMary John
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Figure 18: Transaction Groups

partial results of their updates to the modules) while isolation is maintained within TG1 (to
prevent T from accessing the partial results of the transactions in TG2.  This arrangement isBob
depicted in figure 18.

8.2.4 Participant Transactions
The transaction groups mechanism defines groups in terms of their access to database ob-

jects in the context of a nested transaction system. Another approach is to define a group of
users as participants in a specific set of transactions, meaning that these transactions need not
appear to have been performed in some serial order with respect to these participants [Kaiser 90].

1A set of transactions, with a particular set of participants, is called a domain . Other users
remain observers, and this set of transactions must appear serial to these users.  Participation is
always with respect to some specific set of transactions. A particular user may be a participant
for some transactions and an observer for others that access the same objects.

A user can nest subtransactions to carry out subtasks or to consider alternatives.  All such
subtransactions may be part of an implicit domain, with the one user as sole participant.  Alter-
natively, one or more explicit domains — perhaps with multiple participants — may be created
for subsets of the subtransactions.  In the case of an implicit domain, there is no requirement for
serializability among the subtransactions.  However, such a subtransaction must appear atomic
with respect to any participants, other than the controlling user, in the parent transaction’s
domain.

1The word domain means different things in participant transactions, visibility domains, and domain relative
addressing.
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The domain in which a user participates would typically be the set of transactions as-
sociated with the members of a cooperating group of users working towards a common goal.
However, there is no implication that all the transactions in the domain commit together, or even
that all of them commit (some may abort).  Thus it is misleading to think of the domain as a
top-level transaction, with each user’s transaction as a subtransaction, although this is likely to
be a frequent case in practice.

Each transaction is associated with zero or one particular domains at the time it is begun.  A
transaction that is not placed in any domain is the same as a classical (but interactive) trans-
action, with no participants except the one user.  Such a transaction must be serializable with
respect to all other transactions in the system.  A transaction is placed in a domain in order to
non-serializably share partial results with other transactions in the same domain, but it must be
serializable with respect to all transactions not in the domain.

T TJohn Mary
|
| begin(X)
| access(A)
| read(B) begin(X)
| write(B) access(C)
| read(B)
| access(A) write(B)
| read(B)
| write(B)
| commit(B,C)
| read(B)
| write(B)
| commit(A,B)
\/
Time

Figure 19: Example Participation Schedule

To illustrate, say a domain X is defined to respond to a particular modification request, and
programmers Mary and John begin transactions T and T associated with X. Assume thatMary John
an access operation is either a read or a write operation.  The schedule shown in Figure 19 is not
serializable according to any of the conventional concurrency control mechanisms.  T readsMary
the updates that T made to module B that are written but are not yet committed by T ,John John
modifies parts of module B, and then commits.  T continues to modify modules A and BJohn
after T has committed. Since Mary and John participate in the same domain X, this is legalMary
with respect to T and T , and serializable according to the participation transactionsMary John
mechanism.

Now say that Bob starts a transaction T that is not associated with domain X, and theBob
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T T TJohn Mary Bob
|
| begin(X) begin
| modify(A) modify(C)
| modify(B) begin(X)
| read(C) access(D)
| write(C) read(B)
| modify(A) write(B)
| read(B)
| modify(B)
| commit(B,D)
| modify(B)
| read(B)
\/
Time

Figure 20: Example Participation Conflict

sequence of events shown in Figure 20 happens.  Bob first modifies module C. This by itself
would be legal, since T thus far could be serialized before T (but not after).  But then TBob John Bob
attempts to read the module B committed by T . This would be illegal, and thus is not per-Mary
mitted even though T was committed.  T cannot be serialized before T , and thusMary Mary Bob
before T , because T reads the uncommitted changes to module B written by T . InJohn Mary John
fact, T cannot be serialized either before or after T . This would not be a problem if itMary John
were never necessary to serialize T with any transactions outside the domain.  Mary’s up-Mary
date to module B would be irrelevant if John committed his final update to B before any trans-
actions outside the domain accessed B. Thus the serializability of transactions within a participa-
tion domain need be enforced only with respect to what is actually observed by the users who are
not participants in the domain.

9 SUMMARY AND DISCUSSION
This paper investigates concurrency control issues for a class of advanced database applica-

tions involving computer-supported cooperative work, concentrating primarily on software
development environments, although the requirements of CAD/CAM environments and office
automation are similar.  The differences between concurrency control requirements in these ad-
vanced applications and traditional data processing applications are discussed, and several new
mechanisms and policies that address these differences are presented.  Many of these have not
yet been implemented in any system.  This is due to two factors: (1) many are theoretical
frameworks rather than practical schemes; and (2) many of the more pragmatic schemes are so
recent that there has not been a sufficient period of time to design and implement even prototype
systems. Table 21 summarizes the discussions of the previous sections by indicating whether or
not each mechanism or policy addresses long transactions, user control and cooperation, and
naming a system, if any, in which the ideas have been implemented.
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Mechanism System Long Trans. User Control Cooperation

