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Abstract

Self Organisation and Hierarchical Concept Representation in

Networks of Spiking Neurons

Timothy Rumbell

The aim of this work is to introduce modular processing mechanisms for cortical functions im-
plemented in networks of spiking neurons. Neural maps are a feature of cortical processing
found to be generic throughout sensory cortical areas, and self-organisation to the fundamental
properties of input spike trains has been shown to be an important property of cortical organisa-
tion. Additionally, oscillatory behaviour, temporal coding of information, and learning through
spike timing dependent plasticity are all frequently observed in the cortex. The traditional
self-organising map (SOM) algorithm attempts to capture the computational properties of this
cortical self-organisation in a neural network. As such, a cognitive module for a spiking SOM
using oscillations, phasic coding and STDP has been implemented. This model is capable of
mapping to distributions of input data in a manner consistent with the traditional SOM algo-
rithm, and of categorising generic input data sets. Higher-level cortical processing areas appear
to feature a hierarchical category structure that is founded on a feature-based object represen-
tation. The spiking SOM model is therefore extended to facilitate input patterns in the form of
sets of binary feature-object relations, such as those seen in the field of formal concept analysis.
It is demonstrated that this extended model is capable of learning to represent the hierarchi-
cal conceptual structure of an input data set using the existing learning scheme. Furthermore,
manipulations of network parameters allow the level of hierarchy used for either learning or
recall to be adjusted, and the network is capable of learning comparable representations when
trained with incomplete input patterns. Together these two modules provide related approaches
to the generation of both topographic mapping and hierarchical representation of input spaces
that can be potentially combined and used as the basis for advanced spiking neuron models of
the learning of complex representations.
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Chapter 1

Introduction

Information is processed in the brain at several levels of abstraction. Lower levels assimilate

information from the environment through the sensory apparatus. The motor systems also op-

erate at a lower level, facilitating interactions with the environment. Cognitive processes occur

at a higher level than sensory-motor processing. These processes may involve representations

of the fundamental properties of the external environment and the integration of current sensory

input with existing memories.

Various types of process meet the criterion of being in some way more abstract than sensory-

motor processes. Prominent among these are perception, memory, attention, language, and

intelligence (Fuster 2003). Traditional cognitive neuroscience approaches to investigating these

functions have considered each of them as a separate mechanism, maybe even a separate mod-

ule, with specific neural correlates. The network model of cognition suggests that brain modules

are not holders for the entirety of a single psychologically separate cognitive function, but are

likely to be smaller in scope, with cognitive functions distributed and intermingled between

them.

Generic cortical properties underpin the functional properties of cortical modules. Structures

such as cortical columns, microcircuits, the connectivity patterns within and between them, and

the dynamics of activity in individual neurons and groups of neurons all contribute to generating

functional networks. The information processing in these networks will depend on a combina-

tion of these structural properties and mechanisms of learning and adaptation that are present

within them.

1



1.1. AIMS

1.1 Aims

The current research aims to implement generic components of cognitive functions in networks

of spiking neurons, taking inspiration from the information processing methods present in the

brain. The general idea is that complex cognitive systems can be built from modular com-

ponents, and that these modules are not complete cognitive units in their own right. Instead,

they are intended to be used as building blocks of larger networks capable of multiple complex

functions. The primary goal is to demonstrate potential methods that can be used to generate

modules of this type, taking inspiration from a combination of biological and existing compu-

tational architectures. As these modules are intended as generic components, a focus will be

placed on learning and the adaptation of particular network structure to a variety of data and

types of input/output relationship.

Of course, many types of module will undoubtedly be required within a network capable of a

full suite of cognitive processing. As such, this thesis cannot aim to provide the complete suite

of cognitive modules required, and will limit its scope to design of a single type of module. This

module will be based on the self-organising map, which, as will be demonstrated, represents a

strong candidate for a main type of generic cortical module.

The approach to achieving this goal is to capture functional properties of cortical networks us-

ing artificial neurons that in turn rely on the generic properties of cortical neurons and network

structures. This approach links the goal of cognitive science, aiming to generate representations

of the general functional properties of the brain and mind, with that of computational neuro-

science, aiming to artificially recreate observable phenomena in the brain through the use of

biologically plausible neuron and network models.

1.2 Contributions

The specific, scientific and technical contributions made by this thesis are:

• A spiking neuron implementation of the self-organising map algorithm that incorpo-

rates processing mechanisms inspired by cortical information processing: oscillatory be-

haviour, temporal coding, and spike timing dependent plasticity. This model improves on

2



1.3. THESIS STRUCTURE

existing similar models by enabling continuous processing of input and allowing ongoing

adaptation.

• An analysis of the representational capacities of a spiking self-organising map model that

greatly exceeds prior similar analyses.

• A feasibility simulation for the implementation of such a model in analogue spiking neu-

ron hardware.

• An extension to the spiking self-organising map model that incorporates temporal cod-

ing of binary input and distinct sources of lateral excitation and inhibition within the

map layer, enabling hierarchical representations of concepts in the form of binary object-

feature relations.

• A set of parameter manipulations that alter the hierarchical level at which learning and

recall of concepts is enabled, as well as demonstrating support for an equivalent learning

when training with incomplete input data.

This pair of neural modules incorporate functional properties of biological networks and fulfill

useful computational roles, making valuable contributions across several domains. Previous

investigation into implementations of this type lack either generalisable topographic mapping

properties of the self-organising map or make use of mechanisms that have no biological basis.

The combination of important generic computational properties and the practical application of

functional insights into cortical processing means that the work in this thesis provides unique

solutions to important problems in artificial intelligence.

1.3 Thesis Structure

The thesis can be partitioned into three main sections. The first of these provides an overview of

the biological inspiration and artificial neural network methods used throughout the work. The

second focuses on the self-organising map algorithm and the implementation of this utilising

the principles introduced in the first section. The final section extends work on the model from

the second section to demonstrate the learning of hierarchical concept representations within

3



1.3. THESIS STRUCTURE

such a neural module. Specifically, the chapters are as follows.

In chapter 2 a survey of biological neural function is presented. This begins with an introduction

to how neurons process information, and how learning occurs in biological neurons. It continues

with a review of several key components of cortical networks that represent the inspiration

behind the functional processes designed into the current models. Specifically, these are cortical

connectivity, oscillatory activity, and temporal coding of information. The chapter finishes with

brief reviews of cortical map formation and higher-order object representation in the brain.

In chapter 3 a survey of artificial neural network methods is presented. Common artificial imple-

mentations of neurons are introduced, with a focus on spiking neurons and related mechanisms,

such as artificial representations of synaptic properties and neural plasticity.

Chapter 4 provides an introduction to the self-organising map. The traditional algorithm is

described, and several uses of and modifications to the algorithm are discussed. Relevant exten-

sions to the algorithm are then highlighted, primarily the artificial recreation of specific cortical

regions using self-organising networks, and the existing implementations of the algorithm that

use spiking neurons.

The second section consists of chapter 5. The spiking self-organising map model is described

here, with full details of the implementation and parameter testing. Results are then provided

that confirm the robustness and reliability of map formation. These consist of the network’s

learning in response to two-dimensional input data, particular datasets representing categorical

information, and an alternate description of the model designed for implementation on analogue

spiking neuron hardware.

The third section consists of chapter 6. Extensions to the existing model are introduced here

that alter functional aspects of the self-organising map to make it capable of representation of

concept hierarchies consisting of sets of binary feature-object pairings. Results demonstrate the

ability of the network to learn and recall at multiple hierarchical levels through the modification

of particular network parameters.

Finally, a discussion is presented in chapter 7 regarding the relationship between each of these

4



1.3. THESIS STRUCTURE

models and existing work in the fields of artificial intelligence and cognitive neuroscience. The

implications for generating modular implementations of cognitive processes in networks of

spiking neurons in the future is also discussed.
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Chapter 2

Neural network biology

Information is processed in the brain through communication between neurons. The combi-

nation of ways in which neurons operate, networks are structured, and brain structures are

modified by experience lead to the full range of functions and thoughts that the mind is capable

of. For artificial intelligence methods to gain from knowledge of how complex biological sys-

tems operate it is necessary to have an understanding of the fundamental principles involved in

generating those systems. This chapter will briefly describe the fundamentals of processing in

the brain, by introducing how neurons function, communicate with each other, are organised,

and learn.

2.1 Neurons

Neurons typically consist of four components (Kandel et al. 2000). First, the cell body (soma)

is the metabolic centre of the cell. Second, a tubular axon protrudes from the soma. The axon is

the part of the cell most responsible for transmitting nerve impulses to other neurons. The axon

branches before terminating in the third component, the presynaptic terminals. These terminals

meet with other neurons and transmit the signal by releasing neurotransmitter into the synapse,

which is the gap between cells. The side from which the signal originates is the presynaptic

side, and the signal’s target on the opposite side of the synapse is the postsynaptic side. Finally,

a branched set of protrusions from the soma, the dendrites, are the primary components through

which the cell receives presynaptic signals. They spread out to potentially contact and receive

information from many presynaptic cells.

A neuron can also be described in terms of its functional, rather than morphological, compo-

nents. Neurons can be schematically represented as having four functional components: input,
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integration, trigger and output (Kandel et al. 2000). The input component is the incoming elec-

trical charge, which would usually be the combination of signals received through the dendrites.

The integrative component is the resultant change in the membrane potential in the soma (see

section 2.1.1). The trigger component is a mechanism that evaluates the state of the neuron

and triggers an appropriate response in the form of an action potential (see section 2.1.2). Fi-

nally, the output component is represented by the release of chemical neurotransmitter at the

presynaptic terminal, which determines the nature of the signal received by the postsynaptic

neuron.

2.1.1 Membrane potential

The membrane potential is a value representing the concentration of ions within the cell relative

to the extracellular concentration. Typically a neuron has a higher concentration of negatively

charged molecules within the soma, which leads to a negative membrane potential at rest, known

as the resting potential. With no stimulation from other neurons, a neuron is normally in a state

of equilibrium at this value. The negatively charged molecules involved are amino acids and

proteins and the positively charged molecules are sodium (Na+) and potassium (K+) ions. The

membrane is selectively permeable to K+ ions, with the Na+ concentration kept low by an ion

channel pump, meaning at rest there are vastly more K+ than Na+ ions present within the cell

(Kandel et al. 2000).

The membrane potential is measured relative to the extracellular charge (effectively zero), and

is usually at around -65 mV. This value represents a baseline that changes in membrane potential

can be measured relative to. The membrane has both capacitive and resistive properties, such

that an instantaneous increase in the level of a constant input current will lead to a slowly rising

membrane potential. A purely resistive component would result in an instant rise, and a purely

capacitive component would result in a linear rise. Likewise, a step decrease in the level of

input current will result in the membrane potential gradually decreasing to the resting potential,

with faster leakage at first that gradually slows (Kandel et al. 2000).
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2.1.2 Action potentials

The input component essentially reduces the magnitude of the membrane potential through an

influx of positive ions. This increase in voltage gradually opens an increasing number of voltage

gated Na+ channels, and then at a certain threshold, around 10 mV above the resting level, many

voltage gated Na+ ion channels are open, making the membrane much more permeable to Na+

ions. In turn, this leads to a large change in membrane potential, as positive ions flood into the

cell.

In the aftermath of the action potential, the membrane potential is usually transiently hyperpo-

larised by K+ ion channels remaining open and allowing K+ to exit the cell for longer than the

action potential duration, as the ionic balance returns towards its resting state. The excitability

of the membrane is also diminished through a residual inactivation of Na+ channels. The neu-

ron goes through an absolute refractory period, lasting approximately 1 ms, in which no second

action potential can be generated. The neuron then goes through a relative refractory period,

usually lasting for an additional 3-4 ms although maintaining an effect on the firing probability

of the next spike for up to 20 ms (Gray 1967), in which stronger input than normal is required

to generate an action potential.

The cell membrane is most sensitive to voltage changes, and has a lower threshold for voltage-

gated ion channel activation, at the base of the axon, a site known as the axon hillock. This site

is essentially the trigger point for an action potential. The potential travels from this point along

the axon, which is often insulated against leakage along its length, and regenerates the potential

at interval sites, preventing degradation.

2.1.3 Synapses

An action potential propagates along the axon to the presynaptic terminals. These terminals are

adjacent to a small inter-cellular gap known as the synaptic cleft, on the opposite side of which is

the postsynaptic neuron. An action potential arriving at the presynaptic terminal causes voltage

gated calcium (Ca2+) channels in the membrane to open, such that positive ions flow into the

presynaptic neuron. This Ca2+ influx causes release of neurotransmitter from the presynaptic
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terminal into the synaptic gap. The neurotransmitter molecules ‘dock’ with receptors on the

postsynaptic membrane, causing receptor channels to open, which allows ions to flow into the

postsynaptic cell. As such, the membrane potential of the postsynaptic cell is altered, resulting

in what is known as a postsynaptic potential (PSP).

Excitatory neurons, such as pyramidal cells in the cortex, commonly release glutamate amino

acid neurotransmitters into the synapse, which result in the opening of both Na+ and K+ ion

channels. These molecules depolarise the postsynaptic cell in an excitatory response known

as an excitatory postsynaptic potential (EPSP). Inhibitory neurons commonly release GABA

amino acid neurotransmitters into the synapse, which gate chlorine (Cl-) ion channels, allowing

negative ions into the postsynaptic cell. This action hyperpolarises the membrane potential,

generating what is known as an inhibitory postsynaptic potential (IPSP). Excitatory actions

make the postsynaptic neuron more likely to generate an action potential, and inhibitory actions

make it less likely to.

An individual synaptic response, caused by the arrival of an action potential at just one presy-

naptic terminal, can be characterised as an α-function, reaching a peak amplitude between 0.1

and 3 ms (Jack et al. 1971), but decaying much more slowly. The duration and amplitude of

synaptic responses are highly variable between neurons and synapses (Jack et al. 1971). Also,

incoming synaptic responses can interact with each other, with the history of previous synap-

tic responses modulating the profile of an additional response. These modulations are related

to the morphological structure of the neurons, with the ordering of synapses on the dendritic

spine playing a crucial role in the effects that are caused by signal combinations (Branco et al.

2010; Rumsey and Abbott 2006). As such, a post-synaptic neuron does not necessarily always

compute a linear sum of its inputs. The depolarisation of the membrane potential caused by the

combination of all incoming PSPs is what normally leads to generation of an action potential.

In essence, a neuron combines its inputs at a given time, and makes a simple all or nothing

decision about whether or not to send an output signal of its own.

10



2.2. LEARNING

2.2 Learning

A major facet of learning in the brain is the ability of synaptic efficacies to be adjusted such that

a presynaptic action potential leads to either a stronger or weaker postsynaptic potential. This

change is made if the presynaptic neuron should have its ability to contribute to the firing of

the postsynaptic neuron increased or decreased. Various mechanisms affect synaptic efficacies,

or weights, over a variety of timescales. This section will examine those mechanisms in terms

of two broad timescales, short- and long-term. A commonality between all of the types of

plasticity described here is that they are activity dependent: activity is required in at least one

of the pre- or post-synaptic neurons for synaptic weight changes to occur.

2.2.1 Short term plasticity

Short term plasticity is generally on a millisecond timescale, but some forms can last for up

to several minutes (Zucker and Regehr 2002). Plasticity that temporarily enhances the PSP

resulting from a presynaptic action potential is called facilitation. The counterpart of facilitation

is depression, which decreases the amplitude of PSPs generated by successive action potentials.

Both facilitation and depression can be caused by either individual pairs of successive action

potentials, or by a continuous incoming spike train over a longer time period.

Paired pulse depression is observed in most synapses after an action potential in a neuron fol-

lows a previous action potential in that neuron by less than ∼ 20ms (a 20ms interstimulus in-

terval) (Citri and Malenka 2008). It is likely to result from a transient depletion of vesicles that

are ready to release their neurotransmitter at the presynaptic terminal. Less neurotransmitter is

able to be released following the second action potential, so the PSP is weaker. Paired pulse

facilitation is seen in synapses over longer interstimulus intervals than paired pulse depression,

between 20-500ms. This is likely to be primarily caused by leftover Ca2+ in the presynaptic ter-

minal increasing the amount of neurotransmitter release caused by the second action potential.

Both of these effects result from changes to the amount of neurotransmitter released following

an action potential, so which effect is seen is determined by the recent history at the synapse,

as well as the natural neurotransmitter release tendencies of a particular presynaptic terminal.

Terminals that are less likely to release a lot of neurotransmitter normally tend to be facilitated
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by paired pulses, and those that are more likely to release a lot of neurotransmitter tend to be

depressed (Dobrunz and Stevens 1997).

Trains of stimuli can also lead to either facilitation or depression of a synapse. In this case the

effects tend to be slightly longer lasting, and they need a longer timescale to occur, to allow for

multiple spikes (200ms to 5s). A synapse can be facilitated following high frequency stimula-

tion (10-200Hz); this is again thought to be due to build up of Ca2+ in the presynaptic terminal

enhancing the probability of neurotransmitter release (Citri and Malenka 2008). Depression re-

sulting from trains of stimuli is also primarily related to depletion of presynaptic, release-ready

vesicles of neurotransmitter, but can occur at some synapses that do not deplete after a pair of

pulses. Some synapses are likely to have a rapidly replenishing pool of release ready vesicles,

which requires prolonged high frequency activity to deplete.

The type of short term plasticity present at a synapse determines some of the functional char-

acteristics of that connection. Facilitating synapses will transfer high frequency bursts more

reliably than low frequency, and depressing synapses will transfer low frequency bursts more

reliably than high frequency. This quality makes facilitating synapses act as high pass filters,

and depressing synapses act as low pass filters (Abbott and Regehr 2004). Modulating the initial

probability of neurotransmitter release can switch a synapse from one mode to the other.

2.2.2 Long term plasticity

Changes in synaptic efficacy can occur that endure for hours or days. Long term plasticity can

come in the form of an increase, long term potentiation (LTP), or decrease, long term depression

(LTD) in the connection strength. While short term changes alter the filtering properties of

synapses, the enduring connection strengths, determined by LTP and LTD, are considered to

be a fundamental source of information storage in a neural network (Martin and Morris 2002;

Fuster 2003).

LTP raises the synaptic efficacy by increasing the number of glutamate receptors on the postsy-

naptic membrane (Citri and Malenka 2008). Two major types of glutamate receptor are involved

in the mechanism controlling this effect: NMDA receptors (NMDARs) and AMPA receptors

(AMPARs). AMPARs are permeable to positive ions, Na+ and K+, and provide most of the
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inward current generating the EPSP. NMDARs are normally blockaded by Magnesium (Mg)

molecules at the resting membrane potential. As the membrane depolarises through positive

ions entering via AMPARs, the Mg blockade of NMDARs is released, and Na+ can also enter

the cell through NMDARs. However, unlike AMPARs, NMDARs are also permeable to Ca2+.

A large calcium concentration increase in a dendrite leads to a signalling cascade within the

cell involving a calcium-dependent protein kinase, CaMKII, which in turn promotes the incor-

poration of new AMPARs into the postsynaptic side of the synaptic gap. In this manner, the

unblocking of NMDARs generates the neurotransmitter receptor changes that represent LTP.

LTD, in contrast, lowers synaptic efficacy by reducing the number of postsynaptic AMPARs.

The mechanism is related to that of LTP, in that LTD also requires an increase in postsynaptic

calcium concentration caused by activation of NMDARs. LTD is induced by a modest calcium

concentration increase, whereas LTP requires a larger increase, above a threshold. A small cal-

cium increase leads to preferential activation of particular proteins that lead to the endocytosis

of AMPARs from the membrane, reducing synaptic efficacy (for detailed reviews of the LTP

and LTD processes, see (Citri and Malenka 2008; Sjöström et al. 2008; Feldman 2009)).

The size of the active zone (the section of membrane able to hold receptors and receive signals

from the presynaptic terminal) on the postsynaptic site of the synapse is correlated with the

number of AMPARs within that active zone. Morphological changes have been reported to

accompany the long term induction of LTP, and it seems likely that remodelling of the size of

the pre and postsynaptic active zones is an important factor in the long term maintenance of

synaptic changes.

LTP and LTD are both activity dependent processes. The main experimental condition for the

induction of long term plasticity is repeated, external, electrical stimulation of a presynaptic

cell. When this stimulation is at a low rate (1Hz), LTD is induced; at a high rate, LTP is induced

(Sjöström and Nelson 2002). However, the relative timing of pre- and postsynaptic spikes has

also been shown to play a crucial role in the direction of weight change. Repeated single spike

pairings at very low frequencies have been shown to elicit both LTP and LTD. LTP is induced

if the presynaptic spike precedes the postsynaptic spike, and LTD is induced if the postsynaptic
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spike precedes the presynaptic spike (Abbott and Nelson 2000). This important phenomenon is

known as spike timing dependent plasticity (STDP).

The STDP effect can be explained by the contribution of postsynaptic action potentials to the

membrane potential. An action potential in the postsynaptic neuron occurs when the membrane

potential at the base of the axon reaches a threshold; the glutamate channels are more sensitive

in this part of the neuron, so the threshold is lower there, so action potentials will initialise at

that point. When an action potential occurs, the membrane depolarisation backpropagates to

the dendrites, and to each postsynaptic active zone (this is known as a backpropagating action

potential). Depolarisation of the dendrites will be strongest immediately after the coincidence

of pre- and postsynaptic action potentials. At this time, NMDA receptors will be unblocked

most easily, and the largest influx of calcium will take place (Caporale and Dan 2008), with

large calcium concentrations being the key to triggering LTP. LTD is explained by assuming

that a backpropagating action potential leads to an afterdepolarisation potential, which, when

coinciding with the PSP, leads to only a moderate calcium influx, triggering LTD.

In STDP, LTP and LTD are found within temporal windows. The duration of these windows has

been found to be on the order of tens of milliseconds (Bi and Poo 1998; Markram et al. 1997;

Abbott and Nelson 2000). Figure 2.1 shows example LTP and LTD windows, generated from

observed changes of synaptic efficacy. However, the exact nature of these temporal windows

varies widely across brain region, cell types, synapse types, and conditions (Sjöström et al.

2008). Importantly, STDP effects also depend on frequency (Sjöström and Nelson 2002) in a

similar way to traditional LTP and LTD, with depression dominating at low frequencies and

potentiation at high frequencies. It makes sense that the exact nature of STDP is malleable

and varied, given that it relies on transient levels of a dynamic molecular concentration in the

presence of continuously fluctuating opening and closing of ion channels.

In summary, LTP and LTD, and in particular STDP, can be viewed as the molecular mechanisms

demonstrating the Hebbian postulate in action, that causal links between neurons should be

strengthened, and remembered. The next section will introduce some of the aspects of the

mammalian cortex that interact with these types of learning mechanisms to generate functional
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Figure 2.1: Critical window for the induction of potentiation and depression, as observed by
Bi and Poo (1998). Here, EPSC stands for excitatory postsynaptic current, and
∆t is the temporal lag between the pre- and post-synaptic spike. A negative ∆t
indicates a postsynaptic spike ahead of a presynaptic spike, resulting in a negative
change in EPSC amplitude. A positive ∆t indicates a presynaptic spike ahead of a
postsynaptic spike, resulting in a positive change in EPSC amplitude.
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networks in the brain.

2.3 Cortical features

The functionality present in a given neural network will depend on a combination of the prop-

erties of individual neurons (such as those outlined in section 2.1) and the connections between

those neurons. The connectivity patterns possible in a network are potentially unlimited, and

yet a selection of properties recur throughout the cortex of mammals. Mammalian cortex is cru-

cial to the processing of sensory information, memory storage, and various cognitive functions.

The structures present in the cortex underlying these functions could potentially represent a

set of building blocks for the fulfillment of these various types of processing. This section

will examine the extent to which particular properties of network connectivity and function can

be identified as common to a wide range of cortical areas, and therefore can be considered to

underpin a selection of cognitive processes.

The human cortex consists of neurons arranged into six distinct layers, with vertical intercon-

nectivity across these layers throughout (Dayan and Abbott 2000). Horizontally, the cortex can

be laid out as a 2D sheet, mapped to a set of densely intraconnected communities, or modules,

linked through hub nodes, which are highly connected with several individual communities

(Sporns 2011; Hagmann et al. 2008). At the largest scale the tightly grouped clusters of con-

nections are entire cortical areas. A notably similar structure exists at the lowest levels, with

clusters of neurons bound together in microcircuits, collections of microcircuits constituting

cylindrical cortical columns, and groups of columns representing cortical subareas (Breakspear

and Stam 2005).

2.3.1 Connectivity

The nature and range of connectivity patterns within the cortex varies across the different layers,

with characteristic patterns seen for particular layers throughout the cortical sheet. Generally

speaking, the axons of excitatory neurons in layer 6 project in a feedforward manner up to layer

4, and layer 4 neurons project to layer 3. Layer 3 neurons exhibit more variety, with intralayer

lateral projections, and feedback projections to layer 5. In layer 5, excitatory connections project
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both forward to layer 3 and back to layer 6. Similar projection patterns have been seen in many

well studied cortical areas, such as cat and primate visual cortex, primate auditory and motor

cortex, as well as a slight variant in rodent barrel cortex (see (Douglas and Martin 2004) for

review). The computational functions of this set of vertical projections are thought to include

modulation of responses to centre-surround activity, contrast variance, as well as modulation of

subthreshold activity (see (Raizada and Grossberg 2003) for review).

Intralaminar connections are less common within layers 4-6, with most excitatory cells termi-

nating in higher layers, in a feedforward pattern. A significant preference for vertical connec-

tions is seen throughout these layers (Stepanyants et al. 2008). As such, lateral connections are

more commonly seen within layers 2 and 3; indeed, the number of potential inputs is roughly

3 times higher for a layer 2 or 3 neuron than for neurons in lower cortical layers (Stepanyants

et al. 2008), with around 70% of a layer 2 or 3 cell’s excitatory input being derived from lateral

locations (Binzegger et al. 2009).

Several studies have attempted to map the range and strength of horizontal connections within

these layers. Boucsein et al. (2011) used photostimulation, in which short pulses of UV-light

are used to uncage glutamate channels and cause neuronal activity, to evaluate physiological

parameters of horizontal connections, determining a maximum connection probability of 0.15

between neuron pairs, decaying exponentially with distance between the pair, with a constant of

330 µm. Recordings in neuron pairs in slices from rat and cat visual cortex have been reported

(Markram et al. 1997; Thomson et al. 2002; Holmgren et al. 2003; Song et al. 2005; Lefort

et al. 2009), with connection probabilities of less than 0.1 found at distances up to 200 µm.

Conversely, (Bureau et al. 2004) demonstrated high connection probabilities in layer 2 or 3 of

rat barrel cortex, ranging from roughly 1.0 to 0.13 at distances from 0 µm to 400 µm respectively.

There is a consensus across these studies, and others, that connection probability decreases with

distance, and that the majority (around 75%) of connections are ‘local’, within approximately

500 µm (reviewed in Voges et al. (2010)).

Lateral connections at distances greater than 500 µm tend to be made in “patches” (Voges et al.

2010; Muir et al. 2011). This means that, while the connection probability for neurons at greater

17



2.3. CORTICAL FEATURES

distances (up to 8mm) is low, it is above average at particular regions situated around a spatial

centre. This makes sense in terms of efficiency, in that an axon may terminate in one place,

making contact with a cluster of neighbouring efferent neurons. The number, size and distance

of these patches is unclear, and certainly variable, with around 25% of layer 2 or 3 neurons

lacking patchy connections altogether (Voges et al. 2010).

Approximately 20% of cortical neurons are inhibitory interneurons (Isaacson and Scanziani

2011). The afferent connection profiles of these neurons is markedly different from that of exci-

tatory neurons (Fino and Yuste 2011). Inhibitory neurons receive inputs from a large fraction of

neurons within around 100 µm, and can inhibit over 50% of excitatory cells in the same region.

An analysis of expected numbers of synapses between neuron pairs in layer 4 suggests that

inhibitory to excitatory connections remain dense in an area 2 to 3 times larger than excitatory

to inhibitory connections (Stepanyants et al. 2008), although inhibitory neurons also receive

input from long range excitatory sources via nearby axons. It has been found that up to 51% of

synapses from excitatory cells are onto inhibitory targets (Bock et al. 2011). This was caused,

despite the lower preponderance of inhibitory cells in cortex, by individual axons making mul-

tiple synaptic connections with inhibitory dendritic targets. Electron microscopy has revealed

that the input preference of excitatory neurons does not determine their likelihood of connecting

to a given inhibitory neuron; instead spatial neighbourhood determines the likelihood. However,

some inhibitory neurons have also been shown to have their own input preferences (Isaacson

and Scanziani 2011; Hirsch et al. 2003). Inhibitory neurons that pool excitatory input are likely

to have a role in mediating the activity of nearby excitatory cells (Bock et al. 2011), with promi-

nent likely roles including the sharpening of tuning and oscillatory synchronisation (Isaacson

and Scanziani 2011).

A model of the general functions of the cortex, based on the above connection profiles, can

be proposed (Douglas and Martin 2004). Layer 2 or 3 patches essentially receive a sample of

information from both feedforward and lateral sources. These excitatory cells can then collec-

tively participate in a soft winner-takes-all feature resolution process, mediated by dense lateral

inhibition. The patterns established at this stage are fed back to layer 5 neurons, which con-
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duct another kind of soft winner-takes-all competition, generating output to drive sub-cortical

processes. The winner-takes-all-like function in layer 2 or 3 represents cooperative interaction

within and between patches of the cortical sheet to find an interpretation consistent with inputs

across the lower levels of processing. This model is tentative and, while it takes account of ma-

jor physiological observations, presenting them in a way that can be utilised by theoreticians,

much investigation remains to be done into the detailed organisation of specific cortical regions

and circuits (Douglas and Martin 2004).

