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Abstract
Swarm robotics is a promising approach for the coordination of large numbers of robots.

While previous studies have shown that evolutionary robotics techniques can be applied to

obtain robust and efficient self-organized behaviors for robot swarms, most studies have

been conducted in simulation, and the few that have been conducted on real robots have

been confined to laboratory environments. In this paper, we demonstrate for the first time a

swarm robotics system with evolved control successfully operating in a real and uncon-

trolled environment. We evolve neural network-based controllers in simulation for canonical

swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then

assess the performance of the controllers on a real swarm of up to ten aquatic surface

robots. Our results show that the evolved controllers transfer successfully to real robots and

achieve a performance similar to the performance obtained in simulation. We validate that

the evolved controllers display key properties of swarm intelligence-based control, namely

scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-con-

cept experiment in which the swarm performs a complete environmental monitoring task by

combining multiple evolved controllers.

1 Introduction
Swarm robotics systems (SRS) are a promising approach to collective robotics, in which large
groups of relatively simple and autonomous robots are able to display collectively intelligent
behavior [1]. Control in a SRS is decentralized, meaning that each individual robot operates
based on its local observations of the environment and coordination with neighboring robots.
During task execution, the swarm-level behavior emerges from the interactions between neigh-
boring robots, and from the interactions between robots and the environment. The swarm
robotics approach has the potential to incite a number of important properties in multirobot
systems [1–3], namely: (i) robustness, the ability to cope with the faults of individual robots;
(ii) flexibility, the ability to operate in a variety of different environments and to perform vari-
ous tasks; and (iii) scalability, the ability to generally maintain the group behavior regardless of
the size of the swarm. Due to these properties, SRS have an enormous potential in several real-
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world domains, such as search and rescue, exploration, surveillance, and clean up [1, 2].
Despite the potential of swarm robotics for real-world tasks, no demonstrations of swarm
behaviors outside of controlled laboratory conditions have been performed so far. As discussed
by Brambilla et al.[1] and Bayındır [3] in recent reviews of the field of swarm robotics, all real-
robot experiments presented in the literature covered have, in fact, been performed in con-
trolled laboratory environments such as enclosed arenas in which the relevant conditions are
defined by the experimenter. That is, although SRS are ultimately intended to operate in poten-
tially unstructured, real-world environments, experiments have been conducted mainly in sim-
ulation, and at the current state of development no study has been able to demonstrate the
benefits of SRS in real-world environments.

One of the key challenges in SRS is the synthesis of behavioral control. Manual design of
control for each robot requires the decomposition of the macroscopic, swarm-level behavior
into microscopic behavioral rules that determine the interactions between neighboring robots,
and between the robots and the environment so that the global, collectively self-organized
behavior emerges. The designer thus needs to be able to understand the relation between local
robot interactions and emerging swarm-level properties. There is, however, no approach to
derive the microscopic behavioral rules based on a desired global behavior or task description
for the general case [4]. In this respect, the use of evolutionary computation techniques has
been studied as a promising alternative to traditional control approaches, due to its capability
to automatically synthesize self-organized control based only on the definition of a high-level
performance metric (see [5–7] for examples).

SRS are typically associated with ground robots [1, 8] and, more recently, with aerial robots
[9, 10]. In this paper, we show that SRS also have the potential to be applied to maritime tasks,
which are usually expensive to carry out because they rely on manned vehicles with large oper-
ational crews. While significant effort has been made to adapt unmanned vehicle technology to
maritime tasks, such systems are currently relatively expensive to acquire and operate, and
only a single or a few robots are typically deployed [11]. The use of SRS at sea is advantageous
because: (i) several maritime tasks, such as environmental monitoring, sea-life localization, and
sea-border patrolling, require distributed sensing at a high spatial and temporal resolution, and
are therefore challenging to carry out with only a single or a few robots; and (ii) robots operat-
ing at sea need to display a high degree of fault-tolerance and robustness [11], which can be
provided by SRS approaches [12].

In this paper, we show for the first time a SRS system with evolved, distributed control per-
forming self-organized behaviors in real-world environments. Our study relies on a swarm of
up to ten small, simple, and inexpensive aquatic surface robots (see Fig 1). First, we demon-
strate our SRS performing four canonical tasks in an uncontrolled aquatic environment: (i)
homing, (ii) dispersion, (iii) clustering, and (iv) monitoring. Second, we perform a set of exper-
iments to demonstrate the scalability and robustness of the evolved controllers when operating
in a real environment. Finally, we show how multiple evolved swarm behaviors can be com-
bined to produce more sophisticated controllers, which we use to perform an environmental
monitoring task where the robots have to sample the water temperature in a given area. In
summary, our experiments demonstrate that a swarm of robots with evolved control can oper-
ate successfully in a real-world environment.

2 Related work

2.1 Swarm Robotics
The field of swarm robotics, as well as the more general field of swarm intelligence, takes inspi-
ration from the observation of social insects, such as ants, bees, wasps, and termites [12]. In
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these animal societies, relatively simple units rely on self-organization to display collectively
intelligent behavior. The self-organized behavior of social insects confers the swarms a high
level of scalability, versatility, and robustness to individuals failures [13]. The key motivation
behind swarm robotics is to harness these properties to build large-scale decentralized multiro-
bot systems [12, 14]. Due to their properties, SRS have significant potential to take on a number
of applications requiring distributed sensing and/or action. In a recent review, Bayindir [3] dis-
cusses the categories of behaviors that have been achieved with SRS, such as aggregation, flock-
ing, foraging, object clustering and sorting, navigation, path formation, swarm self-deployment,
collaborative manipulation, and task allocation.

