6,294 research outputs found

    Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD

    Get PDF
    Modern railways feature increasingly complex embedded computing systems for surveillance, that are moving towards fully wireless smart-sensors. Those systems are aimed at monitoring system status from a physical-security viewpoint, in order to detect intrusions and other environmental anomalies. However, the same systems used for physical-security surveillance are vulnerable to cyber-security threats, since they feature distributed hardware and software architectures often interconnected by ‘open networks’, like wireless channels and the Internet. In this paper, we show how the integrated approach to Security, Privacy and Dependability (SPD) in embedded systems provided by the SHIELD framework (developed within the EU funded pSHIELD and nSHIELD research projects) can be applied to railway surveillance systems in order to measure and improve their SPD level. SHIELD implements a layered architecture (node, network, middleware and overlay) and orchestrates SPD mechanisms based on ontology models, appropriate metrics and composability. The results of prototypical application to a real-world demonstrator show the effectiveness of SHIELD and justify its practical applicability in industrial settings

    Semantic Support for Log Analysis of Safety-Critical Embedded Systems

    Full text link
    Testing is a relevant activity for the development life-cycle of Safety Critical Embedded systems. In particular, much effort is spent for analysis and classification of test logs from SCADA subsystems, especially when failures occur. The human expertise is needful to understand the reasons of failures, for tracing back the errors, as well as to understand which requirements are affected by errors and which ones will be affected by eventual changes in the system design. Semantic techniques and full text search are used to support human experts for the analysis and classification of test logs, in order to speedup and improve the diagnosis phase. Moreover, retrieval of tests and requirements, which can be related to the current failure, is supported in order to allow the discovery of available alternatives and solutions for a better and faster investigation of the problem.Comment: EDCC-2014, BIG4CIP-2014, Embedded systems, testing, semantic discovery, ontology, big dat

    A software architecture for autonomous maintenance scheduling: Scenarios for UK and European Rail

    Get PDF
    A new era of automation in rail has begun offering developments in the operation and maintenance of industry standard systems. This article documents the development of an architecture and range of scenarios for an autonomous system for rail maintenance planning and scheduling. The Unified Modelling Language (UML) has been utilized to visualize and validate the design of the prototype. A model for information exchange between prototype components and related maintenance planning systems is proposed in this article. Putting forward an architecture and set of usage mode scenarios for the proposed system, this article outlines and validates a viable platform for autonomous planning and scheduling in rail

    An intelligent framework and prototype for autonomous maintenance planning in the rail industry

    Get PDF
    This paper details the development of the AUTONOM project, a project that aims to provide an enterprise system tailored to the planning needs of the rail industry. AUTONOM extends research in novel sensing, scheduling, and decision-making strategies customised for the automated planning of maintenance activities within the rail industry. This paper sets out a framework and software prototype and details the current progress of the project. In the continuation of the AUTONOM project it is anticipated that the combination of techniques brought together in this work will be capable of addressing a wider range of problem types, offered by Network rail and organisations in different industries

    Analysis reuse exploiting taxonomical information and belief assignment in industrial problem solving

    Get PDF
    To take into account the experience feedback on solving complex problems in business is deemed as a way to improve the quality of products and processes. Only a few academic works, however, are concerned with the representation and the instrumentation of experience feedback systems. We propose, in this paper, a model of experiences and mechanisms to use these experiences. More specifically, we wish to encourage the reuse of already performed expert analysis to propose a priori analysis in the solving of a new problem. The proposal is based on a representation in the context of the experience of using a conceptual marker and an explicit representation of the analysis incorporating expert opinions and the fusion of these opinions. The experience feedback models and inference mechanisms are integrated in a commercial support tool for problem solving methodologies. The results obtained to this point have already led to the definition of the role of ‘‘Rex Manager’’ with principles of sustainable management for continuous improvement of industrial processes in companies
    corecore