The following sections briefly investigate other cortical properties related to the interactions be-

tween excitatory and inhibitory neurons, and what the functional outcomes of these mechanisms

look like.

2.3.2 Oscillations

Oscillatory activity can occur in the brain when pools of neurons synchronise their firing, which

results in more spikes within a certain temporal window, followed by fewer spikes in the sub-

sequent temporal window. This type of behaviour is seen at various rates in a variety of brain

locations. It is usually recorded through the time course of a local field potential (LFP), which

measures the average electrical potential across an area, representing average neural activity

in that region. This section will introduce some important types of oscillatory behaviours and

their functions, and describe some of the underlying mechanisms generating this activity (for a

detailed review see (Wang 2010)).

Oscillations can be categorised through their approximate rate, with each category typically

occurring in different locations and serving a different purpose. Theta rhythms (4-8 Hz) are

often observed in the hippocampus (Buzsáki 2002), and have also been found in the cortex

during working memory tasks (Jensen and Tesche 2002). Beta rhythms (15-30 Hz) have been

observed in primary motor cortex (Swann et al. 2009), where they generally occur immediately

prior to the onset of a motor movement, and so are thought to be related to inhibitory control in

the motor system. They also occur in processing in olfactory cortex, (Perez-Orive et al. 2002).

Gamma rhythms (30-100 Hz) have been observed in sensory (Gray et al. 1989; Singer and

Gray 1995; Traub et al. 1996) and motor cortex (Schoffelen et al. 2005), and in hippocampus
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(Csicsvari et al. 2003).

Recurrently coupled neurons can be synchronised by each other in one of two distinct ways,

with a particular characteristic of the neurons in question determining which of these ways is

more likely to play a role in the synchronisation. Normally, a presynaptic spike will excite a

postsynaptic neuron, encouraging the postsynaptic neuron to fire, advancing the phase of firing

of the postsynaptic neuron. However, some neurons, known as type II neurons (Wang 2010),

actually exhibit a delay to the phase of firing in response to an excitatory presynaptic input

that arrives soon after a previous postsynaptic response. In a type II neuron, a depolarising

action potential activates a restorative current, like a voltage activated potassium current, which

then decays while the membrane returns to its resting state. This decay, and therefore eventual

return to equilibrium for the membrane, is delayed by a brief depolarisation during the after-

hyperpolarisation phase (e.g., an incoming EPSP), eventually delaying the postsynaptic spike.

Oscillatory behaviour in pairs of this type of neuron can be caused when one neuron fires, ex-

citing a second neuron, advancing the phase of firing of that neuron, which then fires, and the

recurrent connection causes an EPSP in the first neuron. This EPSP can come soon after the

initial spike in the first neuron, delaying the decay of the restorative current, delaying its firing.

The outcome is synchronised firing, followed by a synchronised lull in activity.

Neurons that do not display this delay in firing phase, type I neurons, are much less likely

to be synchronised by mutual excitation, as recurrent connectivity always advances the spike

time. The more likely source of synchronisation between these neurons is mutual inhibition

(Ermentrout 1996; Bartos et al. 2007). In this case, while the reciprocally connected neurons

excite each other, their firing also excites reciprocally connected inhibitory neurons, which, as a

result of the excitatory activity, fire just after the excitatory cells. This type of phase relationship

is shown in figure 2.2. The excitatory neurons are inhibited by the IPSPs, and prevented from

firing for a duration, generating an oscillatory rhythm. This effect is known as an excitatory-

inhibitory feedback loop. The magnitude of inhibition during one oscillation instantaneously

affects the oscillation frequency, with a stronger inhibition resulting in a longer time until the

next oscillation (Atallah and Scanziani 2009). The excitatory-inhibitory feedback effect can
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be so pronounced that Cobb et al. (1995) showed experimentally in slices of hippocampus

that a single inhibitory cell could synchronise spiking activity of pyramidal cells. This type of

loop mechanic can be simulated and the effect manipulated through parameter alterations, with

the duration of inhibition affects the synchronisation tightness in random networks, with faster

decay of IPSPs leading to tighter synchrony (Börgers and Kopell 2003).

The mechanisms mentioned above identify some key principles underlying the common ob-

servation of synchronised oscillatory firing in brain networks. Individual neuronal membrane

properties, types of cells in networks, and network connectivity contribute to these mechanisms.

The relationship between excitatory and inhibitory activity is an important generator of oscil-

latory behaviour. The next section describes the relationships between spikes seen within a

single oscillation, and begins to identify the importance of the relationship between excitation,

inhibition and oscillations in terms of how information is processed.

2.3.3 Temporal coding

The generation of oscillatory behaviour in neurons through an excitatory-inhibitory feedback

loop has an important functional implication. Rhythmic phases of inhibition ensure that a neu-

ron can only respond to input within a limited window. Within each oscillation, the most excited

cells will respond earliest as inhibition wanes, exciting inhibitory neurons again, and in doing

so silencing weakly excited cells (Fries et al. 2007). This means that the phase of a spike within

an oscillation can potentially play a crucial role in communicating information about a stim-

ulus. It has been demonstrated in rat somatosensory cortex that some neurons respond only

to a specific stimulus byy generating a strong output, and thus all of the information they can

encode is converted into an output spike rate. Other neurons respond with differing temporally

structured responses to a variety of stimuli, and so require the temporal properties of their out-

put to be taken into account for the information content of their response to be captured. In

the former case, no information about the stimulus is lost by assuming the output is temporal

coded. However, in the latter case assuming that the information is encoded in output spike

rate alone loses almost all of the information (Panzeri et al. 2001). The reliable conversion of

information initially encoded in firing rates into synchronised temporal information has been
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Figure 2.2: Average normalised spike probability for excitatory pyramidal cells (red) and in-
hibitory interneurons (blue) in rat hippocampus. Firing likelihood increases no-
ticeably earlier in the phase for excitatory cells than inhibitory cells. This phase
relationship is important for generation of oscillations and phasic coding of infor-
mation in type I neurons. Reproduced from Fries et al. (2007).
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demonstrated in rodent cortex (Reyes 2003). The direct encoding of tonic excitation in the

phase of firing has been demonstrated to be highly accurate within theta oscillations, but was

not possible within gamma oscillations due to a lack of temporal precision of neuronal firing

(McLelland and Paulsen 2009). However, the phase code was shown to be significantly more

efficient than an equivalent rate code (McLelland and Paulsen 2009).

In rodent somatosensory cortex, Panzeri et al. (2001) demonstrated that 44% more information

can be conveyed about stimulus location through spike timing of single neurons than with a

rate-based coding scheme. Spike trains from barrel cortex were analysed, and indeed it was

found that 83% of the total information contained in the spike train was contained in the timing

of the first spike upon each stimulus presentation. Additionally, Ghazanfar et al. (2000) showed

that decreasing the resolution of the temporal code in barrel cortex, while retaining all rate

information, significantly reduced the performance of a classification task using spike train

data. Jittering of spikes within the train also degraded performance, suggesting that relative

phase relationships between spikes within a pattern encode information about the stimulus.

Subsequently, Foffani et al. (2004) generalised these results from barrel cortex to further areas

of rat primary somatosensory cortex with a study involving the forelimb region. Identification

of stimulus location decreased significantly with an increase in bin size from 5ms to 20ms. By

taking just the first spike in each neuron, 94% of the performance from the full spike pattern

was retained. In an analysis of spike coincidence in primate primary visual cortex, Maldonado

et al. (2008) showed that coincidence rate is significantly higher than would be expected for

a brief duration after stimulus onset, making the very first spikes preferentially synchronised.

These examples suggest that stimuli with a temporal component (visual), and stimuli that are

represented by both continuous (forelimb) and non-continuous (whiskers) spatial information

can all be represented using a phase code. Representation using a phase code is plausible not

only for temporal components of stimuli, but also for spatial information.

Processing in the human visual system furthers the claim that non-temporal variables are tem-

porally coded in sensory cortex. The visual processing component of classification tasks occurs

very rapidly, within 150ms of stimulus presentation (Thorpe et al. 1996; Maldonado et al. 2008).

23



2.3. CORTICAL FEATURES

This leads to the conclusion that, due to the number of synaptic integration steps between pre-

sentation of a stimulus to the retina and selective response in cortical areas, information must be

transmitted using a coding scheme involving 0, 1 or 2 spikes at each stage (Thorpe and Imbert

1989). A theory that attempts to explain visual processing within this constraint is proposed

by Van Rullen and Thorpe (2002), using a rank coding in which the firing order of neurons

encodes information from downstream layers. This model involves a series of saliency to la-

tency transformations, with the best representatives of a stimulus firing earliest. At the earliest

stages of visual processing cells encode relative contrast within their receptive field. Continu-

ous variables, such as contrast, can be represented in temporal sequences through this saliency

to latency transformation. Additionally, investigation into primate V1 reveals that saccadic eye

movements cause modulation in the amplitude of LFP oscillations, which in turn increases the

level of phase-locking in early spikes within an oscillation (Ito et al. 2011). This suggests that

the effect of properties of the sensory apparatus helps to enhance the role of temporal process-

ing, contributing further evidence that spiking within individual oscillations encodes stimuli.

Temporal coding has also been shown to play a role in processing at a higher level than initial

sensory assimilation. In primate facial recognition tasks, neurons in inferior temporal (IT)

cortex respond to primate faces up to 15ms earlier than they respond to non-primate faces (Kiani

et al. 2005). Peak information transmission rate occurs 100-200ms earlier for global categories

(general face shapes) than for fine categories (facial expressions), indicating different temporal

stages of processing for face recognition tasks (Sugase-Miyamoto et al. 2011). In monkey

prefrontal cortex, short-term memory of separate objects has been shown to lock to separate

phases of the LFP gamma oscillation (Siegel et al. 2009).

This section has summarised evidence that temporal coding plays an important role in neural

information processing. Compared to a neural code based on rate alone, more information can

be transmitted and processing can permeate a layered structure more rapidly. There are intu-

itive ties between readily observable oscillatory behaviour, the mechanisms underlying those

oscillations, and a coding scheme based on spike phases within those oscillations. Finally, there

are multiple examples available of neural representations of non-temporal variables by tempo-
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ral sequences of spikes, although at higher rates of oscillation these codes are more likely to be

based only on the spike order, rather than on the specific phase of firing (McLelland and Paulsen

2009). Section 2.4 will investigate common methods of representing information spatially in

the brain.

2.4 Neural maps

A common feature across sensory cortex is the map-like arrangement of neurons in terms of

their response properties (Kaas and Catania 2002). Neurons with similar stimulus preferences

tend to be found near to each other. More importantly, the neuron’s input stimulus preferences

are topographically arranged; transitioning through a continuum of input stimuli, the neurons

that respond best to those stimuli will be found on a spatial continuum. Discontinuities in the

sensory receptor domain are reflected in septal regions of cortex, sometimes connecting a series

of individual maps.

A clear example of this is found in somatosensory cortex. Cortical columns in somatosensory

cortex are selectively responsive to touch signals from particular regions of the skin surface. The

columns are arranged such that they form a complete topographic representation of the body

(Kandel et al. 2000). The area of cortical surface that represents a sensory area is proportional

to the degree of innervation in that area of the sensory apparatus, i.e. the cortical area reflects

the density of sensory neurons in the skin, rather than skin area. A particularly well defined

and studied region of somatosensory cortex is the barrel cortex in rodents, mapping signals

from whiskers (Fox 2008). Here, spatial relationships of representations on the cortical surface

mirror clearly the spatial arrangement of whiskers on the face. A septal region between each

barrel reflects the discrete nature of the sensory receptor. A similar arrangement is apparent in

the nose representation for the star-nosed mole, where each nasal appendage is represented in a

cortical area separated from adjacent regions by a less specific section (Catania and Kaas 1996).

Physical location of different receptor cells in the sensory apparatus may be responsible for the

form of the representations (Kandel et al. 2000). Cortical neurons that respond to adjacent areas

of skin are adjacent to each other, and respond to highly overlapping input patterns. Also, stud-

ies into the plasticity of representations suggest that somatosensory neurons receive input from
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a wide area of the sensory surface. While an area of skin is anaesthetised, the receptive field

of cortical neurons representing that specific area grows rapidly, encompassing sensory regions

outside of the anaesthetised area (Calford 2002). Neurons show, within minutes, responses to

areas that previously they did not respond to. One explanation for this phenomenon is that,

when an area of skin is anaesthetised, a tonic source of inhibition stemming from that area is

removed, allowing a neuron to be activated by sensory apparatus that it may have received a less

strong excitatory input from previously (Calford 2002). This is a useful functional mechanism,

in that when an area of sensory apparatus no longer provides any information, the associated

area of cortex can adapt to represent a useful region of the sensory apparatus, while still provid-

ing a high level of specificity under normal conditions. Indeed, further evidence supports the

idea that somatosensory neurons receive input from a much wider range of afferent projections

than the fine-grained nature of cortical representations would suggest (Rausell et al. 1998; Varga

et al. 2011).

Visual cortex reveals a striking set of overlapping input stimulus preference continuums (Mi-

ikkulainen et al. 2004). Firstly, retinotopic maps of visual field position preference can be

identified (Wandell 2011; Kolster et al. 2010). If the visual cortex is flattened onto two dimen-

sions, neurons that have a preference for a central position in the visual field are found at the

centre of that space. Preferences for increasing eccentricity in the visual field are found at in-

creasingly eccentric locations in cortex. Throughout this retinotopic map, there are also bands

of ocular dominance (Casagrande and Kaas 1994; Horton and Hocking 1996). Areas for each

region of the visual field contain neurons that prefer each eye over the other. These regions are

adjacent, and formed into bands, such that a continuous preference for one eye across an area

of the visual field lies adjacent to a band reflecting a continuous preference for the other eye

across the same area of the visual field. Retinotopic discrimination, a continuous variable, re-

tains a continuous representation, while being striped with discrete regions for eye preference,

a discrete variable. Furthermore, across each pair of adjacent ocular dominance bands within a

particular section of the retinotopic map, lie columns with distinct preferences for the full range

of contrast orientations (Hubel et al. 1978; Blasdel and Salama 1986; Kandel et al. 2000). The

columns are formed into a continuous order in terms of the shift in axis of preferred orienta-
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tion, with the full orientation range revolving in order around areas known as ‘pinwheels’ (Ohki

et al. 2006). A complete cycle of orientations exists across approximately every 0.75mm in pri-

mate visual cortex. The columns consisting of a full set of orientations across a pair of ocular

dominance bands are known as a ‘hypercolumn’, with activity in a hypercolumn reflecting the

properties of a particular region of the visual field. Moreover, the patchy lateral connections

that extend horizontally from layer 3 of the cortex have been shown to span approximately the

width of one hypercolumn, preferentially terminating in regions tuned to a similar orientation

(Gilbert 1989; Bosking et al. 1997; Sincich and Blasdel 2001). A close relationship has been

shown between patchy structures within cortex and cortical responses encoding a value across

the surface, suggesting a prominent role of the lateral connection profile in map establishment

(Muir et al. 2011). Preference for temporal frequency of stimulus, on the other hand, was not

organised within the map hierarchy, instead being distributed uniformly across visual cortex

(Khaytin et al. 2008). This result suggests that cyclic and binary variables like orientation and

ocular dominance are more readily mapped than a scalar variable like temporal frequency in

visual cortex, demonstrating that in brain maps in general it is possible for different types of

variable to be mapped to different types of representation.

Other sensory cortical areas show topographic mappings of stimulus properties. Cat auditory

cortex features a tonotopic map-like representation of the cochlea, with a full range of frequency

preferences across a continuous section of cortex (Merzenich et al. 1975). A gustotopic map

exists in the primary taste cortex of rodents, where each taste category is mapped to a specific

cortical region (Chen et al. 2011). In this case there is no smooth transition across sensory

features, with taste categories mapped to discrete, specific spatial locations. Moreover, the

peripheral afferents in the case of taste are distributed across the tongue, with more abstract

response properties determining the mapping to cortical neurons; there is no underlying spatial

organisation in the periphery guiding the spatial mapping in cortex. In the olfactory bulb the

precise mapping of odorants to specific neurons governs the formation of a topographic map of

relationships between odor receptors (Wang et al. 1998).

It is also possible to extend the map principle to non-sensory cortical regions. It has been shown
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that the organisation of motor cortex in monkeys follows topographic properties (Graziano and

Aflalo 2007). The two-dimensional cortical representation is consistent with a complex, high

dimensional input space featuring somatotopic, action category, and spatial information. In

multisensory temporal association cortex there is evidence for a modality map, with neurons

preferring a particular sensory modality having a close spatial proximity, and being spatially

segregated from neurons with differing modality preference, often with bimodal neurons mixed

between the groups (Dahl et al. 2009). Neurons in macaque inferior temporal (IT) cortex (area

TE) show a positive correlation between stimulus preference among objects of intermediate

complexity (e.g. a set of various flat and textured geometrical shapes) and spatial distance

(Tamura et al. 2005).

The structural and developmental mechanisms underlying ordered representations in the cortex

are not yet precisely known (Honey et al. 2010). Total input to cortical neurons comes in part

from afferent, feedforward sources, and in part from lateral sources within the layer. Interest-

ingly, Tan et al. (2011) demonstrated that the average input to a given V1 neuron from both

excitatory and inhibitory sources share the same orientation preference. This means that the

maximal level of inhibition to a region occurs when receiving an input that also generates the

maximal level of inhibition, suggesting a role for inhibition of gain control or a response sharp-

ening “iceberg” effect (whereby subthreshold responses are broader in selectivity than firing

responses) in a learned cortical circuit. An analysis of frequency responses in auditory cortex

also suggests balanced excitation and inhibition, with the amplitudes of inhibitory and exci-

tatory responses sharing a linear correlation (Wu et al. 2011), and that inhibitory input stems

from a broader range of frequencies than excitatory input (Wu et al. 2008), further sharpening

the response properties. Temporal advance of the excitatory signal over the inhibitory signal

has been shown for both visual and auditory cortical neurons (Tan et al. 2011; Wu et al. 2011),

lending more support for the role of response enhancement for feedforward inhibition relative

to excitation.

The nature of modulation provided by inhibition within a network is shaped in part by the recep-

tive fields of the inhibitory neurons. In general, inhibitory neuron receptive fields can be tuned
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either more widely than excitatory neuron receptive fields, called a lateral inhibition profile, or

equally tuned with excitatory neuron receptive fields, called a co-tuned profile (Shapley et al.

2007; de la Rocha et al. 2008). Lateral inhibition could result from: inhibitory cells being more

sensitive to input; more presynaptic inputs converging onto inhibitory than excitatory cells; a

broader lateral spread of inhibition within the cortex (Levy and Reyes 2011).

Lateral connections in cortex, as already discussed (see section 2.3.1), include several distinct

profiles operating in combination. Excitatory connections decrease in likelihood with distance

from a neuron, but also exhibit a higher probability in particular patches at long range. In-

hibitory connections are local and dense. In terms of the overall effect of these interacting

profiles at long-range, there is evidence suggesting that either long-range excitation or long-

range inhibition is possible (Miikkulainen et al. 2004). Centre-surround studies have indicated

that lateral inhibition is dominant at long range (Grinvald et al. 1994). A small, oriented, high

contrast grating presented as a visual stimulus leads to a level of activation in an area of cortex

representing that orientation and visual field location. If the stimulus is enlarged but centred at

the same location, such that surround areas are activated also, then the response of the central

area is dampened, suggesting that the overall impact of surrounding areas on the central area is

lateral inhibition (Grinvald et al. 1994). Studies have also indicated that the same connectivity

profile can have an excitatory effect under different conditions, for example when the neurons

are less activated by using low contrast stimuli (Sceniak et al. 2001). It has been suggested that

combinations of feedforward and lateral excitation and inhibition profiles are capable of altering

the excitation/inhibition ratio in a way that emphasises a local centre/surround neighbourhood,

resulting in a form of lateral competition despite highly overlapping excitatory and inhibitory

profiles (Adesnik and Scanziani 2010).

Evidence from the developing visual cortex of cats (Callaway and Katz 1990) indicates that

the lateral profile in cortex grows rapidly in the first week after birth, and organises into an

adult form within 6 weeks. This suggests that a general lateral connection profile is established

quickly, and partially controls the development of feedforward connections (Miikkulainen et al.

2004). Hardwired chemical gradients are known to control the initial routing of axons (Mor-
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timer et al. 2009). The initial guidance provided by these processes provides a starting point

for an activity driven map refinement once synaptic contacts are made (Rosa 2002). This com-

bination of processing stages helps to explain the consistent properties between individuals

regardless of input during developmental stages. Studies have examined the extent to which

representations can be reorganised as a result of ongoing experience (see (Kaas 1991) for re-

view). If two fingers of a monkey are surgically connected such that they are always used

together, significant overlap develops between the representations of those fingers, which per-

sists even after separation (Clark et al. 1988). In barrel cortex, rapid map plasticity is seen

very early in life (Fox 2002), lesions of primary afferents affect development of barrels, and

changes in whisker use alter receptive fields (Van der Loos and Woolsey 1973). Additionally,

representations can change in response to preferential whisker usage (Fox 2002), but the mech-

anisms driving this competition are not certain (Feldman and Brecht 2005). Further ideas about

the mechanisms likely to contribute to cortical ordering include minimal wiring requirements

(Buzsáki et al. 2004). Young et al. (2007) ran simulations indicating that the cortical plasticity

observed in the brain would not emerge from plasticity dependent on the coincidence of spikes

regardless of the exact temporal relationship between pre- and post-synaptic spikes, but in fact

relies on STDP.

The evidence presented in this section suggests a set of features underlying the presence of map

formation in sensory cortex. Neighbouring neurons share common afferents but have slight dif-

ferences in input preference, potentially through initial routing of axons according to hardwired

chemical gradients. This may be caused by hard-wired properties of early cortical development.

The lateral connection profile provides a combination of local clustering of similar response

properties based on short-range excitation, and sharpening of response properties and competi-

tion based on inhibition. Long-term plasticity then alters connection strengths to tune response

properties to match the representation generated by the cortical structure, strengthening the

representation.
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2.5 Higher order representation

The inferior temporal (IT) cortex of the macaque monkey has been the subject of substantial

investigation into the representation of complex visual stimuli. The processing of a visual stim-

ulus through extrastriate cortex prior to an IT response (see (Orban 2008) for detailed review)

consists of a series of responses from neurons selective to different features of the input, such as

orientation and direction. However, the response properties of IT neurons are less well known,

and appear to depend on particular complex combinations of the shapes identified at lower lev-

els. They tend to lack the visuotopical organisation of earlier areas and feature a combination

of categorical and continuous representation, with specific areas representing complex cate-

gories like faces and body parts, and wider regions representing other features, particular object

attributes, continuously (see (Tompa and Sáry 2010) for review).

The outcome, in terms of object representation, of this combination of categorical and contin-

uous response properties is that a collection of columns is activated by a stimulus (Tsunoda

et al. 2001). The columns participating in this activation pattern are thought to indicate which

features are present in the stimulus. However, while 42% of the time removing features from

a stimulus reduces the number of active columns to a subset of the original pattern, 58% of

the time removing features leads to additional column activations. This result suggests that a

feature-based representation must involve a combination of both active and inactive columns.

The response of IT neurons to visual images constitutes a data set from which those images

can be categorised. Within the population examined, both category-specific neurons, that ex-

clusively respond to one category, and non-category specific neurons, that respond to images

from more than one category, were present. Removing the category-specific neurons from the

analysis, which constituted about 25% of the neurons present, did not reduce the classification

ability of the responses (Thomas et al. 2001). This result suggests that broadly tuned, non-

category-specific neurons play a crucial role in object recognition. These neurons are thought

to be more responsive to complex feature sets (Thomas et al. 2001), although the exact nature

of the response properties remains unknown.

Inhibitory neurons in IT were also found to be selective to specific stimuli. In contrast to
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sensory cortical areas, however, they were found to be more likely to connect with neurons with

dissimilar overall stimulus preferences (Tamura et al. 2004). The same research also established

that stimulus preferences are more highly correlated between adjacent columns than distant

ones, indicating small clusters of preferences for similar, although not necessarily identical,

input features.

In a study into responses of IT neurons to faces (Hirabayashi and Miyashita 2005), cell pairs

responsive to faces exhibited a higher level of firing synchrony to correctly aligned face objects

than to cell pairs responsive to jumbled face objects. These responses emerged around 300ms

after simulus onset, a rapid enough response to be involved in stimulus recognition, in which

time firing rates did not reveal responses consistent with information about feature configura-

tions. This indicates a discriminability for feature configurations through correlated activity.

The same discriminability was not present within firing rates. The role of the time-course of

responses is also emphasised in Akrami et al. (2009), in which it is reported that the early re-

sponse to a stimulus produces a linear representation of stimulus properties, and the latter part

represents a categorical response. Tamura and Tanaka (2001) also showed an effect of temporal

order on stimulus selectivity, demonstrating that the late portion of the response 240ms after

stimulus onset, was more selective for stimulus than the early part.

Kiani et al. (2007) demonstrated hierarchical category structure in firing patterns of IT cortex.

Through the use of a very large stimulus set they show responses to stimuli from a broad range

of categories that contains a hierarchical structure intuitively to a human observer. The popu-

lation response to these stimuli was shown to reflect this structure. Responses to animate and

inanimate objects were in general negatively correlated (Pearson’s r value of up to -0.31), and

responses to pairs of stimuli from the same intuitive category were generally positively corre-

lated (Pearson’s r value of up to 0.54). The hierarchical structure created from the distribution

of population responses could not be generated from simple low-level visual properties of the

stimuli, suggesting that the categorisation relies instead on abstract features. Further evidence

for a hierarchical population response is demonstrated by (Kriegeskorte et al. 2008), where

similar category trees were found in both monkey and human IT.
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2.6 Summary

This chapter has introduced some of the biological phenomena that generate neural activity. An

introduction of neuron structure, membrane potentials, action potentials and synaptic transmis-

sion was provided in section 2.1. Section 2.2 briefly described some of the biological properties

underlying the changing of synaptic efficacy. Several prominent features found throughout the

cortex were discussed in section 2.3. These are connectivity properties, oscillatory activity and

temporal representation. In section 2.4, evidence was provided for the ubiquitous nature of

map-like response properties throughout sensory cortex. Finally, section 2.5 briefly introduced

some of the response properties of neurons in higher order cortical areas.

The elements introduced in this chapter are the main inspiration behind the computational mod-

elling approaches described in chapter 3, which provides an introduction to the computational

neuroscience methods used later in the thesis. The biological phenomena described here also

represent the inspiration behind the self-organising map model, discussed in chapter 4. Addi-

tionally, they play an important role in the development of the computational models described

in chapters 5 and 6.

33



2.6. SUMMARY

34



Chapter 3

Neuron Models

Artificial neurons are individual computational elements based on the properties of biological

neurons. These properties can be computationally modelled at a wide variety of levels of ab-

straction. Detailed models incorporate models of molecular concentrations and the properties

of individual ion channels. Abstract models use the principle of computing with a network

of simple units without attempting to explicitly model particular biological features. Different

amounts of realism are relevant for different modelling purposes, and it is not always the case

that a more detailed model will generate better answers (Ibarz et al. 2011). Shortcomings of

adding detail include: more detailed models require more parameters, which need to be accu-

rately mapped from recordings, which is not always possible; a fully detailed model will be

exactly as hard to understand as an actual neuron; and extra detail dramatically increases com-

putational requirements. It is necessary to gauge the required level of abstraction such that the

functional properties relevant to a particular goal are retained and unnecessary detail is removed.

Models from several levels of abstraction are relevant to the current work. Generally speak-

ing, artificial intelligence approaches to cognitive mechanisms involve traditional approaches to

modelling of individual neurons, which use less biologically accurate models. Spiking neuron

models attempt to replicate the sub-threshold membrane dynamics, action potentials, and post-

synaptic potentials found in biological neurons, so are less abstract than traditional approaches.

A primary aim of the current work is to explore the implementation of generic cognitive mech-

anisms using these more realistic model neurons.

All of the models described here use the same basic structure. At each time step, they receive

a vector of input values, each of which is multiplied by a weight vector (representing synaptic
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strength). This input is applied, through some function, to an internal variable, and this internal

variable is converted, through a transfer function, into an output value. These stages map ap-

proximately to the four functional components mentioned in section 2.1. The degree to which

each stage of this process is able to model observed measurements in real neurons indicates the

level of abstraction from biology that a model is at.

This chapter will describe several neuron models that use different computational methods to

represent the various components of biological neurons. First, common implementations of the

membrane potential, action potential and post-synaptic potential will be introduced. Then the

modelling of adaptation and learning in artificial neurons is discussed.

3.1 Traditional neuron models

Among the simplest, most abstract artificial neuron models is the threshold neuron, introduced

by McCulloch and Pitts (1943). In this model the input component is an input vector of contin-

uous or discrete values, the integrative component is a transfer function applied to a weighted

sum of those inputs, the trigger component is a threshold for that function, and the output com-

ponent is a binary output set to 1, representing the neuron becoming ‘active’, if a threshold is

met, and 0 if the amount of input is insufficient to reach the threshold. Variants of this model

use an alternative transfer function, either non-linear, such as the sigmoid function, or linear, to

produce real-valued output. In these cases the output value is no longer either active or non-

active, but graded, representing an ‘activity level’. Output values are analogous to firing rates

in biological neurons. The binary case can be viewed as representing a neuron that either fires

spikes at a low or high rate (0 or 1), while other transfer functions represent other mappings of

input current to firing rate. This type of neuron model is shown in figure 3.1.

