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Abstract. Three notions of definability in multimodal logic are considered. Two are analogous to
the notions of explicit definability and implicit definability introduced by Beth in the context of first-
order logic. However, while by Beth’s theorem the two types of definability are equivalent for first-
order logic, such an equivalence does not hold for multimodal logics. A third notion of definability,
reducibility, is introduced; it is shown that in multimodal logics, explicit definability is equivalent
to the combination of implicit definability and reducibility. The three notions of definability are
characterized semantically using (modal) algebras. The use of algebras, rather than frames, is shown
to be necessary for these characterizations.

§1. Introduction. In the context of logic, the notion of the definability of an entity,
described in broad strokes, refers to the expression or determination of that entity in terms
of other entities of the same type in the framework of a certain logic. A simple example is
the definition of conjunction in terms of negation and disjunction in propositional calculus.
Closer to this paper is the case of the definition of the diamond operator in modal logics in
terms of the box operator by the formula ♦p ↔ ¬�¬p.

Two notions of predicate definability, explicit and implicit definability, were first for-
malized by Beth (1953) for first-order logic:

An n-ary predicate R is explicitly defined in a first-order logic � if there
is a formula R(x1, . . . , xn) ↔ ϕ in � such that ϕ does not contain the
predicate R.

The predicate R is implicitly defined in � if there do not exist two
models of � that have the same domain and agree on the meaning of
all predicates other than R, but disagree on the meaning of R.

Beth’s theorem states that the predicate R is explicitly defined in � if and only if it is
implicitly defined in �.
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In this paper, we study modal definability in the context of multimodal logic, by consid-
ering when one modality is defined in terms of others. For ease of exposition, we assume
that all modal operators are unary.

The modality M is explicitly defined in a multimodal logic � if there
exists a formula Mp ↔ δ in � such that M does not occur in δ.

The modality M is implicitly defined in a multimodal logic � if there
do not exist two models of � that coincide except in the interpretation
of M .1

Just as in first-order logic, if a modality is explicitly defined in a modal logic �, then it is
implicitly defined in �. But the converse does not hold for modal logic. An example of this
is the multimodal logic of KD45 belief and S5 knowledge. As we show in Halpern et al.
(2008), in this logic knowledge is implicitly defined but not explicitly defined. Henceforth,
we refer to this paper as “the companion paper”.2

We can understand the relationship between explicit and implicit definability in mul-
timodal logic by considering a third notion of definability. Let �0 be the sublogic of �
consisting of formulas that do not mention the modality M .

The modality M is reducible to the other modalities in � if there is a
formula Mp ↔ δ such that M does not occur in δ and the logic �0 +
(Mp ↔ δ) generated by �0 and this definition of M (a) includes � and
(b) is a conservative extension of �0.

As we argue in the companion paper, reducibility comes closest to capturing our intu-
itions when we say that knowledge is (or is not) definable in terms of belief. The question
we are asking is whether, for example, by defining knowledge as true belief, that is, by
adding K p ↔ p∧ Bp to the logic of belief, we can recover all the properties of knowledge
of interest. If M is explicitly defined in �, then � contains �0 + (Mp ↔ δ). With
reducibility, the containment goes in the opposite direction.

When M is explicitly defined in � by the formula Mp ↔ δ, then M is reducible to the
other modalities in M by the same formula, and M is implicitly defined in �. However,
neither implicit definability nor reducibility implies explicit definability. Our main result
states that

the modality M is explicitly defined in � if and only if it is implicitly
defined in � and is reducible in � to the other modalities.

Reducibility can be defined in first-order languages analogously to the definition for
multimodal logics. It is easily seen to follow from explicit definability. Thus, by Beth’s
theorem, implicit definability implies reducibility. However, in the context of modal logic,
implicit definability and reducibility are incomparable. In the companion paper, we exam-
ine the three notions of definability in the context of logics of knowledge and belief. Among
other things, we show that in the logic of KD45 belief and S5 knowledge, knowledge
is implicitly defined but it is not reducible to belief; in the logic of KD45 belief and

1 Implicit definability can be defined syntactically, both in first-order and in multimodal logics.
By the completeness theorem, the syntactic version is equivalent to that above. In Section 3, we
actually define implicit definability syntactically.

2 We have included enough review in each paper to make them both self-contained.
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S4-knowledge, knowledge is not implicitly defined but is reducible to belief by defining
knowledge as true belief (i.e., using the formula K p ↔ p ∧ Bp).

The fact that S5 knowledge is implicitly defined by KD45 belief implies that there is
a unique way to extend each frame for KD45 belief to a frame for S5 knowledge. It may
seem surprising that this is the case and yet S5 knowledge is not reducible to belief. We
explain this apparent disconnect between syntax and semantics by going beyond frames to
(modal) algebras (Blackburn et al., 2001; Kracht, 1999). Although each frame for KD45
belief can be extended to a frame for S5 knowledge, we show that there is an algebra for
KD45 belief that cannot be extended to an algebra for S5 knowledge.

Algebras play a significant role in this paper. The three notions of definability we con-
sider are all defined syntactically (i.e., in terms of whether formulas are in certain logics).
We characterize each of them semantically, using algebras. As we show, in a precise sense,
the greater generality of algebras is necessary for our characterizations.

The rest of the paper is organized as follows. In Section 2, we review the relevant
definitions of modal logic that we need for this paper. In Section 3, we carefully define
our three notions of definability, state our main theorem, and compare our notions to other
notions of definability that have been considered before in the context of modal logic.
In Section 4, we give semantic characterizations of our notions in terms of algebras. We
discuss the extent to which we can characterize our notions using frames; this also allows
us to relate definability in modal logic to definability in first-order logic. Most proofs are
relegated to the Appendix.

§2. Modal logic review: syntax, semantics, and axioms. In this section, we review
the essentials of modal logic, including syntax, semantics, and standard axiomatizations.
The reader is encouraged to consult a standard reference (e.g., Blackburn et al., 2001;
Kracht, 1999) for more details.

2.1. Modal logics. Let P be a nonempty set of primitive propositions. Let M1, . . . , Mn

be modal operators or modalities. Formulas are defined by induction. Each primitive propo-
sition is a formula. If ϕ and ψ are formulas then ¬ϕ, (ϕ → ψ), and Miϕ for i = 1, . . . , n,
are also formulas.3 The propositional connectives ∨, ∧, ↔ are defined in terms of ¬
and → in the usual way; we take true to be an abbreviation of p ∨ ¬p. The language
L(M1, . . . , Mn) is the set of all formulas defined in this way.

For the purposes of this paper, we take a (modal) logic � to be any collection of formulas
in a language L(M1, . . . , Mn) that (a) contains all tautologies of propositional logic; (b)
is closed under modus ponens, so that if ϕ ∈ � and ϕ → ψ ∈ �, then ψ ∈ �; and
(c) is closed under substitution, so that if ϕ ∈ �, p is a primitive proposition, and ψ ∈
L(M1, . . . , Mn), then ϕ[p/ψ] ∈ �, where ϕ[p/ψ] is the formula that results by replacing
all occurrences of p in ϕ by ψ . A logic � is normal if, in addition, for each modal operator
Mi , � contains the axiom KMi , Mi (p → q) → (Mi p → Mi q), and is closed under
generalization, so that if ϕ ∈ �, then so is Miϕ. In this paper, we consider only normal
modal logics. If �1 and �2 are two sets of formulas, we denote by �1 + �2 the smallest
normal modal logic containing �1 and �2. Even if �1 and �2 are themselves normal
modal logics, �1 ∪ �2 may not be; for example, it may not be closed under the modus

3 The modalities in this paper are unary. It is straightforward to extend our results to modal
operators of higher arity.
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ponens. Thus, �1 +�2 will in general be a superset of �1 ∪�2. Note that if � is a normal
logic and L is a language (which might not contain �), then � ∩ L is a normal logic.

2.2. Frames and Kripke models. Perhaps the most common approach to giving se-
mantics to modal logic makes use of frames and Kripke models. We review this approach
in this section, and consider an alternative approach, using algebras and algebraic models,
in the next subsection.

A frame F for the language L(M1, . . . , Mn) is a tuple (W, R1, . . . , Rn), where W is
a nonempty set of possible worlds (worlds, for short), and for each i = 1, . . . , n, Ri ⊆
W × W is a binary relation on W , called the accessibility relation for the modality Mi .
A Kripke model M based on the frame F is a pair (F, V ) where V : P → 2W is a
valuation of the primitive propositions as subsets of W .

The function V is extended inductively to a meaning function [[·]]M on all formulas.
We omit the subscript M when it is clear from context. For each primitive formula
p, [[p]] = V (p). For all formulas ϕ and ψ , [[¬ϕ]] = ¬[[ϕ]], where we abuse notation and
use ¬ to denote set theoretic complementation, [[ϕ ∨ ψ]] = ([[ϕ]]) ∪ [[ψ]], and [[Miϕ]] =
{x | Ri (x) ⊆ [[ϕ]]}, where Ri (x) = {y | (x, y) ∈ Ri }.

We write (M, w) |� ϕ if w ∈ [[ϕ]]. When [[ϕ]] = W , we writeM |� ϕ and say that ϕ is
valid inM. The formula ϕ is valid in a frame F if it is valid in each of the models based
on F . The set of formulas that are valid in a frame F is called the theory of F , denoted
Th(F). For a class S of frames, Th(S) is the set of formulas that are valid in each frame in
S. A logic � is sound for S if � ⊆ Th(S), and is complete for S if � ⊇ Th(S). A frame
F is said to be a �-frame if � ⊆ Th(F).

The canonical frame for � is defined on the set W that consists of all maximally
consistent sets of formulas in L. The set W is made a frame by defining, for each modality
Mi , a relation Ri such that (w,w′) ∈ Ri if, for all formulas ϕ, if Miϕ ∈ w then ϕ ∈ w′. The
canonical model is the model based on the canonical frame with the valuation V defined
by V (p) = {w : p ∈ w}. Every normal logic � is sound and complete with respect to its
canonical model, but may not be sound with respect to its canonical frame.

In the sequel, we consider the logic (KD45)B +(S5)K +{L1, L2} ⊆ L(B, K ), where the
modal operator B satisfies the axioms of KD45, K satisfies the axioms of S5, and L1 and
L2 are axioms that link K and B. To make this paper self-contained, we list the relevant
axioms here:

(DB) Bp → ¬B¬p

(4B) Bp → B Bp

(5B) ¬Bp → B¬Bp.

(4K ) K p → K K p

(5K ) ¬K p → K¬K p

(TK ) K p → p

(L1) K p → Bp

(L2) Bp → K Bp.

2.3. Algebras and algebraic models. We now consider a more general approach for
giving semantics to modal logics, using algebras and algebraic models, that goes back to
Jónsson & Tarski (1951, 1952). As we shall see, syntactical notions of definability have
certain semantic equivalents that can be formulated in terms of algebras but not in terms of
frames.
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A modal algebra (or algebra for short) A for the language L(M1, . . . , Mn) is a tuple

(B, ∨, ¬, 1, M1, . . . , Mn),

where (B, ∨, ¬, 1) is a Boolean algebra, and for each i = 1, . . . , n, Mi is a unary operator
on B. An algebraic modelM based on the algebra A is a pair (A, V ), where V : P → B
is a valuation of the primitive propositions as elements of B. The function V is extended
inductively to a meaning function [[·]]M on all formulas: [[¬ϕ]]M = ¬[[ϕ]]M (where
the second ¬ is the operator in the Boolean algebra, not set complementation), [[ϕ ∨
ψ]]M = ([[ϕ]])M ∨ [[ψ]]M (where the second ∨ is the operator in the Boolean algebra),
and [[Miϕ]]M = Mi ([[ϕ]]M). We again omit the subscript M if no confusion results.
A formula ϕ is valid inM if [[ϕ]]M = 1; it is valid inA if it is valid in all algebraic models
based onA. Soundness and completeness are defined just as for Kripke models. We define
Th(M) and Th(A) in the obvious way. A is a �-algebra if � ⊆ Th(A); similarly,M is
an algebraic model for � if � ⊆ Th(M).

Each frame F = (W, R1, . . . , Rn) is associated in a natural way with the algebra A =
(2W , ∨, ¬, W, M1, . . . , Mn), where ∨ is union, ¬ is set theoretic complementation, and,
for i = 1, . . . , n, the set operator Mi is defined by taking

Mi (E) = {x | Ri (x) ⊆ E}

for E ⊆ W . Similarly, we associate with the Kripke model (F, V ) the algebraic model
(A, V ) with the same valuation function V . It is easy to see that the meaning functions in
both models coincide.

It is well known that there are algebras that are not associated with frames. We demon-
strate in the sequel that, as a consequence, the set of �-frames may have a particular defin-
ability property that does not correspond to a property of �. The definability properties of
�-algebras, on the other hand, correspond exactly to those of the logic �.

For a logic � in a language L, define an equivalence relation ≡� on L by ϕ ≡� ψ iff
ϕ ↔ ψ ∈ �. Consider the partition of � into equivalence classes L/≡�. The equivalence
class that contains the formula ϕ is denoted |ϕ|�. The Lindenbaum–Tarski �-algebra is the
Boolean algebra (L/≡�, ∨, ¬, |true|�) where |ϕ|� ∨ |ψ |� = |(ϕ ∨ ψ)|� and ¬ |ϕ|� =
|¬ϕ|�; we leave it to the reader to check that these definitions are independent of the
choice of representative of the equivalence class, and so are well defined. The canonical
�-algebra A� is the modal algebra based on the Lindenbaum–Tarski �-algebra where,
for each i , Mi (|ϕ|�) = |Mi (ϕ)|�. It is easy to see that since � is a normal logic, all the
operators are well defined. The canonical algebraic model for � is M� = (A�, V�),
where V�(p) = |p|�. It is well known that � is sound and complete with respect to the
class of �-algebras, with respect to {A�}, and with respect to {M�} (Blackburn et al.,
2001; Kracht, 1999).

§3. Three notions of definability. In this section we examine the three different no-
tions of defining one modality in terms of others mentioned in the Introduction.

Let δ be a formula in L(M1, . . . , Mn−1). The formula

(DMn) Mn p ↔ δ

is called a definition of Mn (in terms of M1, . . . , Mn−1). When the only primitive proposi-
tion in δ is p we say that the definition is simple.
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The formula DMn is the obvious analogue of the formula used in first-order logic to de-
fine one predicate in terms of others. We also have an obvious analogue of the notion of ex-
plicit definability in first-order logic. Consider a logic � in the language L(M1, . . . , Mn).

Explicit definability: Mn is explicitly defined in � if there is a definition
DMn of Mn such that DMn ∈ �.

In the context of first-order logic, an apparently weaker notion of definability called
implicit definability has been studied. We define what seems to be the appropriate analogue
for modal logic. Let M ′

n be a modal operator distinct from M1, . . . , Mn , and consider the
language L(M1, . . . , Mn, M ′

n). The logic �[Mn/M ′
n] is obtained by replacing all occur-

rences of Mn in formulas in � by M ′
n .