Despite the advances in the field, SRS have, however, up to this point not leveraged their full
potential, and have been confined to controlled laboratory environments [1], still far from real-
world applications. There are multiple reasons for the absence of real-world SRS, one of the
most prevalent being the difficulty in designing behavioral control for the individual robots
that results in the desired swarm-level behavior. This problem is exacerbated when trying to
achieve behaviors capable of dealing with the complexity of real tasks and uncontrolled envi-
ronments, as opposed to the abstract tasks and highly controlled environments that have been
used in the majority of previous works [1, 3].

2.2 Evolutionary Synthesis of Control for SRS
Evolutionary robotics (ER) [5] is the research field that studies the application of evolutionary
computation to the synthesis of robot controllers and/or morphology. ER has become a popu-
lar alternative to manual programming in a variety of SRS applications [1]. Given the specifica-
tion of a task, an evolutionary algorithm evaluates and optimizes controllers in a holistic
manner, thereby facilitating the emergence of self-organized behavior [15, 16]. That is, based
on the performance of the resulting swarm-level behavior, the evolutionary algorithm itera-
tively fine-tunes the parameters and the microscopic rules governing each individual robot,
thus eliminating the need for manual and detailed specification of low-level control [17]. Opti-
mization of genomes is based on Darwinian evolution, namely blind variations and survival of
the fittest.

Evolutionary approaches have been used to solve a large number of swarm robotics tasks
such as coordinated motion [18, 19], chain formation [20], aggregation [21–23], flocking [24],
hole avoidance [25], aerial vehicles communication [26], categorization [27], group transport

Fig 1. The robotic swarmwith 10 units performing a homing task.

doi:10.1371/journal.pone.0151834.g001

Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots

PLOS ONE | DOI:10.1371/journal.pone.0151834 March 21, 2016 3 / 25



[28], social learning [29], sharing of an energy recharging station [23, 30], and patrolling of an
area [31]. The majority of these studies were, however, performed exclusively in a simulated
environment. The limited number of studies that used real robots have been conducted mostly
with small (up to 15 cm) wheeled robots [32], such as the Khepera[33], the s-bot[34] and the
e-puck[35]. These studies relied on abstract tasks in highly controlled environments: relatively
small and enclosed arenas in laboratories.

The use of simulation in ER is widespread due to the large number of evaluations required
by an evolutionary process to find adequate controllers. Transferring controllers evolved in
simulation to real robots is currently one of the biggest challenges in ER [36], since the evolu-
tionary process tends to exploit simulation-specific features that are not present in the real
world, resulting in the real robots behaving differently and obtaining a lower task performance
than in simulation. This issue is usually referred to as the reality gap[37].

Several approaches have been proposed to try to overcome the reality gap. Miglino et al.
[38] suggested three complementary techniques: (i) using samples from the real robots’ sensors
to more accurately model them in simulation, (ii) introducing a conservative form of noise to
promote the evolution of robust controllers, and (iii) continuing evolution in real hardware to
tune controllers to the differences between simulation and reality. Jakobi [37] proposed the
use ofminimal simulations, in which the simulation model is based on a small set of features
deemed necessary for successful synthesis of controllers, while remaining features are masked
by an envelope of noise. Koos et al. [39] proposed the transferability approach, a multi-objec-
tive formulation of ER in which controllers are evaluated both by their performance in simula-
tion and their performance on real robots. The approach requires periodical transfer of control
during the evolutionary process in order to update a surrogate model, which estimates how
well candidate solutions will transfer to the real world. Lehman et al. [40] proposed a different
approach where the evolutionary process explicitly rewards behaviors that display a high reac-
tivity, as measured by the mutual information between the magnitude of changes in a robot’s
sensors and actuators. The study showed that controllers with a reactive disposition transfer
better to real robots than those not rewarded for reactive behavior, regardless of the noise con-
ditions with which the controllers were evolved.

Another challenge in ER is how to drive the evolutionary process towards high-quality solu-
tions, avoiding potential local optima. When the task to which solutions are sought reaches a
certain level of complexity, traditional evolutionary approaches are prone to suffer from boot-
strap problems and deception [41, 42]. One approach to deal with these issues is to employ
diversity maintenance techniques, such as novelty search [43]. The goal is to allow an evolu-
tionary algorithm to explore multiple different paths through the search space [23, 44, 45]. A
different approach is to directly assist the evolutionary process with domain-specific knowl-
edge, by using techniques such as incremental evolution [46, 47], behavioral decomposition
[48, 49], or semi-interactive human-in-the-loop-techniques [50, 51]. In Section 7, we demon-
strate a simple form of behavioral decomposition: we show how different evolved behaviors
can be combined to produce a more complex controller, capable of performing an entire
mission.

2.3 Aquatic Robots
In recent years, significant development has been conducted in the areas of autonomous under-
water vehicles and autonomous surface vehicles [52], focusing on individual robots with a high
degree of hardware and software complexity. Such systems have been applied to a variety of
scenarios, such as environmental monitoring [53] and search and rescue [54]. Nonetheless,
they are expensive, and restricted in terms of the tasks they can undertake as they have a
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limited degree of autonomy, such as basic waypoint navigation capabilities. There have been
numerous conceptual studies on systems composed of multiple robots with decentralized con-
trol for aquatic environments. However, only few such systems have been realized. Scerri et al.
[55], for instance, made use of groups of up to five autonomous robots for distributed environ-
mental monitoring missions. Their robots, however, need to be controlled by a central com-
puter, which limits deployment in remote locations, and reduces their potential to scale to
larger groups. Other studies in the domain of swarms of underwater robots have been per-
formed in the scope of the CoCoRo project [56]. Regarding the evolution of control for aquatic
robots, significantly fewer studies have approached the subject. Examples include the evolution
of station keeping abilities for a single, simulated underwater robot [57], and the evolution of
centralized control for a team of four underwater robots in a simulated predator-prey task [58].

3 Methodology
In this section, we present the methodology that we followed to produce controllers for the
four tasks, and the steps we took to ensure a successful transfer of the controllers to the real
robotic swarm. The methodology is summarized in Fig 2.