Another type of neuron used in artificial intelligence algorithms is the type used in the self-

organising map (SOM) algorithm (Kohonen 2001), sometimes called a ‘distance neuron’. In

this case, the transfer function involves a comparison of the weights to current input values.

A closer relationship between the two, commonly measured by Euclidean distance, results in

a greater activity level. In the case of the SOM, the output component is represented through

a winner-takes-all type of competition, in which the neuron with the highest activity level is
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Figure 3.1: Illustration of the McCulloch-Pitts neuron model. The input values are multiplied
by the weights, summed, and an activation function, which can be a threshold as in
the original McCulloch-Pitts (1943) formulation, or a linear or non-linear function,
to produce an either binary or continuous output value respectively.

labelled as the winning unit. Distance neurons could, however be used in other neural networks,

with the input and integrative components determined by the distance to activity level transfer,

and the trigger and output components acting as in the threshold neuron.

Artificial neurons at this level of abstraction are inspired by some of the properties of biologi-

cal neurons without attempting to accurately represent them. They are suitable for models that

make use of simple processing units in a network, but a more detailed neuron model is needed

to capture some of the functional properties of biological neural networks. Sub-threshold mem-

brane dynamics, action potentials, PSPs and temporal coding of information are functional

properties not available to traditional neuron models.

3.2 Spiking neuron models

Spiking neurons are model neurons that communicate through action potentials. The primary

means of coding information becomes the timing of spikes. They model the dynamics of the

membrane potential through differential equations, and output becomes a temporally restricted

pulse rather than a value analogous to a rate or activation level. Different spiking neuron models

cover different levels of biological abstraction, with the level determined by the complexity and
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accuracy of dynamics for the membrane, threshold, action potential and PSPs.

3.2.1 Conductance-based models

Hodgkin and Huxley (1952) recorded electrical pulses along an axon of a neuron. From these

recordings they produced a set of equations governing the dynamics of the membrane capaci-

tance, as well as conductance parameters for the various individual ion channels. This model

has been shown to be capable of accurately reproducing a variety of biophysical variations in

the membrane potential, such as the large rise resulting in an action potential, and the absolute

and relative refractory periods. Parameters in this model may be given physiological meaning

and assigned using measured values (Standage and Trappenberg 2005). Despite a high level

of accuracy, the computational complexity of modelling an individual neuron using multiple

simultaneous differential equations prevents it from being applicable in many neural network

modelling situations. Other complex conductance-based models include modified versions of

the Hodgkin-Huxley model, such as the Wang-Buzsáki model (Wang and Buzsáki 1996), which

adapts parameters to produce behaviour replicating activity seen in hippocampal inhibitory in-

terneurons, as well as more complex models incorporating the effects of additional ion channels

(Wilson 1999).

3.2.2 Integrate and fire models

Integrate and fire (IF) neuron models were first postulated by Lapicque in 1907 (see Brunel

and van Rossum (2007b) for an English translation, and see also (Abbott 1999; Brunel and van

Rossum 2007a)). These models simplify the modelling of the membrane dynamics by reducing

the sub-threshold membrane potential calculation to a single linear differential equation

τm
dV
dt

= I(t),

if V >= θ then spike and reset V =VR (3.1)

where V is the membrane potential, τm is the membrane time constant and I(t) is input current
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from pre-synaptic neurons at time t. Input is integrated into the membrane potential over time,

eventually causing the potential to cross a threshold, θ , at which point an action potential is

generated and the membrane potential is reset to the resting potential, VR. The action potential

is not described explicitly, but is represented by an instantaneous value of 1, indicating presence

of a spike at that particular time. A common variant on this model is the leaky integrate and

fire model (LIF), which adds a leaking term to equation (3.1), such that the membrane potential

will leak towards its resting value over time:

τm
dV
dt

= I(t) − gL (V − VL),

if V >= θ then spike and reset V =VR (3.2)

Each neuron has a membrane potential V that increases by integrating current input I(t), and

‘leaks’ towards a resting potential of VL when there is no input arriving from its afferent synapses.

τm represents the time constant of change in V and gL represents leak conductance. If the mem-

brane potential is greater than a firing threshold, θ , then an action potential is generated and the

membrane potential is reset to the reset potential, VR. The LIF model exhibits spiking behaviour

that mirrors the behaviour of several categories of biological neurons: “tonic spiking”, “class 1

excitable”, and “integrator” (Izhikevich 2004).

An extension to the LIF model that allows for a greater variety of spiking behaviour is the

exponential integrate and fire (EIF) model (Fourcaud-Trocmé et al. 2003), which is an LIF

variant, incorporating a non-linear, exponential component for intrinsic spike generation as the

membrane potential approaches the threshold. Using an intrinsic spike generation mechanism

allows for parameters to adjust the behaviour of the membrane close to the threshold, which

is what makes possible spiking regimes that the LIF cannot enter (Izhikevich 2004; Fourcaud-

Trocmé et al. 2003). The EIF model uses the equation
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τm
dV
dt

= I(t) − gL(V −VL) + gL exp
(

V −θ

∆T
∆T

)
,

if V >= θ then spike and reset V =VR, (3.3)

where ∆T is a slope factor determining the rate of change in the membrane potential as it ap-

proaches the firing threshold. The membrane potential diverges towards infinity as it crosses

the threshold, intrinsically simulating an action potential.

An EIF neuron can also incorporate adaptation of the membrane potential to a train of stimuli

through the addition of another current, resulting in the adaptive exponential integrate and fire

(aEIF) model (Brette and Gerstner 2005), according to

τm
dV
dt

= I(t) − gL(V −VL) + gL exp
(

V −θ

∆T
∆T

)
−gA(t),

if V >= θ then

 spike and reset V =VR

gA = gA +A.
(3.4)

Here, gA represents the level of the adaptation current, which increases by A with each action

potential and decays to 0 according to

τA
dgA

dt
=−gA, (3.5)

where τA is the time constant of adaptation. This extension depresses the responsiveness of the

membrane over time, such that firing rate slows gradually as gA increases. The LIF model can

be extended with the exponential component, the adaptation component, or both. IF models can

also include a refractory period by locking the membrane potential to a fixed value for a time

after firing. These additions result in a set of models that incorporate various different firing

regime capabilities. Addition of the adaptation component to the regular LIF model facilitates
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further types of firing behaviour, including “regular spiking” (Liu and Wang 2001). The aEIF

model is capable of a wider range of firing regimes, approximating those seen in biology.

Another model with similar capabilities is the Izhikevich model (Izhikevich 2003), which is a

two-dimensional model of the membrane potential, consisting of a pair of equations

dV
dt

= 0.04V (t)2 + 140 −w(t) + I(t) (3.6)

dw
dt

= a(bV (t) − w(t)) (3.7)

with the additional after-spike resetting condition of

ifV >= θ thenV = c and w = w + d (3.8)

Both the Izhikevich and aEIF models are capable of reproducing a full range of more than

twenty forms of spiking (Izhikevich 2004). This, of course, involves the addition of extra

dimensions to the LIF model, reducing computational efficiency. The type of spiking that a

neuron generates is largely determined by a choice of parameters set throughout a simulation.

This means that if a particular spiking regime is not functionally useful or required in a given

simulation then there is no real advantage to be gained in utilising a more complex model. As

such, the choice of neuron model depends on the nature of the network being simulated and the

purpose of the simulation.

3.2.3 Post-synaptic potentials

The output of any IF model is an action potential, or spike. The effect of this afferent spike on

the membrane potential of efferent neurons is simulated by modelling a PSP. The simplest form

of PSP model is a δ -function, transmitting an input current at one simulation time step, when

the afferent neuron spikes. The effect on efferent neurons will be a jump in membrane potential

at the time the spike arrives.

To better capture the temporal properties of biological PSPs, an α-function can be used (Des-
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texhe et al. 2003), such as

Ps =
Pmaxt

τs
exp(1− t

τs
), (3.9)

where the presynaptic release begins at t = 0, the peak value of Ps occurs at t = τs, and the

function decays with a time constant τs (Dayan and Abbott 2000). A PSP of this nature can also

be simulated with the pair of equations

τr
ds1

dt
= (s− s1) (3.10)

τ f
ds2

dt
= (s1− s2) (3.11)

where s is a binary value representing instantaneous presence or absence of a presynaptic spike,

s1 is an internal state variable, s2 is the α-function output, and τr and τ f are time constants for

the rise and fall duration of the response.

3.2.4 Integration and coincidence detection

Spiking neurons can perform different functions, with regard to analysing and making decisions

about their input, depending on the choice of time constant parameters. A pertinent example is

the difference between integration and coincidence detection behaviour in a LIF neuron depend-

ing on the relationship between the membrane time constant and PSP duration (Paugam-Moisy

2006). A longer PSP relative to the membrane time constant increases the likelihood that an

incoming spike will contribute to a neuronal response; effectively the post-synaptic neuron is

integrating the majority of its inputs into a spike response. Conversely, a shorter PSP relative

to the membrane time constant decreases the likelihood that an incoming spike will contribute

to a neuronal response. The post-synaptic neuron is now acting as a coincidence detector, as

multiple spikes in a short temporal span will be required for the post-synaptic neuron to reach

threshold before the current from a given pre-synaptic spike leaks away.
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3.3 Learning

Learning in biological networks occurs when the ability of one neuron to affect another is

altered. In artificial neural networks, this is commonly accomplished through the imitation of

short or long term plasticity (see section 2.2). These phenomena, sensitive to shifts in molecular

concentration and neurotransmitter availability, can also be abstracted to various degrees to

produce analogous outcomes.

3.3.1 Short term plasticity

Short term plasticity, in the forms of facilitation and depression, alters the efficacy of a synapse

by an amount that depends on the recent history of pre-synaptic action potentials at a synapse

(see section 2.2.1). This can be achieved by incorporating factors for facilitation (F) and de-

pression (D) into the postsynaptic response amplitude (A), via

A = PsFD, (3.12)

with Ps the instantaneous α-function output from equation (3.9) (or s2 from equation (3.11))

(Abbott and Nelson 2003). The dynamics of F and D are determined by equation pairs 3.13

and 3.14, and 3.15 and 3.16 respectively:

τF
dF
dt

= 1 − F, (3.13)

if presynaptic spike, then F = F + f , (3.14)

τD
dD
dt

= 1 − D, (3.15)

if presynaptic spike, then D = dD. (3.16)

The time constants τF and τD represent recovery rates of the facilitation and depression pro-

cesses, respectively, and the parameters f (where f > 0) and d (where d < 1) represent the

onset rate of facilitation and depression, respectively. This approach ensures that facilitation
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increases synaptic efficacy and depression reduces synaptic efficacy, while parameter selection

allows synaptic preference for either regime (Abbott and Nelson 2003).

3.3.2 Long term plasticity

Information stored in an artificial neural network is encoded in the weights, or connection

strengths, between units of that network. Learning in neural networks is a process of changing

these weights, so that the desired type of information is represented in the output, given the

input. Traditional artificial intelligence approaches to neural networks make use of a variety

of learning rules for training the network. Many of these are supervised learning methods, in-

cluding back-propagation methods. In this type of learning, the amount of error present in the

network output relative to a teacher signal is accounted for by adjusting connection weights

within the network until the error is minimised.

3.3.3 Hebbian learning

A major consideration for the current work is the use of unsupervised learning, as seen in

the brain in the form of long-term synaptic plasticity. The majority of unsupervised learning

rules for neural networks are extensions of the idea of Hebbian learning (Hebb 1949). Hebb

proposed that simultaneous correlated activity in both members of a connected pair of neurons

will strengthen the connection between the two. LTP in this type of learning relies on statistical

correlations within the input to learn the constituent parts of an input pattern. The Hebbian

LTP idea can be extended to include LTD, which in this case occurs in situations where the

activity in a pair of neurons is uncorrelated, with one neuron firing when another is not. If a

high activity level in a presynaptic neuron regularly contributes to a high level of activity in a

postsynaptic neuron, then that activity is interpreted as causal and should be enhanced. If a high

level of activity in either the pre or postsynaptic neuron is present independently of a high level

of activity in its partner, then there is not a causal link between the two, and the connection can

be disregarded.

Hebbian learning can be formulated as being dependent on either rate or spike timing. Rate

dependent plasticity can be used with both non-spiking and spiking neuron models. It gener-
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ally relies on a covariance of the firing rates of pre- and post-synaptic neurons to establish the

Hebbian relationship. Spike timing dependent plasticity can only be used with spiking neuron

models. It relies upon spike ordering in pre- and post-synaptic neurons to modify connection

strengths.

3.3.4 Rate dependent plasticity

The most basic form of Hebbian learning only describes LTP, by increasing weights when activ-

ity levels in pre- and post-synaptic neurons are coincident. The incorporation of LTD in Hebbian

rules for rate dependent plasticity takes inspiration from the observation that LTD dominates at

low activity levels and LTP dominates at higher activity levels (Sjöström and Nelson 2002).

This can be formalised as a covariance rule

τw
dw
dt

= u(v − θv), (3.17)

where w is synaptic weight, τw is a time constant for weight change, u and v are pre- and post-

synaptic neuron firing rates respectively, and θv represents a threshold on the firing rate in the

postsynaptic neuron below which LTD dominates. This rule follows the observations that a low

firing rate leads to LTD and a high firing rate leads to LTP (Sjöström and Nelson 2002), but does

not require any postsynaptic activity to induce LTD. The Bienenstock-Cooper-Munro (BCM)

rule (Bienenstock et al. 1982) modifies equation (3.17) by incorporating a dependence on the

postsynaptic firing rate:

τw
dw
dt

= vu(v − θv). (3.18)

The BCM rule was originally introduced as part of a model of development of centre/surround

receptive field development and ocular dominance maps in visual cortex (Bienenstock et al.

1982).
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3.3.5 Plasticity rules for spiking neurons

There are several types of learning rules that are only applicable for use with spiking neuron

models. These rules rely on information relating to the relative timing of action potentials in

pre- and post-synaptic neurons. Two of these are introduced here, a rule for STDP relying

solely on the time differential between action potentials, and a rule introduced by Brader et

al. (2007) (the Brader-Senn-Fusi (BSF) rule) that uses a decaying trace that indicates recent

spiking activity, combined with membrane potential thresholds for LTP and LTD.

The computational form of STDP attempts to capture the temporal requirements for plasticity

seen in biological neurons (see 2.2.2). A mathematical implementation of the STDP rule uses

the following equation, with ∆t = tpost − tpre (Song et al. 2000; Bi 2002; Izhikevich and Desai

2003; Bush et al. 2010):

f (∆t) =


A+(1− 1

τ+
)∆t if ∆t > 0,

−A−(1− 1
τ−
)−∆t if ∆t ≤ 0.

(3.19)

A+ and A− are both positive and determine the maximum amount of synaptic strengthening and

weakening that can occur, respectively. τ+ and τ− are time constants determining the range of

time in which synaptic strengthening and weakening will occur, respectively.

A common STDP variant, known as ‘multiplicative’ STDP, involves an additional function to

alter the magnitude of weight change by the current value of the weight. Multiplicative STDP

can be formulated as:

f (∆t) =


F+(wi j)A+(1− 1

τ+
)∆t if ∆t > 0,

−F−(wi j)A−(1− 1
τ−
)−∆t if ∆t ≤ 0.

(3.20)

Here F+ represents a function that tends towards zero as wi j increases and tends towards one

as wi j decreases, such that a larger weight will lead to a reduction in the weight change caused

by LTP, and vice versa. Conversely, F− represents the inverse function, tending towards one
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as wi j increases, and towards zero as wi j decreases, such that a smaller weight will lead to a

reduction in the weight change caused by LTD, and vice versa. Simple options for F+ include

1 − wi j and exp−wi j, and for F− simply wi j can be used (Bush et al. 2010). Other alternatives

include (1 − w)µ for F+, and αwµ for F− (Gütig et al. 2003), where µ is the power of the

weight dependence and α is a constant expressing a possible asymmetry between the scales of

potentiation and depression.

The ‘additive’, non-weight dependent STDP rule can lead to bimodal final weight distributions

(Song et al. 2000). As a weight becomes strong, it leads to an increased likelihood of a presy-

naptic spike resulting in a postsynaptic spike, which in turn leads to further potentiation of the

weight. The opposite phenomenon also applies, with weakened weights leading to further de-

pression. These factors mean that it is necessary to place bounds on the maximum and minimum

synaptic weight values. Multiplicative STDP counteracts this by decreasing the magnitude of

potentiation if a connection is already strong, and decreasing the magnitude of depression if a

connection is weak (Gütig et al. 2003; Bush et al. 2010). This effect can lead to a unimodal final

weight distribution (van Rossum et al. 2000). It is possible to stabilise weights at mid-points

in the possible weight range, with the combination of weight dependence factor and fraction

of time that a presynaptic spike is followed by a postsynaptic spike being the determining fac-

tors in the final weight. It has also been demonstrated that the average weight change found in

rate-based rules such as the BCM rule (see equation (3.18)), which are based on observations

of activity requirements for plasticity in cortex, can be replicated under certain conditions by

uncorrelated firing using STDP (Izhikevich and Desai 2003; Bush et al. 2010).

The BSF rule modifies weights based on the current postsynaptic depolarisation along with a

calcium variable C(t), which is a function of postsynaptic spiking,

τC
dC(t)

dt
=−C(t) + JC ∑

i
δ (t− ti), (3.21)

where JC is the contribution of a spike, τC is the time constant, and the sum is over post-

synaptic spikes at time ti. Each action potential generated by a neuron contributes an amount
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proportional to JC to the C(t), which decays with the time constant τC towards a resting value

of 0. Weight modifications are calculated upon arrival of a presynaptic spike, according to the

pair of conditional equations:

w = w + a if V (tpre) > θV and θ
l
up <C(tpre)< θ

h
up (3.22)

w = w − b if V (tpre)≤ θV and θ
l
down <C(tpre)< θ

h
down, (3.23)

where a and b are jump sizes, θV is a voltage threshold (θV < Vθ ) and the θ l
up, θ h

up, θ l
down and

θ h
down are thresholds on the calcium variable. In the absence of a pre-synaptic spike or if the

above conditions are not satisfied then w drifts towards one of two stable values

dw
dt

= α if w > θw (3.24)

dw
dt

=−β if w≤ θw, (3.25)

where α and β are positive constants and θX is a threshold on the internal variable. The synaptic

connection strength w is in this rule limited between wmin and wmax.

The BSF (Brader et al. 2007) rule is an example of a learning rule that uses parameters local to

individual neurons to establish the direction and magnitude of weight change at a synapse. In

this case the calcium variable represents the postsynaptic calcium concentration that is thought

to play a crucial role in STDP. This rule is based on timing of spikes in the pre- and post-synaptic

neurons, but uses internal variables to control the weight change, rather than the relative timing

itself.
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3.4 Summary

This chapter has introduced the fundamental computational techniques that are commonly used

to recreate the properties of biological neurons introduced in sections 2.1 and 2.2. The equations

provided are abstractions of complex physical processes that nevertheless capture important

functionality. These methods will be used in chapters 5 and 6 as the basis for the generation

of artificial neural networks that aim to reproduce some of the functional features described in

sections 2.3, 2.4 and 2.5. The next chapter will introduce the artificial intelligence algorithm

used as the basis for the spiking neuron model described in chapter 5, the self-organising map.
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Chapter 4

Self-Organising Maps

This chapter will introduce the neural network algorithm known as the self-organising map

(SOM), or Kohonen map. The SOM represents an abstraction of the frequently observed brain

maps described in section 2.4. As such, the functional properties captured by the SOM can

be thought of as being general functional properties relevant to large regions of the cortex. A

description of the SOM algorithm and the functional implications of this will be provided in

this chapter, followed by a discussion of modifications to the algorithm that change its prop-

erties in various ways. Implementations of the SOM in networks of spiking neurons will be

introduced, ahead of the next chapter, which describes the refinements made to these existing

implementations for the purpose of the current work.

Topologically ordered spatial representations of features can be found in various sensory corti-

cal areas (Kaas and Catania 2002; Wandell 2011), such as ocular dominance bands (Casagrande

and Kaas 1994; Horton and Hocking 1996) and orientation maps (Blasdel and Salama 1986;

Hubel et al. 1978) in cat and primate primary visual cortex, auditory cortex in cats (Merzenich

et al. 1975), primary taste cortex (Chen et al. 2011), the olfactory bulb (Wang et al. 1998) and

the barrel cortex in rodents (Woolsey et al. 1975; Fox 2008), and the somatosensory cortex of

primates (Friedman et al. 2004). Known as cortical feature maps, these regions are thought

to largely develop during a critical period, the length of which varies between brain regions

(Hensch 2004). Throughout development they accrue several distinctive properties, such as

disruptions that reflect actual discontinuities in the sensory periphery and disproportionate rep-

resentation of early-developing portions of the sensory periphery (Kaas and Catania 2002). The

relationship between areas of the sensory periphery is reflected in the relationship between

physical areas of cortex that are tuned to represent those areas (Feldman and Brecht 2005), and
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the physical substrate of representation is capable of reorganisation in response to a change in

input properties (Merzenich et al. 1983; Calford 2002).

4.1 SOM algorithm

The self-organising map (SOM) is a neural network algorithm inspired by the organisational

structure of feature maps in the brain (Kohonen 2001), and can be summarised as follows:

1. The network consists of an ordered grid of output/map neurons, each of which has a set

of associated ‘weights’, one per dimension in the input data.

2. An input pattern selected at random from the current data set is presented to the network.

3. The map neuron with weights closest to the current piece of input data is selected as the

best matching unit (BMU), and ‘wins’ the competition.

4. The weights of the BMU and all nodes within a certain vicinity of the BMU, set by a

neighbourhood function, have their weight values moved towards the values of the current

piece of input data.

5. Steps 2 to 4 are repeated iteratively until a set number of training steps has been reached.

If applicable, the neighbourhood size and learning rate are adjusted to enforce conver-

gence.

This neural network makes use of the distance neuron model, mentioned in section 3.1, in which

the transfer function establishes the activity level of a neuron through a distance comparison

between the connection weights and the values of the actual input data. The neighbourhood

function encourages neurons close to the BMU to adjust their weights in the same direction as

the BMU does, a function analogous to a higher activity level in neurons close to the BMU

than those further away. This is in turn analogous to a lateral connection profile consisting

of strong local excitation and strong distant inhibition. Neurons near to the BMU are excited

regardless of their own preference for the input pattern, and neurons far from the BMU are not

activated regardless of their input preferences. Competition (to determine the BMU) occurs,
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Figure 4.1: Network structure of the self organising map. Output neurons are shown as
spheres, with grey lines indicating weight values between each input dimension
and each output neuron. The neuron with the closest weight values to the actual
input values is the winning neuron, and the neighbourhood width indicates the area
around the winner within which other neuron’s weights are also drawn towards the
actual input values.

after which lateral connections dominate the activity profile, effectively creating a finite sized

bubble of activity in the output map for each input pattern (Kohonen 2001). The general network

structure is shown in figure 4.1.

Throughout learning a SOM gradually maps statistical correlations present in a set of data onto

a simple, low-dimensional, topological output representation. The discovery of features and

feature relations in a complex space is also a goal of principal component analysis (Hertz et al.

1991), which aims to discover the principal dimensions of variation in a dataset, finding the

dominant eigenvectors of that data. The SOM performs a dimensionality reduction, with each

of the dimensions in the output map representing a dimension of major variance in the higher

dimensional dataset. The combination of winner-takes-all competition and a neighbourhood

function for learning allows generated representations to be sparse, orthogonalised, and analo-

gous to the representations developed by clustering algorithms (Rolls and Deco 2002). Learning

in the SOM is unsupervised, making it useful in a variety of situations and easily modified to

suit a variety of purposes.
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The basic SOM implementation is able to represent the principal relations between input vectors

in a lower dimensional space, and as such is suitable for use in a wide variety of applications.

These include problems that are related to those solved in the brain by sensory processing

systems, such as visual, auditory and tactile data analyses that benefit from a dimensionality

reduction (Miikkulainen et al. 2004). The two-dimensional SOM can be folded over a three-

dimensional object to create a surface representation by conforming to data points from that

surface. In particular, this technique can be used to model the surface of brain areas (Chuang

et al. 2005, 2007). The standard SOM has been successfully utilised to find solutions to a

variety of categorisation problems (Foody 1999; Godin et al. 2005). Additionally, analysis of

contextual and feature-based data has been conducted using the conventional algorithm (Ritter

and Kohonen 1989).

4.1.1 SOM quality analysis

The quality of a SOM can be quantitatively assessed using a metric that demonstrates the extent

to which the topography of the input space is preserved in the learned output map. Polani (2002)

suggested a pair of criteria that any measure would need to fill in order to be considered useful

for evaluating map quality:

1. It should quantify the process of self-organisation during training, i.e. its value should on

average increase or decrease to indicate a reduction in mapping error.

2. It should measure the quality of embedding of the input space into the output manifold,

i.e. an obviously better representation should be indicated by a “better” value.

Without a quantification method, SOM quality can be assessed through visual inspection, and an

obviously better representation would be one that can be seen through this method. For example,

a one-dimensional map snaking across a two-dimensional space is a poorer representation of an

evenly distributed two-dimensional input data space than a two-dimensional map with a regular,

rectangular organisation in that input space.

Various SOM quality measures exist that fulfil these requirements, each taking different quanti-

ties from the SOM into account. The choice of quality measure depends on the appropriateness
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of the measure to a given situation. In the following equations, N is the number of input patterns,

Ii is an actual data vector for input pattern i, and wi is the BMU for an input pattern i.

Quantisation error: quantisation error (QE) is simply the average distance from all possible

input vectors to the output unit that most accurately represents them, taken as Euclidean distance

between the input vector and the weight vector for that distance neuron (Beaton et al. 2010):

QE =
N

∑
i=1

d(Ii,wi)/N, (4.1)

where d(Ii,wi) represents the distance between the actual input vector Ii and the weight vector

for the BMU for pattern i, wi. This measure fluctuates depending on the number of output

neurons in such a way that a larger output map is always favoured by the metric.

Topographic error: topographic error (TE) is an error value based on retrieving the best and

second best matching units for an input pattern. If they are not neighbours in the output grid, an

error value is incremented (Beaton et al. 2010):

QE =
1
N

N

∑
i=1


0, if wi and w2i are adjacent.

1, otherwise.
, (4.2)

where w2i is the second best matching unit for input pattern i. This measure assesses the amount

of tangling in an output map, but lacks any measure of the actual mapping of inputs to outputs.

Metric multidimensional scaling: metric multidimensional scaling (MDS) can be used to

assess the ability of a SOM to map an input data set can be assessed by checking the topographic

mapping error of the output map given the input data. For a map with no mapping error, the

relative distance between any pair of data in the input space is the same as the relative distance

between the locations activated by that pair of input data in the output map.

EMDS =
N

∑
i=1

∑
j<i
(F(i, j)−G(M(i),M( j)))2 (4.3)
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where N is the number of input patterns, F(i, j) represents the actual dissimilarity of the pair

of input patterns i and j (measured as Euclidean distance), and G(M(i),M( j)) represents the

dissimilarity between the locations in the output map representing patterns i and j (measured

as Euclidean distance), where M(i) and M( j) are the locations of the winning nodes in layer

v for input patterns i and j respectively Goodhill and Sejnowski (1997). The value of EMDS

represents how well the final network mapping preserves the topology of the input data set.

The QE, TE and MDS measures cover three fundamental types of SOM quality measure. QE

analyses the relationship between individual inputs and the output nodes representing them; TE

analyses whether the output representation has managed to untangle itself from an initial ran-

dom organisation; and MDS reveals the quality of the representation of the input space by the

output space. Among other prominent measures of SOM quality are: the topographic product

(Bauer and Pawelzik 1992), which measures neighbourhood preservation between input and

output spaces and can assess the appropriateness of the dimensionality of the map (which will

not be relevant to the spiking neuron SOM implementation described in section 5 as, being

inspired by cortical maps, it will not vary from a two-dimensional structure); the topographic

function (Villmann et al. 1997), which assesses the neighbourhood relations between the re-

ceptive fields of the output neurons; and the CQoCO measure (Beaton et al. 2010), which

effectively combines quantization error and topographic error with a third measure, indicating

the extent to which the output map represents vectors that are not part of the actual input space,

into a single value encapsulating all three of these SOM features.

4.1.2 SOM variants

For the tasks described above, as well as many other specific applications, the SOM algorithm

does not require modification to act as a valuable analytical tool. However, many modifications

to the algorithm have been made, to adapt the SOM for particular applications (Kohonen et al.

1996), to make the algorithm more efficient or even more general (Keith-Magee 2001), or to

increase the relevance of the results to particular areas, for example to increase the biologi-

cal plausibility of the algorithm (Miikkulainen et al. 2004). Common sources of modification

include the specification of learning rate and neighbourhood function, dynamic modification
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of network properties, hardware implementations, and changes to the neuron model. Some

approaches to these areas will be outlined below.

4.1.3 Decay schemes

In the conventional SOM the learning rate and neighbourhood function follow decay schemes

throughout training. Kohonen (2001) suggests that a convex and wide neighbourhood function

will generate an initial global mapping and after this stage the neighbourhood can be reduced

to increase the accuracy of the final map. A comparable reduction in the learning rate through-

out training helps to avoid local minima convergence in earlier stages of learning through an

initially large learning rate, while maintaining the map structure later in training when finer

changes are made. Selection of these decay schemes has been investigated in several SOM

variants. Keith-Magee (2001) investigated optimal neighbourhood reduction for the condition

of ongoing learning, where learning rate is fixed throughout training. Experiments showed

that a useful and versatile function for establishing neighbourhood decay is achieved with the

following equations:

w̄i j = (1+a)G(||i− j||,r)−aG(||i− j||,br), (4.4)

in which the lateral connection strength w̄i j between output neurons at locations i and j in the

grid is determined by (4.4), where a represents the magnitude of the negative component of the

function, b determines the decay of the negative component of the function, r determines the

radius of the positive component of the function, and the function G is a Gaussian function of

the distance between i and j.

The traditional SOM formulation includes a decaying neighbourhood width over time to pro-

duce a more finely tuned output mapping. An appropriate decay function for the width (r)

of this lateral connection kernel is established, through a series of experiments (Keith-Magee

2001), as a step function with a filter to smooth the step function over time:
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r(t) = X− X−X ′

1+(
√

2−1)((T/t)2n)
. (4.5)

where r(t) gives the value of r to use in (4.4) at training step t in the simulation, X and X ′ are

values of r at the start and end of training respectively, T represents the value of t that the ‘step’

is centred around, and n is the order, or amount of smoothing, of the ‘smoothed step’ function.

Compared with classic linear decay schemes and a non-smoothed step decay, use of (4.5) results

in an accurate output mapping being reached more quickly Keith-Magee (2001). Additionally,

identical values for X and X ′ results in no neighbourhood decay, facilitating a simple transition

between regimes.

Other work has investigated time invariant learning rate schemes (Cho and Seok 1998; Mulier

and Cherkassky 1994; Haese 1998; Berglund and Sitte 2006). The use of a constant learn-

ing rate, combined with a binary term increasing the amount of learning probabilistically for

the winning neuron in a training step can produce results comparable with the original SOM

formulation (Cho and Seok 1998). The boost of learning for the BMU helps to encourage the

fine-grained differentiation of input preference that is seen in the case of decaying learning rates

in the original SOM formulation. Learning rate can also be based on the distance from the in-

put to weight vector (Berglund and Sitte 2006), in which case a greater difference represents a

worse fitting of the map to the current piece of input data, which leads to selection of a higher

learning rate to compensate. Additionally, it has been suggested that the optimal learning rate

scheme is one in which every training step contributes an equal amount to the final map configu-

ration (Mulier and Cherkassky 1994). Using a linear learning rate decay, the later training steps

contribute a much greater amount to the final map than earlier training steps. Calculating the

expected contribution of a particular training step to the final map, including the contribution

of the current neighbourhood state to this variable, allows for less manipulation of the random

selection order of input data on final map configuration. Another approach is to vary learning

rate individually for each output neuron (Haese 1998). This approach requires that the utility of

a neuron’s current weight arrangement is measured at each training step, and the learning rate

for each neuron set accordingly, with better representatives of the input data requiring a lower
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learning rate, effectively being frozen in place.

4.2 Alternate SOM structures

The standard two-layer, feedforward structure of the SOM allows for topographic organisation

to occur. Alterations can be made to this structure to make the SOM suitable for alternate im-

plementations. Three general types of these alternatives are particularly relevant to the current

work: hardware implementations, biologically inspired implementations, and spiking neuron

implementations. Prominent examples of these are introduced in this section.

4.2.1 Hardware SOMs

Some research has investigated the possibility of implementing the SOM algorithm in modern

hardware. The digital phase-locked loop (DPLL) has been used as a method of implementing

the SOM on field programmable gate array (FPGA) hardware (Hikawa 2005). This approach

takes advantage of the properties of a DPLL, which is able to compare the phase of a variable

frequency oscillator output signal with an input reference signal through a phase detector, and

control the frequency of the oscillator through the output from the phase detector. Hikawa

(2005) show that a network of these is able to function as a SOM when combined with an update

pulse signal acting as a neighbourhood function, by sending pulses that allow the frequency of

an oscillator to change. These pulses are sent more frequently for the winning node, allowing

that node to adjust its frequency by a larger amount, and are sent with decreasing frequency

for other nodes depending on distance from the winner. The network organisation into a two-

dimensional input pattern is demonstrated.

4.2.2 Biologically inspired SOMs

The original SOM algorithm is based on feature maps found in the cortex, although significant

modifications to the initial formulation are required to reproduce the properties of brain maps in

a SOM. The visual cortex in particular is a common candidate for representation using a SOM.

The two-dimensional arrangement of the retinotopic map in visual cortex is simply represented

in the standard two-dimensional SOM, the folding of which to encompass a three-dimensional

input space produces patterns strikingly similar to the layout of ocular dominance columns in

59



4.2. ALTERNATE SOM STRUCTURES

the visual cortex (Miikkulainen et al. 2004). While the functional properties of cortical maps

can be approximated by the output of the traditional SOM, the nature of input and learning

in biological systems appears markedly different. As such a variety of modifications to the

algorithm attempt to increase the biological plausibility of the network.

The LISSOM model (see Miikkulainen et al. (2004) for review) recreates the full range of

overlapping feature representations found in the visual cortex through several modifications to

the SOM idea. The SOM is related to the structure of the visual system in this model through

the identification of each output neuron as a cortical column, representing the six vertical layers

in cortex, and each input neuron as a patch of retinal ganglion cells. The neurons are activity-

based, rather than distance-based. Activity levels in the input layer are transmitted to the output

layer via a limited width receptive field of excitatory connections. Lateral connections in the

output layer effectively recreate a neighbourhood function by being excitatory at short range

and inhibitory at long range. This effect is in keeping with the overall lateral profile seen in vi-

sual cortex when using a high contrast stimulus (Grinvald et al. 1994) (see section 2.4). Output

neuron activity levels combine both feedforward and lateral connections, and a Hebbian learn-

ing mechanism trains both types of connection. Adaptation of the lateral weights represents the

most marked departure from the traditional SOM algorithm, resulting in patchy connections at

long range between neurons that have developed similar input pattern preferences (Bednar and

Miikkulainen 2006). The long range connections are inhibitory, and therefore act as a form

of competition between regions that are likely to be responsive to similar inputs, resulting in a

form of activity level modulation between areas excited by an input pattern. Initially this model

produced maps with preference for stimulus orientation. Developments to the model include an

additional retina layer to learn ocular dominance patterns, an LGN layer with on and off centre

response types and a range of delays along with moving visual stimuli, to learn direction pref-

erences. These modifications encourage mapping of the set of complex overlapping properties

present in biology (Bednar and Miikkulainen 2006) (see figure 4.2).

LISSOM has also been used as the basis for the development of a model of direction preference

development in the barrel cortex (Wilson et al. 2010). In this example the input map, repre-
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Figure 4.2: LISSOM model output response preferences. Each square in the figure represents
a neuron in the output layer of a trained LISSOM model. The colour scale rep-
resents orientation preference, the thick black lines represent divisions between
ocular dominance regions, and the arrows represent direction of movement pref-
erence, with the arrow direction showing the preferred direction and the size of
the arrow representing the preference magnitude. When trained using oriented,
moving Gaussian patterns with different brightnesses in each eye, LISSOM de-
velops overlaid orientation, ocular dominance, and direction maps simultaneously.
Reproduced from Miikkulainen et al. (2004).
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senting laminar layer 4 of the rodent somatosensory cortex, is divided into a grid representing

‘barrels’, with each neuron within a barrel only receiving input from one whisker, and respond-

ing preferentially to a randomly assigned direction of whisker deflection. In the output layer,

representing layer 2 or 3 of the rodent somatosensory cortex, the grid structure remains, with

receptive fields ensuring that feedforward activity propagates only within the barrel. Lateral

connections are again distance dependent, with local excitation and distant inhibition. Input

consists of the input barrels being excited as if some of the whiskers had been deflected in sim-

ilar directions. This activity then propagates and establishes a pattern in the output layer, and

Hebbian learning occurs, as in the LISSOM model. A somatotopically aligned map of whisker

deflection direction is formed, with the full range of directions represented in each barrel, and

neurons in approximately the same location within each barrel having the same direction pref-

erence. Again, lateral connections form primarily to neurons in other regions of the map (in this

case this means neurons connected to other barrels, rather than neurons connected to other parts

of the visual field) that have similar input preference.

A similar two-layer barrel cortex model was described in (Kremer et al. 2011). The input layer,

again representing layer 4, is functionally the same in this model, except that the neurons have

a preferred direction and respond with a firing rate according to a Gaussian tuning curve around

that direction. Layer 2 or 3 in this case is different, with each barrel in layer 2 or 3 being

composed of IF neurons in an approximately 4:1 ratio of excitatory to inhibitory. The neuron

model includes adaptation, a refractory period, β -function PSPs (difference of two exponential

functions), and sparse synaptic connections based on barrel cortex connectivity profiles (Lübke

and Feldmayer 2007). Lateral connectivity profiles were Gaussian functions of distance in

number of barrels, with excitatory connections having a standard deviation of 0.4 barrels and

a maximum connections probability (at zero distance) of 15%, to both other excitatory and

inhibitory neurons, but with connections to inhibitory neurons three times stronger. Inhibitory

connections were only made to excitatory neurons, with a standard deviation of 0.2 barrels

and a maximum connection probability (at zero distance) of 100%. Weight adaptation was

performed through STDP, as in Song et al. (2000). The lateral connection profile in this case

leads to a slightly different map formation than that seen in the LISSOM model, with the dense
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local inhibition causing adjacent excitatory neurons to develop differing direction preferences.

However, this model uses approximately three times as many neurons as the LISSOM-based

model above, and when direction preferences are averaged across an area the maps appear

qualitatively similar.

The models described in this section use the principles of the SOM algorithm to learn func-

tional properties of cortical regions. These models make use of imitation sensory input and

alter the input layer of the SOM such that the properties of the sensory apparatus are captured.

The changes made in the LISSOM model, switching from distance neurons to activity-based

neurons and the incorporation of a lateral synaptic connection profile over a neighbourhood

function, also present alternate methods of implementing properties equivalent to those in the

SOM in a more realistic way. Additionally, the barrel cortex model introduces an output layer of

spiking neurons, and a large increase in network size that allows more accurate connection prop-

erties to generate cortical map structure. The next section (section 4.2.3) will examine attempts

to replicate the functional properties of the traditional self-organising map using networks of

spiking neurons.

4.2.3 Spiking SOMs

Ruf and Schmitt (Ruf and Schmitt 1998) proposed a self-organising map implemented with

IF neurons, using synaptic plasticity based on spike-timing. This network consists of an input

layer, u, which encodes an input pattern, with fully interconnected feedforward connections

to a second layer, v, which has fully interconnected lateral connections. The lateral connec-

tion profile is a monotonically decreasing function, with local excitation graduating to distant

inhibition.

Initially an input pattern s is selected and used to drive the input layer u neurons. Layer u

neurons are tuned to prefer regular incremental locations, uniformly distributed from within the

range of values that a dimension in s can take. Each neuron v j in layer v receives feedforward

inputs from this output of each neuron ui in layer u, with weight wi j, as well as lateral input

from each neuron vk, k 6= j, with weight w̄k j. From the presentation of an input, each v j starts to

compute ∑i wi jsi, where si represents the instantaneous presence or absence of a spike in ui with
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the first v j to fire representing the output neuron whose weight vector best matches the input

encoding, thereby becoming the best matching unit. A competitive learning rule is applied to

this winning unit to move each wi j towards the input pattern, given by

∆wi j = η
Tout − t j

Tout
(si−wi j), (4.6)

where η is the learning rate, t j is the firing time of a neuron j, and Tout is a reference time win-

dow for learning to occur. The firing time of the winning neuron is not affected by the lateral

connections in v. In the self-organising map algorithm, a neighbourhood function is used to

graduate the amount of learning occurring in other competitive neurons based on their distance

from the BMU. Two mechanisms are employed in this spiking version to accomplish this: the

lateral connections in v alter the firing times of other neurons in v by either excitation or inhi-

bition depending on their distance from the unit in v that has just fired; and a temporal window

is placed after the firing of the first output neuron, such that learning is altered for subsequent

neurons based on their firing time within that window. For the immediate neighbour of the

BMU, BMU+1, w̄k j will be relatively strongly excitatory, so the firing time of BMU+1 will

move closer to the firing time of the BMU. In this way the combination of lateral connections

and Tout−t j
Tout

represent the neighbourhood function, as BMU+1 will learn an input pattern more

similar to that learnt by the BMU than it would have otherwise, due to its more rapid firing time,

and it will learn that input pattern more strongly as it fires sooner within the Tout window. A

remote neuron from the BMU will be inhibited by lateral connections, so will fire later within

the Tout window, so will learn less than it would have without the lateral interaction. In keeping

with the normal SOM algorithm, the neighbourhood function and learning rate are both reduced

throughout training; for the neighbourhood function in this case the lateral connections are all

lowered at every training step, so that the size of the neighbourhood is reduced by a general

increase in lateral inhibition.

The network was tested using one- and two-dimensional input patterns. In the one-dimensional

case an input value is selected from ten inputs uniformly distributed in the range [0,1], and in the

two-dimensional case the value for each input dimension was chosen randomly from the same
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(a) (b)

Figure 4.3: Output firing times for testing of the Ruf and Schmitt (1998) network using one di-
mensional input, where a darker square indicates an earlier firing time, and a white
square indicates no firing. (a) shows networ firing prior to learning; (b) shows the
organised network, with a progression through input patterns represented in the
network output by an equivalent progression through the network output space.
Reproduced from Ruf and Schmitt (1998).

range. The one-dimensional output layer consisted of ten competitive neurons, and the forma-

tion of a linear map was found, assessed by visual inspection of the firing times of neurons,

with adjacent neurons usually reacting the most quickly to adjacent input patterns (see figure

4.3). The two-dimensional output layer consisted of a 5×5 grid of neurons, and the forma-

tion of the map was assessed using a measure for quantifying the neighbourhood preservation

known as “metric multidimensional scaling” (MDS) (Goodhill and Sejnowski 1997), showing

that the relative neighbourhood distortion (i.e. the difference between winning nodes for two

input patterns in the output layer compared with the actual difference between those two input

patterns) reduced by around 80% as a result of training.

Variants on the Ruf and Schmitt (1998) model have been implemented elsewhere. One ap-

proach replaces the learning rule with a rule that relies on a pre-existing optimal weight deriva-

tion function to select weight changes (Panchev and Wermter 2001). Instead of relying on the

firing time of the BMU as a reference time for the learning function, the difference between

pre- and post-synaptic firing is applied as input to a function that describes the ideal weight of
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a connection for a neuron with that firing time difference. The disadvantage of this approach is

that exhaustive trial experiments are required prior to learning to establish the optimal weight

function for the current network setup (Panchev and Wermter 2001). Simulation results suggest

that trained network functionality is comparable with that shown in (Ruf and Schmitt 1998).

Another approach reports similar results to Ruf and Schmitt (Svetlik 2006), but replaces the

integrate-and-fire model with the ‘JASTAP’ model (a variant on integrate-and-fire, with biolog-

ically relevant action potentials, which the model in Ruf and Schmitt (1998) lacks).

Other SOM-like networks have been implemented using spiking neurons. In Sala et al. (1998)

a two layer SOM structure similar to that of Ruf and Schmitt (1998) made up of ‘MacGregor’

neurons (MacGregor 1987) is used to test a pair of Hebbian learning rules, one with learning

based on current strength of pre-synaptic potentials and the other based on temporal spike corre-

lations in input and output layers. It is demonstrated that, with an appropriate lateral connection

neighbourhood, either of these learning approaches can result in output space segregation that

is related to properties of the input space. However, properties of the conventional SOM such

as smooth mapping of input to output space and categorisation are not demonstrated.

In Veredas et al. (Veredas et al. 2008) a three-layer feedforward network of integrate-and-fire

neurons with a STDP-like long-term potentiation window is used to produce a self-organised

map of orientation preference, given appropriate receptive field shape and input properties. This

map does not feature lateral connections or direct competition between neurons, instead relying

on those receptive fields and input properties for the self-organisation to occur. As such, it is

likely that an organised output map will only result from a limited range of inputs.

The LISSOM model has been modified to incorporate spiking neuron properties (Choe and Mi-

ikkulainen 1998). The model uses LIF neurons with relative and absolute refractory periods, as

well as membrane potential adaptation. Standard Hebbian learning with normalisation to im-

plement LTD is used, that is dependent on average spiking rates rather than spike timing. The

feedforward connections from input to output layer learn, then, in the same way as the stan-

dard LISSOM model. Spiking neuron properties are only exploited with regards to the output

activity and lateral interactions. After the learning phase for afferent connections, with input
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consisting of individual oriented bars at locations in the visual field, input consists of several

oriented bars simultaneously presented to the retinal input layer. Lateral connections feature

short-term plasticity (implemented by a large increase in learning rate) and adapt based again

on coincidental firing rates. The short term adaptation encourages synchronous firing in regions

of the output layer, each responding to a particular segment of the input pattern, implementing

an interesting form of feature binding. In this case, however, the detailed temporal properties of

spike trains are not utilised.

4.3 Summary

The SOM algorithm in its traditional form represents a computational method that is inspired

by generic cortical function, and as such is abstracted to a large degree from the biological

mechanisms that generate similar functions within the cortex. The utility and importance of

this algorithm have been introduced in this chapter, as well as an introduction to the wealth of

variants that have been invented, each capable of performing slightly different analytical roles.

Models that explicitly attempt to capture observed biological phenomena have been discussed

in more detail, and section 4.2.3 has introduced the previous research that has attempted to use

more biologically plausible spiking neuron models to capture the computational properties of

the SOM algorithm.

None of this previous research, however, has tackled all of the key features of cortical infor-

mation processing established in section 2.3. There is no existing model using spiking neurons

and a biologically relevant learning rule, with temporal coding within oscillations, capable of

continuous learning and reorganisation. Furthermore, there is a notable lack of validation that

spiking neuron SOM models recreate computational properties of the original SOM algorithm.

The next chapter describes and analyses an original model that fully addresses all of these prob-

lems.
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Chapter 5

A spiking self-organising map

5.1 Introduction

Self-organisation to the fundamental properties of input spike trains has been shown to be an

important feature of cortical organisation (see section 2.4). There are several mechanical build-

ing blocks that appear to be common across cortical regions, and contribute significantly to the

style of information processing present in the cortex (see section 2.3). The self-organising map

represents an important artificial intelligence algorithm, a frequent tool for data analysis, and

is often modified to fit a variety of uses (see section 4). The SOM algorithm has been adapted

to represent biological input features, capturing the qualities of sensory cortices (see section

4.2.2), and initial attempts have been made to implement a SOM using spiking neuron methods

(see section 4.2.3). However, no successful implementation exists that makes use of spiking

neurons, features of cortex for processing, and is capable of representation of generic datasets,

capturing the computational properties of the original SOM algorithm.

The model described in this section is a two layer network of integrate-and-fire neurons similar

to the model proposed of Ruf and Schmitt (1998). In both models, firing in the first layer is a

temporal sequence encoding the value in the actual input space. A neuron in the second layer

responds as a result of this firing, winning the competition by virtue of firing sooner than other

second layer neurons. Further firing in the second layer is influenced by lateral connections,

representing the neighbourhood. Neurons close to the winning unit fire sooner due to excitatory

lateral influence, and neurons further from the winning unit fire later due to inhibitory lateral

influence.

The current model differs from that of Ruf and Schmitt (1998) by incorporating realistic post-
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synaptic potentials, spike-timing dependent plasticity, and inhibitory control of the input layer

to generate oscillatory behaviour (facilitating continuous input presentation), while allowing

for continuous, on-going learning and stable neighbourhood size. The mechanisms controlling

each of these aspects of the network will be detailed in this section. Parameters for the equations

introduced below are listed in table 5.1, in section 5.3.

Simulations were conducted using custom made C software. A simulation timestep of 0.1ms

was used throughout.

5.2 Methods

5.2.1 Neuron model

Leaky integrate-and-fire neurons were used for all neurons in the network presented, modelled

by the equation:

τm
dV
dt

= I(t) − V + gη(t),

if V >= θ then spike and reset V = 0. (5.1)

Equation (5.1) is equivalent to equation (3.2) (on page 39) with the value of VL set to 0, repre-

senting a resting membrane potential of 0, and the addition of a noise term gη(t). Each neuron

has a membrane potential V that increases by integrating current input I(t), and ‘leaks’ towards

a resting potential of 0 when there is no input arriving from its afferent synapses. The membrane

potential time constant, τm, is set to 10ms for all neurons in the model. A spike is generated

whenever a neuron’s membrane potential reaches a firing threshold θ , which varies according

to the layer to which the neuron belongs (see sec. 5.2.3 below). Neurons are also subject to a

Gaussian white noise process η (mean = 0, variance = 1), which is scaled by a factor g; g = 0

(i.e. no noise injection) for the majority of testing, but the robustness of the network output to

membrane potential noise is tested by varying g in section 5.3.3.
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All connections between neurons are modelled synapses, with weight wi j, bounded between 0

and wmax (which varies according to the location of the neurons being connected). They transmit

post-synaptic potentials (PSPs) to the post-synaptic neuron whenever a spike is generated in the

pre-synaptic neuron. These PSPs are modelled as α-functions, using equations (5.2) and (5.3):

τr
ds1

dt
= s− s1 (5.2)

τ f
ds2

dt
= s1− s2 (5.3)

where s is a binary value representing instantaneous presence or absence of a presynaptic spike,

s1 is an internal state variable, s2 is the α-function output, and τr and τ f are time constants for

the rise and fall duration of the response. The time course of s2, the α-function output, as a

result of a presynaptic spike is shown in figure 5.1. Time constants are set independently for

each layer according to the requirements for PSP duration for that layer (see table 5.1), but the

ratio of τr:τ f is always set at 1:5. This ratio was determined empirically to generate PSPs with a

peak at approximately 2τr, to allow for straightforward selection of time until peak PSP values

for different PSP durations in the model, and that resemble the time course of biologically

observed PSPs (Dayan and Abbott 2000).

Input current at time t, I(t), is calculated using equation (5.4):

I(t) = ∑
j

w js2 j(t) (5.4)

where w j represents the connection weight (or synaptic efficacy) between neuron j (presynap-

tic) and the current neuron (postsynaptic), and s2 j(t) represents the current α-function output

from neuron j.

5.2.2 Learning

The learning rule used in the spiking SOM of Ruf and Schmitt (1998) makes use of some arti-

ficial features. Neurons have access to a global time stamp, which allows the gap between the
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Figure 5.1: The time course of the s2 value in equation (5.3) in response to s = 1 (a presy-
naptic spike) at time t = 0. The values on the vertical scale are multiplied by the
synaptic weight value to determine the contribution of a synapse to the postsynap-
tic neuron’s input current at a given time step. Time course calculated using the
parameters for u→ v synapses shown in table 5.1.

firing time of the best matching unit and firing time of the current neuron to be calculated. Also,

the actual input value is compared with the current synaptic weight to determine the weight

change, meaning that the synapse somehow has knowledge of the actual input patterns. Replac-

ing this learning rule with a standard spike-timing dependent plasticity (STDP) rule removes

these issues, providing a basis for learning that is more biologically plausible (Song and Abbott

2001) and more robust due to reliance only on local information to which each neuron already

has access.

STDP (Song et al. 2000) provides a function for long-term potentiation (LTP) or depression

(LTD) of synapses based on the time difference ∆t, measured in ms, between a single pair

of pre- and post-synaptic spikes, in neurons i and j respectively, according to Wi j(t + 1) =

Wi j(t)+ f (∆t). A linear multiplicative rule for LTD and exponential multiplicative rule for LTP

are used, according to Bush et al. (2010):
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Figure 5.2: The STDP window generated from equation (5.5), with f (∆t) plotted against ∆t.
The magnitudes of potentiation and depression shown are maximal; the depression
window represents weight change when wi j = wmax and the potentiation window
represents weight change when wi j = 0. Time course calculated using the learning
parameters for u→ v synapses shown in table 5.1.

f (∆t) =


exp(−wi j)A+(1− 1

τ+
)∆t if ∆t > 0,

−wi jA−(1− 1
τ−
)∆t if ∆t ≤ 0.

(5.5)

A+ and A− are both positive and determine the maximum amount of synaptic strengthening and

weakening that can occur, respectively. τ+ and τ− are time constants determining the range

of time in which synaptic strengthening and weakening will occur, respectively. The specific

values these four variables are set to, along with the motivation for differing forms of the rules

for LTD and LTP, are discussed in section 5.3.2, which details an extensive parameter search

conducted to optimise learning. The learning window generated by equation (5.5) is shown in

figure 5.2.

5.2.3 Network Structure

The spiking SOM network structure is shown schematically in figure 5.3. Conventional instan-

tiations of the SOM receive input, in the form of numerical values for each dimension in the
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I u v

Inh

Figure 5.3: Spiking SOM network structure: actual input value I is encoded in spike times for
nodes in layer u; the inhibitory unit causes oscillations, allowing continuous input
to be presented to u (see section 5.2.4 for details); feedforward connections from
u to v drive firing in v; early firing in v determines the location of output activity in
v through lateral (neighbourhood) connections (see section 5.2.5 for details).

input data set, directly into the SOM neurons. In the spiking version these values (represented

by node I) feed into a bank of neurons within an intermediate input layer, u. The actual input

values are converted into a temporal spike sequence within each bank through the use of an

inhibitory mechanism, described in section 5.2.4. This spike sequence then drives the SOM

layer, v, through all-to-all feedforward synaptic connections. There are no connections from

layer v back to layer u, or from layer v to the inhibitory mechanism in layer u. All-to-all lat-

eral synaptic connections in v implement the neighbourhood function that helps to generate the

self-organising process.

5.2.4 Input encoding within oscillations

Input to this model is in the form of an m-dimensional vector of real numbers; each dimension

In of this vector needs to be encoded in the firing of neurons in layer u. This can be achieved

by representing each In in the actual input pattern with a bank of neurons un from layer u. Each

neuron ui in that bank is tuned to be centred around a point from within the range of values

that In can take (Bohte et al. 2002). A Gaussian function is used such that the closer the actual

value In is to the tuned value of ui, the higher the activation to ui, as shown in figure 5.4. The
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use of integrate-and-fire neurons means that ui with higher activation levels will reach threshold

and fire faster than ui with low activation levels. This creates a unique yet structured temporal

pattern of spikes for each value that In can take. Using a bank of neurons to represent each

input value holds a significant advantage over representing individual patterns with the firing of

single neurons. The relative temporal structure of multiple spikes can represent precise, fine-

grained differences between actual input values in a continuous, which would be lacking if only

one neuron fired for each region of the input space. If only one neuron is stimulated by each

input pattern, a single spike fires, effectively segmenting the input space into regions rather than

creating a unique structure for each specific point in that input region.

Continuous stimulus presentation is an important feature in constructing a versatile and general

network, allowing network operation to be ongoing, with no need for discretisation of temporal

aspects, such as automatic resetting of the network state at each training step. Using the current

method of input encoding, continuous input presentation provides constant activation to layer

u. This disrupts the temporal representation of each input pattern: the first ui to fire will begin

integrating input again first after resetting, and fire sooner in the next cycle of firing. This

quickly desynchronises the input neurons from one another.

This problem is remedied through an inhibitory neuron, Inhu, which responds to firing in u with

a strong, slow inhibitory PSP back to all neurons in u. The inhibition depresses the membrane

potential of all ui after firing, establishing an approximate baseline for the effects of activation

from I, creating a close to identical repetition of the temporal sequence. Inhibition in response

to excitation creates an oscillatory behaviour, with periods of firing across the layer followed by

periods of inhibition, ahead of the next batch of spikes.

The inhibitory neuron receives input from each ui through both an excitatory and an inhibitory

synapse, as shown in figure 5.5(a). The excitatory synapse has a relatively long time constant,

making it slow, and the inhibitory synapse has a relatively short time constant, making it fast,

as shown in figure 5.5(b). The overall effect of the pair of the connections on the membrane

potential of Inhu is an initial dip, followed by a recovery into the positive region. Combined

with a resting potential fractionally below the firing threshold, the effect is that the membrane
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Figure 5.4: The generation of a temporal sequence from a value in an input dimension and
a bank of neurons tuned to different points within that dimension. (a) shows the
generation of an activation value for each neuron (ui) from within the bank of in-
put neurons representing an actual input dimension (In). An example input value,
at arrow I, of 0.55 is shown by the vertical dotted line. Activation values are es-
tablished by the vertical point at which this dotted line crosses the tuning curve
for a (ui) neuron. Example tuning curves are shown for neurons 2 and 8, tuned
to values of 0.15 and 0.75 respectively, which intersect the input value at points
denoted by circles. The vertical locations of the horizontal lines from these circles
then represent the activation levels that the input value generates in neurons 2 and
8. The tuning curves wrap from one edge of the input space to the other, indicat-
ing a circular tuning to the input space. (b) demonstrates the type of output firing
sequence that results from this type of input encoding. The vertical height of the
bars shown next to each ui represents the activation level generated from the inter-
section of a given input value and the neuron’s tuning curve. When a LIF neuron
receives constant activation at a particular value, that activation value is translated
into a spike time, with neurons receiving higher activation values generating ear-
lier spikes than those receiving lower activation values. The time scale shows the
approximate duration in which input layer activity occurs in the current model.