Implicit definability: Mn is implicitly defined in � if Mn p ↔ M ′
n p ∈

� + �[Mn/M ′
n].

To simplify notation, we henceforth take L =L(M1, . . . , Mn), L0 =L(M1, . . . , Mn−1),
and �0 = �∩�0. With this notation, explicit definability can be described by the inclusion
�0 + DMn ⊆ �.

The notion of reducibility, which we introduce next, seems to capture our intuition of
defining knowledge in terms of belief better than the notion of explicit definability. When
we define knowledge as true, justified belief, we do not expect this definition to follow
from the logic that characterizes knowledge. We expect just the opposite: that the desired
properties of knowledge follow from this definition when it is added to the logic of belief
and justification. We get this effect by reversing the inclusion in the above description of
explicit definability. Recall that a logic � in a language L is a conservative extension of a
logic �′ in a language L′ ⊆ L if �′ = � ∩ L′.

Reducibility: Mn is reducible to M1, . . . , Mn−1 in � if there is a def-
inition DMn of Mn , such that � ⊆ �0 + DMn , and �0 + DMn is a
conservative extension of �0.

The requirement that �0 +DMn be a conservative extension of �0 guarantees that when
� is consistent, then �0+DMn is also consistent. It also enables us to consider only simple
definitions of Mn , as we state next.

PROPOSITION 3.1. If Mn is reducible to M1, . . . , Mn−1 in �, then it is reducible by a
simple definition.

But the main reason to require that �0 + DMn be a conservative extension of �0 is to
ensure that the definition DMn does not affect the operators M1, . . . , Mn−1. Without this
requirement it is possible that the definition “sneaks in” extra properties of the defining
modalities as demonstrated in the following example.

EXAMPLE 3.2. Let � be the minimal normal logic in L. Obviously, �0 is the minimal
normal logic in L0. Let DMn be the formula Mn p ↔ ¬M1(p ∧ ¬p). By the minimality
of �, � ⊆ �0 + DMn. By the generalization rule, Mntrue ∈ �0 + DMn, and therefore
¬M1(true∧¬true) ∈ �0 +DMn. But this formula is not in �0. Thus, the smallest normal
logic containing both DMn and �0 includes formulas in L0 not in �0.

We further discuss reducibility and some of its variants in Section 5 of the companion
paper (Halpern et al., 2008).
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In first-order logic, Beth’s (1953) theorem states that implicit and explicit definability
coincide. When reducibility is defined for first-order logics, analogously to the definition
for multimodal logic, then it can be shown to be implied by the other two notions of
definability. However, in the context of modal logic, none of the statements above holds,
as demonstrated by the following proposition, which is proved in the companion paper.

PROPOSITION 3.3.

(a) Knowledge is neither explicitly nor implicitly defined in the logic (KD45)B+(S4)K +
{L1, L2}), but it is reducible to belief in this logic.

(b) Knowledge is neither explicitly defined nor reducible to belief in the logic (KD45)B+
(S5)K + {L1, L2}), but it is implicitly defined in this logic.

The two parts of this proposition show that neither implicit definability nor reducibility
implies explicit definability, and that neither implicit definability nor reducibility implies
the other.

The following theorem describes the relations between the three notions of definability.

THEOREM 3.4. The modal operator Mn is explicitly defined in � if and only if Mn is
implicitly defined and reducible to M1, . . . , Mn−1 in �.

We provide a direct proof of Theorem 3.4. in the Appendix. We also give an alternative
proof later which uses the semantic characterizations of the three notions of definability
given in the next section.

Maksimova (1992a, 1992b) studies implicit and explicit definability of primitive propo-
sitions (rather than modal operators) in unimodal logics. She shows that implicit and
explicit definability of primitive propositions are equivalent for large classes of modal
logics (in particular, for those containing K4). Our results show that this equivalence does
not hold for our notions of implicit and explicit definability. (See Kracht, 1999, for a
discussion of definability of primitive propositions in modal logic.)

Lenzen (1979) also studied definability of one modality in terms of other modalities.
He requires that the definition DMn be simple (which in our framework follows from
reducibility in Proposition 3.1.), and calls the logic � + DMn (i.e., the underlying logic
extended by a definition DMn) a definitional extension of �. He calls two logics � ⊆
L(M1, . . . , Mn−1, Mn) and �′ ⊆ L(M1, . . . , Mn−1, M ′

n) synonymous when there is a
third logic �∗ ∈ L(M1, . . . , Mn−1, Mn, M ′

n) that is a definitional extension of both � and
�′. To relate Lenzen’s definitional extension to our terminology, we note that if we add the
requirement that � + DMn is a conservative extension of �, then, in our terminology, Mn

is reducible to M1, . . . , Mn−1 in the logic � + DMn by DMn .
There has also been relevant work on translation schemes between languages that is

relevant to our work (see Pelletier & Urquhart, 2003, and the references therein).
A definition DMn of the modality Mn defines a natural translation ϕ �→ ϕt from the
language L to L0 that is described in the Appendix. When Mn is explicitly defined in �,
then for every ϕ ∈ �, the translated formula ϕt is in �0 (see Lemma A.2. in the Appendix).
In the terminology of Pelletier and Urquhart, this means that the translation is sound (with
respect to the logics � and �0).

§4. The semantics of definability. In this section, we provide semantic characteriza-
tions of the three notions of definability we have been considering. We use the following
definition. An algebra A for the language L is an extension of an algebra A′ for L′ ⊆ L if
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A is obtained by adding to A′ operators that correspond to the modalities in L that are not
in L′. Similarly, a frame F for the language L is an extension of a frame F ′ for L′ ⊆ L if
F is obtained by adding to F ′ relations that correspond to the modalities in L that are not
in L′. If A (F) is obtained by adding operators (Mi)i∈I to A′ (relations (Ri )i∈I to F ′), we
sometimes abuse notation and write A = (A′, (Mi)i∈I ) (F = (F ′, (Ri )i∈I )).

Note that ifA extendsA′, then for all modelsM = (A, V ) andM′ = (A′, V ) and each
formula ϕ ∈ L′, we have [[ϕ]]M = [[ϕ]]M′ . For an algebraA = (B, ∨, ¬, 1, M1, . . . , Mn),
let A0 denote the algebra (B, ∨, ¬, 1, M1, . . . , Mn−1). Clearly, A is an extension of A0.
Similar remarks apply to frames and Kripke models.

We start with the characterization of implicit definability.

THEOREM 4.1. The following are equivalent:

(a) the modality Mn is implicitly defined in �;

(b) if A = (A0, Mn) and A′ = (A0, M′
n) are �-algebras, then Mn = M′

n.

We cannot expect a characterization of implicit definability in terms of frames, since
a normal logic may not be complete with respect to its frames; indeed, there may be no
frames for a logic at all. In the next section we formulate a characterization of implicit
definability in terms of frames for a restricted class of logics, and relate modal definability
to first-order definability of relations for this class of logics.

The characterization of explicit definability and reducibility is done in terms of algebras
only. In the next section we will see why an analogous characterization in terms of frames
or Kripke models is impossible.

For the next two characterizations we need the following definition. An algebra of
operators O on a Boolean algebra (B, ∨, ¬, 1) is a set O of unary operators on B that
is itself a Boolean algebra and is closed under composition. Thus, for every f, g ∈ O, ¬ f ,
f ∨ g, and f ◦ g are all in O, where (¬ f )(x) = ¬ f (x), ( f ∨ g)(x) = f (x) ∨ g(x), and
( f ◦ g)(x) = f (g(x)). The top element in O is the constant operator that always returns
the value 1 in B.

For an algebra A = (B, ∨, ¬, 1, M1, . . . , Mn), let O∗
A be the smallest algebra of oper-

ators on B that contains the operators M1, . . . , Mn , and let A0 be the algebra (B, ∨, ¬, 1,
M1, . . . , Mn−1).

THEOREM 4.2. The modality Mn is explicitly defined in � if and only if, for each
�-algebra A, O∗

A = O∗
A0

.

THEOREM 4.3. The modality Mn is reducible to M1, . . . , Mn−1 in � if and only if each
�0-algebra A0 has an extension to a �-algebra A such that O∗

A = O∗
A0

.

In light of Theorems 4.1., 4.2., and 4.3., the following result can be viewed as a re-
formulation of Theorem 3.4. in semantic terms. One of the implications in this result is
significantly simpler to prove than the analogous implication in Theorem 3.4.; moreover,
it provides an alternative proof of this result.

THEOREM 4.4. For each �-algebraA = (B, ∨, ¬, 1, M1, . . . , Mn),O∗
A = O∗

A0
iff (a)

every �0-algebra A0 can be extended to a �-algebra A such that O∗
A = O∗

A0
and (b) if

A = (A0, Mn) and A′ = (A0, M′
n) are �-algebras, then Mn = M′

n.

§5. Definability and frame semantics. The semantic characterizations of definability
in Section 4 mainly use algebras rather than frames. Here we explore the relationship
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between modal definability and frame semantics. Of course, we cannot expect a frame
semantic characterization for all normal logics, since some normal logics are poorly de-
scribed by frame semantics. We therefore restrict ourselves to what we call orthodox logics,
to be defined shortly, for which frame semantics is adequate. Using frame semantics for
orthodox logics enables us to explore the relationship between the definability of modalities
and the definability of predicates in first-order logic.

Given a language L, the first-order frame language of L, denoted Lfo, is the first-order
language with equality that includes, for every modality Mi in L, a binary predicate Rfo

i .
The frames of many axioms of modal logic can be described in the frame language. Thus,
for example, the axiom K p → p is valid in a frame iff the relation corresponding to K
is reflexive, which is expressed in the first-order frame language by ∀x Rfo

K (x, x). We say
in this case that K p → p and ∀x Rfo

K (x, x) correspond. In general, formulas ϕ ∈ L and
α ∈ Lfo correspond if, for all frames F for L, ϕ is valid in F iff α is valid in F .

A formula ϕ ∈ L is canonical if it is valid in the canonical frame of each logic �
that contains ϕ (Blackburn et al., 2001). If the logic � is generated by a set of canonical
formulas (i.e., if there is a set C of canonical formulas such that � is the smallest logic
containing C), then � is complete with respect to its canonical frame. A logic is orthodox
if it is generated by a set A of formulas such that each formula f ∈ A is canonical and
corresponds to a first-order formula. Let Afo denote the set of first-order formulas that
correspond to the formulas in A. The first-order logic �fo generated by Afo is sound and
complete with respect to all �-frames.

5.1. Implicit definability. The implicit definability of a modality can be characterized
by frame semantics in a way analogous to the algebraic characterization of Theorem 4.1.
This characterization is stated in the next theorem, as well as its characterization in terms
of the definability properties of the predicate corresponding to the modality in the frame
language.

THEOREM 5.1. If � is an orthodox logic in the language L(M1, . . . , Mn), then the
following are equivalent:

(a) the modality Mn is implicitly defined in �;

(b) for all �-frames (F0, Rn) and (F0, R′
n), we have Rn = R′

n;

(c) the predicate Rfo
n is implicitly defined in �fo;

(d) the predicate Rfo
n is explicitly defined in �fo.

The equivalence of (b) and (c) follows from the fact that the set of �-frames is the set of
�fo-models and the definition of implicit definability for first-order logic. The equivalence
of (c) and (d) is Beth’s theorem. We prove in the Appendix that (a) is equivalent to (b).
The latter equivalence is the frame semantics counterpart of Theorem 4.1. Parts (b) and
(c) of Theorem 5.1 show that for orthodox logics, the implicit definability of a modality is
equivalent to the implicit and explicit definability of its corresponding relation.

Theorem 5.1. can be used to provide a semantic proof of Proposition 3.3.(b), namely,
that S5 knowledge is implicitly defined in (KD45)B + (S5)K + {L1, L2}. This logic is
orthodox; thus, it suffices to show that the relation RK is explicitly defined by the predicate
Rfo

B associated with the relation RB . The following proposition shows that this is indeed
the case.

PROPOSITION 5.2. The formula Rfo
K (x, y) ↔ ∃z(Rfo

B (x, z) ∧ Rfo
B (y, z)) is valid in all

((KD45)B + (S5)K + {L1, L2}) frames.
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5.2. Explicit definability. The explicit definability of Mn is characterized semantically
in Theorem 4.2. by the condition O∗

A = O∗
A0

, or equivalently, Mn ∈ O∗
A0

. This condition
says that the algebraic operator Mn is generated using Boolean operations and composition
from the algebraic operators M1, . . . , Mn−1. An analogous frame semantics condition
is that Rfo

n can be explicitly defined in terms of Rfo
1 , . . . , Rfo

n−1. But this condition does
not characterize the explicit definability of Mn . The logic (KD45)B + (S5)K + {L1, L2}
illustrates this claim. As stated in Proposition 5.2., Rfo

K is explicitly defined by Rfo
B , yet,

by Proposition 3.3., the modality K is not explicitly defined by B. This gap between
definability in the modal logic and definability in the first-order frame language is due
to the fact that in orthodox logics, the first-order frame language is more expressive than
the modal language it is associated with.

5.3. Reducibility. A frame semantics analogue of Theorem 4.3. would state that Mn

is reducible to M1, . . . ,Mn−1 in an orthodox logic � if and only if each �0-frame (W,
R1, . . . , Rn−1) can extended to a �-frame (W, R1, . . . , Rn−1, Rn) in which Rfo

n can be ex-
plicitly defined. But this claim is false. Consider again the logic (KD45)B+(S5)K+ {L1, L2}.
It is easy to show that every (KD45)B frame can be extended to a ((KD45)B + (S5)K +
{L1, L2}) frame (see Proposition A.2. in the companion paper). Combining this result with
Proposition 5.2., it follows that every (KD45)B frame can be extended to a ((KD45)B +
(S5)K + {L1, L2}) frame in which Rfo

K is explicitly defined. Yet, by Proposition 3.3,
K is not reducible to B in this logic. By the semantic characterization of reducibility in
Theorem 4.3., it follows that (KD45)B algebras should not have this property of extension
that (KD45)B frames have. Indeed, we next construct an example of a (KD45)B algebra
that cannot be extended at all to a ((KD45)B + (S5)K + {L1, L2}) algebra. This exam-
ple also provides a direct proof of the irreducibility of S5 knowledge to belief stated in
Proposition 3.3., using the semantic characterization of reducibility in Theorem 4.3.

EXAMPLE 5.3. Let (B, ∪, ¬, W ) be the Boolean algebra of the finite and cofinite subsets
of the set of nonnegative integers W = {0, 1, 2, . . .} (recall that a cofinite set is the
complement of a finite set), where the Boolean operations are union and set theoretic
complement, and the top element is W . Let U be the subset of B which consists of all
the cofinite sets. Define an operator B on B by taking

B(E) =
{

E ∪ {0} if E ∈ U
E \ {0} if E �∈ U .