1. Definition of the simulation platform The evolutionary process used to synthesize
behavior for the swarm relied exclusively on simulation for the evaluation of the candidate
solutions. It is therefore necessary to implement a simulator in which the performance of the
controllers can be assessed. We used a two-dimensional simulation environment, where the
robots were abstracted as circular objects with a certain heading and position. The general prin-
ciple behind the simulation was to model the motion of the robots based on real measurements
taken in the water, but without including physics simulation and fluid dynamics, which would
have resulted in a complex and computationally expensive simulation environment. Maintain-
ing a low computational complexity is essential for making the evolutionary robotics process
feasible, as a large number of simulations have to be conducted for each evolutionary run.

We developed a middle-layer that is shared by both the on-board software and the simula-
tion platform. This enabled the same code-base and controllers to be executed on both the real
robots and on robots in simulation, thereby minimizing the implementation differences
between simulation and reality.

2. Configuration of the robots’ sensors and actuators The processing of raw sensory data
into values that can be fed to the neural controller is an essential step to enable the evolution of
control. To this end, the robots (both real and simulated) relied on sensors that return the dis-
tance to objects of interest in equal-sized segments around the robot. These sensor values are
obtained by pre-processing the GPS locations of entities in the environment of which the robot
is currently aware, and the current heading and position of the robot. It should be noted that
the sensors and actuators used by the real robots are inherently associated with a high degree of
stochasticity. To account for these phenomena in simulation, we added noise to the sensors
and actuators of the simulated robots, based on the observations made on the real robots. This
conservative noise approach [38] is simple to implement, requires only basic assumptions and
domain knowledge, and has proven effective in previous studies conducted in controlled condi-
tions in our lab [49]. The noise included (i) the variation of robot parameters at the beginning
of each simulation trial (e.g. maximum motor speed), (ii) noise injected at every simulation
step (e.g. errors in sensory readings), and (iii) environmental noise (water currents).

3. Definition of the fitness evaluation For each task, we specified a fitness function that
translated the task objective that needed to be achieved. The task setup chosen for the evalua-
tion of controllers for each task approximated the setup in which the real robots were going to
be used, meaning that the environment had approximately the same size, the number of robots
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was within the same range, and the robots had the same capabilities. To evaluate each candi-
date solution (controller), ten independent simulation trials were conducted, and the fitness of
the controller was the mean score obtained in these simulations. To avoid overfiting the con-
trollers to specific task conditions, we introduced random variations in the simulation trials
during the evolutionary process. In every trial, we varied the number of robots (between five
and ten), their starting position and orientation, and the location of other spatial entities (when
applicable).

4. Evolutionary process The evolutionary algorithm optimized the neural network-based
controllers for the robots. We used the NEAT algorithm [59] to evolve the neural network con-
trollers for all tasks. NEAT is a widely used generational evolutionary algorithm that simulta-
neously optimizes the connection weights and the topology of artificial neural networks. The
default NEAT parameters were were used for all different tasks studied in this paper. Each evo-
lutionary setup was repeated for ten independent evolutionary runs. After each evolutionary
run, we post-evaluated the top controller of each generation in 100 simulations to obtain an
accurate estimate of the controllers’ quality.

5. Selection of evolved controllers For each task, we identified the highest-performing con-
troller of each evolutionary run based on the post-evaluation results. Out of these ten best-of-
run controllers, we then selected the three with the highest fitness scores, as evolutionary algo-
rithms are stochastic, and separate evolutionary runs are likely to produce different controllers.

6. Assessment of performance in the real robotsWe finally assessed the real-robot perfor-
mance of the top three controllers for each task, and compared their performance to that
obtained in simulation. Each selected controller was evaluated in three independent experi-
ments. For every experiment, the initial positions of the robots were randomized: a set of posi-
tions was generated inside a task-specific region, and each robot navigated to its assigned
starting position. When all robots were in place, the experiment started and the controllers
were simultaneously activated in all robots. The experiment ended after a fixed amount of

Fig 2. The control synthesis and performance assessment process for each task.

doi:10.1371/journal.pone.0151834.g002
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time. When evaluating the three different controllers for a given task, the same set of initial
positions was used. To establish a fair comparison with controller performance in simulation,
the same set of initial conditions were also used, i.e., the initial positions logged by robots were
used as the initial robot positions for the simulation trials.

4 Experimental Setup

4.1 Robotic Platform
We designed and produced a total of ten simple, small (60 cm in length) and inexpensive (�
300 eur/unit) robots, using widely available, off-the-shelf hardware. Each robot model is a dif-
ferential drive mono-hull boat (see Fig 3). The maximum speed of the robot is 1.7 m/s (3.3 kts),
and the maximum angular velocity is 90°/s. The on-board control of each robot was executed
by a Raspberry Pi 2 single-board computer. The robots form a distributed network without any
central coordination or single point of failure through a IEEE 802.11g (Wi-Fi) ad-hoc wireless
network, and communicate with one another by broadcasting UDP datagrams. Each robot is
equipped with a GPS and a compass, and broadcasts its position to neighboring robots every
second. See S1 Text for additional information on the hardware configuration of the robots.

The robotics simulation was performed on JBotEvolver [60]—an open-source framework
that has been used in a large number of evolutionary robotics studies, and is available at
https://github.com/BioMachinesLab/jbotevolver under GNU GPL license. The robot’s
dynamic model was implemented based on measurements taken from a single robot. We mea-
sured the robot’s movement with multiple combinations of motor speeds, which allowed us to
characterize the motion dynamics, friction, and inertia. We then tuned the model’s parameters
by comparing simulated and real motion patterns.

