16,014 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Feature detection in satellite images using neural network technology

    Get PDF
    A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused

    Predicting player behavior in Tomb Raider : Underworld

    Get PDF
    This paper presents the results of an explorative study on predicting aspects of playing behavior for the major commercial title Tomb Raider: Underworld (TRU). Various supervised learning algorithms are trained on a large-scale set of in-game player behavior data, to predict when a player will stop playing the TRU game and, if the player completes the game, how long will it take to do so. Results reveal that linear regression models and other non-linear classification techniques perform well on the tasks and that decision tree learning induces small yet well-performing and informative trees. Moderate performance is achieved from the prediction models, which indicates the complexity of predicting player behavior based on a constrained set of gameplay metrics and the noise existent in the dataset examined, a generic problem in large-scale data collection from millions of remote clients.peer-reviewe

    Long-term changes and recurrent patterns in fisheries landings from Large Marine Ecosystems (1950–2004)

    Get PDF
    The regional dynamics of industrial fisheries within Large Marine Ecosystems (LMEs) boundaries were investigated by means of a historical-descriptive approach. Landings data from the Sea Around Us Project database were used to detect trends in total yields and variations in landings composition by functional groups over time. The temporal and spatial scales covered by this study allowed general issues to be addressed such as the detection of recurrent patterns and synchronies in fisheries landings. An unsuper-vised artificial neural network, Self Organizing Map (SOM), is used as a tool to analyze fisheries landings composition variation over five decades in 51 LMEs all over the world. From the historical analysis of “fishing behaviors” within LMEs a broad distinction between two main types of fisheries emerged: (1) small and medium pelagics fisheries, with stable compositions or cyclic behaviors, occurred in LMEs which share common productive features, despite different geographical locations and (2) demersal fisheries, which are more affected by economic drivers and tend to concentrate in LMEs in the Northern Hemisphere. Our analysis can be regarded as a first step towards the challenging scope of describing the relative influence of environmental and economic drivers on exploited ecosystems

    A Self-Organizing Neural System for Learning to Recognize Textured Scenes

    Full text link
    A self-organizing ARTEX model is developed to categorize and classify textured image regions. ARTEX specializes the FACADE model of how the visual cortex sees, and the ART model of how temporal and prefrontal cortices interact with the hippocampal system to learn visual recognition categories and their names. FACADE processing generates a vector of boundary and surface properties, notably texture and brightness properties, by utilizing multi-scale filtering, competition, and diffusive filling-in. Its context-sensitive local measures of textured scenes can be used to recognize scenic properties that gradually change across space, as well a.s abrupt texture boundaries. ART incrementally learns recognition categories that classify FACADE output vectors, class names of these categories, and their probabilities. Top-down expectations within ART encode learned prototypes that pay attention to expected visual features. When novel visual information creates a poor match with the best existing category prototype, a memory search selects a new category with which classify the novel data. ARTEX is compared with psychophysical data, and is benchmarked on classification of natural textures and synthetic aperture radar images. It outperforms state-of-the-art systems that use rule-based, backpropagation, and K-nearest neighbor classifiers.Defense Advanced Research Projects Agency; Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    Hour-scale wind fluctuations over the North Sea

    Get PDF
    • …
    corecore