
Electronic Notes in Theoretical Computer Science 53 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume53.html 14 pages

Learnability of type-logical grammars

Sean A. Fulop 1;2

Depts. of Linguistics and Computer Science

The University of Chicago

Chicago, U.S.A.

Abstract

A procedure for learning a lexical assignment together with a system of syntactic and

semantic categories given a �xed type-logical grammar is briey described. The logic

underlying the grammar can be any cut-free decidable modally enriched extension

of the Lambek calculus, but the correspondence between syntactic and semantic

categories must be constrained so that no in�nite set of categories is ultimately

used to generate the language. It is shown that under these conditions various

linguistically valuable subsets of the range of the algorithm are classes identi�able in

the limit from data consisting of sentences labeled by simply typed lambda calculus

meaning terms in normal form. The entire range of the algorithm is shown to be

not a learnable class, contrary to a mistaken result reported in a preliminary version

of this paper. It is informally argued that, given the right type logic, the learnable

classes of grammars include members which generate natural languages, and thus

that natural languages are learnable in this way.

1 Introduction

Recent investigations (e.g. [12,13]) have shown the potential for the description

of natural language syntax promised by forms of Lambek's syntactic calculus

[10] enriched by multiple combination modes and families of unary modalities.

Any version of Lambek's calculus in this landscape of logical systems will be

called a type logic in keeping with current practice. A type-logical grammar

is then a triple G = (VG; IG; RG) consisting of a vocabulary VG, a lexical

assignment function IG, and a type logic RG.

1 Thanks to my supervisor Ed Stabler, my de facto co-chair Michael Moortgat, and Makoto

Kanazawa for his inspiring work. Special appreciation to Christophe Costa Florencio for

helping me iron out the mistakes in the preliminary version. This work was supported in

part by a UCLA Dissertation Year Fellowship, NSF LIS grant 9720410, an OTS-UCLA

exchange grant awarded to Prof. Dr. M. Moortgat, and a Research Incentive grant from the

University of Chicago Dept. of Computer Science.
2 Email: sfulop@uchicago.edu

c2001 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82585098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Fulop

This paper proceeds according to the following:

� Type-logical grammar as a framework for syntactic description is briey

summarized.

� The syntax-semantics connection between type logic and the lambda calcu-

lus is outlined, as a generalization of the Curry-Howard morphism.

� We outline a procedure OUTL for learning type-logical lexicons from sen-

tences plus lambda terms, which works for any type logic meeting certain

conditions.

� It is shown that the entire class of languages generated by the grammars

discoverable using OUTL is not in general a learnable class, in Gold's [5]

sense of identi�ability in the limit.

� It is then shown how restricting to certain subclasses of the language class

L(Rng(OUTL)) can give rise to learnability.

� Finally, the rami�cations for theoretical psycholinguistics and computa-

tional induction of grammars are mentioned.

The focus here is on the learnability results; this paper is part of a larger

research project intended to show the feasibility of a particular implementa-

tion within the type-logical framework of the psycholinguistic hypothesis that

human languages can be learned via semantic bootstrapping [14].

2 Type-logical grammar

De�nition 2.1 A type-logical grammar can be de�ned as a tripleG = (VG; IG; RG)

such that:

(i) VG, the vocabulary of G, is a non-empty �nite set;

(ii) IG, the lexicon of G, is a function which to each v 2 VG assigns a �nite

set of types;

(iii) RG, the calculus of G, is a type logic.

The non-associative Lambek calculus NL serves as a \base logic" for the

kinds of type logical grammars that the present paper applies to. The systems

of inference rules shown below conform to the logical style of Gentzen's [4]

sequent calculus.

De�nition 2.2

A) A

(Axiom)

�) A �[A]) C

�[�]) C

(Cut)

�) B �[A]) C

�[(A=B ��)]) C

(= L)

�) B �[A]) C

�[(� �BnA)]) C

(n L)

2

Fulop

(� �B)) A

�) A=B

(= R)
(B � �)) A

�) BnA

(n R)

Extensions of NL have been developed in the literature [11,13] which em-
ploy unary operators that are analogous to those found in modal logics. Here
are the sequent rules of inference governing the unary \modal" operators,
using their corresponding structural operator.

�[hAi]) B

�[3A]) B

(3L)

�[A]) B

�[h�#Ai]) B

(�#L)

�) A

h�i) 3A

(3R)

h�i) A

�) �#A

(�#R)

A major purpose of introducing modal operators is to license the use of
structural rules, in e�ect restricting their applicability to certain contexts.
Typically, extended type logics also employ more than one \family" of slash
operators, and these are indexed using subscripts. The di�erent families of
slashes are sometimes called modes of combination.

A simple example illustrating the use of the modal enrichments is provided
by the treatment of English wh-extraction to form a relative clause, taken from
Puite and Moot [15]. Take the following lexicon, in which the wh-word has
unary modal operators in its assigned type.

(1) IG(agent) = n

IG(Mulder) = np

IG(liked) = (npns)=np

IG(which) = (nnn)=(s=3a�
#
anp)

The following structural rule permits associativity only in the presence of
the appropriate structural modal environment.

(Assoc)
�[(�1 � �2) � h�3i

a]) C

�[�1 � (�2 � h�3i
a)]) C

�[�1 � (�2 � h�3i
a)]) C

�[(�1 � �2) � h�3i
a]) C

The �gure shows a proof of the complex noun agent which Mulder liked,

which has a desired constituent structure.

3

Fulop

n
p
:
M
u
ld
e
r
)

n
p

n
p
:
w
h
ic
h
)

n
p

s
:
[M
u
ld
e
r,
[l
ik
e
d
,
w
h
ic
h
]]
)

s

n
p
�
n
p
n
s
:
[l
ik
e
d
,
w
h
ic
h
]
)

s

L
n

n
p
�
(
(
n
p
n
s
)
=
n
p
�
n
p
)
:
[M
u
ld
e
r,
[l
ik
e
d
,
w
h
ic
h
]]
)

s

L
=

n
p
�
(
(
n
p
n
s
)
=
n
p
�
h�

#
a

n
p
ia
)
:
[M
u
ld
e
r,
[l
ik
e
d
,
w
h
ic
h
]]
)

s

L
�

#
a

(
n
p
�
(
n
p
n
s
)
=
n
p
)
�
h�

#
a

n
p
ia
:
[[
M
u
ld
e
r,
li
k
e
d
],
w
h
ic
h
]
)

s

A
s
s
o
c

(
n
p
�
(
n
p
n
s
)
=
n
p
)
�
�
�

#
a

n
p
:
[[
M
u
ld
e
r,
li
k
e
d
],
w
h
ic
h
]
)

s

L
�

n
p
�
(
n
p
n
s
)
=
n
p
:
[M
u
ld
e
r,
li
k
e
d
]
)

s
=
�
�

#
a

n
p

R
=

n
:
a
g
e
n
t
)

n

n
:
[a
g
e
n
t,
[w
h
ic
h
,
[M
u
ld
e
r,
li
k
e
d
]]
]
)

n

n
�
n
n
n
:
[a
g
e
n
t,
[w
h
ic
h
,
[M
u
ld
e
r,
li
k
e
d
]]
]
)

n

L
n

n
�
(
(
n
n
n
)
=
(
s
=
�
�

#
a

n
p
)
�
(
n
p
�
(
n
p
n
s
)
=
n
p
)
)
:
[a
g
e
n
t,
[w
h
ic
h
,
[M
u
ld
e
r,
li
k
e
d
]]
]
)

n

L
=

4

Fulop

3 Grammar discovery from semantics

3.1 The syntax-semantics connection

A general algorithm has been developed [3] for learning a syntactic category
system for a natural language together with a lexical assignment that de-

termines a completely descriptive grammar. The syntax can in principle be

handled using any cut-free decidable multimodal type-logical grammar [11].

The learning data consists of term-labeled strings, i.e. sentences annotated by

typed lambda calculus meaning recipes with either variable semantic types

on the subterms, or with no types on the subterms. The lambda calculus is

used in a standard fashion to model the compositional meaning structures of

natural language; an example of a term-labeled string is:

((loves(s �) �(Mary�))(John�))s : hJohn; loves;Maryi(2)

alternatively, without subterm types

((loves(Mary))(John))s : hJohn; loves;Maryi(3)

The meaning recipes show the basic compositional construction of the sen-

tence meaning in terms of application and abstraction, and can be used as
directionally non-speci�c recipes for the construction of type-logical proofs of

the labeled sentence which correspond via a generalized Curry-Howard homo-

morphism.

