23 research outputs found

    The role of neighbours selection on cohesion and order of swarms

    Full text link
    We introduce a multi-agent model for exploring how selection of neighbours determines some aspects of order and cohesion in swarms. The model algorithm states that every agents' motion seeks for an optimal distance from the nearest topological neighbour encompassed in a limited attention field. Despite the great simplicity of the implementation, varying the amplitude of the attention landscape, swarms pass from cohesive and regular structures towards fragmented and irregular configurations. Interestingly, this movement rule is an ideal candidate for implementing the selfish herd hypothesis which explains aggregation of alarmed group of social animals.Comment: 15 pages, 9 figures, Plos One, May 201

    Mitigating Spatial Interference in a Scalable Robot Recycling System

    Get PDF
    The initial aim of this project was to address the issue of spatial interference between robots in a robotic recycling system. The main potential bene�t of the proposed robotic recycling system is scalability. The underlying concept is that a swarm of robots process an incoming stream of materials, sorting them into homogeneous clusters of material which can then be quickly bagged and removed. When installed for a large centre, the number of robots would be correspondingly large. However, when installed for a smaller centre - such as a remote community in Newfoundland & Labrador - the number of robots, and therefore the cost of the system would be much lower. The robots themselves would constitute the system, with the additional minimal requirements of an unstructured floor space in which to operate and some input from users to help classify the input materials. A previous Harris Centre / MMSB project to explore this system made some headway, but di�culties were encountered in developing an appropriate set of robots to support further experiments. While the aim of this project was to address the issue of spatial interference, it was found that much more work was required to develop appropriate robots that could transport proxy materials (coloured pucks), classify them, navigate, and exhibit su�cient endurance for meaningful experiments. Therefore, the focus of this project switched to the development of a robot platform with these desired characteristics. It is important to note that the robots under discussion are intended for laboratory experiments using coloured pucks as proxies for real-world recyclables. A transition to robots capable of dealing with real-world conditions is far outside the project's scope. The main outcome is a robot platform called the BuPiGo which will facilitate our own experiments as well as others who are interested in swarm robotics and other distributed robotic approaches. The BuPiGo �lls a key gap in terms of the robots available to researchers. It is not intended to be a product, but an open platform that is easily extensible and makes use of widely available low-cost computing technologies such as the Raspberry Pi and Arduino platforms. It also incorporates an omnidirectional camera system to allow visual navigation between points of interest (e.g. the input point of a recycling facility and the designated output points for sorted materials). We are hopeful that this platform will now allow us to move beyond the development of experimental hardware to develop a complete model of a recycling facility using the concepts described above. This model is a �rst step towards a real-world scalable recycling facility that would allow remote communities in Newfoundland & Labrador to implement local recycling centres that would minimize transport costs and demonstrate commitment to innovation and sustainability

    Evolutionary Robotics

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Evolution of collective behaviors for a real swarm of aquatic surface robots

    Get PDF
    Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.info:eu-repo/semantics/publishedVersio

    Sophisticated collective foraging with minimalist agents: a swarm robotics test

    Get PDF
    How groups of cooperative foragers can achieve efficient and robust collective foraging is of interest both to biologists studying social insects and engineers designing swarm robotics systems. Of particular interest are distance-quality trade-offs and swarm-size-dependent foraging strategies. Here we present a collective foraging system based on virtual pheromones, tested in simulation and in swarms of up to 200 physical robots. Our individual agent controllers are highly simplified, as they are based on binary pheromone sensors. Despite being simple, our individual controllers are able to reproduce classical foraging experiments conducted with more capable real ants that sense pheromone concentration and follow its gradient. One key feature of our controllers is a control parameter which balances the trade-off between distance selectivity and quality selectivity of individual foragers. We construct an optimal foraging theory model that accounts for distance and quality of resources, as well as overcrowding, and predicts a swarmsize-dependent strategy. We test swarms implementing our controllers against our optimality model and find that, for moderate swarm sizes, they can be parameterised to approximate the optimal foraging strategy. This study demonstrates the sufficiency of simple individual agent rules to generate sophisticated collective foraging behaviour

    Synthesis of formation control for an aquatic swarm robotics system

    Get PDF
    Formations are the spatial organization of objects or entities according to some predefined pattern. They can be found in nature, in social animals such as fish schools, and insect colonies, where the spontaneous organization into emergent structures takes place. Formations have a multitude of applications such as in military and law enforcement scenarios, where they are used to increase operational performance. The concept is even present in collective sports modalities such as football, which use formations as a strategy to increase teams efficiency. Swarm robotics is an approach for the study of multi-robot systems composed of a large number of simple units, inspired in self-organization in animal societies. These have the potential to conduct tasks too demanding for a single robot operating alone. When applied to the coordination of such type of systems, formations allow for a coordinated motion and enable SRS to increase their sensing efficiency as a whole. In this dissertation, we present a virtual structure formation control synthesis for a multi-robot system. Control is synthesized through the use of evolutionary robotics, from where the desired collective behavior emerges, while displaying key-features such as fault tolerance and robustness. Initial experiments on formation control synthesis were conducted in simulation environment. We later developed an inexpensive aquatic robotic platform in order to conduct experiments in real world conditions. Our results demonstrated that it is possible to synthesize formation control for a multi-robot system making use of evolutionary robotics. The developed robotic platform was used in several scientific studies.As formações consistem na organização de objetos ou entidades de acordo com um padrão pré-definido. Elas podem ser encontradas na natureza, em animais sociais tais como peixes ou colónias de insetos, onde a organização espontânea em estruturas se verifica. As formações aplicam-se em diversos contextos, tais como cenários militares ou de aplicação da lei, onde são utilizadas para aumentar a performance operacional. O conceito está também presente em desportos coletivos tais como o futebol, onde as formações são utilizadas como estratégia para aumentar a eficiência das equipas. Os enxames de robots são uma abordagem para o estudo de sistemas multi-robô compostos de um grande número de unidades simples, inspirado na organização de sociedades animais. Estes têm um elevado potencial na resolução de tarefas demasiado complexas para um único robot. Quando aplicadas na coordenação deste tipo de sistemas, as formações permitem o movimento coordenado e o aumento da sensibilidade do enxame como um todo. Nesta dissertação apresentamos a síntese de controlo de formação para um sistema multi-robô. O controlo é sintetizado através do uso de robótica evolucionária, de onde o comportamento coletivo emerge, demonstrando ainda funcionalidadeschave tais como tolerância a falhas e robustez. As experiências iniciais na síntese de controlo foram realizadas em simulação. Mais tarde foi desenvolvida uma plataforma robótica para a condução de experiências no mundo real. Os nossos resultados demonstram que é possível sintetizar controlo de formação para um sistema multi-robô, utilizando técnicas de robótica evolucionária. A plataforma desenvolvida foi ainda utilizada em diversos estudos científicos
    corecore