THEOREM 5.4. The algebra A = (B, ∪, ¬, W, B) is a (KD45)B algebra that cannot
be extended to a (KD45)B + (S5)K + {L1, L2}) algebra.

Note that by the Jónsson–Tarski theorem (Blackburn et al., 2001), the (KD45)B set
algebra in Example 5.3. can be isomorphically embedded in a (KD45)B set algebra in
which the operator B is derived from a relation. However, in the algebra of the example
itself, B is not derived from a relation on W . Indeed, if it were, then, by Proposition A.2. of
the companion paper, we could extend this model to one where an S5 knowledge operator
is defined.

The only properties of B and U used in the proof of Theorem 5.4. are the facts that B
is an algebra that contains all the singletons and that U is a nonprincipal ultrafilter in B.4

4 Recall that a filter C in B is a set of sets in B that is closed under supersets and intersection (so
that if E1, E2 ∈ C and E1 ⊆ E3, then E3 ∈ C and E1 ∩ E2 ∈ C); the filter C is proper if ∅ �∈ C;
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Thus, the theorem also holds if we take B to be 2W and U to be a nonprincipal ultrafilter
on W . These conditions also hold if W = [0, 1], B consists of all Borel sets in [0, 1] that
have Lebesgue measure either 0 or 1, and U consists of all the sets in B with Lebesgue
measure 1.

Theorem 5.4. has another, somewhat surprising, application. It allows us to prove general
results regarding the irreducibility of knowledge to a combination of belief and justifica-
tion. In the companion paper, we show that knowledge cannot be reduced to belief in the
logic (KD45)B + (S5)K + {L1, L2}. However, that does not preclude knowledge from
being reducible to a combination of belief and justification. Indeed, as we observe in the
companion paper, without some constraints, knowledge can be reduced to a combination
of belief and justification. For example, if J satisfies all the axioms of S5 and the axioms
L1 and L2 with K replaced by J , then we can reduce K to J by the definition K p ↔ J p.
We now provide an arguably reasonable condition on a logic � of belief and justification
that suffices to guarantee that knowledge is not reducible to belief and justification in �.
Roughly speaking, the condition says that the interaction between B and J is rather weak.
We give two interpretations of this condition. The first is semantic, and is expressed in
terms of algebras. It requires that every (KD45)B algebra be extendible to an algebra of
� ∩ L(B, J ); intuitively, it says that the properties of J do not put any constraints on B.

THEOREM 5.5. Let � be a logic inL(B, J, K ) such that (KD45)B+(S5)K +{L1, L2} ⊆
�. If every (KD45)B algebra can be extended to an algebra of � ∩L(B, J ), then K is not
reducible to B and J in �.

Obviously, our previous example that shows how S5 knowledge can be reduced to belief
and justification must fail the stipulation of Theorem 5.5. That is, it must be the case that
some (KD45)B algebra cannot be extended to a � ∩ L(B, J )-algebra. But the operator J
in our example is just an S5 knowledge operator, and thus it must be the case that there is
a (KD45)B algebra that cannot be extended to an algebra of belief and S5 knowledge. But
this is precisely what is shown in Theorem 5.4. Theorem 5.4. not only shows that certain
logics do not satisfy the antecedent of Theorem 5.5., but is actually the key to its proof.

The following corollary gives a syntactic version of the statement that the interaction
between B and J be weak. It says that the axioms for B and J can be “decomposed” into
axioms for B (KD45B) and axioms for J (which are contained in S5J ).

COROLLARY 5.6. Let � be a logic in L(B, J, K ) such that �∩L(B, J ) = (KD45)B +
�J , where �J ⊆ (S5)J . Then K is not reducible to B and J in �.

Thus, as long as there is no axiomatic link between belief and justification, and justifica-
tion does not have any properties that go beyond S5, then knowledge is not reducible to a
combination of belief and justification. See the companion paper for further discussion of
this issue.

5.4. Interpolation. A logic � has the interpolation property if for any formula ϕ1 →
ϕ2 in �, there exists a formula χ (an interpolant) whose nonlogical constants are common
to ϕ1 and ϕ2 such that ϕ1 → χ and χ → ϕ2 are in �. Craig’s interpolation theorem states
that first-order logic has the interpolation property. The interpolation property is used in
the proof of Beth’s theorem to show that implicit definability implies explicit definability.

it is nonprincipal if there is no E ∈ B such that C consists of all supersets of E ; an ultrafilter is a
maximal proper filter.
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The proof makes use of the deduction theorem, which says that for a set of sentences �
and a sentence ϕ, if ψ is in the logic generated by � ∪ {ϕ}, then ϕ → ψ is in the logic
generated by �.

In the case of modal logic, Andréka et al. (1998) sketch a proof for the following
interpolation theorem. Let � be the minimal normal modal logic in some multimodal
language L.5 If ϕ1 → ϕ2 ∈ �, then there exists a formula χ that contains only modalities
that are contained in both ϕ1 and ϕ2 such that ϕ1 → χ and χ → ϕ2 are in �. However,
implicit definability in normal multimodal logics does not imply explicit definability. The
failure of Beth’s theorem for such logics is due to the fact that there is no deduction theorem
for modal logics.

Craig’s interpolation theorem for first-order logic can be generalized as follows. Let L1
and L2 be two first-order languages, and let � be a logic in the language L = L1 ∪ L2.
If ϕ1 → ϕ2 ∈ �, then there exists a formula χ ∈ L1 ∩ L2 such that ϕ1 → χ and χ → ϕ2
are in �. This result also makes use of the deduction theorem.

Again, in the modal case this generalization does not hold. The logic (KD45)B+(S5)K +
{L1, L2}, discussed in Subsection 5.1., demonstrates this, and highlights the difference
between an orthodox modal logic and the corresponding first-order logic. For i = 1, 2,
consider the multimodal logic �i = (KD45)B + (S5)Ki

+ {L1, L2} in the language
L(B, Ki ). Let � = �1 + �2. By Proposition 3.3.(b), K1 p ↔ K2 p ∈ �. However,
there is no formula χ in the language L(B, K1) ∩ L(B, K2) = L(B) such that K1 p → χ
and χ → K2 are in �. Indeed, if such a formula χ existed, then K1 p ↔ χ would be in
�, because K2 p → K1 p ∈ �. Let F = (W, RK1 , RB) be the canonical frame for �1.
Obviously, the frame F̂ = (W, RK1 , RK2 , RB), where RK2 = RK1 , is a frame for which
�1 + �2 is sound. Thus, K1 p ↔ ϕ is valid in F̂ . But the interpretation of this formula
depends only on RK1 and RB . Thus, it is also valid in F . Hence, this formula is in �1,
which means that it is a definition of K1 in terms of B, contrary to Proposition 3.3.(b). The
corresponding first-order logic �fo includes the formula Rfo

K1
(x, y) ↔ Rfo

K2
(x, y) and, by

Proposition 5.2., the formula ∃z(Rfo
B (x, z)∧Rfo

B (y, z)) is an interpolant for this equivalence.
However, this interpolant has no modal equivalent.
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Appendix: Proofs.

In this Appendix, we prove all results whose proof was omitted from the main text. We
repeat the statement of the results for the reader’s convenience. We start with the proof of
two elementary lemmas that are used in many of the proofs.

LEMMA A.1. Let ϕ, ψ and χ be formulas in a language L, and let χ ′ be a formula
obtained by replacing some occurrences of ϕ in χ by ψ . If � is a logic in L such that
ϕ ↔ ψ ∈ � then χ ↔ χ ′ ∈ �.