In more detail, let us recall that the Curry-Howard formulae-as-types in-

terpretation induces a morphism from lambda terms to proofs, such that a

lambda term can be used as a recipe to construct a proof in a logic whose

operators correspond to the lambda type operators. Considering the simply
typed lambda calculus, the terms can be used to construct valid proofs in the

positive implicational propositional logic, whose only logical operator is the

implication.

Now, for type logics based on the non-associative Lambek calculus, there

is no longer a direct correspondence with the simply typed lambda calculus,

because there are more logical operators in the logic than just the implication

found in the lambda calculus types. The key di�erence is that type logics

in general will be sensitive to the directional (left-right) relationship among

the formulae, and there may also be modal operators and structural rules

invoked that have no counterpart in the simply typed lambda calculus. In

fact, however, any type logic RG with the typical pair of slash operators can
be shown to induce a fragment �RG of the ordinary typed lambda calculus

such that for every sequent �) sG in RG provable by some proof � there will

be a term M
sG 2 �RG such that M is a construction modulo direction of � by

a generalization of the Curry-Howard isomorphism [7] to a homomorphism.
The initial idea for this is found in van Benthem [18].

5

Fulop

De�nition 3.1 The mapping � from syntactic types in the type logic to se-

mantic types in the lambda calculus is de�ned as follows. The semantic types

that are mapped to in this way are said to be equivalent modulo direction of

application (emda) to the correponding syntactic types, and vice versa. The

functionM(�) is used as a schematic, in whichM stands for any string of unary

modal operators. The subscript i signi�es the possibility of having multiple

families of slash operators.

�(M(c)) = c
0 for corresponding primitive types c; c0;

�(M(A=iB)) = �(M(BniA)) = �(A) �(B)

Notice that, in general, a single semantic type is said to be equivalent modulo

direction to an in�nite number of possible syntactic types.

3.2 A discovery procedure

In order to �rst discover a general form lexicon as an intermediate step, which

assigns syntactic types whose primitive types are distinct variables except for

the principal type constant `s' which is assigned to sentences, our algorithm is

intended to learn from a sample of term-labeled strings such as the above ex-

ample, whose labels either contain no explicit semantic types on the subterms

(they are unsubtyped), or are subtyped but contain only such semantic types

in which the primitive types are all variables except for the principal type `s'

of a sentence. The complete algorithm is charged with learning the system of

categories (other than `s') together with the lexical assignment function, for a

�xed vocabulary and type logic.

The broad outline of the procedure, called Optimal Uni�cation for Type-

Logical grammars (OUTL), is as follows:

(i) Given a sampleD of unsubtyped term-labeled strings, compute a counter-

part sample D0 of subtyped term-labeled strings whose terms are typed

in a most general way. This can be accomplished using some kind of

principle type algorithm, such as the one which is discussed at length in

[6].

(ii) Compute the set of general form type-logical lexicons GFTL(D0), in each

of which distinct variable primitive types will each occur atomically only

once, and such lexicons will generate only the sample D
0 and not an

in�nite language. This is accomplished by taking the following steps:

(a) For each term-labeled string in the sample, determine all proofs in the

type logic at hand which can be constructed by using the subtyped

lambda term as a construction term modulo direction, and which are

also compatible with the word order that is evident in the sentence.

(b) Non-deterministically select one proof for each term-labeled string in

the entire sample; a general form lexicon can then be read o� from the

6

Fulop

types labeling the words. Repeat this step until all di�erent ways of

selecting one proof for each term-labeled string have been exhausted.

This will provide all general form lexicons that could generate the

learning sample.

(iii) Find all of the optimal uni�cations [1] of each of the lexicons in GFTL(D0).

The language class generated by the entire range of OUTL (which assumes

a �xed decidable cut-free type logic) is not learnable in Gold's [5] sense, but

suÆciently large subclasses are learnable provided that the generalized Curry-

Howard correspondence is also �nitary in the following sense.

De�nition 3.2 The relation of equivalence modulo direction of application

(emda) between semantic and syntactic types is said to be �nitary just when

for each semantic type � , the set fT j emda(T; �)g of syntactic types equivalent
to it is �nite, and for each syntactic type T , the set f� j emda(T; �)g of

semantic types equivalent to it is �nite.