76



5.2. METHODS

potential of Inhu will stay sub-threshold as long as there are spikes in u within a reasonably

short time of each other, and the membrane potential of Inhu is guaranteed to reach threshold as

soon as there is a sufficient gap in activity in u. Membrane potentials in ui are reset when there

is a large gap in firing, or when the pattern ends.

In summary, oscillations are induced in the layer through excitatory firing followed by inhibitory

firing, as in a classic excitatory-inhibitory feedback loop (Wang 2010). Oscillations of this type

allow input neurons to be constantly excited and maintain a reliable firing pattern for a given

input. In turn, this allows for a stimulus, or input datum, to be continuously presented to the

network, resulting in a versatile and reliable input coding mechanism.

5.2.5 Neighbourhood function

Self-organisation in the spiking SOM is produced through the use of a lateral interaction profile

(analogous to a neighbourhood function), and STDP (see section 5.2.2). Learning in the spiking

SOM occurs when an output node fires in response to the input sequence; in particular, learning

of the current input values is strongest when an output neuron fires soon after the start of the

input sequence, causing greater strengthening of the afferent synapses from nodes that better

represent the actual input values. Lateral synaptic connections in the output layer v send excita-

tory signals to neurons that are within a certain distance and inhibitory signals to more distant

neurons. This lateral profile encourages neurons within a spatial region to fire and discourages

neurons outside of that region from firing. The effect is compounded by neurons very near to

the winning neuron firing very soon after and sending similar signals laterally to a similar region

of the map.

The current spiking SOM model uses equations (4.4) (on page 57) and (4.5) (on page 58) to

establish lateral synaptic weights. As introduced in section 4.1.3, these equations generate a

lateral connection profile similar to a Laplacian kernel, and the use of a ‘step’ function for decay

over time can result in more accurate mappings than classic linear decay schemes (Keith-Magee

2001). Equations (4.4) and (4.5) are reproduced here for convenience:

w̄ jk = (1+a)G(||i− j||,r)−aG(||i− j||,br),
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u

Inhu

(a) (b)

Figure 5.5: Function of the inhibitory circuit in layer u; (a) shows the inhibitory (red flat-
headed line) and excitatory (green arrowed line) synapses from each node in u to
Inhu; (b) shows the time course of the post-synaptic potential from both of these
synapses (red and green time courses respectively), together with the combined
effect on the membrane potential of Inhu (blue time course)
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r(t) = X− X−X ′

1+(
√

2−1)((T/t)2n)
.

For a 10x10 grid of neurons in layer v, parameter searching reveals that setting a, b, X and X ′

all to 3.0 provides a lateral connection profile capable of topographic map formation. Identical

values for X and X ′ lead to a constant r in equation (4.4); this was found to be capable of

topographic map formation, demonstrated in section 5.3 below, although it is possible that more

accurate topographic mappings can be obtained using a larger X and smaller X ′ (Keith-Magee

2001). This decision was made to ensure continuous learning in the output map, which has been

identified as a goal of the current system. Decay of neighbourhood size throughout training was

utilised for results in sections 5.3.6 and 5.3.7, however, and in these cases the step function in

equation (4.5) was used to modify the lateral weights.

5.2.6 Self organisation

The inhibitory current generating an oscillation, the temporal coding of each input dimension

in spike times, the neighbourhood function, and multiplicative STDP all contribute to the self-

organisation of the output map. At the start of an oscillation the input neurons have depressed

membrane potentials due to inhibition from the previous oscillation. Membrane potentials in-

crease through constant input current and early spikes within an oscillation indicate neurons

that represent the actual input well. This first part of the input firing pattern generates a spike

in the output layer from the neuron best matching the input firing. This is followed by the fir-

ing of spatially local output neurons due to lateral activity, all before firing of neurons in the

input layer that are relatively poor representatives of the actual input. STDP causes the synaptic

connections from neurons in the early part of the input pattern to be strengthened, and the later

part of the input pattern to be weakened, for output neurons within the neighbourhood of the

winning neuron. This mechanic is illustrated schematically in figure 5.6.

A multiplicative form of STDP helps to ensure that weights reach a stable point proportional

to how often an input neuron fires before an output neuron relative to how often it fires after

an output neuron. Output neurons will respond for actual input values that are a distance away
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Layer v

15ms0ms

Layer u

LTP LTD

Figure 5.6: The mechanics of self-organisation in the spiking SOM. A spike sequence in a
bank of neurons in layer u represents the actual input value, with early firing neu-
rons being well tuned to the actual value, and late firing neurons being poorly tuned
to the actual value. The black arrow represents all-to-all feedforward synaptic con-
nections from u to v. At some point in the firing of the pattern in u, a neuron in
v fires, winning the competition and becoming the BMU. Neighbouring neurons
in v are caused to fire within close temporal proximity. The gap between the LTP
and LTD boxes in layer u represents the time at which firing in v occurs relative
to the firing in u. Synapses from any neurons that have fired before that point are
strengthened (the LTP box) and synapses from any neurons that fire after that point
are weakened (the LTD box).
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from their preferred input value, due to lateral excitation. As such, weights will be increased at

synapses from input neurons that normally fire after the output neuron in the output neuron’s

preferred input pattern. Synaptic weights will be decreased from input neurons that normally

fire before the output neuron in the output neuron’s preferred input pattern. These changes are

weight dependent, so for a certain weight value a few instances of depression balance with a

greater number of instances of excitation, and vice versa, creating stability. This stability means

that there can be differentiation between winning output neurons for input patterns; adjacent

output neurons will prefer similar sets of input neurons, so stable weights between the maximum

and minimum are important in determining which of several neurons with similar preferences

reaches threshold first.

Figure 5.6 also shows that the spike for the layer u neuron that is tuned closest to the actual

input value comes earlier in the phase than other layer u spikes that also fall in the potentiation

window by arriving earlier than firing in layer v. This results in a larger weight increase for

connections from neurons that represent the actual input value slightly less accurately, in a

single oscillation. This does not, however, result in a greater weight for this connection in the

long term, due to the dependence of the weight on the proportion of times that the neuron fires

before the layer v region relative to the number of times it fires after the layer v region. For a

given layer v neuron, the layer u neuron to which that layer v neuron can be considered best

tuned is the layer u neuron that is part of all of the input patterns to which the layer v neuron

responds.

The formation of a topological map stems, as in the conventional SOM algorithm, from having

a local neighbourhood within which neurons endeavour to imbue other neurons with their input

preferences. In the conventional case, the SOM organises around actual input values. In the

spiking case, the SOM organises around spike times from neurons that respond with varying

firing times when stimulated by those actual input values.

5.2.7 Quality of map formation metric

Several measures to assess SOM mapping quality are introduced in section 4.1.1. The MDS

measure was determined to be the most suitable method for assessing the performance of the
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spiking SOM. The QE and TE metrics rely on locating the output nodes in the input domain to

judge the map quality, and the current network does not contain an obvious and accurate source

of evaluating this quality in the way that the weights of the traditional SOM provide. The

MDS metric utilises a feature of the spiking SOM model, the grid locations of output nodes.

Furthermore, the evaluation of topographic error results in a generally comparable evaluation.

It is desirable to be able to make comparisons from the spiking SOM model to the performance

of other potential spiking neuron models that involve some form of topographic representation.

Some of the more complex measures, such as topographic product or CQoCO, are specifically

tailored to address the organisation of a self-organising map, and as such would not be useful for

comparison with the output of spiking neuron networks that address topographic representation

of an input space, without specifically following the SOM algorithm. Due to the likelihood of

the current model having a closer method of operation to other spiking neuron models than to the

traditional SOM algorithm, it is more useful to ensure the metric used here enables comparison

between spiking neuron models, than it is to provide additional detail to the quality of SOM

mapping. The MDS metric meets the criteria set out by Polani (2002) as being important for

a good map quality evaluation (see section 4.1.1) and evaluates the topographic mapping error

from input to output space, which is the primary motivation for the development of the current

network.

The MDS metric describes the ability of an output mapping to represent an input data set by

checking the topographic mapping error of the output map given the input data. For a map with

no topographic mapping error, the relative distance between any pair of items in the input space

is the same as the relative distance between the locations activated by that pair of input data in

the output map. The MDS metric is calculated according to equation (4.3) on page 56, repeated

here for convenience:

EMDS =
N

∑
i=1

∑
j<i
(F(i, j)−G(M(i),M( j)))2

where N is the number of input patterns, M(i) and M( j) are the grid locations of the winning

nodes in layer v for input patterns i and j respectively, G() is the distance between the pair
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of grid locations relative to the total grid size (measured as Euclidean distance), and F(i, j)

represents the actual dissimilarity of the pair of input patterns i and j (measured as squared

Euclidean distance) (Goodhill and Sejnowski 1997). The value of EMDS represents how well

the final network mapping preserves the topology of the input data set. The most accurate

mapping achieved is one in which relative distances between patterns in the input space are

reflected exactly by relative distances between neurons representing those patterns in the output

space, resulting in a minimum EMDS value of 0. The least accurate mapping seen in practice

is one in which all input patterns result in activation of the same location in the output map;

the EMDS value for this situation will vary depending on the distribution of input patterns. This

test is used by Ruf and Schmitt (1998) to analyse their spiking SOM, with final EMDS values of

under 20% of the starting value being reported. Section 5.3 will use mean values for EMDS, with

the final summed EMDS value divided by the total number of pairs of input patterns compared,

to give a value that can be compared regardless of the number of patterns in the input space.

5.3 Results

This section covers the results of testing conducted to confirm the behaviour of the spiking SOM

implementation. A measure of the quality of map formation is introduced in section 5.2.7, to

be used to interpret the rest of the testing results. The parameters used throughout testing

are described in section 5.3.1, and a parameter search on the variables involved in equation

(5.5) is described in section 5.3.2, to determine the range of values that result in good map

formation. Section 5.3.3 demonstrates the robustness of learning under the chosen parameters

in the presence of noise. The spiking SOM has been tested in common scenarios used to test the

conventional SOM. As such, the response of the spiking SOM to evenly distributed, randomly

selected, two-dimensional input data is analysed in section 5.3.4. Section 5.3.4 also features an

analysis of map formation in response to unevenly distributed and changing two-dimensional

input spaces. Finally, the results of categorisation tests carried out with the spiking SOM are

reported in sections 5.3.5, 5.3.6 and 5.3.7.
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5.3.1 Network parameters

The testing conducted in sections 5.3.2 and 5.3.4 made use of standardised parameters for the

network, shown in table 5.1. In summary, each dimension n in the input I was associated

with a bank un of 10 neurons in layer u. The value of n was set to 2 for two-dimensional

input. The preferential values of the neurons in each un were equally spaced between 0.05 and

0.95. Gaussian tuning curves around these preferential points were used for calculation of the

activation values, with distance calculations including circular wrapping from 1 to 0.

Layer v, the SOM layer, was initialised with 100 neurons, arranged in a 10x10 grid through

the lateral connection weights. The radius r in equation (4.4) was set to 3.0, and the distance

between neurons in the layer were calculated with toroidal structure. Values of τ+ and τ− in

equation (5.5) were set to 11ms and 10ms respectively. This width of learning window approx-

imately matches the temporal width of a network oscillation, leading to negligible influence on

learning of spikes from within neighbouring oscillations.

At the start of each training step an input value was determined by selecting randomly from

10 values for each dimension, equally spaced between 0.05 and 0.95, making a total of 100

input patterns from within the two-dimensional input space. A training step lasted through 5

oscillations of the network (approximately 125ms) before the input pattern was changed. The

network was allowed to learn for 4000 training steps.

Quality of map formation was assessed using mean EMDS for each pair of input patterns. Given

that for the two-dimensional case both the input and output space wrap toroidally, this situation

results in a maximum mean EMDS value of 1
6 .

The maximum connection strength values for synapses with presynaptic neurons in layer u are

varied for the categorisation tests conducted in sections 5.3.6 and 5.3.7. These datasets contain

four and nine input dimensions, resulting in 40 and ninety neurons in u, respectively. As such,

the value of wu→v
max is scaled down to 1.5 in section 5.3.6, and 0.7 in section 5.3.7, and the wu→Inhu

max

values to 0.4 in section 5.3.7.
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Table 5.1: Network parameters for all simulations described in section 5.3

(A) Neuronal parameters, used in (5.1) and (5.4)

∆t τ
u,v
m τ Inh u

m Vrest θ u θ Inh u θ v g

0.1ms 1ms 0.5ms 0.0 0.5 0.01 1.0 0.0

(B) Synaptic parameters, used in (3.10) and (3.11) for different synapse types

u→ v u→ Inhuexc u→ Inhuinh Inhu→ u v→ v

τr τ f τr τ f τr τ f τr τ f τr τ f

0.2ms 1.0ms 0.4ms 2.0ms 0.2ms 1.0ms 1.0ms 5.0ms 0.1ms 0.5ms

(C) Maximum magnitudes of synaptic connection strength

wu→v
max wu→Inhuexc

max wu→Inhuinh
max wInhu→u

max wv→v
max

2.2 1.0 1.0 100.0 1.0

(D) Neighbourhood parameters, used in (4.4) and (4.5), for layer v

a b X X ′

3.0 3.0 3.0 3.0

(E) Learning parameters, used in (5.5)

A+ A− τ+ τ−

0.0016 0.0055 11ms 10ms

5.3.2 Learning parameter analysis

Parameter testing was conducted to establish suitable values for the maximum and minimum

weight change parameters, A+ and A− from equation (5.5). A test of a parameter set consisted

of 301 randomly initialised maps, trained using the method described in section 5.3.1, with an

average normalised EMDS value taken at the end of training used to gauge the quality of map

formed with those parameters. Coarse- and fine-grained searches were conducted, the results of

which are shown in figures 5.7(a) and 5.7(b) respectively.

The fine-grained search results establish that, for a range of A+ values up to 0.01, and A− values

up to 0.02, a ratio between 1:2.5 and 1:3.5 of A+ to A− will result in good map formation.

The coarse-grained search result establishes that there is little performance degradation up to

A+ values of 0.045 and A− values of 0.11, meaning that large weight changes relative to the

1One training run took approximately 20 minutes on a single core of a Beowulf computer cluster (AMD Opteron
processor 254, 2792 MHz), and as such the number of trials and parameter granularities used was limited by the
available computational resources.
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Figure 5.7: Parameter search results for A+ to A− values: normalised final EMDS values aver-
aged from 30 trials are presented, for ranges of A+ and A− values at low resolution
(a) and at high resolution (b). Shade indicates the averaged EMDS value, with dark
representing low error (high quality mapping) and light representing high error
(low quality mapping).

maximum weight can still result in map formation. Only 500 training steps were used in the

coarse-grained simulation results, but the high learning rates involved result in a fluctuating

error value after this point, rather than increased convergence of error values.

Figure 5.8 shows the progression of EMDS values throughout training for several important lo-

cations in the parameter space. Figures 5.8(a), 5.8(b) and 5.8(c) show the difference in map

development attained by effectively changing the learning rate, maintaining the same ratio of

magnitudes between potentiation and depression. It can be seen that with a higher learning rate

comes a slightly quicker decrease in mapping error, but that for the remainder of training the

mapping quality fluctuates more dramatically. These fluctuations are caused by the map altering

more in relation to statistical properties of very recent input patterns in the high learning rate

condition.

Figure 5.8(d) shows the degradation of map quality for an A+:A− ratio of 1:20. Depression

dominates, and weights are gradually lowered until activity in u no longer evokes any spikes

in v. If no neuron wins the competition for any input pattern, there is no distance between
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winning nodes for any input pattern, so a maximum error value is reached. This outcome is

characteristic of all A+ to A− ratios smaller than 1:6, but will result more quickly if there is a

greater dominance of depression.

Progression of error values throughout training for the opposite situation, a dominance of po-

tentiation, is shown in figure 5.8(e), with an A+ to A− of 4:1. In this regime, weights for less

preferred input patterns remain strong, eventually resulting in one output region of the map

dominating for all input patterns. Wild fluctuations are seen in the error value; this is caused

by slightly different neurons, still close to the dominant region, winning the competition for

different input patterns. A brief change in winning neuron can result in a temporary large vari-

ation in error value. This outcome is characteristic of all A+ to A− ratio greater than 1:1, with

an increasing dominance of potentiation leading to decreasing amounts of fluctuation in error

value throughout training.

For the following simulations, an A+ value of 0.0016 and an A− value of 0.0055 will be used.

These values are situated within the acceptable ratio of these parameters, and represent a low

learning rate compared to the maximum acceptable rate. A low learning rate results in a more

stable output mapping, so is preferable in testing the types of map that are formed.

5.3.3 Robustness to noise

The noise scaling factor g was tested for 11 values between 0.0 and 1.0, with the same value

used for both layers u and v, to analyse the robustness of the SOM formation to variable spike

times. These values of g resulted in spike time variations in the input pattern of up to around

3ms. Figure 5.9 shows EMDS values, averaged over 30 trials, for training with variation in g.

The average values of EMDS ranged from 0.008 to 0.020 for values of g up to 0.5, and between

0.090 and 0.146 for g from 0.6 to 0.9, showing that noise in the neuron model does not prevent

the learning mechanism from picking up the statistical correlations present in the input data

until a value of g greater than 0.5.
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Figure 5.8: Time course of EMDS values for 5 points in the parameter space, representing: (a)
low learning rate (A+ = 0.002, A− = 0.007); (b) medium learning rate (A+ = 0.004,
A− = 0.014); (c) high learning rate (A+ = 0.02, A− = 0.07); (d) dominance of
depression (A+ = 0.0005, A− = 0.01); and (e) dominance of potentiation (A+ =
0.02, A− = 0.005). Each figure shows 30 lines, one line per trial in the parameter
search.
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Figure 5.9: Average EMDS value after training plotted against the value of variable g, magni-
tude of noise in the neuron model. Average EMDS values were taken over 30 trials
and error bars represent standard deviation of EMDS values. Accuracy of the output
mapping stays high until noise levels reach a critical point around 0.5, with accu-
racy of the final mapping ending up close to the maximum error value as g reaches
1.

5.3.4 2D input

A test often applied to SOM algorithms is to present random samples from a range [0,1] in two

dimensions as input to the network, and test the ability of the output map to organise itself into

an appropriate formation capable of representing this input data.

An average final normalised EMDS value of 0.00554 was achieved over 642 trials (standard

deviation = 0.00483). The final weight matrix for the feedforward connections from input to

output neurons is shown in figure 5.10; it can be seen that neurons in one row of the output layer

are strongly connected to a specific range of input neurons in one dimension, while varying their

connection strength to input neurons in the other dimension uniformly across the row (with the

inverse pattern seen within and between columns). Figure 5.11 displays the output layer neurons

as circles, positioned in the input space according to the input value to which they respond most

quickly (i.e. are best tuned to). Nearest neighbour connections, determined by a maximal lateral

excitatory weight on the connection between a pair of neurons, are indicated by connecting

2Again, number of trials for computation of this value was dependent on available computing resources.
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Figure 5.10: Final u (y-axis) to v (x-axis) synaptic weights after training with 2-dimensional
data (light represents a strong connection and dark represents a weak connection;
the top half of the graphic is the bank of input neurons encoding the first dimen-
sion and the bottom half is the bank encoding the second dimension; and each
ten steps along the x-axis represents a row of output neurons, then the next ten
represent the next adjacent row, and so on): the connections to the output layer
vary in one dimension across an individual row (with consistency throughout the
map), and vary in the other dimension across the rows, encoding the current input
as a location in the output map in an organised way.

lines. This preferential tuning is initially random, and throughout training organises to mirror

the inputs received. It is worth noting that 5.11(c) and 5.11(d) both show the network state after

a good topographic mapping has been achieved, but the position of the neurons is variable; this

is because the network is learning at the same rate throughout training in this example, and will

morph slightly depending on the distribution of the most recent input data.

The spiking SOM is also capable of generating a map representation skewed to fit the input

distribution. To test this, the map was trained using six distributions of two-dimensional input

data. In each distribution the likelihood of either dimension being drawn from the range [0,0.5]

was altered to a value in the range of [0,0.5] at increments of 0.1. A likelihood of 0.5 repre-

sents an even distribution across the two-dimensional space, and a likelihood of 0 represents a

distribution entirely in the quadrant of the two-dimensional space between 0.5 and 1.0 in both

dimensions. Within each half of each dimension, the distribution is even across the range. The

representation of the output nodes in the input space is shown in figure 5.12, as in figure 5.11.

In figure 5.12(b) - figure 5.12(e) the input distribution can effectively be split into quadrants of

likelihood. At any training step the input pattern is least likely to be selected from the lower-left

quadrant (between 0 and 0.5 in both dimensions), most likely to be selected from the upper-

right quadrant (between 0.5 and 1 in both dimensions), with each of the remaining quadrants

at an intermediate likelihood (between 0 and 0.5 in only one dimension). In figure 5.12(a) the

likelihood of an input data point being from the upper-right quadrant is 1, and in figure 5.12(f)
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(a) (b)

(c) (d)

Figure 5.11: Representation of u→ v feedforward weights in the 2-dimensional input space,
where black dots represent output layer neurons and black lines represent nearest
neighbour synaptic connections (input and output dimensions are toroidal, but
nearest neighbour edges to opposite sides of the input space are omitted): (a)
shows the random starting distribution; after 200 training steps (b) the nodes
begin to align to the input data; (c) and (d) show the trained map after 2800 and
3600 training steps respectively - learning is ongoing, so stochastic fluctuations
in the distribution of recent input patterns are reflected by minor modulations in
the map weights.
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(a) (b) (c)

(d) (e) (f)

Figure 5.12: Representation of u→ v feedforward weights in the 2-dimensional input space,
where black dots represent output layer neurons and black lines represent near-
est neighbour synaptic connections (input and output dimensions are toroidal,
but nearest neighbour edges to opposite sides of the input space are omitted for
clarity of the figure). (a), (b), (c), (d), (e), (f) show the final mapping for input
distributions in which the probability in both dimensions of an input value being
between 0 and 0.5 is 0, 0.1, 0.2, 0.3, 0.4 and 0.5 respectively.

the distribution is even across the entire two-dimensional space. Figure 5.13 demonstrates that

map formation on average results in a good representation of the actual distribution of input

data by the proportion of nodes in the final output mapping that represent a given quadrant of

the input space.

Another feature of the topographic mapping shown by some SOM algorithms that attempt con-

tinuous learning is the ability of the network to reconfigure to a new input distribution midway

through training, after a mapping has been established to an existing input distribution. This

was tested by training the network using only 75% of the input data space, leaving out the quar-

ter of the input space square covered by values of greater than 0.5 in both dimensions. This

reduced data set was used for 2000 training steps, then the full range of input data, including
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Figure 5.13: The probability of an output node in a trained map representing each quadrant
of the input space, plotted against the likelihood of an input dimension having
a value within the range [0,0.5]. Bar height represents average over 30 trials;
error bars represent standard deviation; black horizontal marks represent the ac-
tual probability of an input datum being within a quadrant of the input space;
bar colour represents which quadrant of the two-dimensional space neurons were
found in, according to the key.
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Figure 5.14: Typical evolution of average EMDS value for 2-dimensional input: the error in the
output map reduces up to the halfway point in training, at which point the input
distribution is expanded; the error in the map jumps up as the error measure is
now relative to the new distribution; the error then decreases again as the map
adjusts to the new distribution.

the previously omitted quarter, was used for a further 2000 training steps. The organisation of

the output network over time to this change in input data set is shown in figure 5.15.

The evolution of the topographic error (figure 5.14) shows that the network adjusts to the ini-

tial input range as normal, but settles at a slightly higher EMDS value, most likely due to the

discrepancy between shape of input space and shape of lateral connections in the output layer.

The extra data is introduced half way through training, resulting in a spike in EMDS value, as

the output mapping is no longer suitable for the input data, and the topographic error is then

reduced to a lower value as the output map reorganises to the new data. The final weight matrix

for the feedforward synapses is qualitatively identical to the one obtained when training using

the full data range from the start (figure 5.10). This simulation demonstrates that the map has

learnt to represent the initial input distribution, but when a new distribution is presented the map

is capable of adjusting appropriately.
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(a) (b)

(c) (d)

Figure 5.15: Representation of u→ v feedforward weights in the 2-dimensional input space
(arranged as per figure 5.11): (a) shows the random starting distribution; after
1600 training steps with the partial input data (b) the nodes are aligned to the input
data space, leaving a gap in the input space from which no training examples have
yet been received; (c) shows the expansion of the map to the newly increased
range of input data after 800 training steps with the full input distribution; and (d)
shows the trained map after 2000 training steps with the full data range - the map
has adjusted to the new input data (neurons on the map border are alternating from
one side of the figure to the other because the toroidal nature of the input node’s
tuning functions means that input values of 0 and 1 are essentially identical, and
the row or column that the neurons are a part of is lined up along the 0-1 divide,
with some neurons placed on one side and some on the other.)
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5.3.5 Categorisation

SOMs can cluster input patterns, creating a specific spatial location that is activated by incoming

members of a specific category. If there are category divisions in the input data, nodes in the

output layer will respond more reliably to one category of input than to others. A trained

SOM can therefore be used as a categorisation tool by assigning each output node a category to

represent based on whether that node fires reliably for one particular category. The capacity of

the spiking SOM to be used as a categoriser in this way has been tested through training with

two datasets commonly used for assessing the categorisation ability of a system. This capacity

is demonstrated to provide evidence that this type of functionality is possible with the network,

and that organisation can occur to datasets that contain relatively distinct cateogires within a

high-dimensional space.

In the examples in sections 5.3.6 and 5.3.7 five-fold cross validation is performed: a dataset is

split into 5 chunks and the network is initialised and trained 5 times, using a different set of 4

chunks as training data and 1 chunk as testing data each time, so that in total all data points are

used for testing once. Each training phase lasted for 4000 training steps with random selection

of input pattern after each 5 oscillations of the network, as described in section 5.3.1. At the end

of a training phase the output nodes were designated as representing a category based on the

input category to which they responded most frequently during training. The testing patterns

were then presented to the trained network one at a time, and the output activity recorded.

Lateral connections were still used in this testing phase, so multiple neurons in the output layer

fired for each testing pattern, in an area with width determined by the lateral connection profile

at the end of the training phase. The testing pattern was categorised by the network as belonging

to the category to which the highest number of output neurons firing in response to that input

pattern had been designated as representing. If more of the output neurons firing in response to

a testing pattern had been designated with that pattern’s category during the training phase than

any other single category, then the pattern was considered to have been correctly classified.
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5.3.6 Iris dataset

The first dataset used to test the categorisation performance of the spiking SOM was the Iris

dataset (Fisher 1936). This dataset is of sizes of flowers of the Iris plant; it consists of three

categories each with 50 members, and each data point has 4 values, petal length, petal width,

sepal length and sepal width. One of these categories “Iirs Setosa Canadenisis”, is fairly distinct

from the other two, “Iris Virginica” and “Iris Verisicolor”.

For the current purpose, the values for each dimension were normalised in the range [0,1], and

the spiking SOM model was initialised as in section 5.3.4 but with 40 input neurons, making

one bank of 10 for each dimension. This increase in number of input neurons meant that the

feedforward connection strength from layer u to layer v had to be reduced; the value of wu→v
max was

scaled down to 1.5. Remaining parameters remained identical, with the exception of the X and

X ′ values in equation (4.5), controlling the evolution of the width of the neighbourhood function.

For continuous learning these values are identical, meaning no change in lateral connection

strengths over time. The standard neighbourhood parameters were used as one condition in

the categorisation performance tests (X=3.0 and X ′=3.0). However, output map quality can

potentially be improved by starting with a large neighbourhood and reducing it throughout

training. This approach can obtain a globally ordered topology initially, and refine details later

on. This regime was used as a second condition in the categorisation tests, with X set to 4.0 and

X ′ to 2.5. These values are in numbers of neurons, so for a 10× 10 map a radius of greater than

4.0 is the majority of the map.

Categorisation accuracy, averaged over 9 trials, was 87.8% (standard deviation = 1.3%) in the

without neighbourhood reduction condition, and 90.9% (standard deviation = 1.7%) in the with

neighbourhood reduction condition. Figure 5.16 shows the confusion matrix from this categori-

sation task, demonstrating that all of the incorrect classifications are a result of a slight merging

of two of the three categories. Table 5.2 shows these results in comparison with the results

achieved for other categorisation algorithms using this dataset. The spiking SOM categorises

better than Matlab implementations of the k-Means and SOM algorithms (Bohte et al. 2002) (al-

though it is unclear the parameters used and extent of parameter searching conducted to achieve
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Figure 5.16: Confidence matrix for classification using the iris data set. Rows show input
category and columns show the output category determined by analysis of the
network responses. The colour scale shows the percentage of input patterns from
a category that are classified as each category by the network output. Category
1 is perfectly classified, and 2 and 3 are well classified, with slight confusion
between them.
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Table 5.2: Clustering accuracy (%) of spiking neuron and non-spiking neuron algorithms for
the iris dataset. The current approach is shown as Spiking SOM with neighbourhood
reduction (NR) and Spiking SOM without NR.

Non-spiking % acc. Spiking % acc.

k-Means (Bohte et al. 2002) 88.6 RBF (Bohte et al. 2002) 92.6

SOM (Bohte et al. 2002) 85.33 SpikeProp (Wu et al. 2006) 96.1

Matlab BP (Wade et al. 2010) 95.5 SWAT (Wade et al. 2010) 95.3

Matlab LM (Wade et al. 2010) 95.7 RBF (Gueorguieva et al. 2006) 89

TEST (Yoon and Lee 1999) 91.7 SNNBako (Bako 2010) 83.4

Spiking SOM with NR 90.9
Spiking SOM without NR 87.8

these results), the FPGA implemented classification network of (Bako 2010), and the spiking

neuron RBF network of (Gueorguieva et al. 2006).

