821 research outputs found

    Self Organisation and Hierarchical Concept Representation in Networks of Spiking Neurons

    Get PDF
    The aim of this work is to introduce modular processing mechanisms for cortical functions implemented in networks of spiking neurons. Neural maps are a feature of cortical processing found to be generic throughout sensory cortical areas, and self-organisation to the fundamental properties of input spike trains has been shown to be an important property of cortical organisation. Additionally, oscillatory behaviour, temporal coding of information, and learning through spike timing dependent plasticity are all frequently observed in the cortex. The traditional self-organising map (SOM) algorithm attempts to capture the computational properties of this cortical self-organisation in a neural network. As such, a cognitive module for a spiking SOM using oscillations, phasic coding and STDP has been implemented. This model is capable of mapping to distributions of input data in a manner consistent with the traditional SOM algorithm, and of categorising generic input data sets. Higher-level cortical processing areas appear to feature a hierarchical category structure that is founded on a feature-based object representation. The spiking SOM model is therefore extended to facilitate input patterns in the form of sets of binary feature-object relations, such as those seen in the field of formal concept analysis. It is demonstrated that this extended model is capable of learning to represent the hierarchical conceptual structure of an input data set using the existing learning scheme. Furthermore, manipulations of network parameters allow the level of hierarchy used for either learning or recall to be adjusted, and the network is capable of learning comparable representations when trained with incomplete input patterns. Together these two modules provide related approaches to the generation of both topographic mapping and hierarchical representation of input spaces that can be potentially combined and used as the basis for advanced spiking neuron models of the learning of complex representations

    The Development of Bio-Inspired Cortical Feature Maps for Robot Sensorimotor Controllers

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.This project applies principles from the field of Computational Neuroscience to Robotics research, in particular to develop systems inspired by how nature manages to solve sensorimotor coordination tasks. The overall aim has been to build a self-organising sensorimotor system using biologically inspired techniques based upon human cortical development which can in the future be implemented in neuromorphic hardware. This can then deliver the benefits of low power consumption and real time operation but with flexible learning onboard autonomous robots. A core principle is the Self-Organising Feature Map which is based upon the theory of how 2D maps develop in real cortex to represent complex information from the environment. A framework for developing feature maps for both motor and visual directional selectivity representing eight different directions of motion is described as well as how they can be coupled together to make a basic visuomotor system. In contrast to many previous works which use artificially generated visual inputs (for example, image sequences of oriented moving bars or mathematically generated Gaussian bars) a novel feature of the current work is that the visual input is generated by a DVS 128 silicon retina camera which is a neuromorphic device and produces spike events in a frame-free way. One of the main contributions of this work has been to develop a method of autonomous regulation of the map development process which adapts the learning dependent upon input activity. The main results show that distinct directionally selective maps for both the motor and visual modalities are produced under a range of experimental scenarios. The adaptive learning process successfully controls the rate of learning in both motor and visual map development and is used to indicate when sufficient patterns have been presented, thus avoiding the need to define in advance the quantity and range of training data. The coupling training experiments show that the visual input learns to modulate the original motor map response, creating a new visual-motor topological map.EPSRC, University of Plymouth Graduate Schoo