No class of type-logical languages that does not meet this condition is

learnable by the above discovery procedure.

The logics found in linguistic applications, including of course the basic

nonassociative Lambek calculus but also various extended systems such as the

Dutch system presented in [12], either already satisfy the above restrictions,

or can be made to by some ad hoc means to force a �nitary syntax-semantics

correspondence. Note, however, that no type logic enriched with unary modal-

ities can have a �nitary emda relation with the simply typed lambda calculus

in general. The sequent proof corresponding to a given lambda term might

have any number of modal operators tacked onto its consequent type; a indef-

inite combinatorial explosion of available sequences of modal and structural

rules would then have to be explored to �nd the ones that eventually get rid

of all of the modals so that the logical rule that corresponds to some appli-

cation or abstraction in the lambda term can �nally be invoked. To try to

quell this explosion, we can stipulate a �nitary correspondence by saying that

only syntactic types with fewer than some small number k modal operators

will be considered in the search for corresponding proofs. This way of meeting

the �nitary correspondence requirement is mathematically ad hoc, but does

not seem linguistically unrealistic. Do we really wish to countenance an in-

�nite number of syntactic categories for a given semantic category? There

is probably some de�nite upper bound on the number of distinct syntactic

behaviors that a member of a particular semantic category will be found to

have in natural language, and in practice, some rather sophisticated linguistic

phenomena can already be handled with a maximum of two modal operators

adorning the types.

To demonstrate how the learning turns out, a simple example shows the

results of applying the OUTL procedure to two di�erent samples of four anno-

tated sentences, which have the same vocabulary. The procedure settles on a

7

Fulop

grammar for the same language in each case (the same grammar too, in fact).

(sings(John))
s

: hJohn; singsi

((loves(Mary))(John))
s

: hJohn; loves;Maryi

((loves(a(man)))(Mary))
s

: hMary; loves; a;mani

((sees(John))(a(man)))
s

: ha;man; sees; Johni

(4)

(sings(Mary))
s

: hMary; singsi

((loves(John))(Mary))
s

: hMary; loves; Johni

((loves(Mary))(a(man)))
s

: ha;man; loves;Maryi

((sees(a(man)))(John))
s

: hJohn; sees; a;mani

(5)

The general form lexicons discovered for the above two samples by exploit-

ing the Curry-Howard homomorphism optimally unify to the same lexicon,

presented as an assignment function IG:

(6) IG(Mary) = �

IG(sings) = �ns

IG(loves) = (�ns)=�

IG(John) = �

IG(a) = �=�

IG(man) = �

IG(sees) = (�ns)=�

It should be noted that this implementation of semantic bootstrapping

uses much less information than has frequently been considered in such ef-

forts. The basic requirements of Pinker's [14] proposal for a bootstrapping

procedure include the Canonical Structure Realization, through which the

syntactic realization of known semantic categories is provided as a part of in-

nate Universal Grammar. This requires the would-be semantic bootstrapper

to already know the system of semantic categories as well as their correspond-

ing syntactic ones. An implementation which follows this tack is presented by

[16]. Our implementation, in contrast, does not provide complete information

about syntactic structure, and it provides no speci�c information about the

particular semantic or syntactic categories which should be used to generate

the language.

4 Learnability of optimally uni�ed lexicons

De�nition 4.1 [8] Let h
;S; Li be a grammar frame, consisting of a set

of grammars, a set S of expressions (sentences), and a function L which maps

from the grammars to sets of expressions (i.e. languages). A learning function

is a partial function ' that maps non-empty �nite sequences of sentences to

8

Fulop

grammars:

' :

[

k�1

S
k
!
:

S
k
denotes the set of k-ary sequences of sentences. A learning algorithm is

one that computes a learning function.

De�nition 4.2 Let a grammar frame h
;S; Li be given, let G �
. A learn-

ing function ' is said to learn G if the following condition holds:

for every language ` in L(G),

for every in�nite sequence hsiii2N that enumerates the elements of ` (i.e.

fsi j i 2 N g = `),

there exists some G in G such that L(G) = ` and ' converges to G on hsiii2N .