Categorisation performance is slightly worse than several other networks: the spiking RBF

model of Bohte et al. (2002), the SpikeProp model of Wu et al. (2006), the SWAT model of

Wade et al. (2010), the TEST algorithm (Yoon and Lee 1999), and Matlab implementations

of the backpropogation and Levenberg-Marquardt training algorithms (Wade et al. 2010); it is

worth noting, however, that these are designed specifically for data classification purposes and

do not feature the topographical ordering properties of the SOM model.

5.3.7 Wisconsin Breast Cancer dataset

The second dataset used for categorisation testing was the Wisconsin Breast Cancer dataset

(WBCD), consisting of 683 samples from 2 categories (444 benign and 239 malignant tumours),

with 9 measures of features of cytology. Each of the 9 measures is a discrete value from [1,10],

converted into a value in the range [0,1] for the current purpose, and represented using a bank

of 10 input neurons, meaning that layer u consisted of 90 neurons in this case. As such the

value of wu→v
max is scaled down to 0.7, the value of wu→Inhu

max to 0.4, and the X and X ′ values were

adjusted to 3.5 in the without-neighbourhood-reduction condition, to account for only having 2

categories occupying the 10 × 10 output map; all other parameters remained identical to those

used in section 5.3.6.
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Figure 5.17: Confidence matrix for classification using the Wisconsin breast cancer data set.
Rows show input category and columns show the output category determined
by analysis of the network responses. The colour scale shows the percentage of
input patterns from a category that are classified as each category by the network
output. The two categories are well classified.
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Table 5.3: Clustering accuracy (%) of spiking neuron and non-spiking neuron algorithms for
the WBC dataset.

Non-spiking % acc. Spiking % acc.

Matlab BP (Wade et al. 2010) 96.3 SpikeProp (Wu et al. 2006) 97

Matlab LM (Wade et al. 2010) 96.7 SWAT (Wade et al. 2010) 95.3

SNNBako (Bako 2010) 89.5

Spiking SOM with NR 96
Spiking SOM without NR 97

Categorisation accuracy, averaged over 8 trials, was 96.4% (standard deviation = 0.4%) in the

without neighbourhood reduction condition and 97.0% (standard deviation = 0.1%) in the with

neighbourhood reduction condition. Figure 5.17 shows the confusion matrix for this cate-

gorisation task, demonstrating good categorisation of both categories present in the dataset.

Again, these results are compared with the categorisation accuracy of other algorithms using

this dataset, shown in table 5.3. The spiking SOM again outperforms the FPGA categorisa-

tion algorithm implementation of Bako (2010), and achieves a very similar level of accuracy to

models that have been designed specifically for clustering and categorisation operations.

5.3.8 Micro-Doppler dataset

The third dataset used for categorisation testing was a micro-Doppler dataset. The initial data

was collected from experiments in which 3 participants each performed 5 activities twice in

front of a sonar recording device (Zhang and Andreou 2008). The raw sonar output was filtered

through 100 spatiotemporal receptive field (STRF) filters and normalised to the range [0,1],

resulting in a 100 dimension input vector for each pattern. As such, this dataset consisted of 30

samples from 5 categories (2 participants performing each activity: fast cycling, slow cycling,

skating, running and walking), with 100 measures of STRF activity throughout the pattern.

Each of the 100 measures (a value from between 0 and 1) was represented using a bank of 10

input neurons, meaning that layer u consisted of 1000 neurons in this case. As such the value

of wu→v
max is scaled down to 0.06, the value of wu→Inhu

max to 0.05, and the X and X ′ values were set

to 3.0; all other parameters remained identical to those used in section 5.3.6.

Three-fold cross-validation, rather than five-fold, was used for this input dataset, due to the
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Table 5.4: Clustering accuracy (%) of spiking neuron and non-spiking neuron algorithms for
the micro-Doppler dataset.

Non-spiking % acc. Spiking % acc.

Bootstrap (Garreau et al. 2011)) 80 Spiking SOM without NR 72
K-means (Dura-Bernal et al. 2011) 95

combination of reduced number of input stimuli and increased number of categories relative to

the iris dataset and WBCD; using three-fold cross-validation ensured that there was more than

one input pattern in a testing set for each fold. Categorisation accuracy achieved was 72.3%.

Only a without neighbourhood reduction condition was tested in this case. Again, these results

are compared with the categorisation accuracy of other algorithms using this dataset, shown

in table 5.4. The spiking SOM categorisation is worse than other categorisation attempts per-

formed on this dataset (Dura-Bernal et al. 2011; Garreau et al. 2011). However, these other

attempts do not use a generic spiking neuron network that is not specifically designed for a cat-

egorisation task of this nature. The confusion matrix of the spiking SOM classification output,

shown in figure 5.18, shows that activity category 4 is frequently mistaken for category 1. The

inability of the spiking SOM to detect the differences between these categories from among the

1000 input spike trains results in overall decreased accuracy at this task. Classification for the

other categories remains strong.

A potential method for improving categorisation accuracy in cases with an increased number

of categories is to increase the size of the network relative to the width of the neighbourhood.

This could result in more space within the output layer for a finer granularity of category sepa-

ration to form. However, without altering the network parameters (aside from the feedforward

connection strengths) from those used to produce SOM-like results, acceptable categorisation

performance is found.

5.3.9 Initial testing for potential hardware implementation

Special purpose, analogue spiking neuron hardware has been investigated in recent years (In-

diveri et al. 2011). The fundamental difference between the analogue principles of neural pro-

cessing and the digital principles of traditional computing mean that huge computational power
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Figure 5.18: Confidence matrix for classification using the iris data set. Rows show input
category and columns show the output category determined by analysis of the
network responses. The colour scale shows the percentage of input patterns from
a category that are classified as each output category. Categories 1, 2 and 5 are
well classified, category 3 gets confused with category 1 in a fifth of cases, and
category 4 is often confused with other categories, lowering the classification
accuracy for this dataset.
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is required to enable real-time3 performance of a spiking neural network. This has motivated

the field of neuromorphic engineering, constructing analogue hardware in which the speed of

the neurons and their connections is independent of their quantity. The development of network

implementations that perform useful, non-trivial functions on these platforms is crucial to con-

tinuing to improve the hardware. With this in mind, simulations were carried out to examine

the possibility of constructing a version of the spiking SOM on an analogue chip.

The hardware has 128 IAF neurons, and 128 × 32 synaptic circuits. Each synaptic circuit

contains 2 excitatory, 2 inhibitory and 28 excitatory plastic synapses. Additionally, synaptic

circuits from unused neurons can be redirected to other neurons if fewer than 128 neurons are

used in the network. The plastic synapses are capable of learning using the BSF rule (see section

3.3.5). This hardware has been used in a model of thalamo-cortical processing for auditory

stimuli (Sheik et al. 2012), which was able to learn and selectively respond to the dynamic

features of auditory stimuli. Also, a classification task was performed on binary input patterns

represented by either high or low firing rates across 60 input synapses, with a good accuracy

level achieved using this hardware (Mitra et al. 2009).

Software simulations were conducted, using the same spiking SOM model described previously,

although with several modifications to take account of the constraints imposed by the limitations

of the planned hardware platform. To simplify the network for initial testing on the hardware,

one input dimension was used, with a one dimensional output map. This involved a reduction

in the number of neurons in u to 10, all of which were tuned to respond to the same input

dimension. Input neuron receptive field tuning remained as in the two-dimensional model. The

output layer was also reduced to 10 neurons, with neurons located on a one dimensional output

grid, reflected in the lateral connection weights. The parameters relating to lateral connection

initialisation (see equations (4.4) (on page 57) and (4.5) (on page 58)) were set as: a = 5, b = 7,

X = 3, X ′ = 3, with grid distances between output neurons calculated using a ring structure.

Feedforward connection strengths between the input and output layers were initialised with

the same Gaussian noise as in the two-dimensional model, but with stronger maximum weight

3The current spiking SOM model, set up for two input dimensions, runs approximately three times slower than
real-time; performance is greatly reduced for an increased number of input dimensions.
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(wu→v
max = 4.0, wu→Inhu

max = 2.0), to make up for the reduced number of units in u driving v. Network

parameters not mentioned were identical to those in table 5.1.

The largest change to the function of the spiking SOM enforced by the nature of the hardware is

a change to the learning rule. Here the STDP rule used previously (see section 5.2.2) is replaced

by the BSF rule (see section 3.3.5), as described by equations (3.21) to (3.25) (on pages 47 and

48). The BSF rule is designed to be able to replicate rate-based neural plasticity by potentiating

a synapse when, at the time of presynaptic firing, the postsynaptic membrane potential is above

a threshold (indicating sufficient presynaptic activity) and a calcium concentration measure is

within a high range (indicating a recent history of postsynaptic activity). A synapse is depressed

when presynaptic firing coincides with low postsynaptic membrane potential and a calcium

concentration within a low, non-zero range. This learning rule poses a fundamental problem for

the type of self-organisation described in section 5.2.6. The input neuron best representing the

actual input pattern fires ahead of the other input neurons, early in the phase, at which time the

output neurons will have membrane potentials close to zero. As such, connections from early

firing input neurons to firing output neurons will never be potentiated, and the self-organisation

fails.

A solution to this problem is to set the threshold value θV (from equations (3.22) and (3.23))

to below the resting potential, 0, and above the after-spike reset potential, −1. This means that

synapses from all early firing neurons will be potentiated by all output neurons firing for the

input pattern. Input neurons that are poor representatives of the actual input values will fire after

the output firing. This will therefore occur while the firing output neuron’s membrane potentials

are hyperpolarised, causing synapses from these input neurons to be depressed. The calcium

variable prevents neurons without a recent history of postsynaptic firing from receiving changes

to their synaptic weights, ensuring that, despite the low threshold for potentiation, weights do

not increase for neurons that are not winning the current competition. This aspect of the rule

coincides well with the established spiking SOM training protocol of presenting an input pattern

across multiple network oscillations in succession (see section 5.3.1). Upwards and downwards

drift of synaptic weights, as in equations (3.24) and (3.25) was not necessary in the current
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context. BSF rule parameters were, then, established as: θV = −0.05, a = 0.0016, b = 0.006,

JC = 1.0, τC = 10ms, θ l
up = 1.0, θ h

up = 10.0, θ l
down = −10.0 and θ h

down = 1.0. These calcium

rule parameters ensure that successive post synaptic spikes in the most recent two oscillations

are required for potentiation to occur.

Training of the network was conducted as detailed in section 5.3.1, with 4000 training steps,

each consisting of the presentation of one input pattern for 5 oscillations of the network. An

average final normalised EMDS value of 0.00813 was obtained across 9 trials. The maximum

likely EMDS value for this input data set, if every input pattern produced a response from the

same output node, is 0.0944. The obtained average value represents an average EMDS reduc-

tion through training of 83% relative to the values for the random initial weights at the start of

training. Figure 5.19 shows examples of the final weight matrix and output layer firing. After

training, a transition through the input data space is met with a representative transition through

the output layer. Figure 5.20 shows a typical example of the time course of the EMDS value

throughout training. As in the two-dimensional spiking SOM, the error present in the mapping

for the simulated spiking hardware SOM quickly reduces to a fraction of its starting value, then

remains stable while training continues despite there being no reductions in learning rate or

neighbourhood width. This result demonstrates the plausibility of a potential implementation

of the spiking SOM on analogue spiking neuron hardware. The principles of self-organisation

through spike timing, oscillatory activity, and a lateral neighbourhood established for the spik-

ing SOM still result in reliable output map formation, despite changes to the network structure

and scale, and the inclusion of an entirely different learning rule.

5.4 Summary

The spiking SOM implementation described in this chapter is unique, making use of a set of

general cortical properties, implemented with spiking neuron methods, to produce results that

are demonstrably qualitatively similar to those produced by the original SOM algorithm. The

model, described in section 5.2, demonstrates how a network of spiking neurons can process in-

formation in a manner mimicking some important aspects of the flow of information in cortical

networks. Oscillations within a layer result in a natural segregation of continuous input stimuli,
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(a) Firing times of output neurons (b) Weight matrix from input to output

Figure 5.19: Example results of 1-dimensional spiking SOM for hardware: 5.19(a) Firing
times of neurons in v (rows) for input patterns (columns); 5.19(b) Weights be-
tween neurons in u (columns) and nodes in v (rows). Lighter squares represent
earlier firing times in 5.19(a) and stronger weights in 5.19(b).

while transmitting relevant stimulus properties to the subsequent layer through a temporal code

within each phase of the oscillation. The oscillatory nature of the input encoding results in

oscillating periods of activity and inactivity within an output layer, while recurrent lateral con-

nections result in a winner-takes-all functionality. This combination of temporally transmitted

information and competition are a good fit for learning through a biologically plausible STDP

rule. The outcome of this network structure is the reliable generation of a two-dimensional

topographic representation of the input space.

In section 5.3.4 the robustness of this map formation is demonstrated. With no need for learn-

ing rate or neighbourhood function decay schemes, the spiking SOM is capable of organising

to two-dimensional input with a final topographic mapping error that is just a few percent of the

error present in a random initial map. This mapping is representative of the input distribution,

with maps trained on data skewed away from an even distribution across the input range dis-

playing a skewed output representation. The stability of learning rate and neighbourhood size

ensure that a reorganisation of the output representation is possible at any point in response to

a change in the nature of the input distribution. Of course, the map could potentially be frozen
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Figure 5.20: Typical time course of EMDS values for 1-dimensional spiking SOM for hardware.
EMDS value reduces within the first 1000 training steps, then fluctuates throughout
the remainder of training.

at any point in the learning process by reducing the learning rate to zero, with intermediate

learning rates resulting in more map stability, such that a changed input distribution would need

to be present for a longer period of time before the output representation would adapt.

In sections 5.3.6, 5.3.7 and 5.3.8 the effectiveness of the spiking SOM as a classifier for datasets

containing categorical information is demonstrated. In general, categorisation performance is

on a par with other spiking neuron network models. However, the majority of the models in-

cluded in the performance comparison are designed with the task of classification as the main

goal of the algorithm. The spiking SOM also incorporates the general representational prop-

erties described in the above paragraphs, and as such its ability to rival specifically designed

categorisation models at a categorisation task is impressive. Finally, in section 5.3.9, a poten-

tial hardware implementation of the spiking SOM is discussed, with some preliminary results

demonstrating the feasibility of this endeavour. A continuation of this work, leading to an actual

implementation, represents a potentially important step in the development of analogue spiking

neuron hardware, as it would be the first implementation of its kind of a model with general
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topographic mapping and categorisation properties. In turn, this could lead to removal of some

software imposed computational constraints on the network, resulting in the implementation of

fast, large SOMs of spiking neurons, the investigation and analysis of which might be a highly

fruitful enterprise in the field of artificial intelligence.

A goal of the current work is to present a model capable of topographic map formation, but also

capable of representing the structure of conceptual information. Chapter 6 extends the model in

the current section to include encoding of binary input patterns and differential levels of lateral

excitation and inhibition through the introduction of separate excitatory and inhibitory neurons

within the output layer. These changes allow for the storage and retrieval of hierarchical data

sets with the generic spiking SOM framework.
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Chapter 6

Hierarchical category representation

6.1 Introduction

The aim of this chapter is to produce a model that is capable of representing hierarchical con-

ceptual information. As discussed in section 2.5, representation of high-order information, for

example visual object categories in inferior temporal cortex, appears to have components of

both continuous and categorical representational structure in the brain (Tompa and Sáry 2010).

Neurons respond to categories with an inherent hierarchical structure (Kiani et al. 2007). Popu-

lation response patterns for one stimulus are more highly correlated with response patterns for

a stimulus that is a member of the same sub-category than for a less related stimulus. The clus-

ters formed from response patterns in inferior temporal cortex resemble categories that seem

intuitively to be present to humans.

Evidence from biology also suggests that some of these high-order representations are formed

from input that represents the presence or absence of features. Kiani et al. (2007) found that

the category structure present in population output responses of neurons in IT cortex could not

be accounted for by low-level features of a visual stimulus, but instead must have resulted from

visual information processing after V1 that is likely to extract information about the features

present in a stimulus. Additionally, it has been demonstrated in a study of the representation of

information about external events in the mouse hippocampal populations that neural assembly

responses can be interpreted as a binary code representing information about situational features

(Lin et al. 2006).

This suggests that a binary set of feature-object pairings, as seen in formal contexts from the

field of formal concept analysis (FCA) (Wille 1982; Wolff 1993) may be similar to some of the
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types of input used to form object categories in the brain. A conceptual structure in FCA, known

as a context, consists of binary object-feature relationships, whereby a feature that is present for

a given object is denoted by a 1, and a 0 is used where a feature is not present. In this domain,

a concept is the set of object-feature relations such that for all features and objects selected, all

features are shared between all objects. Table 6.1 (introduced in section 6.2.5, below) shows

an example input data set of this nature. In terms of this context, an example concept is the

relation between features 1, 2 and 4 and objects 1 and 2. The three features are shared by the

two objects, each of which is itself a subconcept of this superconcept.

Formal concepts can be represented by bidirectional associative memories (BAMs) (Kosko

1988), in which a neural layer represents objects, another represents features, and the weight

matrix between them is set identically to the context matrix (Bĕlohlávek 2000). Upon presen-

tation of a stimulus consisting of some set of present features, the threshold is set such that the

feedforward connections to the other layer will only be able to activate neurons for which all of

those features have weights of 1. In this way, only the objects that share all of the input features

presented to the network will be activated (Rajapakse and Denham 2005). This also works in

the other direction, selecting a set of just the features that are shared by a set of input objects.

Figure 6.1 shows this process in effect in a BAM storing a context of data relating to the solar

system. The attributes of each object (planet) are stored as positive weights between the object

and attribute; activation of an object results in activation of all of the attributes present for that

object on the forward step, then on the reverse step all of the objects sharing those attributes are

activated.

The BAM learns these hierarchical structures through a ‘one-shot’ learning rule, in which each

of the weight values is inserted into the weight matrix. A more natural learning strategy would

be to gradually learn the correct associations between features that make specific objects in an

unsupervised fashion, through the analysis of the relational properties of the data over many

trials. Of course, the SOM is capable of this, and work has investigated the utility of incor-

porating a self-organising map layer as the ‘object’ layer of the BAM (Chartier, Giguère and

Langlois 2009; Chartier, Giguère, Langlois and Sioufi 2009). The network consists of a layer
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Figure 6.1: The process leading to activation of concepts in the BAM. The example presented
here contains a context representing the solar system. The object layer consists of
one node for each planet. The attribute layer consists of one node for each feature
that a planet object can possess, which are size small, medium or large, distance
near or far, and moons yes or no. Connections between the layers are either a small
positive value (solid lines) or a large negative value (dotted line). The top half of
the figure shows that activation of the Mars object causes, through the positive
connecting weights, activation of the size small, distance near, and moons yes
attributes. Attributes with negative weights are not activated. The bottom half of
the figure shows the second step in the algorithm, which, due to the strong negative
weights, results in activation only of objects that possess all of the same features,
in this case activating the Earth object. From Rajapakse and Denham (2005).
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of neurons representing input features, fully connected to an output layer, arranged through a

lateral interaction profile in a two-dimensional grid; effectively a SOM layer. However, there

are also feedback connections from the SOM output layer to the input nodes. The weights are

random initially, and learn through Hebbian association. A spatial response in the output layer

indicates the object selected by the set of input features. However, it is unclear whether a full

set of concepts can be learned from this model; indeed, partial input objects are completed by

the associative feedback mechanism from the output layer, leading to pattern completion, rather

than sub-concept representation. The links between this model and the BAM for FCA context

representation suggest that if a SOM layer is capable of generating output representative of the

hierarchical structure of its input, this could be a valuable model for extension to representation

of full formal contexts.

Other neural network models have attempted to utilise cell assemblies (CAs) to capture the

hierarchical composition of conceptual relations (Huyck 2007; Wennekers 2009). A CA is a

collection of neurons that co-activate, such that the excitation of one section of the CA will

eventually ignite the rest, resulting in pattern completion, a kind of category selection similar to

that demonstrated in the model of Chartier et al. (2009). When neurons are members of multiple

CAs, the overlap naturally generates a hierarchical relational structure between the categories

represented. This property is exploited in (Huyck 2007) in a network that learns, through a

Hebbian rule, to respond to a set of binary input features with a particular CA activation in

an output layer. It is shown that the correlations between the output representations of objects

reflects the amount of feature overlap between those objects. Additionally, a super-concept CA

forms in the output layer, representing the features that are common to all of the input objects.

Other models attempt to capture the hierarchical subconcept-superconcept relation between

concepts. Among older, symbolic models of concept formation is the ‘CLASSIT’ algorithm

(Gennari et al. 1989). Interestingly, this approach makes use of continuous features, essentially

adding prototype objects to the representation, each situated at a mean location in the input

space, and representing some range of feature values. There are links between this approach

and the type of representation that might be seen in classification tasks in the SOM, with output

114



6.1. INTRODUCTION

neurons having prototype values for a range in the space of the input dimensions, and the combi-

nation of prototypes for clusters of neurons delineated by sharp changes in the map representing

particular categories.

A model that provides an interesting insight into hierarchical category formation is the model

of Kim et al. (2008), a competitive two-layer network featuring recurrent lateral inhibition and

Hebbian learning, which is used for category learning. In this work the number of categories

formed in the output layer of the network emerge as a consequence of the level of impact of

excitatory activity upon the neurons causing the lateral inhibition. Greater levels of inhibition

lead to a finer granularity of category formation; an input data set is more finely categorised,

with smaller regions of the input space represented by separate small regions of the output

space. In the case where the input data are binary feature vectors, a finer granularity of category

means a smaller number of output neurons represent a smaller collection of input features. This

suggests that altering the responsiveness of inhibition in a neural layer presents a method of

adjusting the hierarchical level of the concept learned or recalled by a network.

The model described in this chapter is based primarily on the self-organising map model de-

scribed in chapter 5. Changes to the method of input encoding are made to account for a binary

input vector, with a data set of binary object-feature relations being used for the new model.

Differences in the structure of the output layer help to facilitate the development of a hierarchi-

cal relationship between representations while still maintaining the topographic organisational

capabilities of the spiking SOM.

The following sections describe learning and recall in the modified network using input data

sets consisting of binary object-feature relations. The results demonstrate the extent to which

hierarchical structure is represented in the learned network, the conditions in which it can be

learned, and the relationship of this type of learning to existing models of binary feature-object

representation, as well as some indication of the relationship between this model and cortical

representation. The new model is described in section 6.2. The training and testing methods,

the input data sets used to train the model, and the parameters used in the simulations are

also described here. Section 6.3 provides analysis of how the trained network represents a
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hierarchy. Modifications to the network parameters that allow for either learning or recall at

specific hierarchical levels are also presented here, as well as a demonstration that similar results

can be achieved using noisy partial input patterns.

6.2 Methods

For the storage and retrieval of hierarchical information from the network, several key changes

are made to the model described in chapter 5, introduced below. The functional relationship

of these changes is discussed in section 6.2.4, below. Parameters for all equations relating to

the model are listed in table 6.2. In spite of these changes, important computational properties

of the spiking SOM are retained, such that the new model is capable of a qualitatively similar

topographical representation.

6.2.1 Neuron model

The LIF neuron model is retained, modelled by equation (5.1) (on page 70) as in the spiking

SOM model. However, in this case the model also features an after-spike relative refractory

period, modelled through a transient increase in the firing threshold, according to

τθ

dθ j

dt
= 1 − θ j + as j, (6.1)

where s j is a binary variable representing the instantaneous presence or absence of a spike in

neuron v j, θ j is the threshold value in neuron v j, τθ is the time constant for decay of the mem-

brane threshold, and a is a constant representing a sufficient multiplier to render the threshold

impossible to reach from subsequent PSPs.

6.2.2 Input encoding

The input data for the current model consists of sets of binary feature relationships, similar to

the object-feature pairings found in a formal context in FCA (Bĕlohlávek 2000). As such, input

to the new model at each training step consists of an n-dimensional vector of binary numbers.

The banks of neurons representing each number in the input vector from the spiking SOM

model are removed here, and instead each dimension In can be represented by a single neuron.
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Each In in the input vector could simply be applied as an input current to its associated input

neuron un. However, assuming equal membrane potentials in all ui at the initiation of the input,

this would result in simultaneous firing for each un representing an In that equalled one, and no

firing for all other un. For the STDP rule and topographic mapping properties to be retained

from the spiking SOM model, a phase-of-firing coding in which good representatives of the

input pattern fire early and poor representatives fire late is essential (see figure 5.6). To facilitate

this type of temporal representation of input, the value of the noise term g in equation (5.1) was

set to 0.6, causing spike times to be jittered by up to ∼4 ms. Additionally, the activation value

for all un representing zeroes in the input was set to 0.88. Coupled with a firing threshold of

0.5 for all un, these values lead to a firing pattern in which the un representing ones in the input

pattern fire relatively early, and the un representing zeroes in the input pattern fire relatively late

(between 0 and 8 ms after the latest firing for a un representing an In value of 1). An example

firing sequence resulting from this is shown in the layer u section of figure 6.2.

6.2.3 Output layer

It is shown in (Kim et al. 2008) how the modification of responsiveness of separate populations

of excitatory and inhibitory neurons in a layer can lead to the manipulation of the granularity

of category formation in both learning and recall. The existing spiking SOM model, however,

simplifies the actual cortical anatomy by considering the overall lateral effect of a neuron in a

layer. In this case, both excitatory and inhibitory efferents exist exiting from each neuron. To

investigate the effects of altering the ratio of excitatory to inhibitory excitability within the layer,

the output layer of the new model consists of separate populations of excitatory and inhibitory

neurons.

The model retains a 10 × 10 regularly spaced grid of 100 neurons, now all purely excitatory.

A 5 × 5 grid of 25 purely inhibitory neurons is introduced. Both types of neurons are located

on the same grid in the output space, so distances between both populations are calculated

according to location within the same grid structure. The inhibitory neurons are interlaced such

that each inhibitory neuron is located in the output layer space at a point between four excitatory

neurons. The inhibitory neurons are also equally spaced, effectively having twice the distance
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Layer vexc

Layer vinh

15ms0ms

Layer u

LTP LTD

Figure 6.2: The mechanics of learning in the hierarchical representation network. A spike
sequence in a bank of neurons in layer u represents the binary input vector, with
early firing neurons representing values of 1 in the actual input object and late
firing neurons representing values of 0. The lower black arrow represents all to all
feedforward synaptic connections from u to v. At some point in the firing of the
pattern in u, an excitatory neuron in v fires, winning the competition. Neighbouring
neurons in v are caused to fire within close temporal proximity. This excitatory
activity activates inhibitory neurons in v, shown by the upper right black arrow.
Inhibitory firing then feeds back to the layer v excitatory neurons, stifling firing
in the layer, shown by the upper left black arrow. The gap between the LTP and
LTD boxes in layer u represents the time at which firing in v occurs relative to the
firing in u. Synapses from any layer u neurons that have fired before that point are
strengthened (the LTP box) and synapses from any layer u neurons that fire after
that point are weakened (the LTD box).
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between each pair of inhibitory neurons as there is between each pair of excitatory neurons,

due to there being fewer inhibitory neurons spread over the same space. Excitatory neurons

have synapses with both excitatory and inhibitory neurons in the layer, with the presence of a

connection being determined by the distance within the layer between the two neurons. The

same applies to inhibitory neurons. The lateral connection weight profile is based on distance

in the output layer, with shorter range connections being excitatory overall, and longer range

connections being inhibitory overall, as in the spiking SOM model.

To recreate the spiking SOM weight profile with two different types of neurons there is no

overlap between the distance dependent profiles of excitatory and inhibitory connections. The

maximum distance for an excitatory connection is determined by the same variable that deter-

mines the minimum distance for an inhibitory connection, r. As such, the synaptic weight w̄ jk

between neurons at locations i and j in the grid for connections from excitatory and inhibitory

neurons are determined by equations (6.2) and (6.3) respectively:

w̄ jk = wvexc
max

r − d
r

, for d < r (6.2)

w̄ jk =−wvinh
max

d − r
1 − r

, for d > r (6.3)

Here, wvexc
max and wvinh

max represent the maximum magnitude of excitatory and inhibitory weights

respectively, d is the distance between the neurons as a fraction of the maximum possible dis-

tance within the layer, toroidal wrapping accounted for, and r is a radius for the grid distance

for the maximum distance for excitatory connections and the minimum distance for inhibitory

connections.

Both excitatory and inhibitory neurons receive complete all-to-all feedforward connections

from the input layer. The connection strengths are initialised randomly as in the spiking SOM

model (see section 5.3.1). However, the connection strengths to inhibitory neurons are initially

slightly lower than those to excitatory neurons (see table 6.2 for specific parameters), to prevent

inhibitory firing in the layer ahead of excitatory firing (which would suppress all output layer
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activity in a region). Connections from the input layer to output inhibitory neurons are also not

subject to learning.

6.2.4 Functionality

The goal of the changes to the network presented above is to enable the learning of a binary

input pattern through an alternative method of input encoding, while also introducing changes

to the output layer that allow for manipulation of the learning and recall of hierarchical patterns.