We omit the simple proof by induction on the structure of χ .

5 “Minimal” here means that it is the least set of formulas that contains all tautologies of
propositional logic, is closed under modus ponens and substitution, and is normal.
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Given a definition DMn , we construct a map ϕ �→ ϕt that translates formulas ϕ in L
to formulas ϕt in L0. We define ϕt by induction on the structure of ϕ. If ϕ is a primitive
proposition, then ϕt = ϕ. We define (ϕ → ψ)t = (ϕt → ψ t ) and (¬ϕ)t = ¬ϕt . For
Mi �= Mn , (Miϕ)t = Miϕ

t , and (Mnϕ)t = δ[p/ϕt ].

LEMMA A.2. For each formula ϕ ∈ L, the formula ϕ ↔ ϕt is in every logic that
contains DMn.

Proof. Let � be a logic that contains DMn . The proof that ϕ ↔ ϕt ∈ � proceeds
by induction on the structure of formulas, using Lemma A.1. For the case of formulas
Mnϕ we use the assumption that DMn ∈ �. From this it follows by substitution that
Mnϕ ↔ δ[p/ϕ] ∈ � for each ϕ. By the induction hypothesis and Lemma A.1., δ[p/ϕ] ↔
δ[p/ϕt ] ∈ �, which implies that (Mnϕ)t ↔ Mnϕ ∈ �. �

PROPOSITION 3.1. If Mn is reducible to M1, . . . , Mn−1 in �, then it is reducible by a
simple definition.

Proof. Suppose that Mn is reducible to M1, . . . , Mn−1 in � by the definition Mn p ↔ δ.
Let DM′

n be the formula Mn p ↔ δ′, where δ′ is the formula obtained by substituting p for
all primitive propositions in δ. By substitution, DM′

n ∈ �0 + DMn . Thus �0 + DM′
n ⊆

�0 +DMn . It follows that δ ↔ δ′ ∈ �0 +DMn . But δ ↔ δ′ ∈ L0. Hence, since �0 + DM
is a conservative extension of �0, δ ↔ δ′ ∈ �0. This implies that DMn ∈ �0 + DM′

n , and
hence �0 + DMn ⊆ �0 + DM′

n . Therefore, �0 + DMn = �0 + DM′
n . �

In the proofs of the following two theorems, we write �′ for �[Mn/M ′
n].

THEOREM 3.4. The modal operator Mn is explicitly defined in � if and only if Mn is
implicitly defined and reducible to M1, . . . , Mn−1 in �.

Proof. Let DM′
n be the formula M ′

n p ↔ δ that results from replacing Mn by M ′
n in DMn .

Suppose that Mn is explicitly defined in � by DMn . We first show that � = �0 + DMn .
By definition, �0 ⊆ � and, by assumption, DMn ∈ �. Thus, �0 + DMn ⊆ �. For
the opposite inclusion, let ϕ ∈ L. By Lemma A.2. and the explicit definability of Mn ,
ϕ ↔ ϕt ∈ �0 + DMn ⊆ �. If ϕ ∈ �, then ϕt ∈ �, so ϕt ∈ �0. It follows that
ϕ ∈ �0 + DMn , proving that � ⊆ �0 + DMn , as desired. It immediately follows that Mn

is reducible to M1, . . . , Mn−1 in �.
To see that Mn is implicitly defined in �, note that DMn ∈ � and similarly DM′

n ∈ �′;
thus, Mn p ↔ M ′

n p ∈ � + �′.
Now suppose that Mn is reducible to M1, . . . , Mn−1 in � by the definition DMn and

that Mn is implicitly defined in �. Consider the set �∗ of formulas in L(M1, . . . , Mn, M ′
n)

defined by �∗ = {ϕ : ϕt ∈ �′}. Here, ϕt is the translation of ϕ to the language L(M1, . . . ,
Mn−1, M ′

n) using DMn . Clearly �′ ⊆ �∗. As we now show, we also have � ⊆ �∗.
Indeed, if ϕ ∈ �, then by reducibility, ϕ ∈ �0 + DMn . Since, by Lemma A.2., ϕ ↔ ϕt ∈
�0 + DMn , it follows that ϕt ∈ �0 + DMn . Since �0 + DMn is a conservative extension
of �0, ϕt ∈ �0 ⊆ �′. Since ϕt ∈ �′, it follows that ϕ ∈ �∗, as desired.

We prove below that �∗ is a logic. Therefore � + �′ ⊆ �∗. Since, by assumption,
Mn is implicitly defined in �, Mn p ↔ M ′

n p ∈ �∗. Clearly DMn ∈ �∗, since DMt
n =

(δ ↔ δ) ∈ �′. Thus, by the equivalence of Mn and M ′
n , we must have DM′

n ∈ �∗. But
(DM′

n)t = DM′
n , and thus DM′

n ∈ �′. It follows that DMn ∈ �, as desired.
It remains to show that �∗ is a logic. Since �∗ contains the logics � and �′[Mn/M ′

n],
it contains all tautologies of propositional logic as well as the axiom KM for each modal
operator M ∈ {M1, . . . , Mn, M ′

n}.
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To see that �∗ is closed under modus ponens, suppose that ϕ, ϕ → ψ ∈ �∗. But then
ϕt and (ϕ → ψ)t = ϕt → ψ t are in �′. Thus, ψ t ∈ �′, so ψ ∈ �∗, as desired. Another
argument in this spirit shows that �∗ is closed under substitution.

Finally, we must show that �∗ satisfies the generalization rules. If M �= Mn and ψ ∈
�∗ then, by definition, ψ t ∈ �′. Moreover, (Mψ)t = M(ψ t ), so Mψ t ∈ �′ by the
generalization rule for M in �′. Hence, Mψ ∈ �∗. If M = Mn , we proceed as follows.
Since (Mnψ)t = δ[p/ψ t ], we need to show that δ[p/ψ t ] ∈ �[Mn/M ′

n]. Since ψ t ∈
�[Mn/M ′

n], it follows that ψ t ↔ true ∈ �[Mn/M ′
n]. By Lemma A.1., δ[p/ψ t ] ↔

δ[p/true] ∈ �[Mn/M ′
n]. Thus, to complete the proof, we need to show that δ[p/true] ∈

�[Mn/M ′
n]. Mntrue ∈ � by generalization, so by reducibility, Mntrue ∈ �0 + DMn .

Moreover, Mntrue ↔ δ[p/true] ∈ �0 + DMn , so δ[p/true] ∈ �0 + DMn . But �0 + DMn

is a conservative extension of �0, so δ[p/true] ∈ �0 ⊆ �[Mn/M ′
n]. �

THEOREM 4.1. The following are equivalent:

(a) the modality Mn is implicitly defined in �;

(b) if A = (A0, Mn) and A′ = (A0, M′
n) are �-algebras, then Mn = M′

n.

Proof. To prove that (a) implies (b), suppose that Mn is implicitly defined in �, and that
both A = (A0, Mn) and A′ = (A0, M′

n) are �-algebras. Let A + A′ denote the algebra
(A0, Mn, M′

n). Clearly all the formulas in �∪�′ are valid inA+A′; moreover, the set of
formulas valid in an algebra is easily seen to be closed under substitution and generaliza-
tion, so all the formulas in � + �′ are also valid in A+A′. Since Mn is implicitly defined
in �, it follows that Mnϕ ↔ M ′

nϕ ∈ Th(A+A′). Now suppose, by way of contradiction,
that Mn �= M′

n . Then for some x , Mn(x) �= M′
n(x). Consider the A + A′ model M =

((A0, Mn, M′), V ) where V (p) = x . Clearly [[Mn p]]M �= [[Mn p]]M, giving the desired
contradiction.