[8]

4.1 A negative result

De�nition 4.3 A class L of languages is said to have a limit point if there

exists an in�nite sequence hLnin2N of languages in L such that

L0 � L1 � � � � � Ln � � � �

(we call this an in�nite ascending chain) and there is another language L in

L such that

L =

1[

n=0

Ln:

The language L is said to be a limit point of L. [8]

Lemma 4.4 ([8]) If L(G) has a limit point then G is not learnable.

Thus, we can show a class of languages is not learnable by showing it has

a limit point.

Theorem 4.5 The language class �L(Rng(OUTL)) generated by the range

of the OUTL algorithm is not a learnable class of (term-labeled) languages for

any type logic.

Proof. In a fashion analogous to the proof of Kanazawa's [8] Theorem 7.20,

we prove that the term-labeled language class �L(Rng(OUTL)) has a limit

point, even when using just the AB classical type logic (equivalent to the

binary combination version of classical categorial grammar) restricted to the

forward slash.

(i) Consider the following lexical assignment involving a single vocabulary

item:

(7) IG(a) = fx; x=x; (s=(x=x))=xg

9

Fulop

This assignment is optimally uni�ed. The term-labeled language gener-

ated using AB and IG consists of the in�nite set ftlsng of term-labeled

strings, where the items Tn are de�ned as follows:

(a(s (x x)) x(ax x(� � �| {z }
n times

(ax) � � �)x)s (x x)
a
x x : han+3in�0

in which the types are shown for convenience, so that the manner in

which they are derived is easier to see.

(ii) Now, for each n � 0, de�ne the type An by the following recurrence:

(8)

A0
def
= x

A1
def
= (s=x)=x

An+2
def
= (s=An+1)=(s=An):

Next, let IGn name the following assignment for all n � 0:

(9) IGn(a) = fA0; : : : ; An+1g:

All lexicons IGn are optimally uni�ed, and �L(Gn) = ftls0; : : : ; tlsng for

all n 2 N , so the grammars Gn de�ne an in�nite ascending chain of

languages.

(iii) Finally, it can be veri�ed (most easily by running the software) that IG
is in Rng(OUTL), as are all of the IGn. In fact, IG 2 OUTL(ftls0; tls1g),
and IGn 2 OUTL(ftls0; : : : ; tlsng) for each n � 0.

(iv) Notice that �L(G) =
S
1

n=0 �L(Gn), making �L(G) a limit point in the

range of OUTL.

2

4.2 Positive results

The following notion, though de�ned below as in [9], has its roots in Wexler

and Hamburger [19].

De�nition 4.6 The language L 2 L is said to be an accumulation point just

when there exists a sequence of �nite sets S0; S1; : : : such that

(i) 8i 2 N Si � Si+1;

(ii)
S
1

i=0 Si = L;

(iii) 8i 2 N 9L0 2 L(Si � L0 & L0 � L).

The existence of an accumulation point in a language class is both neces-

sary and suÆcient for the class to be unlearnable. Thus, we can prove a class

learnable by showing it cannot have an accumulation point.

10

Fulop

De�nition 4.7 A syntactic type A which is a subtype of some type assigned

by the lexicon IG of a type-logical grammar G is said to be useless just when

there is no proof available in G that uses A other than as a proper subtype.

In fact, it is apparent from the discovery procedure that the algorithm

OUTL can never output a lexicon containing useless types.

De�nition 4.8 A type-logical grammar is k-valued just when its lexicon IG
assigns no more than k types to any one vocabulary element.

Lemma 4.9 Given any decidable type logic RG meeting the �nitarity condi-

tion of Def. 3.2, for any learning sample of term-labeled strings which exhausts

the vocabulary VG, there is a bounded number of distinct (modulo alphabetic

variant) k-valued lexicons IG without useless types for any k.

Proof. The argument is combinatorial. Any sample of term-labeled strings

determines a lexicon of semantic type schemata|a general form semantic

lexicon. Clearly from the condition of Def. 3.2, there is some maximum number

of distinct 1-valued lexicons corresponding to any such semantic lexicon, so

long as there are no useless types permitted. The precise number can in

principle be determined in any case, but it will depend on the nature of the

semantic lexicon (which varies from sample to sample) and the speci�cs of the

syntax-semantics correspondence (which varies from logic to logic). The same

will be true of the 2-valued, 3-valued, etc. lexicons for any k. 2

Theorem 4.10 Given any decidable type logic RG meeting the �nitarity con-

dition of Def. 3.2, no language class generated by a k-valued class of grammars

in Rng(OUTL) can have an accumulation point.