    Self-Organization of Spiking Neural Networks for Visual Object Recognition

    Get PDF
    On one hand, the visual system has the ability to differentiate between very similar objects. On the other hand, we can also recognize the same object in images that vary drastically, due to different viewing angle, distance, or illumination. The ability to recognize the same object under different viewing conditions is called invariant object recognition. Such object recognition capabilities are not immediately available after birth, but are acquired through learning by experience in the visual world. In many viewing situations different views of the same object are seen in a tem- poral sequence, e.g. when we are moving an object in our hands while watching it. This creates temporal correlations between successive retinal projections that can be used to associate different views of the same object. Theorists have therefore pro- posed a synaptic plasticity rule with a built-in memory trace (trace rule). In this dissertation I present spiking neural network models that offer possible explanations for learning of invariant object representations. These models are based on the following hypotheses: 1. Instead of a synaptic trace rule, persistent firing of recurrently connected groups of neurons can serve as a memory trace for invariance learning. 2. Short-range excitatory lateral connections enable learning of self-organizing topographic maps that represent temporal as well as spatial correlations. 3. When trained with sequences of object views, such a network can learn repre- sentations that enable invariant object recognition by clustering different views of the same object within a local neighborhood. 4. Learning of representations for very similar stimuli can be enabled by adaptive inhibitory feedback connections. The study presented in chapter 3.1 details an implementation of a spiking neural network to test the first three hypotheses. This network was tested with stimulus sets that were designed in two feature dimensions to separate the impact of tempo- ral and spatial correlations on learned topographic maps. The emerging topographic maps showed patterns that were dependent on the temporal order of object views during training. Our results show that pooling over local neighborhoods of the to- pographic map enables invariant recognition. Chapter 3.2 focuses on the fourth hypothesis. There we examine how the adaptive feedback inhibition (AFI) can improve the ability of a network to discriminate between very similar patterns. The results show that with AFI learning is faster, and the network learns selective representations for stimuli with higher levels of overlap than without AFI. Results of chapter 3.1 suggest a functional role for topographic object representa- tions that are known to exist in the inferotemporal cortex, and suggests a mechanism for the development of such representations. The AFI model implements one aspect of predictive coding: subtraction of a prediction from the actual input of a system. The successful implementation in a biologically plausible network of spiking neurons shows that predictive coding can play a role in cortical circuits

    Biologically Inspired Computer Vision/ Applications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing

    Get PDF
    Biologically Inspired Computer VisionApplications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing Reza Hojjaty Saeedy Abstract Biological vision systems are remarkable at extracting and analyzing the information that is essential for vital functional needs. They perform all these tasks with both high sensitivity and strong reliability. They can efficiently and quickly solve most of the difficult computa- tional problems that are still challenging for artificial systems, such as scene segmentation, 3D/depth perception, motion recognition, etc. So it is no surprise that biological vision systems have been a source of inspiration for computer vision problems. In this research, we aim to provide a computer vision task centric framework out of models primarily originating in biological vision studies. We try to address two specific tasks here: saliency detection and object classification. In both of these tasks we use features extracted from computational models of biological vision systems as a starting point for further processing. Saliency maps are 2D topographic maps that catch the most conspicuous regions of a scene, i.e. the pixels in an image that stand out against their neighboring pixels. So these maps can be thought of as representations of the human attention process and thus have a lot of applications in computer vision. We propose a cascade that combines two well- known computational models for perception of color and orientation in order to simulate the responses of the primary areas of the primate visual cortex. We use these responses as inputs to a spiking neural network(SNN) and finally the output of this SNN will serve as the input to our post-processing algorithm for saliency detection. Object classification/detection is the most studied task in computer vision and machine learning and it is interesting that while it looks trivial for humans it is a difficult problem for artificial systems. For this part of the thesis we also design a pipeline including feature extraction using biologically inspired systems, manifold learning for dimensionality reduction and self-organizing(vector quantization) neural network as a supervised method for prototype learning

    Biologically Inspired Computer Vision/ Applications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing

    Get PDF
    Biologically Inspired Computer VisionApplications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing Reza Hojjaty Saeedy Abstract Biological vision systems are remarkable at extracting and analyzing the information that is essential for vital functional needs. They perform all these tasks with both high sensitivity and strong reliability. They can efficiently and quickly solve most of the difficult computa- tional problems that are still challenging for artificial systems, such as scene segmentation, 3D/depth perception, motion recognition, etc. So it is no surprise that biological vision systems have been a source of inspiration for computer vision problems. In this research, we aim to provide a computer vision task centric framework out of models primarily originating in biological vision studies. We try to address two specific tasks here: saliency detection and object classification. In both of these tasks we use features extracted from computational models of biological vision systems as a starting point for further processing. Saliency maps are 2D topographic maps that catch the most conspicuous regions of a scene, i.e. the pixels in an image that stand out against their neighboring pixels. So these maps can be thought of as representations of the human attention process and thus have a lot of applications in computer vision. We propose a cascade that combines two well- known computational models for perception of color and orientation in order to simulate the responses of the primary areas of the primate visual cortex. We use these responses as inputs to a spiking neural network(SNN) and finally the output of this SNN will serve as the input to our post-processing algorithm for saliency detection. Object classification/detection is the most studied task in computer vision and machine learning and it is interesting that while it looks trivial for humans it is a difficult problem for artificial systems. For this part of the thesis we also design a pipeline including feature extraction using biologically inspired systems, manifold learning for dimensionality reduction and self-organizing(vector quantization) neural network as a supervised method for prototype learning

    Six networks on a universal neuromorphic computing substrate

    Get PDF
    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality

    Timescales of Multineuronal Activity Patterns Reflect Temporal Structure of Visual Stimuli

    Get PDF
    The investigation of distributed coding across multiple neurons in the cortex remains to this date a challenge. Our current understanding of collective encoding of information and the relevant timescales is still limited. Most results are restricted to disparate timescales, focused on either very fast, e.g., spike-synchrony, or slow timescales, e.g., firing rate. Here, we investigated systematically multineuronal activity patterns evolving on different timescales, spanning the whole range from spike-synchrony to mean firing rate. Using multi-electrode recordings from cat visual cortex, we show that cortical responses can be described as trajectories in a high-dimensional pattern space. Patterns evolve on a continuum of coexisting timescales that strongly relate to the temporal properties of stimuli. Timescales consistent with the time constants of neuronal membranes and fast synaptic transmission (5–20 ms) play a particularly salient role in encoding a large amount of stimulus-related information. Thus, to faithfully encode the properties of visual stimuli the brain engages multiple neurons into activity patterns evolving on multiple timescales

    Computational Analysis of Functional Imaging in the Primary Auditory Cortex

    Get PDF
    Functional imaging can reveal detailed organizational structure in cerebral cortical areas, but neuronal response features and local neural interconnectivity can influence the resulting images, possibly limiting the inferences that can be drawn about neural function. Historically, discerning the fundamental principles of organizational structure in the auditory cortex of multiple species has been somewhat challenging with functional imaging as the studies have failed to reproduce results seen in electrophysiology. One difference might result from the way most functional imaging studies record the summed activity of multiple neurons. To test this effect, virtual mapping experiments were run in order to gauge the ability of functional imaging to accurately estimate underlying maps. The experiments suggest that spatial averaging improves the ability to estimate maps with low spatial frequencies or with large amounts of cortical variability, at the cost of decreasing the spatial resolution of the images. Despite the decrease in resolution, the results suggest that current functional imaging studies may be able to depict maps with high spatial frequencies better than electrophysiology can; therefore, the difficulties in recapitulating electrophysiology experiments with imaging may stem from underlying neural circuitry. One possible reason may be the relative distribution of response selectivity throughout the population of auditory cortex neurons. A small percent of neurons have a response type that exhibits a receptive field size that increases with higher stimulus intensities, but they are likely to contribute disproportionately to the activity detected in functional images, especially if intense sounds are used for stimulation. To evaluate the potential influence of neuronal subpopulations upon functional images of the primary auditory cortex, a model array representing cortical neurons was probed with virtual imaging experiments under various assumptions about the local circuit organization. As expected, different neuronal subpopulations were activated preferentially under different stimulus conditions. In fact, stimulus protocols that can preferentially excite one subpopulation of neurons over the others have the potential to improve the effective resolution of functional auditory cortical images. These experimental results also make predictions about auditory cortex organization that can be tested with refined functional imaging experiments
    corecore