239 research outputs found

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness

    A Meta-Logic of Inference Rules: Syntax

    Get PDF
    This work was intended to be an attempt to introduce the meta-language for working with multiple-conclusion inference rules that admit asserted propositions along with the rejected propositions. The presence of rejected propositions, and especially the presence of the rule of reverse substitution, requires certain change the definition of structurality

    On the Concept of a Notational Variant

    Get PDF
    In the study of modal and nonclassical logics, translations have frequently been employed as a way of measuring the inferential capabilities of a logic. It is sometimes claimed that two logics are “notational variants” if they are translationally equivalent. However, we will show that this cannot be quite right, since first-order logic and propositional logic are translationally equivalent. Others have claimed that for two logics to be notational variants, they must at least be compositionally intertranslatable. The definition of compositionality these accounts use, however, is too strong, as the standard translation from modal logic to first-order logic is not compositional in this sense. In light of this, we will explore a weaker version of this notion that we will call schematicity and show that there is no schematic translation either from first-order logic to propositional logic or from intuitionistic logic to classical logic

    Non normal logics: semantic analysis and proof theory

    Full text link
    We introduce proper display calculi for basic monotonic modal logic,the conditional logic CK and a number of their axiomatic extensions. These calculi are sound, complete, conservative and enjoy cut elimination and subformula property. Our proposal applies the multi-type methodology in the design of display calculi, starting from a semantic analysis based on the translation from monotonic modal logic to normal bi-modal logic

    S5 Knowledge Without Partitions

    Get PDF

    On Fibring Semantics for BDI Logics

    Get PDF
    This study examines BDI logics in the context of Gabbay's fibring semantics. We show that dovetailing (a special form of fibring) can be adopted as a semantic methodology to combine BDI logics. We develop a set of interaction axioms that can capture static as well as dynamic aspects of the mental states in BDI systems, using Catach's incestual schema G^[a, b, c, d]. Further we exemplify the constraints required on fibring function to capture the semantics of interactions among modalities. The advantages of having a fibred approach is discussed in the final section

    Labelled Modal Sequents

    Get PDF
    In this paper we present a new labelled sequent calculus for modal logic. The proof method works with a more ``liberal'' modal language which allows inferential steps where different formulas refer to different labels without moving to a particular world and there computing if the consequence holds. World-paths can be composed, decomposed and manipulated through unification algorithms and formulas in different worlds can be compared even if they are sub-formulas which do not depend directly on the main connective. Accordingly, such a sequent system can provide a general definition of modal consequence relation. Finally, we briefly sketch a proof of the soundness and completeness results

    The Modal Logic of Stepwise Removal

    Get PDF
    We investigate the modal logic of stepwise removal of objects, both for its intrinsic interest as a logic of quantification without replacement, and as a pilot study to better understand the complexity jumps between dynamic epistemic logics of model transformations and logics of freely chosen graph changes that get registered in a growing memory. After introducing this logic (MLSR\textsf{MLSR}) and its corresponding removal modality, we analyze its expressive power and prove a bisimulation characterization theorem. We then provide a complete Hilbert-style axiomatization for the logic of stepwise removal in a hybrid language enriched with nominals and public announcement operators. Next, we show that model-checking for MLSR\textsf{MLSR} is PSPACE-complete, while its satisfiability problem is undecidable. Lastly, we consider an issue of fine-structure: the expressive power gained by adding the stepwise removal modality to fragments of first-order logic
    corecore