Proof. Suppose for some k, there were a class of grammars in Rng(OUTL)

whose class of generated term-labeled languages has an accumulation point

�L. By de�nition, �L =
S
1

i=0
Si is the in�nite union of a weakly ordered

chain of sets of term-labeled strings. Using the Si as learning samples, no

discovered IGi can have the full generating power of IG which generates �L.

This is just what it means to be an accumulation point.

Now, let us see that the actual situation contradicts this desideratum.

Since the full IG generating �L must be k-valued for some k, �L may use

just a bounded number of semantic type schemata for each word. This bound

will depend on k and on the nature of the type logic RG. By Lemma 4.9,

given any semantic lexicon of type schemata assigned to the vocabulary, there

is a determinable number of distinct optimally uni�ed k-valued lexicons IGi
without useless types. For the complete semantic lexicon, which is bounded

in extent, one of these IGi must actually generate �L using the assumed type

logic RG. Since the chain hSii converges to �L, all the languages �Li which

contain the sets must equal �L after a certain point m in the chain. This

point m is a function of the number of distinct k-valued lexicons available,

which in turn is a function of the assumed type logic RG and of the semantic

11

Fulop

lexicon evident from the chain of samples. This proves that the hypothesized

accumulation point �L cannot actually be one. 2

The following is an immediate corollary from the facts about an accumu-

lation point.

Corollary 4.11 Given any decidable type logic RG meeting the �nitarity con-

dition of Def. 3.2, the k-valued classes of grammars are learnable for all k.

The preceding proof ultimately shows that the unlearnability of any class of

type-logical lexicons depends on the possibility of unbounded lexical ambiguity

within the class. That is why learnability is lost when the entire class of

lexicons in the range of OUTL is considered, rather than just those with a

maximum k types assigned to each word.

De�nition 4.12 If D is a �nite set of term-labeled strings, let

LCTL(D)
def
= fG 2 OUTL(D) j 8G0 2 OUTL(D) (jIGj � jIG0 j)g:

LCTL(D) picks those optimal lexicons that have smallest cardinality. The

following now seems to follow as a corollary of Theorem 4.10, though the

argument is as yet informal.

Conjecture 4.13 Given any decidable type logic RG meeting the �nitarity

condition of Def. 3.2, the language class �L(Rng(LCTL)) is learnable.

The argument here is provided in part by the above remark to the ef-

fect that unlearnability of any class of lexicons depends on the possibility of

unbounded lexical ambiguity. This is because the accumulation point of the

generated language class must ultimately be generated in two ways|once by

a possibly bounded lexicon, and again by an \in�nite" lexicon that is the

limit of the lexicons generating the chain of sets hSii. By selecting just those

optimally uni�ed lexicons with least cardinality, the algorithm LCTL ensures

that these two ways of generating any language cannot exist, since only one

of them will have least cardinality.

In terms of recognizing power, the exact class of languages generated by

the class of type-logical grammars covered by these results is not known. Be-

cause several type-logical fragments that are covered by these results generate

non-context-free natural language fragments (the Dutch fragment from [12,3],

for example), one might conjecture that a subclass of the (properly) mildly

context-sensitive languages is covered. It is clear, however, that the recur-

sively enumerable languages outside the context-sensitive class are not cov-

ered in general, notwithstanding Carpenter's result [2] that the whole class of

general multimodal type-logical grammars generate the entire Chomsky Type

0 language class. The reason for this is that Carpenter's result depends cru-

cially on allowing the underlying type logics to be undecidable in general, with

the ability to add or delete arbitrary structure during the course of a proof.

12

Fulop

Since our type logics are required to be decidable, they do not seem to form

a Turing-complete class.