The process through an oscillation in this model resembles that of the spiking SOM model.

Neurons that are good representatives of the actual input pattern fire early. Feedforward con-

nections between the layers cause the output neuron with the most appropriate weights to fire

first. After that point, more neurons fire in the input layer, which are poor representatives of the

actual input pattern. Noise in the membrane potential model in the input neurons causes firing

times to be spread across a range, regardless of the fact that all nodes in the pattern take a value

of 1 or 0 as an input activation level. This temporal sequence allows steady integration of PSPs

in the output neurons, generating a spike fastest in the best representative in the output layer.

The network retains the topographic mapping properties of the spiking SOM through the use

of a qualitatively similar lateral connection weight profile. Short range excitatory connections

encourage the firing of neurons in a neighbourhood around that winner, both excitatory and

inhibitory. The local inhibitory neurons prevent neurons from outside of that neighbourhood

from firing, but have no effect on neurons within the neighbourhood. Excitatory neurons within

the neighbourhood in turn stimulate each other further. Unchecked, this would generate run-

away firing through reciprocal excitation with no inhibition within the neighbourhood. The

incorporation of a refractory period for the excitatory neurons counteracts this by raising the

firing threshold sufficiently to prevent a second firing of an excitatory neuron until the lateral

excitatory PSPs have diminished. Inhibitory neurons are not subjected to threshold adaptation,

and so may fire multiple times within an oscillation. The excitatory neuron membrane potential

has a lower limit, however, so these multiple inhibitory spikes are not disruptive, and in fact aid

in resetting excitatory membrane potentials to a consistent level ahead of the next oscillation.
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Features
Objects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
2 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0
3 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0
4 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0
5 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0
6 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0
7 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0
8 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

Table 6.1: Simple hierarchical data set. All patterns share feature 1, which represents the top
hierarchical level. Features 2 and 3 are shared by exclusive halves of the input ob-
jects each, meaning that they represent the second hierarchical level. The remaining
features divide the objects into exclusive halves again, generating two more hierar-
chical levels.

6.2.5 Sample input pattern

A simple hierarchical structure can be formed from three binary features and two input data,

if only one feature is shared by those data, and the other two features are only held by one of

the data each. In this case, the presence of the shared feature between both data constitutes

a superset, and the differentiation of the two data through the other features places them in

separate subsets. Extending this approach, an extra layer of the hierarchy will split each of

those subsets into two further subsets, with four new features added. Adding an additional eight

features results in a simple hierarchy of four levels, consisting of fifteen features split into eight

individual objects. This data set is shown in 6.1, and will be used as the main example data set

for testing the hierarchical learning and recall capabilities of the network.

Each input pattern contains exactly four 1s. Accordingly, the maximum feedforward weight is

set such that, when weights have been fully potentiated, an output neuron will fire after exposure

to four input spikes that match the fully potentiated weights.

6.2.6 Network parameters

Table 6.2 shows the parameters used for the new network. The input and output layers, u and v

respectively, were setup as described in section 6.2.1. The radius r in equations (6.2) and (6.3)

was set to 0.32, and the distances between neurons in the layer were calculated with toroidal
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(A) Neuronal parameters
∆t τ

u,v
m τ Inhu

m Vrest θ u θ Inhu

0.1ms 1ms 0.5ms 0.0 0.5 0.01
θ v tauθ gu

1.0 0.3 0.6
(B) Synaptic parameters
u− v u→ Inhuexc u→ Inhuinh
τr τ f τr τ f τr τ f

0.5ms 2.5ms 1.0ms 5.0ms 0.3ms 1.5ms
Inhu→ u vexc→ v vinh→ v
τr τ f τr τ f τr τ f

0.6ms 3.0ms 0.5ms 2.5ms 0.25ms 1.25ms
(C) Connection parameters
wu→vexc

max wu→vinh
max wu→Inhuexc

max wu→Inhuinh
max wInhu→u

max wvexc→v
max

4.8 3.8 1.0 1.0 200.0 0.5
wvexc→vexc

max wvinh→vexc
max wvinh→vinh

max
2.0 2.0 2.0
(D) Neighbourhood parameters
r %
0.32
(E) Learning parameters
A+ A− τ+ τ−
0.002 0.01 10ms 10ms

Table 6.2: Network parameters for all simulations described in section 6.3. (A) Neuronal pa-
rameters, used in equations (5.1), (5.4) and 6.1 (B) Synaptic time constants, used
in equations (5.2) and (5.3) for different synapse types. (C) Maximum magnitudes
of synaptic connection strength (D) Lateral connection profile parameters, used in
equations (6.2) and (6.3), for layer v. (E) Learning parameters, used in equation
(5.5)

structure. This means that excitatory connections cover a radius of 32% of the network width,

and inhibitory connections only occur outside of this radius.

Values of τ+ and τ− in equation (5.5) (on page 73) were both set to 10ms. Again, this width of

learning window approximately matches the temporal width of a network oscillation, leading

to negligible influence on learning of spikes from neighbouring oscillations.

The parameters for the current model differ from those used in the spiking SOM (see table 5.1)

in several ways. Synaptic time constants for feedforward connections between u and v, as well

as for lateral connections in v are longer than in the spiking SOM model. This is to account

for the greater potential spread of firing times for input nodes; there are effectively pre-defined
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firing times for neurons in the spiking SOM input layer, but here there may be larger gaps

between spikes. Time constants for the inhibitory chopping circuit in the input layer are also

adjusted to account for this increase in variability. Connection weight parameters are scaled to

the number of input neurons, with the maximum feedforward weights between u and v increased

to account for a decrease in input layer size, and also a decrease in the number of early spikes

in the layer that are representative of the actual input value. Learning parameters are skewed in

favour of depression, to account for the variability in input neuron firing times causing output

neurons to be more likely to fire after a spike from a non-representative input neuron.

6.2.7 Training and testing

The network was trained on the input data set for 4000 training steps, as in the training for

the spiking SOM model. At the start of each training step an input pattern was determined

by selecting randomly from the patterns available in the given data set. A training step lasted

through 10 oscillations of the network (approximately 250ms) before the input pattern was

changed. The ability of the network to capture the hierarchical structure present in the sample

input data set can be assessed using several methods outlined below.

Learning a hierarchy

Network output was first tested after training with the 8 main input objects, at the lowest hi-

erarchical level. The predicted outcome for this testing is that, if the network is capable of

representing a particular level of the hierarchy, network output for presentation of a stimulus

from that level of the hierarchy should correlate with the sum of network output from all in-

dividual members of that superset. For example, in the current data set (see table 6.1), the

superset consisting of only objects 1 and 2 would consist of features 1, 2 and 4, but not 8 or

9. The prediction states that the output from presenting features 1, 2 and 4 only to the network

should correlate with the sum of the output from presenting objects 1 and 2 (which do include

features 8 and 9, respectively).

In the testing phase the output activity of the trained network was recorded over 100 trials with

each of the original input patterns, along with the supersets from each hierarchical level. The
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Features
Patterns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
5 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
6 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
7 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
8 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
9 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0
10 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0
11 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0
12 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0
13 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0
14 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0
15 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

Table 6.3: The simple hierarchical data set with all supersets of the original 8 objects included,
to generate 15 testing patterns. 7 additional testing patterns are added to the training
data set shown in table 6.1. Each of these new patterns consists of just the features
that constitute a hierarchical level, with pattern 1 representing the top hierarchical
level by only consisting of feature 1, patterns 2 and 3 representing the second hier-
archical level by also incorporating features 2 and 3 respectively, and so on, such
that all three levels above the lowest represented.

original 8 input patterns are paired into 4 supersets, by removing any 1s present for features

8 to 15 from the patterns. This renders objects 1 and 2 indistinguishable, and so on, resulting

in 4 further distinct input patterns. The same principle can be applied to features 4 to 7 to

generate 2 further patterns, and again to features 2 and 3 after that, to generate one final pattern

corresponding to the superset of which all of the original 8 patterns are members. This results

in a total of 15 patterns presented to the network throughout testing, shown in table 6.3.

Learning supersets using subset input

Hierarchical structure may exist within an input data set to a depth below that which a particular

network configuration is capable of learning. The prediction in this case is that the excitability

of neurons in the output layer should play a role in determining the maximum depth of hierarchy

that will be learned by a network. If output neurons are more excitable they will fire earlier,

requiring firing of fewer input neurons to activate. This will essentially shift the LTP and LTD

windows in figure 6.2 to the left. As a result, less features will have their weights potentiated,
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resulting in the learning of less fine-grained distinctions between input patterns, and a loss of

information at lower hierarchical levels.

This prediction was tested by varying the firing threshold of layer v neurons. Training was

conducted as above, using the original 8 objects as the training data set, and using different

firing thresholds in the training phase for different trials. The threshold ranged from 0.2 to

0.8 of the original threshold used in the previous training, at intervals of 0.2, with 10 trials

conducted for each value. Testing then consisted of the recording of average network output, as

above, for the 8 original input objects, with the expected outcome that lower thresholds (more

excitable neurons) result in more homogenised output activity patterns.

Recalling supersets using subset input

A further test of the extent to which hierarchical structure is represented in the network is to

examine whether the network can produce a response representative of a higher hierarchical

level when presented with a more specific input. This type of behaviour is examined in Kim

et al. (2008) and is achieved through the use of a top down input to modify the responsiveness

of inhibitory neurons in the output layer. As such, it is predicted that similar behaviour will be

present in the current model.

Reducing the responsiveness of the inhibitory neurons in layer v, relative to the responsiveness

of the excitatory neurons, should represent a method of recalling output patterns within a single

oscillation that more accurately approximate a superset representation. Lower responsiveness

will result in an inhibitory neuron firing later in the phase relative to the excitatory neurons.

This late response allows time for excitatory neurons to fire that would otherwise not receive

enough input to reach threshold before becoming inhibited. After the firing of the winning

excitatory neuron, reciprocal lateral excitatory connections become the dominant connections

within the network. In this scenario, later firing of inhibitory neurons simply results in a wider

radius of neighbourhood activity around the winning unit. Neurons sharing a superset with the

actual input object will already have received input from several of their preferred input neurons,

priming them for firing. These neurons are also, due to the topographic mapping properties of

the layer, relatively close to the winning neuron. As such, the extra time taken for inhibitory
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firing results in firing for, on average, neurons that represent the remainder of a superset of the

actual input object.

Testing of this prediction was conducted on the network after training as above, using the orig-

inal 8 objects as the training data set. In the testing phase, the levels of two variables were

modified, wvexc→vinh
max , the connection strength from excitatory neurons in v to inhibitory neurons

in v, and wvinh→vinh
max , the connection strength reciprocally from inhibitory neurons in v to other

inhibitory neurons in v. The former variable controls the phase lag between responses of the

excitatory and inhibitory populations, with a reduction resulting in an increased lag. The latter

variable is reduced so that approximately the same number of inhibitory neurons fire overall in

an oscillation, after reducing excitatory strength in those inhibitory neurons. The expected out-

come is that reducing the inhibitory responsiveness will result in an output representation that

more accurately reflects expected firing patterns for a higher level of the hierarchical structure

than that on which the network was trained.

Partial input patterns

Exposure to all of the features that constitute a particular object at every presentation of that

object is not a reasonable criterion to be necessary for learning of a context. Conceptual rep-

resentations may be built up over time from multiple exposures to parts of objects that reveal

different information about the feature combinations present. The current model should be

capable of reproducing all of the above predictions using training patterns that have features

removed stochastically from the actual input objects.

This was tested through further simulations, replicating all of the training and testing methods

described in this section, but with an alternate input pattern selection process, as follows. In a

training step an input pattern was selected at random, as normal. Each feature in the pattern is

then subject to a 0.25 chance of removal, and replacement with a zero, resulting in an average

of 1 feature being absent from each training pattern. The prediction in this case is that, despite a

random amount of features being absent from each pattern in the training process, the network

will be able to produce results that are equivalent to those resulting from the testing processes

described above.
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The next section will present the results of the manipulations to the network parameters de-

scribed in this section. First, the learning of the hierarchical structure present in the input data

set will be demonstrated. Second, the effect of firing threshold for the membrane potential in

the output layer neurons on the structure of the learned patterns will be demonstrated. Third, the

effect of the responsiveness of inhibitory neurons in the output layer on the structure of output

during recall will be demonstrated. Fourth, the above results will be replicated using input pat-

terns with stochastic feature removal. The combination of this experimentation will provide an

overall framework for learning and recall of specific desired aspects of a hierarchical structure

in the current network.

6.3 Results

The following sections detail the results of learning in the modified network using input data

sets consisting of binary object-feature relations. Four separate predictions were tested here, as

described in section 6.2.7. The results demonstrate the extent to which hierarchical structure is

represented in the learned network and the conditions in which it can be learned.

6.3.1 Learning a hierarchy

The final weight matrix after training with the hierarchical data set (table 6.1) is shown in

figure 6.3. The learned weight matrix approximately matches up with the input data. The

original input structure can be seen across the weights, with ranges of output neurons across the

two-dimensional output space having weights that correspond to individual objects in the input

space.

The testing phase consisted of the presentation to the trained network of the 15 input patterns

shown in table 6.3, as described in section 6.2.7. The result of this testing is shown in figure

6.4. Each square shows a representation of the excitatory neurons in the output layer, colour

coded by how often they fire in response to an input pattern. Testing pattern 1 shows the largest

superset, with just one input feature present, feature 1. Patterns 2 and 3 are the second layer of

the hierarchy, and patterns 4 to 7 are the third layer of the hierarchy. The final 8 patterns shown,

8-15, are the original 8 training patterns at the lowest level of the hierarchy. It can be seen that
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Figure 6.3: Weight matrix for connections from the 15 input neurons (columns), representing
15 features of the input pattern, to the 100 excitatory neurons (rows) in layer v.
Colour shows weight, with a darker rectangle representing a stronger weight. All
output neurons respond to feature 1, which is included in all input patterns that
the network has seen. Appropriately diminishing number of output neurons have
strong weights to further input features, depending on the level of hierarchy that
the feature resides at. Each column of 100 output neurons is grouped by rows in
the layer v output space; the first ten weights are to neurons in the first row of the
output layer, the second ten weights are to neurons in the second row of the output
layer, and so on.
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Figure 6.4: Percentage of 100 testing trials on the same learned network for each input pattern
for which each excitatory output layer neuron fired. Colour represents percentage
values, with darker showing a higher value. Patterns are numbered according to the
input pattern used to generate that output activity pattern; input pattern represents
the highest hierarchical level, containing only feature number 1; 2 and 3 represent
the next level, also containing features 2 and 3; and so on through the input data
hierarchy.

these 8 patterns have the most disjoint network responses, with patterns at increasingly higher

levels of the hierarchy having ‘blurred’ network responses.

The relationship between the ‘observed’ and ‘predicted’ network activity for supersets was

established. ‘Observed’ activity is the actual output for an input pattern representing a superset.

‘Predicted’ activity is the sum of the output for all immediate members of that superset (i.e.

the patterns exactly one level below in the hierarchy that also contain all of the features of

the superset). For each superset, the observed firing likelihoods for all excitatory nodes in v

(see figure 6.4) for that input were normalised as a vector and compared with the normalised

predicted firing likelihoods for that superset, using Pearson’s linear correlation coefficient, r,

with significance values of p.

The training and testing phases were conducted for 20 separate trials, and the average correla-

tions between observed and predicted patterns are shown in figure 6.5. Red represents a positive

129



6.3. RESULTS

correlation and blue a negative correlation, with the magnitude of the correlation represented by

colour intensity, such that white represents no correlation at all. Predicted activity for patterns

8 to 15, at the lowest level of the hierarchy, are simply taken as identical to the observed pat-

terns, as there are no sub-patterns for their activity to be predicted; correlation values along the

central diagonal for these patterns are therefore 1. Adjacent pairs of patterns (e.g. 8 and 9) have

slightly positively correlated output (mean r = 0.32), as these have the most overlap, differing

by only 1 feature. Pairs of patterns that share only 2 common features (e.g. 8/9 versus 10/11)

have slightly negative correlations in output (mean r = -0.14), with more negative correlations

(mean r = -0.22) between pairs that share only 1 common feature (e.g. 8 to 11 versus 12 to 15).

This result shows the ability of the network to map similarities between actual input patterns to

the degree of similarity between resultant output patterns, demonstrating the retention of topo-

graphic mapping characteristics in the current network. The lateral connection profile ensures

that responding neurons in the output layer are grouped in an approximate circle, so greater

overlap between response patterns must be through adjacent regions of activity.

The correlations displayed between observed and predicted activity for patterns 1 to 7 are using

predicted values, as described above. The central diagonal line of strong correlations indicates

that the predicted output activity for a superset correlates strongly with the observed activity for

that superset. The weaker values around that diagonal indicate that predicted output activity for

a second, different superset correlates less well with the observed activity for the first superset.

Again, pairs of patterns that are different by more features than they are similar exhibit negative

correlations (mean r = -0.37, mean p = 0.023) between predicted and observed activity (e.g.

the predicted activity for pattern 4 correlates negatively with the observed activity for pattern

7). No real correlation (mean r = -0.08, mean p = 0.341) is seen between the predicted and

observed activity for pairs that differ by just one feature at this level (e.g. predictions for pattern

5 and observations of pattern 4).

A more detailed depiction of the correlations at the second level of the hierarchy is shown in

figure 6.6. Each cluster of bars shows how well the predicted activity for each of the patterns

at that hierarchical level correlates with the observed activity for one pattern. The height of the
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Figure 6.5: Correlation values between observed firing patterns in the network and predictions
for firing patterns at higher levels based on those observations. Predicted activity
is the sum of the output for all immediate members of that superset. Predicted ac-
tivity for patterns 8 to 15, which are not supersets, is just the observed activity for
that input pattern. The main observation is that observed activity when using a su-
perset as input correlates with the sum of observed activity for all of the immediate
subpatterns of that superset. For more detail see the text.
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Figure 6.6: The correlation values between observed firing patterns for input patterns at the
second level of the hierarchy and predicted second level firing based on observed
activity for the subsets of those patterns. High correlations are seen between ob-
served supersets and the sums of output activity from the subpatterns that make up
that superset. Anti-correlated output activity is seen between input patterns that
share fewer than half of the features of the subpatterns used to make a prediction.

bar represents the mean correlation and the error bars represent standard deviations. It can be

seen that, for each observed pattern, the predictions generated from observations of activity of

the members of that superset are correlated significantly more highly with the observed output

than the predictions generated by activity from members of other supersets are. Importantly,

the four autocorrelations are highly significant in their own right (mean r = 0.92, mean p <

0.001), demonstrating that output generated by members of a superset is a reliable predictor of

the output generated by the superset itself.

Interestingly, the predictions for patterns at a hierarchical level several levels below a given

superset also have positive correlations with observed activity for that superset, and negative

correlations with observed activity for a superset for which they are not a member (see, e.g.,

predictions for patterns 8 to 15 compared with observations for patterns 2 and 3). This indi-

cates that the hierarchical structure of the output is preserved throughout network responses to

input patterns from different hierarchical levels down the full depth of the hierarchy. As such,
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predicted activity for any pattern is never correlated negatively with observed activity for the

superset pattern 1, of which all other 14 patterns shown are members.

The trained output layer contains regions that have learned to respond to each of the patterns

at the lowest level of the hierarchy. If an incomplete pattern, representing a superset of input

objects, is presented to the network, all of the neurons with strong weights to features that are

present will become excited by the strong input. These neurons are in fact the neurons that re-

spond to input objects that are members of that superset. The early input spikes in an oscillation

are reduced in number, due to the reduced number of features present in a superset compared

to the full objects. At this point, noise becomes the determining factor in the decision of which

output neuron fires first, with a substantial advantage held by those neurons excited by the early

spikes, representing present features. Once a best matching unit is chosen, the lateral connec-

tion profile initiates firing in an output region; this region will represent an individual member

of the superset. Effectively, the network has no information determining exactly which learned

object is present based on the features shown, only that it must be one from a particular set. At

this point, the next random piece of information the network receives determines the response

of the layer, and a random member of the superset is selected. Repeating this experiment mul-

tiple times results in the observed firing for a superset approximating the average firing of the

member objects.

6.3.2 Learning supersets using subset input

The second prediction to be tested was the prediction that lowering the output neuron firing

threshold throughout training would result in the learning of merged representations at lower

hierarchical levels, meaning that the network output only represents supersets of the input it has

been trained with. Figure 6.7 shows the average responses for networks trained using each firing

threshold, in response to the 8 original input patterns. As the threshold decreases, responses to

different input patterns homogenise. A threshold at 80% of the original value (bottom row of

6.7) results in responses to input objects being identical for pairs of patterns that have a superset

one level of the hierarchy above, but still substantially different for pairs of patterns that do

not. Essentially there is no longer a differentiation in output firing for two distinct objects, as
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Figure 6.7: Average firing over 100 testing trials for each of the 8 original input patterns for 4
networks trained at different levels of output neuron threshold. Colour represents
percentage values, with darker showing a higher value. Results are demonstrated
for training with thresholds at values of 0.2, 0.4, 0.6 and 0.8 of the original thresh-
old, while training with the 8 original input objects, patterns 8 to 15, at the lowest
hierarchical level. A low threshold results in homogenised activity, effectively
representing only the highest hierarchical level. Heterogeneity of network output
patterns increases as the firing threshold is increased, with output pattern separa-
tion occurring in line with the hierarchical structure.

long as they share a sufficient number of characteristic features (75% in this case). Lowering

the threshold increases the gap between input objects and output representation in terms of the

number of hierarchical levels that are represented. A threshold at 20% of the original value

merges output representations to the extent that only 2 distinct representations remain, which

even have significant overlap between them. The second hierarchical level is the maximum

that is represented in the output map, despite training using input objects incorporating the full

hierarchical structure.

Learning to different levels of the hierarchical structure by modifying the firing threshold is en-

abled by the use of STDP. A low threshold results in output layer firing at an early phase. Fewer

input neurons will have fired by this point, meaning that fewer connections will be strengthened

and more will be weakened. At a low threshold the output firing occurs at a point in the phase

before the input neurons representing 1s in the input pattern have all fired. The stochastic com-
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ponent to the input neuron firing means that a random selection of neurons representing 1s for

a given input pattern will have fired ahead of output firing. Input features that indicate larger

supersets at a higher hierarchical level are present in a randomly selected input firing pattern

more often than those unique to individual objects at the lowest level of the hierarchy (e.g. fea-

ture 1 in the current data set is present in 100% of randomly selected input patterns, features

2 and 3 are present in 50% of patterns, etc.). As a result, connections from features indicating

larger supersets will be potentiated a larger percentage of the time than features indicating sub-

sets. In this way, a change in firing threshold leads to a change in weight distribution in favour

of features indicative of high hierarchical levels relative to those indicative of low hierarchical

levels.

6.3.3 Recalling supersets using subset input

The third prediction tested was that reduced responsiveness of inhibitory neurons in the output

layer will result in output activity representing a superset of the presented input pattern, despite

the network learning using only those subset input patterns in the training phase. The recall

of superset patterns after learning with members of those supersets has been demonstrated in

the current network through the recording of averaged output activity over multiple trials (see

section 6.3.1). A less consistent network response indicates a higher level of the hierarchy,

although the inconsistency will only be within areas of the output map that represents lower

levels in the correct subsets of the hierarchy. A focus of the current work has been to process

information within a single oscillation. A single oscillation of the network in response to a

superset does not provide any indication that the superset has been provided as input rather than

a lower level object.

The network was trained using the 8 lowest level input patterns, as described in section 6.2.7.

Figure 6.8 shows average firing after 100 testing trials for each of the 8 input objects in the

hierarchy, at three different levels of inhibitory responsiveness. The top row shows the response

with the values set to the same level as during learning. Seven unique output patterns emerged

in this case, with the final two input patterns being merged in this particular training trial. The

middle row shows recall using the same trained network and input patterns, but with the in-
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Figure 6.8: Percentage of 100 trials for each input pattern that each excitatory output layer neu-
ron fired for. Colour represents percentage values, with darker showing a higher
value. Testing has been conducted on one trained network, trained using the 8
original input objects at the default (high) level of inhibitory responsiveness. The
top row shows that the network has learned distinct firing patterns for the origi-
nal input objects, using the default level of inhibitory responsiveness. The middle
row shows the network output when using 0.3 of the original level of inhibitory
responsiveness; distinct firing patterns merge, thereby representing a higher hier-
archical level. With a very low level of inhibitory responsiveness (0.1 of original)
the network output represents a higher hierarchical level again.

hibitory responsiveness reduced to 0.3 of the original value. Only four distinct output patterns

are present, with each pair of input patterns merged into one output region. The bottom row

shows network response with inhibitory responsiveness divided by 10. Clear distinctions be-

tween any input patterns are no longer visible, and the network output may be representing the

top level of the hierarchy with this duration of phase lag for inhibitory firing.

Analysis was conducted to examine the accuracy with which the firing in one oscillation recre-

ates the firing that would be predicted for a superset, given the observations of firing for mem-

bers of that superset. Reduction in inhibitory responsiveness should result in an output firing

pattern that recreates the sum of output firing for members of a superset, if that superset is being

represented by the new output pattern. Figure 6.9 displays example output vectors from another

trained network, for the 8 input objects at the lowest level of the hierarchy, in three separate
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Figure 6.9: Percentage of 100 trials for each input pattern that each excitatory output layer neu-
ron fired for. Colour represents percentage values, with darker showing a higher
value. Testing has been conducted on one trained network, trained using the 8
original input objects at the default (high) level of inhibitory responsiveness. The
top and middle rows show the same effect as in figure 6.8. The bottom row shows
predicted output activity from summing members of supersets for each pair of ob-
jects; “low inhibition” output more accurately reflects these predictions than “high
inhibition” output.

conditions. The bottom row shows the predicted network response to the second hierarchical

level, from the sums of responses to all objects that are subsets of the 4 second level patterns.

The middle row shows the firing likelihoods in the output layer in response to each input pattern

when the network is tested using reduced inhibitory responsiveness (divided by 0.3), and the

top row shows the response when testing using the default inhibitory responsiveness (divided by

1.0). The figure demonstrates the same merging of sub-categories when there is a temporal lag

in inhibitory firing seen in figure 6.8. Comparisons between each of the top two rows and the

bottom row shows that with reduced inhibitory responsiveness the firing likelihood in any given

oscillation more accurately reflects the predicted likelihood pattern for a subset one hierarchical

level above the actual input object.

This result is confirmed through a t-test for significant difference between mean correlation

values across 20 trials. The mean correlation between the predicted firing likelihood patterns
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Figure 6.10: Mean correlations between observed network activity in response to the 8 lowest
level input patterns, and predictions of activity for the 4 supersets at the next level
up in the hierarchy. Mean and standard deviations (error bars) are shown of 20
trials each for 10 levels of inhibition relative to the default level at which the
predictions were made. Arrows indicate significant (p < 0.05) increases in level
of correlation above that seen with the default level of inhibition. A significant
increase in the ability of the network response to represent the sums of subpatterns
when presenting the network with one of those subpatterns is seen for a range of
decreased inhibitory responsiveness levels.

for supersets at the second level of the hierarchy and the observed responses to the 8 lowest level

input patterns when using the default level of inhibitory responsiveness is 0.827, significantly

less (p < 0.001) than 0.875 when using a lowered inhibitory responsiveness level. A parameter

test was conducted to identify the range of inhibition levels resulting in increased correlation

of observed activity in response to the lowest hierarchical level with predicted activity at the

next level up the hierarchy from the activity measurements using the default level of inhibition.

The 20 simulation runs were carried out for 10 different inhibition levels, scaling the default

level of inhibition that the network had learned at by values in the range [0.1,1.0] in increments

of 0.1. The results of this testing are shown in figure 6.10. Significant increases (p < 0.01) in

correlations are seen for scalings of the default inhibition value between 0.3 and 0.6.
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Figure 6.11: Recreation of figure 6.4, but for partial input patterns generated through stochastic
removal of input pattern features. Network output is still capable of representing
higher levels of the hierarchy than that used for training after features are removed
from the training objects.

6.3.4 Results are replicable using partial input patterns

The current model is capable of reproducing all of the results described above using an input

pattern selection method that temporarily removes features stochastically from the actual input

objects. This fourth prediction was tested by replicating all of the above simulations while using

the alternate input pattern selection method described in section 6.2.7. Figure 6.11 shows the

average output firing for each output layer node after training, as in section 6.3.1.

Training was also conducted with multiple firing threshold levels in layer v, as described in

section 6.3.2. Threshold modification remains capable of altering the number of levels of hier-

archical structure installed in the network with partial input patterns, as demonstrated in figure

6.12.

Furthermore, figure 6.13 demonstrates that recall of supersets at multiple levels is still possible

through modification of the inhibitory responsiveness in layer v, as in section 6.3.3.

Learning is slow and based on accumulation of coincidences over time, through multiple pre-
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Figure 6.12: Recreation of figure 6.7, but for partial input patterns generated through stochastic
removal of input pattern features. Network output still becomes more distinct in
response to distinct input objects when training with increased firing thresholds
after features are removed from the training objects.
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Figure 6.13: Recreation of figure 6.8, but for partial input patterns generated through stochastic
removal of input pattern features. Supersets can still be recalled using subset input
by reducing the level of inhibitory responsiveness after features are removed from
the training objects.
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sentations of input patterns. Pairs of input neurons that fire frequently together at an early phase

will on average both have their weights potentiated for an output neuron that represents them,

without necessarily having to fire together on every possible occasion.