To show that (b) implies (a), suppose that (b) holds. Let A = (A0, Mn, M′
n) be the

canonical (� + �′)-algebra, where now M′
n is taken to be the interpretation of M ′

n . Note
that ϕ ∈ � ∪ �′ iff ϕ ∈ Th(A). We can view both (A0, Mn) and (A0, M′

n) as �-algebras,
by taking M′

n to interpret Mn . By assumption, Mn = M′
n . Thus, Mnϕ ↔ M ′

nϕ must be
valid in the canonical (� + �′)-algebra for all formulas ϕ. Thus, Mnϕ ↔ M ′

nϕ ∈ � + �′,
so Mn is implicitly defined in �. �

To prove Theorem 4.2., we need the the following lemma, whose straightforward proof
is omitted.

LEMMA A.3. Let 	 be the set of all formulas in L0 that contain only the primitive
proposition p and let A0 be a �0-algebra. There exists a unique function ϕ �→ ϕop from
	 to O∗

A0
that satisfies the following: pop is the identity operator; for each ϕ,ψ ∈ 	,

(¬ϕ)op = ¬ϕop and (ϕ ∨ ψ)op = ϕop ∨ ψop; for each i = 1, . . . , n − 1, (Miϕ)op =
Mi ◦ ϕop. Moreover, this function is a surjection onto O∗

A0
, and, for all ϕ ∈ 	, ψ ∈ L0,

and modelsM0 = (A0, V ), [[ϕ[p/ψ]]]M0 = ϕop([[ψ]])M0 .

THEOREM 4.2. The modality Mn is explicitly defined in � if and only if, for each
�-algebra A, O∗

A = O∗
A0

.

Proof. We first note that O∗
A = O∗

A0
if and only if Mn ∈ O∗

A0
. Assume that the

modality Mn is explicitly defined in � via the definition Mn p ↔ δ, and let A be a �-
algebra. Thus, for each model M = (A, V ), Mn([[p]]M) = [[δ]]M. By Lemma A.3.,
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[[δ]]M = δop([[p]]M). For all x ∈ A, letMx = (A, Vx ) be a model such that V (p) = x .
It is easy to check that Mn(x) = δop(x). Thus, Mn = δop, and hence O∗

A = O∗
A0

.

For the converse, suppose that for each �-algebraA,O∗
A = O∗

A0
. LetA be the canonical

algebra of �. By Lemma A.3., there exists a formula δ ∈ 	 such that Mn = δop. Moreover,
for each modelM based on A, Mn([[p]]M) = δop([[p]]M) = [[δ]]M. Thus, Mn p ↔ δ is
valid in each model based on A, and hence Mn p ↔ δ ∈ �. �

To prove Theorem 4.3., we need the following lemma, which will also be useful in our
later proofs.

LEMMA A.4. If L1 ⊆ L2, �1 ⊆ �2 are two logics in the corresponding languages
such that �1 is sound and complete for a family S of frames, and each frame (algebra) in
S can be extended to a �2-frame (algebra), then �2 is a conservative extension of �1.

Proof. Suppose that the condition in the lemma holds. Let F be a �1-frame in S and
F ′ an extension of F to a �2-frame. Consider modelsM = (F, V ) andM′ = (F ′, V ).
Suppose that ϕ ∈ �2 ∩L1. ThenM′ |� ϕ. Since ϕ ∈ L1, it follows that [[ϕ]]M′ = [[ϕ]]M.
Thus,M |� ϕ. Since this is true for any model based on a frame in S, ϕ ∈ �1, and hence
�2 ∩ L1 ⊆ �1. The converse inclusion holds since �1 ⊆ �2. The proof for algebras is
similar. �

THEOREM 4.3. The modality Mn is reducible to M1, . . . , Mn−1 in � if and only if each
�0-algebra A0 can be extended to a �-algebra A such that O∗

A = O∗
A0

.

Proof. Suppose that Mn is reducible to M1, . . . , Mn−1 in � by DMn , which is Mn p↔δ.
LetA0 be a �0-algebra. ExtendA0 toA by defining Mn = δop. Thus,O∗

A = O∗
A0

, and we
need only show thatA is a �-algebra. Suppose that ϕ ∈ �. By reducibility, ϕ ∈ �0+DMn .
By Lemma A.2., ϕ ↔ ϕt ∈ �0 + DMn . Thus, ϕt ∈ �0 + DMn . Since �0 + DMn is a
conservative extension of �0, it follows that ϕt ∈ �0. Consider a model M = (A, V )
and the modelM0 = (A0, V ). SinceM andM0 agree on formulas in �0, andM0 is a
model of �0, we must have [[ϕt ]]M = 1. It thus suffices to show that for every formula
ϕ ∈ L, [[ϕ]]M = [[ϕt ]]M. This is proved by induction on the structure of ϕ. We show
here only the case that ϕ = Mnψ . In this case, (Mnψ)t = δ[p/ψ t ]. By Lemma A.3.,
[[δ[p/ψ t ]]]M = δop([[ψ t ]]M). By the induction hypothesis, this is δop([[ψ]]M), which is
[[Mnψ]]M.

For the converse, suppose that the condition in the theorem holds. Let A0 be the canon-
ical algebra of �0 and A its extension to a �-algebra that satisfies O∗

A = O∗
A0

. Then
Mn ∈ O∗

A0
, and hence there exists a formula δ ∈ 	 such that Mn = δop. Let DMn be the

formula Mn p ↔ δ.
We show first that A is a �0 + DMn algebra. Since Th(A) is a logic (the theory of any

algebra is a logic), it suffices to show that DMn ∈ Th(A). To see that this is the case, note
that ifM is a model based onA, then Mn([[p]]M) = δop([[p]]M), which, by Lemma A.3.,
is [[δ]]M.

Since �0 is complete forA0, it follows by Lemma A.4. that �0 +DMn is a conservative
extension of �0. It remains to show that � ⊆ �0 + DMn . Suppose that ϕ ∈ �. Then,
for any modelM = (A, V ), [[ϕ]]M = 1. By Lemma A.2., ϕ ↔ ϕt ∈ �0 + DMn . Since
A is a (�0 + DMn) algebra, [[ϕ]]M = [[ϕt ]]M. But [[ϕt ]]M = [[ϕt ]]M0 for the model
M0 = (A0, V ). Thus, ϕt is valid in every model based on A0. Since A0 is canonical,
it follows that ϕt ∈ �0. Since ϕ ↔ ϕt ∈ �0 + DMn , we have that that ϕ ∈ �0+
DMn . �
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THEOREM 4.4. For each �-algebraA = (B, ∨, ¬, 1, M1, . . . , Mn),O∗
A = O∗

A0
iff (a)

every �0-algebra A0 can be extended to a �-algebra A such that O∗
A = O∗

A0
and (b) if

A = (A0, Mn) and A′ = (A0, M′
n) are �-algebras, then Mn = M′

n.

Proof. The proof follows from Theorem 3.4., using Theorems 4.1., 4.2., and 4.3. Nev-
ertheless, we prove here that (a) and (b) imply the first condition because the proof is
simpler than the syntactic proof that reducibility and implicit definability imply explicit
definability.

