1,445 research outputs found

    Self-Adaptive Stochastic Rayleigh Flat Fading Channel Estimation

    No full text
    International audienceThis paper deals with channel estimation over flat fading Rayleigh channel with Jakes' Doppler Spectrum. Many estimation algorithms exploit the time-domain correlation of the channel by employing a Kalman filter based on a first-order (or sometimes second-order) approximation of the time-varying channel with a criterion based on correlation matching (CM), or on the Minimization of Asymptotic Variance (MAV). In this paper, we first consider a reduced complexity approach based on Least Mean Square (LMS) algorithm, for which we provide closed-form expressions of the optimal step-size coefficient versus the channel state statistic (additive noise power and Doppler frequency) and of corresponding asymptotic mean-squared-error (MSE). However, the optimal tuning of the step-size coefficient requires knowledge of the channel's statistic. This knowledge was also a requirement for the aforementioned Kalman-based methods. As a second contribution, we propose a self-adaptive estimation method based on a stochastic gradient which does not need a priori knowledge. We show that the asymptotic MSE of the self-adaptive algorithm is almost the same as the first order Kalman filter optimized with the MAV criterion and is better than the latter optimized with the conventional CM criterion. We finally improve the speed and reactivity of the algorithm by computing an adaptive speed process leading to a fast algorithm with very good asymptotic performance

    Semi-blind adaptive spatial equalisation for MIMO systems with high-order QAM signalling

    No full text
    This contribution investigates semi-blind adaptive spatial filtering or equalisation for multiple-input multiple-output (MIMO) systems that employ high-throughput quadrature amplitude modulation (QAM) signalling. A minimum number of training symbols, equal to the number of receivers (we assume that the number of transmitters is no more than that of receivers), are first utilized to provide a rough least squares channel estimate of the system's MIMO channel matrix for the initialization of the spatial equalizers' weight vectors. A constant modulus algorithm aided soft decision-directed blind algorithm, originally derived for blind equalization of single-input single-output and single-input multiple-output systems employing high-order QAM signalling, is then extended to adapt the spatial equalizers for MIMO systems. This semi-blind scheme has a low computational complexity, and our simulation results demonstrate that it converges fast to the minimum mean-square-error spatial equalization solution

    MIMO Systems: Principles, Iterative Techniques, and advanced Polarization

    No full text
    International audienceThis chapter considers the principles of multiple-input multiple-output (MIMO) wireless communication systems as well as some recent accomplishments concerning their implementation. By employing multiple antennas at both transmitter and receiver, very high data rates can be achieved under the condition of deployment in a rich-scattering propagation medium. This interesting property of MIMO systems suggests their use in the future high-rate and high-quality wireless communication systems. Several concepts in MIMO systems are reviewed in this chapter. We first consider MIMO channel models and recall the basic principles of MIMO structures and channel modeling. We next study the MIMO channel capacity and present the early developments in these systems concerning the information theory aspect. Iterative signal detection is considered next; it considers iterative techniques for space-time decoding. As the capacity is inversely proportional to the spatial channel correlation, MIMO antennas should be sufficiently separated, usually by several wavelengths. In order to minimize antennas' deployment, we present advanced polarization diversity techniques for MIMO systems and explain how they can help to reduce the spatial correlation in order to achieve high transmission rates. We end the chapter by considering the application of MIMO systems in local area networks, as well as their potential in enhancing range, localization, and power efficiency of sensor networks

    Node Density Estimation in VANETs Using Received Signal Power

    Get PDF
    Accurately estimating node density in Vehicular Ad hoc Networks, VANETs, is a challenging and crucial task. Various approaches exist, yet none takes advantage of physical layer parameters in a distributed fashion. This paper describes a framework that allows individual nodes to estimate the node density of their surrounding network independent of beacon messages and other infrastructure-based information. The proposal relies on three factors: 1) a discrete event simulator to estimate the average number of nodes transmitting simultaneously; 2) a realistic channel model for VANETs environment; and 3) a node density estimation technique. This work provides every vehicle on the road with two equations indicating the relation between 1) received signal strength versus simultaneously transmitting nodes, and 2) simultaneously transmitting nodes versus node density. Access to these equations enables individual nodes to estimate their real-time surrounding node density. The system is designed to work for the most complicated scenarios where nodes have no information about the topology of the network and, accordingly, the results indicate that the system is reasonably reliable and accurate. The outcome of this work has various applications and can be used for any protocol that is affected by node density