Of course, an increase in the likelihood of an input feature being absent will inevitably lead to

degradation of the learned patterns at a certain point, due to their being on average a lack of

simultaneous activation of a pair of input neurons that are actually related in the original input

data. A prediction concerning this is that representation of the lowest levels of the hierarchy

will be the first to degrade as the likelihood of a missing feature increases. The input features

discriminating additional sub-categories at low hierarchical levels occur less often than those

discriminating super-categories at higher levels. This should result in a relative lowering of the

average synaptic weights for features at the foot of the hierarchy, resulting in output regions that

fire in response to more than one distinct member of a superset.

6.4 Summary

The model described in this chapter is based on the spiking SOM model of chapter 5, but

features several modifications to make it capable of the learning of a hierarchical data set and

the manipulation of that learned representation. A method of coding for binary input patterns

that is compatible with the use of STDP and the nature of learning present in the spiking SOM

is introduced to the model. The output layer features separate excitatory and inhibitory neurons

that are reciprocally interlinked in a grid structure, and a relative refractory period has been

added to the excitatory neuron model to prevent mutual excitation causing runaway activity.

These changes allow the model to learn the hierarchical structure present within a binary set of

feature-object relations, as demonstrated by the results in section 6.3.1. Positive correlations

are seen between average population responses to pairs of patterns that share the majority of

their features, with negative correlations seen between population responses to pairs that share

few features. Sums of population responses for subsets of a particular superset pattern correlate

extremely highly with the population output in response to that superset.

Modifications to the excitability of the neurons in the output layer and to the ratio of excitabil-

141



6.4. SUMMARY

ity between excitatory and inhibitory neurons in this layer allow the nature of the learned or

recalled representation to be altered. Reducing the firing threshold for all output layer neurons

during training results in less discriminable population activity patterns in response to distinct

input patterns. Responses to input patterns merge in such a way that higher levels of the hierar-

chy are represented by the output. Reducing the level of inhibitory responsiveness during recall

results in population activity patterns that represent supersets of the patterns presented as input.

A potential combination of adjustments to the threshold during training and the inhibitory re-

sponsiveness during recall allows the level of the hierarchy that the network learns and recalls

at to be customised.

Additionally, the model does not need to be trained using complete input objects and is capable

of learning representations equivalent to those described above using patterns with missing

features. This stochastic feature removal, along with the stochastic determination of firing times

in the input layer, demonstrates the resilience of the network to noisy input and shows the

importance of an approach that can make use of statistical correlations in the input data over

multiple trials.

Chapter 7 will highlight the significance of the results obtained from the networks described in

both this chapter and in chapter 5.
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Chapter 7

Discussion

The aim of this thesis (see section 1.1) was to implement spiking neuron networks for generic

cognitive functions. Specifically, the main cognitive function tackled was the formation of

neural maps, a feature of cortical processing found to be generic across several sensory cortical

areas (see section 2.4). The implementation of this feature was extended through the creation

of a network capable of recreating some of the hierarchical object representation properties

of higher-level sensory cortical areas (see section 2.5). Importantly, a key principle of the

approach taken by the current work was to ensure that several common cortical properties were

utilised (see section 2.3). A further principle was to demonstrate that useful computational

principles of existing artificial intelligence algorithms for these types of cognitive processing

were maintained in their more biologically relevant spiking neuron implementation (see chapter

4).

These aims have been achieved through the models described and analysed in chapters 5 and

6. This chapter will discuss the relation of both models to existing literature in spiking neuron

modelling, other neural network modelling, neural network biology, and artificial intelligence

applications. Finally, the importance of these models as building blocks for the generation of a

potential suite of cognitive modules will be discussed, and some directions for future research

will be provided.

7.1 Spiking self-organising map model

The spiking SOM model (see chapter 5) provides a valuable contribution to the field of com-

putational neuroscience models of cognitive processes. It is the first reliable, robust spiking

neuron implementation of the generic SOM algorithm that incorporates observable properties
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of cortical function.

7.1.1 Relation to existing models

The current spiking SOM model was initially based on the model of Ruf and Schmitt (1998),

but in the current form represents an improvement on and advancement of that work in multiple

ways. The incorporation of continuous input and oscillatory firing means that the current net-

work does not need resetting at any point. The change to STDP for learning and introduction

of α-function PSPs both contribute to an improvement in the biological plausibility and perfor-

mance of the model. Additionally, testing has established the robustness of the new approach

to changes in the learning parameters, noise level, and input data set.

Spiking SOM variants were introduced in section 4.2.3. Two networks describe improvements

made to the model of Ruf and Schmitt (1998), in the form of a learning rule with a rule that

relies on a pre-existing optimal weight derivation function to select weight changes (Panchev

and Wermter 2001), and biologically relevant action potentials (Svetlik 2006). The modified

learning rule relies on prior knowledge of the optimal weight distribution, and no attempt is

made to model a biologically plausible learning mechanism, local to individual neurons, such

as STDP. The neuron model change made in the model of Svetlik (2006) is similar to one change

made in the current spiking SOM, in that realistic PSPs are introduced. However, this model

does not make any of the other improvements made in the current model, retaining the other

aforementioned drawbacks of the Ruf and Schmitt (1998) model. Furthermore, none of these

three models attempt to demonstrate the robustness and reliability of resultant map formation.

They completely lack an analysis of topographical mapping to changing input distributions, as

well as the categorisation performance presented here. The failure to demonstrate the retention

of the computational properties of the traditional SOM algorithm is also a major problem with

other related networks. In particular, the SOM-like network of Sala et al. (1998) demonstrates

that, using an appropriate lateral connection structure, either of two Hebbian learning rules can

result in a segregation of the output space that appears representative of input space segregation.

The current spiking SOM model demonstrates greater behavioural depth, moulding the output

space in a way that topographically maps the input space, with categorical data resulting in
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representative output clusters.

Several other models focus on implementations of a spiking SOM that replicate properties of

specific sensory cortical areas. The current model is untested with structure and input that is

related to a specific sensory modality. A somatosensory cortex model is constructed by Cios et

al. (2004), and a visual cortex model is constructed by Veredas et al. (2008), both of which use

spiking neuron networks organised hierarchically through multiple SOM-like layers. A limita-

tion of the current spiking SOM model is the difficulty in connecting multiple SOMs together

into a feedforward hierarchical structure. The lateral connection profile causes the represen-

tation in the output layer to be spatial, with a very narrow temporal window, relative to the

input representation. This means that the same system of self-organisation will not work if that

SOM layer output is taken as input to an additional downstream SOM. Spreading the firing in

the SOM layer into a temporal code (for example by adjusting synaptic time constants) would

cause self-organisation to fail in the initial SOM, as neighbouring neurons in the output layer

need to fire in close temporal proximity to ensure their weights are adjusted towards the same

point. Of course, multiple independent SOMs could each activate their own spatial patterns,

but with a temporal sequence between the SOMs, which could in turn become input to a down-

stream SOM layer, creating a kind of multi-modal association or integration of various spatially

coded features; this is not, however, exactly the kind of hierarchical construction demonstrated

in the above mentioned research. The model of Veredas et al. (2008) in particular demonstrates

reliable formation of receptive fields and orientation selectivity. Replication of these results

would not be possible in the current model if a similar network structure was used.

However, other spiking neuron models of cortical map formation do not rely on a hierarchy of

multiple SOMs. The spiking neuron version of the LISSOM model (Choe and Miikkulainen

1998) makes use of spiking neurons in a two-layer model of visual cortical mapping. Average

activity, or firing rates of the neurons, rather than temporal properties, are used throughout,

providing no insight into the potential roles of phasic coding and STDP in modelling sensory

cortex. Also, the self-organisation of direction preference in barrel cortex has been modelled

using integrate-and-fire neurons and STDP (Kremer et al. 2011). This model incorporates bio-
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logically plausible lateral connection profiles, and is capable of learning to represent direction

preferences for 25 whiskers, each with their own neural network, interconnected in a square

grid. Topographic structure is achieved both within and between barrel regions, with input as a

temporal sequence of spikes representing movement of a bar through the whisker field. Compe-

tition within each barrel through an effectively similar lateral neighbourhood to the current spik-

ing SOM model (although not similar in scale; the barrel cortex model is much larger than the

spiking SOM) ensures regions representative for the full range of direction preference arranged

in a topographic order. Additional long-range connections between barrels cause a particular

geographic region of one barrel to learn the same direction preference as the same geographic

region in a neighbouring barrel, such that regular, temporally ordered activity across the learned

network results from a stimulus moving in one direction through the whisker field.

In summary, each of the above models suggest ways in which spiking neuron models can fa-

cilitate self-organisational network properties, but none of them represents a solution that in-

corporates the ideas of temporal coding of input data through relative phases of spikes within

oscillations, continuous presentation of input data points to the network, and learning via STDP

simultaneously. In addition, none of these models present a network structure possessing self-

organisational and classification properties comparable with the traditional SOM algorithm.

The spiking SOM in its current form does not produce representations of specific properties of

sensory cortical areas, but none of the models capable of this are capable of mapping a wide

variety of input data as in the current model and the conventional SOM. Additionally, some

models suggest that modification primarily to the input mechanisms and scale of the current

spiking SOM that may enable representation of such cortical feature maps (Miikkulainen et al.

2004; Kremer et al. 2011).

7.1.2 Relation to biology

The SOM algorithm is itself partially inspired by the topographic feature maps found across

sensory cortex (Kohonen 2001). The relation of the current model to these maps is briefly

discussed in section 7.1.1. This section will focus on the relationship between the underlying

mechanisms present in the spiking SOM model and the cortical features described in section
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2.3: lateral connection profiles, oscillations and temporal coding, along with STDP.

Lateral connections within cortex are most prominent within layer 2 or 3 (Binzegger et al. 2009;

Stepanyants et al. 2008). Lateral connections are assumed by the SOM algorithm to be crucial

to self-organisation, and indeed the presence of a lateral neighbourhood in the current spik-

ing SOM is a fundamental principle underlying topographic map formation (see section 5.2.6).

A key distinction between any cortical region with self-organising properties and the current

model is the scale involved. Long range cortical connections are found to be patchy in nature

(Voges et al. 2010; Muir et al. 2011); the current model does not incorporate this type of profile,

exhibiting an all-to-all connectivity, decaying smoothly with distance from excitatory to in-

hibitory. Local connectivity, of the dense nature modelled here, is usually found within 0.5mm

(Voges et al. 2010). As such, one complete spiking SOM output layer can be considered to be

maximally representative of this approximate size of cortical region. Given the value of 90,000

neurons per cubic millimetre of cortical tissue (Schüz and Plam 1989), and the approximate

cortical depth of 0.25mm for layers 2 or 3 (Voges et al. 2010), along with the 0.5mm lateral

width (1mm diameter), the portion of cortex putatively represented by the spiking SOM would

contain roughly 225 times the number of neurons and synapses modelled here. As such, each

neuron in the spiking SOM layer would represent only an average of the response properties

of many neurons in a small region. However, it has been shown that cortical feature maps ap-

pear most clearly when average responses in regions are taken, and that neighbouring neurons

are merely likely to share similar response properties (Kremer et al. 2011; Chen et al. 2011;

Wang et al. 1998). This coarse approximation of a small cortical region represents a reason-

able assumption. With this in mind, the spiking SOM model demonstrates that a local lateral

connection profile capable of combining excitation within a neighbourhood with competition

within a small cortical area can contribute significantly to self-organisation of input preferences

within that area. This is a reasonable fit with the type of dense local connectivity seen in small

cortical regions.

The oscillatory regime in the spiking SOM model is generated by the feedforward-feedback

excitatory-inhibitory circuit in the input layer of the model. This is the type of inhibition most
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commonly seen in type I neurons (Bartos et al. 2007; Wang 2010), where mutual inhibition

is required to produce an oscillatory effect. Oscillations are important to the segmentation of

continuously presented input stimuli in the model, and this method of induction of oscillations

is compatible with the standard IF neuron model. As seen in biological networks, an increase

in the magnitude of the layer u inhibitory PSPs would result in a decrease in the oscillation

frequency of the network (Atallah and Scanziani 2009). Also, the duration of inhibition affects

the synchronisation tightness in random networks, with faster decay of IPSPs leading to tighter

synchrony (Börgers and Kopell 2003). This effect would also be present in layer u of the current

network; if an IPSP lasts longer, then the recovery from that IPSP will be slower, resulting in

greater distribution of firing times of the layer u neurons. These methods represent biologically

plausible options for altering the distribution of input firing, essentially changing the phase

code, if necessary.

Neurons that are good representatives of the input data fire early within the phase, resulting

in a temporal code that complements STDP learning, as described in section 5.2.6. This is an

example of saliency to latency transformation resulting in a phase-coded firing sequence. The

reliable conversion of rate-based information into phase-coded information within oscillations

can be seen in the brain (McLelland and Paulsen 2009; Panzeri et al. 2001), along with examples

of originally non-temporal information coded in temporal properties of spike trains (Foffani

et al. 2004; Maldonado et al. 2008). The spiking SOM model presents a concrete example of

combining oscillatory activity and phase coding with STDP and competition in the downstream

layer to learn the information provided by the saliency to latency transformation.

The use of phase-of-firing coding and an STDP learning rule has some limitations in the cur-

rent context. Synaptic connections from neurons involved in the input pattern are weakened if

the neuron fires late within the temporal sequence (i.e., after firing in the output layer), with

relatively late firing being interpreted as a neuron poorly representing the actual current input

value. However, a neuron with much lower input activity, representing the current input value

much more poorly, would not fire at all for the current input; with STDP learning, synaptic con-

nections from such neurons to the input layer are not weakened. This problem is not relevant if
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the input neurons that have connections to an output map represent a narrow domain of actual

input stimuli, in which case any stimulus from the associated domain presented to that bank of

input neurons would generate some relatively high activity level (and therefore firing) for the

entire bank of neurons, but with a higher activity for some input neurons than others.

7.1.3 Applications

The traditional SOM algorithm has a variety of applications across any domain in which data

analytical techniques are often required. The spiking SOM implementation is capable of recre-

ating the computational properties of the traditional SOM. There are some circumstances in

which the use of a spiking neuron SOM might be more appropriate than the traditional SOM.

First, spiking neurons function as independent units with no global properties shared between

them, offering greater efficiency gains when parallelised. Second, the spiking SOM constitutes

a suitable basic cognitive function for implementation on analogue spiking neuron hardware.

These points are related in that individual analogue neurons represent a fully parallel spiking

SOM implementation that can run in real time. Combined with the ability of the model to learn

from continuous presentation of an input stimulus, this could make a suitable chip for real time

learning of the general properties of an environment. A circuit of this nature might be ideal for

installation in a robotic platform, operating as an independent module for unsupervised learning

of continuous sensory data.

The inhibitory mechanism introduced to produce oscillatory firing with phase-of-firing coding

from a continuously presented input activity level (see section 5.2.4) is a versatile and useful

neural function in its own right. The primary difference between this mechanism and a conven-

tional feedforward-feedback excitatory-inhibitory loop is that the current mechanism effectively

detects the end of the input pattern, rather than charging through successive PSPs as an ordinary

downstream neuron would. A drawback is that it is necessary to pre-determine the required

size of a gap in the input pattern that will allow the inhibitory neuron to fire (by setting the

PSP parameters to the inhibitory neuron from the input layer), and the length and magnitude

of the inhibition, which controls the rate of oscillation (by setting the PSP parameters from

the inhibitory neuron to the input layer). However, these values do not require rigorous fine-
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tuning provided the range of input activity levels across the pool of input neurons is relatively

low, meaning that, with no external interference, all neurons in the pattern will fire within a

restricted time period, followed by a gap before the neuron with the strongest input will fire

again.

7.2 Hierarchical concept learning model

The hierarchical concept learning model (see chapter 6) extends the spiking SOM by separating

the output layer neurons into excitatory and inhibitory neurons, and adjusts the input layer

for the case of a binary input data set. The learned representation of a data set containing

a hierarchy of features is demonstrated to appropriately represent that hierarchical structure.

Additional modifications can be made to output neuron parameters to adjust the nature of the

learned representation in terms of its relation to the input hierarchy.

7.2.1 Relation to existing models

The model of Kim et al. (2008) features an output layer that is capable of categorising input

patterns at varying degrees of granularity. This effectively imposes hierarchical structure on

the input data set through the manipulation of network parameters, in particular the level of top

down excitatory input into the output layer, which has the effect of varying the level of inhibitory

responsiveness. An example of the result of this method is shown in figure 7.1. When using

a strong top-down input to the output layer, the output layer population activity is lower on

average and less correlated between input patterns that have less similarity. These responses

merge into stronger population responses that are harder to distinguish when a weak level of

top-down input is used.

The current model displays behaviour consistent with this result. As demonstrated in section

6.3.3, lowering the level of inhibitory responsiveness leads to a more diffuse network response,

with output patterns merging between categories (see figure 6.8). A lower level of responsive-

ness of the inhibitory neurons is equivalent to reduced excitatory input across the inhibitory

neurons in the layer, which potentially could come from a top-down source. A generally higher

level of top-down excitation to these neurons would encourage them to fire more quickly in
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Figure 7.1: In the model of Kim et al. (2008), visual features (V4 activity) were extracted
from images of faces (Stimuli), and used as input to the network. Strong, interme-
diate, and weak levels of top-down activity were applied to the output layer of the
network, resulting in the merging of categories in terms of the population output
activity. Reproduced from Kim et al. (2008).

response to excitatory firing in the layer, resulting in inhibition shutting down the spread of

excitatory activity more quickly within an oscillation. In both examples, the outcome of the

increased amount of excitatory firing across the output layer is that population responses merge

in relation to the hierarchical structure apparent within the input data set.

A major difference between the two models, aside from the use of spiking neurons in the

current model, is that lateral connections in the Kim et al. (2008) model are plastic. This

results in the formation of the type of attractor states demonstrated to exhibit hierarchical re-

sponses when trained with binary object-feature relationships by other associative network mod-

els (Bĕlohlávek 2000; Huyck 2007; Wennekers 2009). In the current model, the effect of plastic

lateral connections has not been investigated. The use of STDP and the current network model

complicate the learning of this type of output layer structure. Whereas Hebbian learning in the

above mentioned models will lead to the bidirectional strengthening of simultaneously activated

neurons, using an STDP regime will potentiate the connection only in the direction in which

presynaptic firing is found before postsynaptic firing. In fact, the reciprocal connection will be

weakened through STDP, as one neuron has to fire after another in the output layer response

of the current network. In general the role of STDP in the formation of neural maps is consid-

ered to be to learn feedforward weights in conjunction with a competitive or mediative lateral
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connection profile (Song and Abbott 2001; Kepecs et al. 2002). Recurrent connections become

secondary to feedforward connections as learning progresses, eventually resulting in columns

defined wholly by their responses to input neurons (Kepecs et al. 2002).

Chartier et al. (2009) present a BAM model with a SOM layer incorporated. This model

achieves a spatial map for input patterns consisting of binary feature sets, but the work does not

address the extent to which hierarchical structure in the input data can be learned or recalled.

The current work relates to this by also using a SOM-inspired output layer with some topo-

graphical mapping capabilities to learn binary input patterns. Through this relation, it can be

suggested that the Chartier et al. (2009) model is also capable of the type of hierarchical repre-

sentation demonstrated in the current network. The incorporation of feedback connections with

plasticity enables the autoassociative properties of the BAM in this network. Again, the current

model does not feature this type of connection, and the method for the learning of reciprocal

connections of this nature is not obvious within the current STDP regime.

7.2.2 Relation to biology

Neuronal activity patterns in IT cortex in response to stimulus pairs that are relatively close in

an intuitive hierarchical category structure have a relatively high correlation with each other

(Kiani et al. 2007). A category tree assembled from neural activity distances resembles the in-

tuitive hierarchical structure between the input stimuli. Additionally, negative correlations were

observed between patterns that are intuitively only related at a high level of the hierarchy. The

output patterns observed in the current model in response to input patterns from the hierarchical

data set shown in table 6.1 exhibit similarly correlated activity, with positive correlations be-

tween responses to similar patterns, and negative correlations between responses to less similar

patterns. This suggests that in both IT cortex and the current model, the responses of a popula-

tion of cells represent both the individual categories and the relationship between the categories.

The number of stimuli used in the study in (Kiani et al. 2007) is very large (>1000), and record-

ings of 674 neurons, evenly distributed across a relatively wide area in IT, were made. This is in

contrast to 8 stimuli across an output layer of 100 neurons in the model case. Also, the stimuli

were visual pictures, and although the number of high-level features present in these stimuli is
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not enumerated it is likely to be greater than the 15 binary features contributing to the input data

set in the model case. As such, these data cannot be treated as directly comparable.

However, the results of the model suggest that the nature of the relations between population

responses in the brain may be a result of small patches of self-organisation to sets of binary

input features. Indeed, a further finding of (Kiani et al. 2007) is that cells within 1mm of each

other exhibit significantly stronger correlation between their stimulus and category response

properties than cells with a >1mm distance between them. At distances beyond 1mm there

is little change in the correlation values, indicating that cells with similar category selectivity

make multiple small clusters distributed across a region. Similar spatial clustering of response

properties has been found in other studies (Wang et al. 2000; Tompa and Sáry 2010), and in-

deed the 1mm radius found here to be the extent of spatial clustering is also the approximate

distance up to which dense, local lateral connections are made (Voges et al. 2010). This is a

further indication that the representational structure formed in cortex is the result of topographic

organisation over areas established by dense local lateral excitatory and inhibitory projections.

An interesting property of the cortical object representation is the non-additive mapping of

features and non-monotonic stimulus preference shown by Wang et al. (2000) and Tsunoda

et al. (2001). The addition of features to a stimulus does not necessarily result in an addition

to the active regions in IT, and vice versa for a reduction in the features of a stimulus. This

indicates that input objects may be represented by both active and inactive columns, resulting in

a representation scheme that is more complex than a sum of features. The results of the current

model do not account for this property completely, in that groups of neurons not activated by

a wide stimulus will not be activated by a narrow stimulus. However, due to the hierarchical

representation, the removal of features (leading to a higher hierarchical level) results in a greater

number of active output neurons. As can be seen in 6.4, presentation of a more vague input

pattern results in a less specific population response on average in the output layer. The model

of Kim et al. (2008) achieves non-additive mapping of features, with output neurons capable of

responding to a narrow stimulus without responding to a wide stimulus. The exact components

of the model that enable this behaviour are not explicated, but it appears to emerge through
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the use of a homeostatic process applied to activity levels across the layer. Combined with

lateral synaptic plasticity, this encourages average activity levels across the output layer that are

independent of the number of input features. The use of spiking neurons and the competitive

nature of the self-organisation in the output layer of the current model make the implementation

of this type of property difficult. However, a potential solution could be found through the use

of a feedforward inhibition level relating to the level of feedforward excitation. A large amount

of early excitatory firing in the input layer, indicative of the presence of many features, could

also lead to a large amount of early inhibitory firing in the input layer, such that a response from

the output layer is suppressed. This kind of mechanism would have serious ramifications for the

nature of self-organisation and hierarchical learning in the network, and represents important

research to conduct as the investigation of this type of network continues.

7.3 Future Work

Several general avenues for future work are suggested by the research presented in this thesis.

These are: analogue spiking neuron hardware implementation of the developed models; adapta-

tion of the spiking SOM to model specific sensory modalities; an analysis of the potential of the

hierarchical representation model to fully learn arbitrary formal contexts; and the development

of cognitive architectures using the models presented here as modular components.

7.3.1 Hardware implementation

A plausibility experiment for a hardware implementation of the spiking SOM model is con-

ducted in section 5.3.9. The general principles of the output organisation generated by the

spiking SOM were demonstrated in a virtual simulation of existing analogue spiking neuron

hardware. It should, therefore, be possible to implement this reduced SOM model on the hard-

ware in question. As such, this immediate goal represents a promising direction for continuation

of this work.

The extension of this model to a two-dimensional SOM output layer, and further to the hierar-

chical representation model of chapter 6, present potentially greater difficulty. Constraints are

imposed by the number of neurons and synaptic connections available on the chip, as well as
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on which of these synapses can learn. Additional simulations would be required to establish the

plausibility of these extensions. The possibility to interconnect multiple chips until sufficient

number of neurons and connections of the correct type are reached also exists. It seems that this

longer term goal is more difficult but still achievable. Certainly the development of these mod-

els on analogue spiking neuron hardware would represent a unique accomplishment in terms of

the complexity and utility of the implemented models.

7.3.2 Sensory cortex models

A potential approach to modifying the current spiking SOM to model sensory cortex could take

inspiration from the traditional SOM extensions featured in the development of the LISSOM

model (Miikkulainen et al. 2004). First, the lateral connections self-organise at the same time

as the feedforward connections to the output map. This helps related areas of the map excite

each other at distance, generating long-range topographic properties. The LISSOM architecture

is much larger in scale than the current spiking SOM. Second, a pair of two-dimensional neural

grids are used as the input layer to the map, representing a pair of retinas, with inputs con-

sisting of oriented Gaussian bars at various locations in the input space, with high correlations

between the retinas. Third, multiple delay channels are introduced as input to the map, along

with movement of the oriented input bar across the retinal fields. These modifications to the

SOM algorithm, over and above the replacement of the traditional learning rule with a form of

average-activity based Hebbian learning, result in formation of maps that capture the combined

topographic representations of present retinotopic, orientation, ocular dominance and direction

preference in visual cortex. The adaptation of these modifications for use in the spiking SOM

model would make a promising starting point for the development of a general spiking SOM

model replicating visual cortex.

7.3.3 Learning and recall of arbitrary contexts

The bidirectional associative memory is capable of the storage and recall of all concepts from

any arbitrary context (Bĕlohlávek 2000). The establishment of such a capacity in a network sim-

ilar to the current one could represent a significant cognitive module in spiking neurons. The

sample data set used for testing throughout chapter 6 is fully learned by the network, although
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responses become less distinct at levels higher than the level the network has been trained at.

It was shown in section 6.3.3 that altering the ratio of excitability between excitatory and in-

hibitory neurons in the output layer can modify the population response such that an appropriate

level of the hierarchy is represented in that response. This alteration can come from some source

external to the network, and automatic modulation of this ratio would allow an appropriate net-

work response to be selected within an oscillation. If a response representing a low level of the

hierarchy is required, this would be indicated by a greater number of early spikes in the input

layer, representing more 1s in the current input pattern. If a higher level is required, there will

be less early spikes. This means that, within an oscillation, more time until an output layer spike

is a good indication that an input is from a higher level. As such, a source of inhibition to the

inhibitory output neurons that diminishes their sensitivity could potentially be based on elapsed

time within an oscillation.

Plastic lateral connections may also be an important factor in the learning and recall of any

context. Output neurons that are activated by an input pattern should not necessarily excite

each other for a concept to be accurately recalled. The retention after learning of the current

lateral connection profile means that reciprocal connections between pairs of output neurons

will have identical strength. The drawbacks of plastic lateral connections using STDP in the

current learning scheme have been outlined above, but the development of a learning rule that

could enable this function could be crucial. Additionally, the likelihood of features being absent

from input data will play a role in the extent to which a context can be learned. This aspect is

discussed in section 6.3.4. Of course, the scale of the network and input data sets are also

relevant. The BAM requires variable numbers of neurons to be capable of recall of arbitrary

data, and it seems implausible that a relatively small output layer in the current network would

be able to store a context with a relatively large number of features. The relationship between

these scales remains to be investigated.

In summary, automatic learning of arbitrary contexts would require an analysis of network

scales, and feature noise levels and lateral connection plasticity, and automatic recall of all

concepts in that context would require an automatically modulated level of the ratio of excitatory
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to inhibitory neuron excitability.

7.3.4 Cognitive modules

A key motivation for the current work is to generate a suite of modular components that perform

generic cognitive processes. These should be related to relatively simple cortical mechanisms,

perform computationally important roles, and eventually be combined into architectures ca-

pable of fulfilling a variety of cognitive functions. The spiking neuron SOM model and the

hierarchical concept learning model presented in this thesis represent good candidates for a pair

of such modules.

This pair of modules are constructed from a network that is abstracted from general cortical

properties and results in functionality that is apparent in a variety of cortical processes. Mod-

ules of this nature may be interlinked throughout a sheet of neurons. A larger neural surface

may host input connections from many channels. These modules only feature the output layer

neurons and lateral connections relevant to a particular input domain. Several input domains

can potentially exist alongside each other while maintaining the modularity of their processing;

they may even be physically intermingled without interacting through their connections. Par-

allel representations of several input channels can be created through modules of this nature

that lack lateral influence on each other, resulting in a direct spatial representation of each input

domain for further downstream processing to interpret.

The modular nature of these individual networks can, however, be impinged through lateral

interactions between them. Two potential implementations of this type of link are that some

neurons may be shared between modules, or that synaptic connections may exist between neu-

rons belonging to independent modules. In the former case, the combination of feedforward

input connections from different domains could result in a neuron, or group of neurons, that

respond to essentially a multi-modal combination of input properties. In the latter case, spatial

formation of a map in one input domain would bias the spatial formation of the map from the

other domain. This type of map formation is seen in the barrel cortex model of Kremer et al.

(2011), with similar direction preference appearing in the similar relative location in the barrel

due to lateral connections stretching one barrel in diameter. Both of these types of interaction
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would have a significant impact on the hierarchical and categorical nature of the representations

formed. The exact nature of the influence of these interactions relate to representations consti-

tutes a crucial avenue for further research if the potential of modular mechanisms in generating

cognitive processes is to be fully explored.
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