5 Concluding remarks

It has been shown that wide classes of optimally uni�ed type-logical lexicons

are identi�able in the limit from term-labeled strings. We conjecture that

these classes contain grammars strongly adequate for the description of natural

languages. This is justi�ed by noticing that, �rstly, the learnable classes

include grammars which generate languages beyond the context-free class,

and secondly, the optimal uni�cation procedure produces lexicons in which

the assignment of distinct categories invariably reects positive evidence in

the learning sample of distinct syntactic behavior. The lexicons learned should

thus in the limit assign all and only those syntactic and semantic categories

which function properly in the language, a term we use to mean category

di�erences exactly reect syntactic di�erences. Familiar syntactic categories

in linguistic theory such as \Verb" do not function properly in this sense,

which is why subcategorization is required.

The above characterization of the present approach to learning grammars,

if correct, has rami�cations for the computational induction of grammars as

well as for psycholinguistic ideas about language learning. It would be possible

in principle to induce a precisely adequate grammar (provided one got the

universal type logic correct in the �rst place) from term-labeled strings, which

are easier to create based upon modern semantic theories of language than are

direct syntactic training databases for grammar induction such as the Penn

Treebank. The Treebank induction approach also has the major disadvantage

that the parts of speech are already assigned to the words, which stretches

even a charitable interpretation of language learning on the psycholinguistic

side, and which may propagate damaging assumptions for natural language

processing e�orts.

References

[1] Buszkowski, W. and G. Penn, Categorial grammars determined from linguistic

data by uni�cation, Studia Logica 49 (1990), pp. 431{454.

[2] Carpenter, B., The Turing-completeness of multimodal categorial grammars,
in: J. Gerbrandy, M. Marx, M. de Rijke and Y. Venema, editors, JFAK:

Essays dedicated to Johan van Benthem on the occasion of his 50th birthday,
Institute for Logic, Language, and Computation, University of Amsterdam,
1999 Available on CD-ROM at http://turing.wins.uva.nl.

[3] Fulop, S. A., \On the Logic and Learning of Language," Kluwer, Forthcoming.

[4] Gentzen, G., Untersuchungen �uber das logische Schliessen, Math. Zeitschrift 39
(1934), pp. 176{210, 405{431, english translation in [17].

13

Fulop

[5] Gold, E. M., Language identi�cation in the limit, Information and Control 10
(1967), pp. 447{474.

[6] Hindley, J. R., \Basic Simple Type Theory," Cambridge University Press, 1997.

[7] Howard, W. A., The formulas-as-types notion of construction, in: J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,

Lambda Calculus and Formalism, Academic Press, New York, 1980 pp. 479{
490.

[8] Kanazawa, M., \Learnable Classes of Categorial Grammars," Ph.D. thesis,
Stanford University (1994).

[9] Kapur, S., \Computational Learning of Languages," Ph.D. thesis, Cornell
University (1991).

[10] Lambek, J., The mathematics of sentence structure, American Mathematical
Monthly 65 (1958), pp. 154{170.

[11] Moortgat, M., Categorial type logics, in: J. van Benthem and A. ter Meulen,
editors, Handbook of Logic and Language, Elsevier, 1997 .

[12] Moortgat, M., Meaningful patterns, in: J. Gerbrandy, M. Marx, M. de Rijke
and Y. Venema, editors, JFAK: Essays dedicated to Johan van Benthem

on the occasion of his 50th birthday, Institute for Logic, Language, and
Computation, University of Amsterdam, 1999 Available on CD-ROM at
http://turing.wins.uva.nl.

[13] Morrill, G. V., \Type Logical Grammar: Categorial Logic of Signs," Kluwer,
Dordrecht, 1994.

[14] Pinker, S., \Language Learnability and Language Development," Harvard
University Press, Cambridge, MA, 1984.

[15] Puite, Q. and R. Moot, Proof nets for the multimodal lambek calculus, Technical
Report 1096, University of Utrecht, Dept. of Mathematics (1999).

[16] Siskind, J., Dispelling myths about language bootstrapping (1991), manuscript,
MIT AI Laboratory.

[17] Szabo, M., \The Collected Papers of Gerhard Gentzen," North-Holland,
Amsterdam, 1969.

[18] van Benthem, J., \Language in Action," North-Holland, Amsterdam, 1991.

[19] Wexler, K. and H. Hamburger, On the insuÆciency of surface data for the

learning of transformational language, in: K. J. J. Hintikka, J. M. E. Moravcsik
and P. Suppes, editors, Approaches to Natural Language, D. Reidel, Dordrecht,
1973 .

14

