2 research outputs found

    On proactive, transparent and verifiable ethical reasoning for robots

    Get PDF
    Previous work on ethical machine reasoning has largely been theoretical, and where such systems have been implemented it has in general been only initial proofs of principle. Here we address the question of desirable attributes for such systems to improve their real world utility, and how controllers with these attributes might be implemented. We propose that ethically-critical machine reasoning should be proactive, transparent and verifiable. We describe an architecture where the ethical reasoning is handled by a separate layer, augmenting a typical layered control architecture, ethically moderating the robot actions. It makes use of a simulation-based internal model, and supports proactive, transparent and verifiable ethical reasoning. To do so the reasoning component of the ethical layer uses our Python based Beliefs, Desires, Intentions (BDI) implementation. The declarative logic structure of BDI facilitates both transparency, through logging of the reasoning cycle, and formal verification methods. To prove the principles of our approach we use a case study implementation to experimentally demonstrate its operation. Importantly, it is the first such robot controller where the ethical machine reasoning has been formally verified

    Visual motion estimation and tracking of rigid bodies by physical simulation

    Get PDF
    This thesis applies knowledge of the physical dynamics of objects to estimating object motion from vision when estimation from vision alone fails. It differentiates itself from existing physics-based vision by building in robustness to situations where existing visual estimation tends to fail: fast motion, blur, glare, distractors, and partial or full occlusion. A real-time physics simulator is incorporated into a stochastic framework by adding several different models of how noise is injected into the dynamics. Several different algorithms are proposed and experimentally validated on two problems: motion estimation and object tracking. The performance of visual motion estimation from colour histograms of a ball moving in two dimensions is improved considerably when a physics simulator is integrated into a MAP procedure involving non-linear optimisation and RANSAC-like methods. Process noise or initial condition noise in conjunction with a physics-based dynamics results in improved robustness on hard visual problems. A particle filter applied to the task of full 6D visual tracking of the pose an object being pushed by a robot in a table-top environment is improved on difficult visual problems by incorporating a simulator as a dynamics model and injecting noise as forces into the simulator.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore