3,189 research outputs found

    A Survey of Paraphrasing and Textual Entailment Methods

    Full text link
    Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.Comment: Technical Report, Natural Language Processing Group, Department of Informatics, Athens University of Economics and Business, Greece, 201

    Towards Universal Semantic Tagging

    Get PDF
    The paper proposes the task of universal semantic tagging---tagging word tokens with language-neutral, semantically informative tags. We argue that the task, with its independent nature, contributes to better semantic analysis for wide-coverage multilingual text. We present the initial version of the semantic tagset and show that (a) the tags provide semantically fine-grained information, and (b) they are suitable for cross-lingual semantic parsing. An application of the semantic tagging in the Parallel Meaning Bank supports both of these points as the tags contribute to formal lexical semantics and their cross-lingual projection. As a part of the application, we annotate a small corpus with the semantic tags and present new baseline result for universal semantic tagging.Comment: 9 pages, International Conference on Computational Semantics (IWCS

    Learnability of type-logical grammars

    Get PDF
    AbstractA procedure for learning a lexical assignment together with a system of syntactic and semantic categories given a fixed type-logical grammar is briefly described. The logic underlying the grammar can be any cut-free decidable modally enriched extension of the Lambek calculus, but the correspondence between syntactic and semantic categories must be constrained so that no infinite set of categories is ultimately used to generate the language. It is shown that under these conditions various linguistically valuable subsets of the range of the algorithm are classes identifiable in the limit from data consisting of sentences labeled by simply typed lambda calculus meaning terms in normal form. The entire range of the algorithm is shown to be not a learnable class, contrary to a mistaken result reported in a preliminary version of this paper. It is informally argued that, given the right type logic, the learnable classes of grammars include members which generate natural languages, and thus that natural languages are learnable in this way

    TRX: A Formally Verified Parser Interpreter

    Full text link
    Parsing is an important problem in computer science and yet surprisingly little attention has been devoted to its formal verification. In this paper, we present TRX: a parser interpreter formally developed in the proof assistant Coq, capable of producing formally correct parsers. We are using parsing expression grammars (PEGs), a formalism essentially representing recursive descent parsing, which we consider an attractive alternative to context-free grammars (CFGs). From this formalization we can extract a parser for an arbitrary PEG grammar with the warranty of total correctness, i.e., the resulting parser is terminating and correct with respect to its grammar and the semantics of PEGs; both properties formally proven in Coq.Comment: 26 pages, LMC

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe
    • …
    corecore