Altruistic Locking N/A Yes No Limited

Snapshot N/A Yes No Limited
Validation

Order-Preserving DASDBS Yes No Limited
Transactions

Entity-State N/A Yes No Limited
Transactions

Semantic Atomicity N/A Yes No Limited

Multilevel Atomicity N/A Yes No Yes

Sagas N/A Yes No Limited

Conflict-Based N/A Yes No Limited
Serializability

Commit- N/A Yes Yes Limited
Serializability

Reserve/Deposit RCS No No Limited

Conversational System R Limited Limited No
Transactions

Multilevel Infuse Yes Yes Limited
Coordination

Domain Relative Cosmos Yes No Limited
Addressing

Copy/Modify/ NSE Yes Yes Limited
Merge

Multiple Commit N/A Yes Yes Limited
Points

Interactive Gordion No Limited Limited
Notification

Visibility Domains N/A Yes Limited Yes

Group-Oriented N/A Yes Limited Yes
CAD Trans.

Cooperating CAD Orion Yes Limited Yes
Transactions

Transaction Groups ObServer II Limited Limited Yes

Participant N/A Yes Limited Yes
Transactions

Figure 21: Advanced database systems and their concurrency
control schemes

There are four other concerns that extended transaction models for advanced applications
should also address. These are: (1) the interface to and requirements for the underlying DBMS;
(2) the interface to the application tools and environment kernel; (3) the end-user interface; and
(4) the environment/DBMS administrator’s interface.  In a software development environment,
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for example, there are a variety of tools that need to retrieve different kinds of objects from the
database. A tool that builds the executable code of the whole project might access the most
recent version of all objects that are of type code. Another tool, for document preparation, ac-
cesses all the objects of type document or of type description in order to produce a user manual.
There might be several relationships between documents and code (a document describing a
module may have to be modified if the code of the module is changed, for instance).  Users
collaborating on a project invoke tools as they go along in their sessions, which might result in
tools being executed concurrently.  In such a situation, the transaction manager, which controls
concurrent access to the database, must "understand" how to provide each user and each tool
with access to a consistent set of objects that they operate on, where consistency is defined ac-
cording to the needs of the application.  The transaction manager must mediate retrieval and
storage of these objects in the underlying database.

A problem that remains unresolved is the lack of performance metrics that evaluate the
proposed policies and mechanisms in terms of the efficiencies of both implementation and use.
We have not come across any empirical studies that investigate the needs of developers working
together on the same project and how different concurrency control schemes might affect the
development process and the productivity of developers.  It might very well be that some of the
schemes that appear adequate theoretically will turn out to be very inefficient and/or unproduc-
tive for the purposes of a particular family of software engineering practices.  But it is not clear
how to define appropriate measures.

Another problem is that most of the notification schemes are limited to (1) attaching the
notification mechanism to the locking primitives and (2) notifying human users, generally about
the availability of resources.  These schemes assume that only the human user is active and that
the database is just a repository of passive objects.  It is important, however, for the DBMS of an
advanced application to be active in the sense that it be able to monitor the activities in the
database and automatically perform some operations in response to changes made to the database
(this is what the database community calls triggers [Stonebraker et al. 88]).  Notification must be
expanded, perhaps in combination with triggers, to detect a wide variety of database conditions,
to consider indirect as well as direct consequences of database updates, and to notify appropriate
monitor and automation elements provided by the software development environment.

In addition to supporting automation, advanced applications like SDEs typically provide the
user with capabilities to execute queries about the status of the development process.  By defini-
tion, this requires access to the internal status of in-progress tasks or transactions, perhaps
restricted to distinguished users such as managers.  If a manager of a design project needs to
determine the exact status of the project in terms of what has been completed (and how far the
schedule has slipped!), the database management system must permit access to subparts of tasks
that are still in-progress and not yet committed.  Furthermore, the queries must be precise in
reflecting a consistent state of the database, in the sense that no other activities may be concur-
rently writing the database (the brief lack of concurrency in this case may be deemed acceptable
to fulfill managerial goals).
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One key reason why traditional concurrency control mechanisms are too restrictive for ad-
vanced applications is that they do not make use of the available semantics.  Many of the ex-
tended transaction models presented in this paper do use some kind of information about trans-
actions, such as their access patterns, and about users, such as which design group they belong
to. Most, however, do not define or use the semantics of the task that a transaction is intended to
perform, or the semantics of database operations in terms of when an operation is applicable,
what effects it has and what implications it has for leading to future database operations.  Con-
sequently, these mechanisms capture only a subset of the interactions possible in advanced ap-
plications. One approach to solving this problem is to define a formal model that can charac-
terize the whole range of interactions among transactions.  This approach was pursued in
developing the ACTA framework, which is capable of specifying both the structure and behavior
of transactions, as well as concurrency and recovery properties [Chrysanthis and Ramamritham
90].

Although all of the extended transaction models presented in the paper address at least one
of the concurrency control requirements, which include supporting long duration transactions,
user control over transactions and cooperation among multiple users, none of them supports all
requirements. For example, some mechanisms that support long transactions, such as altruistic
locking, do not support user control.  Some mechanisms that support user control, such as op-
timistic coordination, do not directly support cooperation. All three requirements must be ful-
filled for the class of advanced applications considered here, those involving computer-supported
cooperative work.
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