Each robot was controlled by an artificial neural network. The inputs of the neural network
were the normalized readings of the sensors, and the outputs of the network controlled the
robot’s actuators. The sensor readings and actuation values were updated every 100 ms. The
neural network controlling each robot had two output neurons which controlled the linear
speed and the angular velocity of the robot. These two outputs were then converted to left and
right speeds and applied to the robot’s motors. We implemented three sensors for the detection

Fig 3. The robot is an autonomous surface vehicle equipped with Wi-Fi for communication, and a
compass and GPS for navigation. It has a length of 60 cm and can move at speeds of up to 1.7 m/s.

doi:10.1371/journal.pone.0151834.g003
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of points and objects of interest in the task environment, based on GPS locations and on infor-
mation shared by neighboring robots (see Fig 4):

• Waypoint sensor: This sensor is used to locate waypoints in the environment, if any. The sen-
sor returns two values: (i) the relative angle from the robot to the waypoint, and (ii) the dis-
tance from the robot to the waypoint.

• Robot sensor: This sensor measures the distance to nearby robots. The area around the robot
is divided into four equally-sized slices. The sensor returns four values, one per slice, linearly
proportional to the distance between the robot and the closest neighbor in that slice, or the
maximum value if there is none within the sensor range.

• Geo-fence sensor: This sensor is used to detect the geo-fence. Similarly to the robot sensor,
the geo-fence sensor returns four values, one for each slice around the robot, indicating the
minimum distance to the fence, or the maximum sensor value if the fence is outside the sens-
ing range. One additional value is returned, indicating whether the robot is inside the fence
or not (the geo-fence is a polygon).

4.2 Evolutionary Setup and Task Configurations
In this paper, we study the evolution of controllers for a real swarm of aquatic robots operating
in a large uncontrolled environment. Our study relies on four cooperative tasks, which have
been previously studied in simulation and laboratory environments [3]: (i) homing in group
while avoiding collisions, (ii) dispersion, (iii) clustering, and (iv) monitoring of a pre-defined
area. In this section, we describe the evolutionary setup that was used to synthesize control for
each task, including the fitness functions and relevant parameters. All evolutionary and task
parameters are listed in S1 Text.

Homing. Navigation and obstacle avoidance is an essential feature for autonomous robots
operating in the real world. This type of tasks was among the first to be studied in the field of evo-
lutionary robotics [61]. A variation of the task, known as homing, involves one or more robots
moving towards a point of interest in the environment, sometimes with obstacles in the way [62].

In the homing task used in our experiments, the swarm of robots had to navigate to a given
waypoint while avoiding collisions between the robots. To evolve solutions for this task, we
rewarded controllers for minimizing the average distance of the swarm to a waypoint,

Fig 4. Illustration of the three types of sensors.

doi:10.1371/journal.pone.0151834.g004
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according to the following equation:

fhoming ¼
1

T

XT
t¼1

1

R

XR
r¼1

startingDistr � distr;t
startingDistr

 !
� S ; ð1Þ

where T is the maximum number of time steps, R is the number of robots, startingDistr is the
initial distance from robot r to the waypoint, and distrt is the distance of robot r to the waypoint
at time t.

Collisions between robots are undesirable in any task, as they can damage the real robots.
To avoid collisions, we introduced a safety coefficient (S) when assessing the fitness in all task
setups, which penalized solutions where robots get too close to one another (less than 3 m).
The safety coefficient S is in the range [0.1, 1], and is inversely proportional to the minimum
distance between any two robots in the current simulation trial (minDist). The safety coeffi-
cient is defined according to the following equation:

S ¼ 0:1þmaxð0;minð3;minDistÞÞ
3

� 0:9 ; ð2Þ

Dispersion. In a dispersion task, each individual robot in the swarm has to maintain a pre-
defined distance (target distance) from its nearest neighbor. Robots should cover a large area
without risking losing contact with the rest of the swarm, which can be an issue in unbounded
environments. Examples in the literature include solutions that rely on preprogrammed behav-
iors [63], potential fields [64], automatically synthesized state-machines [65], and artificially
evolved ANNs [31].

For this task, we chose a target distance of 20 m (half of the robots’ communication range).
During evolution, controllers were rewarded for minimizing the difference between the current
distance to the nearest neighbor and the target distance, according to the following equation:

fdispersion ¼
1

T

XT
t¼1

1

R

XR
r¼1

1� jminDistr;t � targetDistj
 !

� S ; ð3Þ

where T is the maximum number of time steps, R is the number of robots,minDistrt is the dis-
tance of robot r to the nearest neighbor at time t, and targetDist is the distance at which the
robots should disperse.

Clustering. Clustering, also known as aggregation, is a canonical task in swarm robotics
[1]. Clustering is a challenging task because it combines several aspects of multirobot tasks
[66], including distributed individual search, coordinated movement, and cooperation. Fur-
thermore, clustering plays an important role in robotics because it is a precursor of other col-
lective behaviors such as group transport of heavy objects [67].

In our instance of the clustering task, the robots started randomly spread in a square-shaped
area with a side-length of 100 m, and had the objective of finding one another so as to form a
single cluster. However, since the communication range was limited and the environment was
unbounded, certain initial conditions could lead to the formation of more than one cluster.
During evolution, controllers were scored based on the number of clusters that they formed.
Two robots belonged to the same cluster if the distance between them was inferior to 7 m. The
fitness function was defined based on a weighted sum of the number of clusters throughout
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time:

fclustering ¼
PT

t¼1 t � R�ct
R�1PT

t¼1 t
� S ; ð4Þ

where T is the total number of time steps in each trial, R is the number of robots, and ct is the
number of clusters formed by the robots at step t.

Area Monitoring. Swarms of robots are ideal for tasks where large areas need to be cov-
ered for monitoring or surveillance purposes. This task category has been explored in the past
with several different control techniques, such as pheromone traces [68], odor sources [69] and
evolved artificial neural networks [70].