    Adaptive interference cancelation techniques for multicarrier modulated systems

    Get PDF
    Current wireline systems and wireless broadcasting systems employ multicarrier modulation (MCM). This includes the high-rate digital subscriber line (HDSL), digital audio broadcasting system (DAB) and the digital terrestrial television broadcasting system (dTTb). Multicarrier modulation is also envisioned for high-speed indoor wireless local area networks (WLAN). Additionally, multicarrier code division multiple access (MC-CDMA), a hybrid of orthogonal frequency division multiplexing (OFDM) and CDMA, is proposed for the downlink (base-to-mobile) of a 3rd generation wireless system as part of the IMT-2000 standardization process. The performance of an MC-CDMA system--similar to a direct sequence CDMA (DS-CDMA) system--is limited by the presence of multiple access interference (MAI) . Downlink communications also suffers from MAI as a result of the multipath channel effect, even if it implements orthogonal code multiplexing. Additionally, transmissions aimed at different mobile users may be assigned different powers in order to increase the system capacity, essentially creating a near-far problem for some users. Due to the MC-CDMA signal structure the conventional decorrelator (based on the inverse of the correlation matrix) is dependent on the channel coefficients, suggesting the use of an adaptive multiuser detector, which can track a time-variant channel. The performance of a blind adaptive multiuser detector for MC-CDMA, based on the bootstrap algorithm, is investigated and compared to the performance of the conventional decorrelator. Additionally, the performance is investigated for different channel conditions. First, for a non-faded flat additive white Gaussian noise (AWGN) channel. Second, for a frequency selective channel with and without correlation between the channel coefficients at the different subcarriers. In general, the mobile terminal suffers from limited available resources such as computing power or battery life and, therefore, cannot accommodate the same level of receiver complexity as the base station. For the downlink, however, the received signal structure is less complex due to the assumed synchronized transmission. Moreover, the mobile receiver is merely required to detect the desired user\u27s data stream. To reduce the complexity, detectors are proposed that do not require knowledge of the active users nor their respective codes, but rather use a combined code to represent all the interfering users at once. The performance of the reduced complexity conventional decorrelator is compared to the performance of an adaptive reduced complexity detector using the bootstrap algorithm. The performance of these detectors is also investigated for the aforementioned channel types. For spectral-efficiency, closely spaced subcarriers are used in a multicarrier modulated system. A resulting drawback is a high sensitivity of the performance to a frequency offset. This results from a Doppler shift, due to mobile movement, as well as from a mismatch between the carrier frequencies at the transmitter and receiver. To mitigate this problem an adaptive decorrelator based frequency offset correction scheme is developed for OFDM and its performance is investigated. Additionally, a blind frequency offset estimation and correction structure is proposed based on a stochastic gradient method. The convergence and statistical properties of this estimator are investigated. A blind adaptive joint multiuser detection and frequency offset correction structure for downlink MC-CDMA is developed. This detector is a combination of the structures for multiuser detection for MC-CDMA and frequency offset correction for OFDM. Moreover, the performance of this detector is investigated and compared to a joint detector based on a minimum mean square error (MMSE) criterion

    Adaptive receivers for direct-spread and multi-carrier code division multiple access systems

    Get PDF
    In this thesis, the detection of Direct Sequence Code Division Multiple Access (DS-CDMA) signals in an AWGN channel and Multi-Carrier (MC) CDMA signals in a time-dispersion channel is discussed. The DS-CDMA receiver employs an adaptive multiuser interference canceler that utilizes deadzone limiters in the tentative decision stage. With weights adjusted adaptively, the prior knowledge of signal powers is unnecessary. The steady state error performance of this receiver is obtained and found to be superior to the performance of the same receiver using hard limiters for tentative decisions. The channel is considered non-fading in. this receiver. Modeling the frequency selective channel lading as narrowband fiat-flat fading centered at each subcarrier, the MC-CDMA technique reduces the effect of channel dispersion. A decorrelating multiuser interference canceler is introduced in the MC-CDMA receiver to reduce the multi-access interference, especially when the orthogonality of signature codes is degraded by the fading channel

    Spectral and Energy Efficiency of Superimposed Pilots in Uplink Massive MIMO

    Full text link
    Next generation wireless networks aim at providing substantial improvements in spectral efficiency (SE) and energy efficiency (EE). Massive MIMO has been proved to be a viable technology to achieve these goals by spatially multiplexing several users using many base station (BS) antennas. A potential limitation of Massive MIMO in multicell systems is pilot contamination, which arises in the channel estimation process from the interference caused by reusing pilots in neighboring cells. A standard method to reduce pilot contamination, known as regular pilot (RP), is to adjust the length of pilot sequences while transmitting data and pilot symbols disjointly. An alternative method, called superimposed pilot (SP), sends a superposition of pilot and data symbols. This allows to use longer pilots which, in turn, reduces pilot contamination. We consider the uplink of a multicell Massive MIMO network using maximum ratio combining detection and compare RP and SP in terms of SE and EE. To this end, we derive rigorous closed-form achievable rates with SP under a practical random BS deployment. We prove that the reduction of pilot contamination with SP is outweighed by the additional coherent and non-coherent interference. Numerical results show that when both methods are optimized, RP achieves comparable SE and EE to SP in practical scenarios.Comment: 32 pages, 12 figures, 3 tables. Submitted in March 2017 to IEEE Transactions on Wireless Communication
    corecore