Suppose that (a) Mn is reducible to M1, . . . , Mn−1 in � by the definition DMn , and
(b) Mn is implicitly defined in �. By Theorem 4.2. we need to show that for each �-
algebra A, Mn ∈ O∗

A0
. Let A be a �-algebra. By (a) and Theorem 4.3., applied to the

logic �′ = �[Mn/M′
n], the algebra A0 can be extended to an algebra A′ with operators

M1, . . . , Mn−1M′
n , such that M′

n ∈ A∗
0. By (b) and Theorem 4.1., Mn = M′

n , which
completes the proof. �

THEOREM 5.1. If � is an orthodox logic in the language L(M1, . . . , Mn), then the
following are equivalent:

(a) the modality Mn is implicitly defined in �;

(b) for all �-frames (F0, Rn) and (F0, R′
n), we have Rn = R′

n;

(c) the predicate Rfo
n is implicitly defined in �fo;

(d) the predicate Rfo
n is explicitly defined in �fo.

Proof. As noted in Section 5, we need to show only that (a) is equivalent to (b). Suppose
that (a) holds and that F = (F0, Rn) and F ′ = (F0, Rn) are both �-frames. We can view
F +F ′ = (F0, Rn, R′

n) as a � + �′-frame by taking R′
n to be the interpretation of M ′

n . (It
is easy to check that Th(F +F ′) is normal.) Since Mn is implicitly defined in �, we must
have Mnϕ ↔ M ′

nϕ ∈ Th(F + F ′) for all formulas. This implies that Rn = R′
n , because

if Rn(w) �= R′
n(w) for some w, then, without loss of generality, Rn(w) �⊆ R′

n(w) and
therefore Mn p ↔ M ′

n p is not valid in a model (A +A′, V ) where V (p) = R′
n(w). Now

suppose that (b) holds. Then Mnϕ ↔ M ′
nϕ holds for all formulas ϕ in all (�+�′)-frames.

As � is orthodox, so is (� + �′), and therefore it is complete with respect to its canonical
frame. Thus, Mnϕ ↔ M ′

nϕ ∈ � + �′. �
PROPOSITION 5.2. The formula Rfo

K (x, y) ↔ ∃z(Rfo
B (x, z) ∧ Rfo

B (y, z)) is valid in all
((KD45)B + (S5)K + {L1, L2}) frames.

Proof. It is well known (Hoek, 1993) that (KD45)B + (S5)K + {L1, L2} is sound
and complete with respect to frames where (1) the RB relation is serial, transitive, and
Euclidean;6 (2) the RK is an equivalence relation; (3) RB ⊆ RK ; and (4) for all x , y, and
z in W , if (x, y) ∈ RK and (y, z) ∈ RB , then (x, z) ∈ RB (Hoek, 1993). The last two
conditions correspond to L1 and L2, respectively.

Let (W, RB, RK ) be a ((KD45)B + (S5)K + {L1, L2}) frame. If (x, y) ∈ RK then,
since RB is serial, there exists some z such that (y, z) ∈ RB . By the semantic condition
corresponding to L2, we also have (x, z) ∈ RB . For the converse, suppose that there
exists some z such that (x, z) ∈ RB and (y, z) ∈ RB . Then, by the semantic condition

6 R is serial if for each x there exists a y such that (x, y) ∈ R; R is Euclidean if, for all x , y, and z,
if (x, y) ∈ R and (x, z) ∈ R then (y, z) ∈ R.
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corresponding to L1, (x, z) ∈ RK and (y, z) ∈ RK . By the symmetry and transitivity of
RK , (x, y) ∈ RK . �

THEOREM 5.4. The algebra A = (W,B, ∪, ¬, W, B) is a KD45B algebra that cannot
be extended to a (KD45B + S5K + {L1,L2}) algebra.

Proof. We first show that A is a (KD45)B algebra.
In order to see that axiom KB is valid inA, we need to show that for each E and F in B,

¬B(¬E ∪ F)∪ (¬B(E)∪B(F)) = W , or equivalently, B(¬E ∪ F) ⊆ ¬B(E)∪B(F). The
left and right sides of this inclusion can differ only by 0. Suppose that 0 ∈ ¬B(E ∪ ¬F).
Then it must be the case that ¬E ∪ F ∈ U . Now either E /∈ U , in which case 0 ∈ ¬B(E)
and we are done, or E ∈ U . In the latter case, since U is closed under intersection, it
follows that (¬E ∪ F) ∩ E = F ∩ E ∈ U , and thus F must be in U , and 0 ∈ B(F). In
either case, it follows that 0 ∈ ¬B(E) ∪ B(F), as desired.

For axiom DB , we need to show that for each set E , B(E) ⊆ ¬B(¬E). Again, the two
sides of the inclusion can differ only by 0. If 0 ∈ B(E) then E ∈ U . But then ¬E /∈ U . It
easily follows that 0 ∈ ¬B(¬E).

Axiom 4B requires that B(E) ⊆ B(B(E)). If 0 ∈ B(E) then E ∈ U , and B(E) =
E ∪ {0}, which is also in U . Hence, B(B(E)) = B(E ∪ {0}) = E ∪ {0}.

For 5B , we have to prove that ¬B(E) ⊆ B(¬B(E)). If 0 ∈ ¬B(E) then E /∈ U , and
¬B(E) = ¬E ∪ {0}. It follows that both ¬E and hence ¬E ∪ {0} are in U , and therefore
B(¬E ∪ {0}) = ¬E ∪ {0}. This complete the proof that A is a (KD45)B algebra.

Suppose, by way of contradiction, that A can be extended to a ((KD45)B + (S5)K +
{L1, L2}) algebra (A, K). Let E = W \ {0}. We first show that K(E) = E . By TK , it
is enough to show that E ⊆ K(E). Obviously, for each x ∈ E , B({x}) = {x}. By L2
it follows that, for each x ∈ E , B({x}) ⊆ K(B({x})). Substituting {x} for B({x}), we
conclude that {x} ⊆ K({x}) for each x ∈ E . It is easy to see that the validity of axiom
KK implies that K is monotonic, and hence K({x}) ⊆ K(E), from which we conclude as
required that {x} ⊆ K(E). Thus, E ⊆ K(E). Moreover, since K(E) = E , ¬K(E) = {0}.
By L1, K({0}) ⊆ B({0}). By the definition of B, B({0}) = ∅. Substituting ¬K(E) for {0}
in K({0}), we have K(¬K({E})) = ∅ �= ¬K({E}), contradicting 5K . �

We remark that Theorem 5.4. shows that the converse of Lemma A.4. does not hold.

THEOREM 5.5. Let � be a logic inL(B, J, K ) such that (KD45)B+(S5)K +{L1, L2} ⊆
�. If every (KD45)B algebra can be extended to an algebra of � ∩L(B, J ), then K is not
reducible to B and J in �.

Proof. Suppose, by way of contradiction, that every (KD45)B algebra can be extended to
an algebra of �∩L(B, J ) and that K is reducible to B and J in �. Consider the (KD45)B
algebra A constructed in the proof of Theorem 5.4. By assumption, it can be extended to
a (� ∩ L(B, J )) algebra A′. Since K is reducible to B and J , by Theorem 4.3., A′ can be
extended to a �-algebra A′′. In particular, A is a ((KD45)B + (S5)K + {L1, L2}) algebra.
But this contradicts Theorem 5.4. �

COROLLARY 5.6. Let � be a logic in L(B, J, K ) such that � ∩ L(B, J ) = KD45B +
�J , where �J ⊆ S5J . Then K is not reducible to B and J in �.

Proof. It is easy to show that every (KD45)B algebraA′ can be extended to a ((KD45)B+
�J ) algebra, simply by defining an operator J on A′ by taking J(1) = 1 and J(x) = 0
if x �= 1. This makes the resulting algebra an (S5)J algebra. The result now follows from
Theorem 5.5. �
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