In our area monitoring task, a geo-fence is defined to delimit an area of interest, and the
robots should coordinate to continuously cover as much of the area as possible. During evolu-
tion, we tested the controllers in a variety of randomly generated geo-fences with different
shapes, in order to obtain general behaviors. For the purpose of this task, we considered that
each robot covers a circular area with a radius of 5 m (V) around it. The challenge in this task is
to find a general movement pattern that takes into account many different shapes of the moni-
toring area and varying number of robots.

In order to assess the performance of the controllers, we divided the monitoring area into a
grid with a fixed cell size of 1 m2. Each robot could visit cells within the coverage radius V, set-
ting its value to 1. The value of previously visited cells decayed linearly over a time frame of 100
s, down to 0. Controllers were scored based on how much of the grid was covered over time,
according to the following equation:

fmonitor ¼ 1

T

XT
t¼1

1

C

XC
c¼1

valðctÞ
 !

� S ;

valðctÞ ¼

0 ; t ¼ 1

maxð0; valðct�1Þ � DÞ ; minDistc;t > V

1 ; minDistc;t � V

ð5Þ

8>>><
>>>:

where T is the maximum number of time steps, C is the number of cells,minDistc, t is the mini-
mum distance of any robot to cell c at time t, and Δ is the decay for any cell (0.001 per time
step).

4.3 Evolutionary Results
The results of the evolutionary algorithm for all tasks can be found in Fig 5. Solutions for hom-
ing, dispersion, and monitoring were found within 100 generations, while clustering required
up to 400 generations for effective solutions to evolve. This can be explained by the challenge
in forming a single cluster from random initial positions: since the environment is unbounded,
some robots might find themselves outside of each other’s communication range, making the
task more difficult. Section 5 covers the results in detail, including comparisons between per-
formance in simulation and on the real robots.

5 Transferring Evolved Controllers to Real Robots
In this section, we assess the evolved controllers on real robots and compare their performance
on real robots to their performance in simulation. The experiments reported in this section
were conducted over the course of four days, at Parque das Nações, Lisbon, Portugal, in a semi-
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enclosed waterbody with an area of 300 m × 190 m which is connected to the Tagus river, see
Fig 6. The wind speed ranged from 15 to 40 km/h. The average drift speed of the robots was 0.2
m/s, twice as high as we had used in simulation (see S1 Text). The experiments at Parque das
Nações were carried out with the permission and cooperation of the nautical center Marina
Parque das Nações, and preliminary experiments at the Lisbon Naval Base were carried out
with the permission and cooperation of Arsenal do Alfeite and the Portuguese Navy. As
described in Section 3, the top three controllers for each task were tested (referred to as Con-
trollers 1, 2 and 3 in this section). Each controller was evaluated in three independent experi-
ments (referred to as samples A, B and C).

Fig 5. Fitness plot for the four different tasks. The plot shows the highest fitness scores found so far at
each generation. The red lines depict the three highest-scoring evolutionary runs, while the blue line depicts
the average of the ten runs, with the respective standard deviation shown in gray.

doi:10.1371/journal.pone.0151834.g005

Fig 6. Panoramic photo of the location the experiments at Parque das Nações, Lisbon, Portugal.

doi:10.1371/journal.pone.0151834.g006
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5.1 Homing
We setup a scenario where the swarm had to navigate sequentially to four waypoints to assess
the performance of the evolved homing controllers. Each waypoint was placed at a distance of
40 m from the previous one, and the active waypoint was changed periodically every 60 s. Each
controller was tested once in this scenario, for a total of 4 minutes. All three controllers tested
in the real robots were able to navigate successfully to the waypoint while avoiding collisions
with the neighboring robots. Fig 7 (top) shows the average distance to the active waypoint,
compared to the same controller in the simulation environment. The controllers display a simi-
lar behavior and level of performance in reality and in simulation, arriving at the intermediate
waypoints at approximately the same time, and keeping the same average distance to them
(around 10 m). Once the swarm arrived at one of the waypoints, the robots would start moving
around the waypoint at slow speeds in concentric circles, see Fig 7 (bottom).

5.2 Dispersion
In the real-robot dispersion tests, eight robots started in a cluster, and had to disperse to a dis-
tance of 20 m from their nearest neighbor. The robots were initially placed randomly in a
square-shaped area with a side-length of 28 m, at a minimum distance of 5 m from the nearest
neighbor. Each experiment lasted for 90 seconds.

The results in Fig 8 show some differences in the performance of controllers on the real
robots and in simulation. While performance was relatively homogeneous across all controllers
in the simulation environment, with an error close to 1 m to the target distance, no controller
was able to achieve the same level of performance on real robots. Controller 3 achieved an
average error of 2 m on the real robots, but the other two controllers performed considerably
worse, despite all of them displaying similar performance in simulation. Upon inspection of
the behaviors, we observed that the robots in simulation relied on moving in circles at very low
speeds to maintain their positions after dispersion. The same movement pattern was observed
on the real robots. However, the circles performed by the real robots were larger, meaning that
they tended to move away from their position, which is explained by the disparities between
the motion model in simulation and the motion of the real robots.

5.3 Clustering
The clustering controllers were tested by randomly placing the real robots in an area of
100x100 m, up to a maximum of 40 m from the nearest robot. Each experiment lasted for 180
seconds. Results for the clustering experiments greatly varied depending on the initial condi-
tions, but this variation was also observed in the simulation environment (see Fig 9, top). If one
or more robots were initially positioned far away from the remaining robots (and therefore not
within communication range), the swarm would sometimes aggregate in more than one clus-
ter, see example in Fig 9 (bottom, Controller 2). The results show that the controllers were
generally able to cross the reality gap successfully. In the case of Controller 1, it had a better
performance in the real-robot experiments than in simulation, by successfully aggregating into
a single cluster in two of the three samples. Controller 2, on the other hand, performed worse
than in simulation, and Controller 3 displayed a similar level of performance.

5.4 Area Monitoring
We assessed each of the three highest-performing area monitoring controllers in real robots in
three areas: square, L-shaped, and rectangular. Each of the areas covered a total of 10,000 m2. It
should be noted that the evolutionary process did not optimize the controllers for areas with
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these specific shapes, but rather for randomly generated shapes in order to promote the evolu-
tion of general behaviors (see Section 4.2). Only the highest-performing controller was tested
on real robots, since we did not observe any significant behavioral or performance differences
in the other best controllers. Each experiment lasted for a total of five minutes.

The controllers successfully monitored the three different areas, performing significantly
better on the real robots than in simulation (see Fig 10, top). These results are explained by
speed differences between the simulated robots and some of the real robots. The speed differ-
ences directly influence the coverage measure, since a faster robot will be able to cover a larger
area in the same amount of time. In terms of behavior (Fig 10, bottom), it is possible to see that
the robots were able to effectively cover the square and rectangular areas, staying within the
boundaries and moving away from the other nearby robots. The L-shaped area was also cov-
ered reasonably well, with the robots passing over all regions, but the intensity of the coverage
was not uniform across the whole area. Although some robots would eventually move outside

Fig 7. Real-world homing experiments with eight robots. The robots started around S. The active waypoint was then changed at 60 second intervals, in
the order A!B!C!B, for a total of four minutes per experiment. Top: comparison between the real and simulated robots, showing the average distance to
the active waypoint, for similar conditions. The top of the figure shows the current active waypoint. Bottom: trajectories of the real robots for Controller 3. The
waypoints are marked with yellow circles.

doi:10.1371/journal.pone.0151834.g007
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of the pre-defined boundaries (both in simulation and on the real robots) either because of
wind, currents, GPS inaccuracies, or too many robots nearby, they would quickly return to the
area inside the boundaries and resume monitoring.

6 Scalability and Robustness
Desirable characteristics of swarm behaviors include scalability and robustness [12]. Perfor-
mance should increase as more units are added (until issues such as congestion and overcrowd-
ing become a limiting factor), and failures in individual units should not compromise the
performance of the rest of the swarm. To evaluate if our swarm of real robots with evolved con-
trol would display these properties, we ran an additional series of experiments: (i) scalability
experiments for the dispersion and clustering tasks with four and six robots, (ii) robustness
experiments for the dispersion task where a second group of robots is added to the swarm after
a period of time, and (iii) robustness experiments for the monitoring task where robots are
physically removed during the task executing (simulating faults), and then reintroduced after a
period of time. All experiments were conducted in the real environment with the controllers
that showed the highest performance in real hardware in the previous experiments.

6.1 Scalability
The dispersion and clustering controllers were tested with four and six robots (in addition to
the first experiments with eight robots) to determine if the evolved controllers were able to per-
form well independently of the number of robots in the swarm. Fig 11 summarizes the results
for these experiments.

Fig 8. Real-world dispersion experiments with eight robots, one for each controller tested, over a period of 90 seconds. Top: average error to target
distance (20 m) of the nearest robot in the last 10 s of each dispersion experiment. Bottom: trajectories of the real robots. The black squares mark the starting
positions, and the red circles mark the final positions.

doi:10.1371/journal.pone.0151834.g008
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In the dispersion experiments, while the controllers were able to perform the task success-
fully with swarms of different sizes, the results show a slight performance decrease in the exper-
iments with six robots. It must be noted, however, that the error obtained is still relatively low,
when compared to the target distance of 20 m. In the clustering experiments, the swarm was
able to aggregate into a single cluster in all three samples with four robots, and in two out of
three samples with six and eight robots. Since the communication range is limited, subsets of
robots may initially be outside communication range or lose contact during an experiment,
which can result in two or more isolated clusters.

6.2 Robustness
We setup a dispersion task that starts with a group of four robots (Ga). In the beginning of the
experiment, Ga start dispersing. After 60 s, a group of four additional robots (Gb) starts moving
towards the center of the swarm. When all robots of Gb are at the center (t = 130 s), their pres-
ence disturbs the dispersion of Ga, forcing Ga to separate even further. After the robots in Gb

have been in the center for 60 s, they start the dispersion behavior along with the robots in
Ga (at t = 180 s).

Fig 12 shows the results for the robustness experiments. When Gb moves to the center of Ga,
the robots in Ga are forced to move away from one another since they try to stay at a fixed dis-
tance from the closest robot. When Gb starts dispersing, robots from Ga move further away to
accommodate the movement pattern of Gb. When the whole swarm is dispersing, the distance
error decreases with time as the robots continue adjusting their positions. The results demon-
strate that the controllers were able to adjust to conditions that they were not exposed to during

Fig 9. Real-world clustering experiments with eight robots, over a period of 180 seconds. Top: minimum number of clusters obtained in each sample.
Bottom: trajectories of the real robots. The final clusters are highlighted in blue.

doi:10.1371/journal.pone.0151834.g009
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evolution, particularly the addition of new robots during task execution, and still carry out the
task successfully.

In an additional experiment, we physically removed and added units during the execution
of the monitoring task. The area to monitor was a square with 100×100 m. The monitoring

Fig 10. Real-world monitoring experiments with eight robots for Controller 1, over a period of five minutes. Top: coverage of the three different
monitoring areas. Bottom: coverage maps in the experiments with the real swarm. The coverage of the area is presented in blue, and has a decay of 100 s.
Trajectories for the full duration of the task are presented in red, and all the areas visited by the robots are filled in gray.

doi:10.1371/journal.pone.0151834.g010

Fig 11. Scalability experiments with dispersion (Controller 3, left) and clustering (Controller 1, right) controllers. In each task, the same controller
was used in a swarm of four, six, and eight robots, with three samples for each setup.

doi:10.1371/journal.pone.0151834.g011
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controller was executed for a total of 15 minutes, starting with eight robots. At the 5-minute
mark, we removed four of the robots, and at the 10-minute mark, two new robots were added.
Fig 13 shows the coverage of the monitoring area at any given time during the experiment. The
performance decrease after the 5-minute (300 s) mark, and the consequent increase at the 10
minute (600 s) mark show that the performance of the evolved controllers tends to scale line-
arly with the number of robots executing the task (see mean coverage in Fig 13). These results
indicate that the evolved controller is robust to variations in the composition of the swarm dur-
ing task execution. A video of the experiment can be found in the supplemental information
(S1 Video).

7 Multi-controller Mission
In this section, we show how relatively simple swarm behaviors can be combined to produce
more sophisticated behaviors that could be used in realistic applications. We integrate the high-
est-performing behaviors described in the previous section to accomplish a mission of sam-
pling the water temperature over a given area of interest. The robots all started near a base

Fig 12. Robustness experiments with Controller 3 of the dispersion behavior. The red area represents the period where the robots ofGb are disturbing
the dispersion ofGa, and the black vertical line at t = 180 s indicates the point where the robots inGb start dispersing, and where the distance error starts
being measured for all eight robots.

doi:10.1371/journal.pone.0151834.g012
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station, outside the area of interest. The mission was decomposed in five sequential sub-tasks:
(i) collectively navigate from the base station to the center of the area of interest (homing); (ii)
disperse; (iii) monitor the area of interest; (iv) aggregate, using the clustering behavior; and
finally (v) return to the base station (homing). The robots start collecting temperature data
after reaching the center of the monitoring area, before sub-task (ii). The different behaviors
were triggered sequentially to produce a complete mission, with each behavior lasting for a pre-
defined amount of time.

The trajectories of the real robots executing the multi-controller mission and the tempera-
ture data collected can be seen in Fig 14. The uncertainty of the temperature estimate deceases
as the robots cover the area, resulting in a more accurate profile. At the end of the monitoring
period (t = 360 s), the estimated standard deviation of the error was< 0.14 for the whole area
except in the corners where it was slightly higher (< 0.24). A video of the experiment is avail-
able in S2 Video.

8 Discussion
Our experiments showed that evolutionary computation is a viable approach for the synthesis
of control for swarms of robots operating outside of controlled laboratory environments.
Below, we discuss the main challenges we faced in evolving control for the SRS, and the proper-
ties observed in the SRS with evolved control.

8.1 Evolutionary Process
For the most part, the definition and configuration of the evolutionary process was straightfor-
ward. The main challenge in configuring the evolutionary algorithm was the definition of the
fitness functions. The fact that we used common swarm robotics tasks facilitated the definition
of the fitness functions, however, once we started considering more complex tasks (as the tem-
perature monitoring task in Section 7), it became hard to design effective fitness function that
could express the task objectives. Moreover, previous works have shown that using standard
evolutionary techniques for such complex and sequential tasks can be inadequate due to boot-
strapping and deception issues [46, 72–74].

One solution is to synthesize the various building blocks a-priori, and then combine them in
order to solve complex tasks [49]. We have explored a variant of this line of research in this
paper with the multi-controller mission (Section 7), where a sequence of different behaviors were
triggered to produce a complete mission, with each behavior executing for a predefined amount
of time. However, as we have successfully shown in previous work, more complex decision

Fig 13. Robustness experiments with Controller 1 of the monitoring behavior. The time regions
highlighted in red correspond to the periods when robots where either entering or leaving the monitoring area.

doi:10.1371/journal.pone.0151834.g013
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schemes can be used to articulate different behaviors [31, 49, 75]. In recent work [76], we have
taken the first steps towards the demonstration of hierarchical control in a real robotic swarm,
and demonstrate how this control approach can produce modular and flexible behaviors.

8.2 Transferability of Controllers
One of the challenges of synthesizing control for aquatic surface robots is dealing with the
unpredictable environmental conditions and unexpected circumstances associated with this
environment. Many of the environmental variables affecting the robots can be extremely diffi-
cult, or even impossible, to model accurately. The simulation model was therefore a substantial
simplification of reality. To compensate for the differences between the motion model and the
real dynamics of the robots, as well as for other potential sources of stochasticity, we introduced
a conservative amount of noise in the sensors, actuators, and environment, during evolution
(Section 3). The introduction of noise is a computationally-effective way of promoting the evo-
lution of robust controllers [38]. In addition to noise, each controller was evaluated in multiple
trials with variations in the task setup, such as the number of robots in each sample, or the ini-
tial positions of the robots and environmental features, which also contributed to the increase
of transferability of the evolved controllers.

Fig 14. Results for the multi-controller mission. Top: robot trajectories for each sub-task. Middle and bottom: temperatures in the monitoring area.
Measurements taken by the robots’ temperature sensors were spatially interpolated using kriging [71]. Data collection started after the robots arrived at the
waypoint (t = 100 s). The middle row shows the predicted temperatures, while the bottom row shows the estimated error of the predictions.

doi:10.1371/journal.pone.0151834.g014
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Our experimental results showed that the evolved controllers were generally able to cross
the reality gap. In a number of experiments, a speed difference between some of the real robots
and the simulated robots (up to 20%, in some cases) contributed to differences in terms of per-
formance. While the behaviors of the real robots were generally similar to those observed in
simulation, some motion patterns did not transfer well. With the dispersion controllers, for
instance, in simulation the robots started moving in small circles to maintain their current
position. In reality, however, these circles were larger, which resulted in a lower performance.
This difference highlights the limitations of the simplified physics model we adopted in the
simulation environment. We are considering two different approaches to address these issues
in future work: (i) further improve the simulated movement dynamics, thereby decreasing the
mismatch between simulation and reality, and (ii) select for controllers that rely on motion pat-
terns that transfer well from simulation to reality, as proposed in previous works [39, 40, 77].

8.3 Swarm Behaviors
In this paper, we relied on four canonical swarm tasks (homing, dispersion, clustering, and
area monitoring) to validate the basic properties of swarm robotics in real conditions. All the
collective tasks presented in this paper can be classified as swarm robotics tasks, according to
the classification proposed by Brambilla et al. [1]: (i) robots are autonomous; (ii) robots are sit-
uated in the environment; (iii) robots’ sensing and communication capabilities are local (up to
40 m, while the robots can be over 200 m apart from each other); (iv) robots do not have access
to centralized control and/or to global information; and (v) robots cooperate to solve a given
task. Additionally, Şahin [12] states three properties as motivations for swarm robotics, which
we were able to verify with the experiments described in the paper:

Robustness: We demonstrated robustness explicitly with the monitoring task, by removing
robots during task execution (see Section 6.2). In all tasks, there were also sporadic hardware
failures, which resulted in individual failures that did not impact the behavior of the group
(Section 6.2).

Flexibility: The flexibility of the swarm could be observed in the different coordination
strategies that were adopted by the swarm, when using controllers for different tasks. Further-
more, we showed the behavioral modularity of the system by assembling a high-level controller
that relied on the combination of multiple previously evolved controllers (see Section 7).

Scalability: We studied scalability explicitly using the clustering and dispersion behaviors
(Section 6.1). We tested the same controller with different swarm sizes (from four to eight
robots), and the performance and behavior of the swarm was similar regardless of the swarm
size. In the monitoring task, we showed that the performance of the swarm (amount of space
covered) was proportional to the number of robots (Section 6.2).

8.4 Robustness to Hardware Faults
The use of robots in real-world conditions will often imply hardware malfunctions, caused by
prolonged use and environmental factors. In our experiments, the main source of faults were
the robots’motors, which sporadically and temporarily stopped, causing the robot to stop
completely or start moving in circles. Other problems included the decrease of motor power
with lower battery levels, and often erroneous GPS readings. These faults occurred often during
the execution of all experiments reported in this paper. Even though these faults were not con-
templated in simulation, and therefore were not taken into account during the evolutionary
process, they did not compromise the overall performance of the swarm, highlighting the
inherent robustness of swarm behaviors. In future work, we will study the fault-tolerance
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properties of the system more systematically by injecting different types of faults [78], and by
measuring the impact of these faults in the performance of the swarm.

An additional source of uncertainty, related to the hardware, was the heterogeneity among
the robots of the swarm. Robots within the swarm often had different battery levels and motors
with slight performance differences. We measured this heterogeneity in the monitoring task,
where all robots display similar behaviors. In the real swarm, the difference between the slowest
and the fastest robot was up to 0.6 m/s at certain times, while for the same task, in simulation,
the difference between the slowest and the fastest robot was just 0.1 m/s. This suggests that the
real swarm had to deal with a much higher degree of heterogeneity than what was contem-
plated during the evolutionary process.

8.5 Towards Real World Applications
In this study, we have demonstrated that swarm robotics systems can effectively operate in
real-world conditions. There are, however, a number of control-related issues to be addressed
before the practical use of swarms of robots in real-world applications. Prominent challenges
include:

Integration of mission-specific sensors: In the experiments presented in this paper, the
robot controllers relied mostly on their position and on the position of the neighboring robots
for the behavioral decision process. The integration of data gathered from onboard sensors
such as cameras or sonars, may however be an essential input for the controllers in other tasks.
The challenge of evolving controllers capable of dealing with such data is twofold: (i) the data
might not be trivial to decompose into meaningful information that can be fed to neural con-
trollers; and (ii) the sensors would have to be accurately modeled in simulation.

Robustness to faults: Another significant challenge is endowing controllers with the capa-
bility to cope with faults within the swarm. Although our experiments confirmed that swarm
behaviors inherently have some degree of tolerance for individual faults, in real-world applica-
tions it may be necessary to guarantee that faulty individuals will not compromise the whole
swarm. Approaches for fault detection [78], fault tolerance [79], and online adaptation [77]
must therefore be implemented in the system.

Safety: The robots should have the capability of dealing with external factors, such as nearby
vessels, in a way that guarantees the safety of all parties and conforms with the existing regula-
tions. Combining such fail-safe behaviors with the mission controllers may require the combi-
nation of evolved and manually programmed behaviors [75].

Behavior flexibility and modularity: One concern when using evolutionary robotics is the
difficulty in rapidly producing new behaviors or modify existing ones. One possible solution
for this problem is to compose behaviors for new tasks based on existing building blocks [49].
In this study, we showed how multiple evolved behaviors could be sequentially arranged in
order to perform an environmental monitoring task. Future work should explore the usage of
more capable techniques for combining controllers, such as hierarchical composition [49, 76].

9 Conclusion
In this paper, we present for the first time a swarm robotics system with evolved control operat-
ing in a real-world uncontrolled environment. Our experiments relied on a swarm of small and
inexpensive aquatic surface robots that used distributed self-organized control and local com-
munication. In a simulation environment, we evolved controllers for four common collective
tasks: homing, clustering, dispersion, and area monitoring.

The evolved controllers were then systematically evaluated in the real robots in a large and
uncontrolled aquatic environment. Our results showed that the controllers displayed similar
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behaviors and levels of performance in the real swarm as those observed in simulation. More-
over, we verified key desirable properties of swarm robotics systems, namely robustness, flexi-
bility, and scalability. We finally showed how simple evolved behaviors can be combined to
produce a complete mission, by carrying out a complete environmental monitoring task.

Past studies in the field of swarm robotics and evolutionary robotics have been confined
either to simulation (the vast majority), or to highly-controlled laboratory conditions. Our
study contrasts with the previous work in these fields, as it relies on an evolved swarm of robots
operating in a realistic and uncontrolled environment. Overall, our research demonstrates
the potential of both swarm robotics systems and evolutionary robotics techniques as viable
approaches for controlling multirobot systems in real-world scenarios.
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