2,875 research outputs found

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ

    Towards edge intelligence in smart spaces

    Get PDF
    After more than two decades of existence, the internet of things has been revolutionizing the way we interact with the world around us. Although, in its origins, the adoption of a cloud computing paradigm supported this ubiquitous computing model, the increasing complexity of IoT systems has led to the gradual fading of the traditional hierarchical model of cloud computing. The search for solutions to the problems of latency, scalability and privacy has, in recent years, driven the movement of data processing and storage, from the cloud, to the edge of the network (edge computing). Starting from the particular case of edge computing that keeps the focus on extending the boundaries of artificial intelligence to the edge of the network - Edge intelligence - a survey of the current state of the art is carried out, culminating into the specification of an architecture to support edge intelligence applications. In order to validate the proposed architecture, two scenarios are presented. In the scope of waste management and energy recycling, a system for used cooking oil classification in a national domestic collection network is presented. With the local classification of the trustworthiness of each deposit, it was possible to significantly shorten the response times, with a direct impact on energy consumption levels. Aimed at smart cities, a second application scenario, proposes an approach based on computer vision and deep learning, for local detection of pedestrians on crosswalks. In this context, an edge intelligence paradigm allowed to overcome privacy related issues, as well as reducing response times by more than 80 times, when compared to a cloud computing based solution.Após mais de duas décadas de existência, a internet das coisas, tem vindo a revolucionar a forma como interagimos com o mundo que nos rodeia. Apesar de, nas suas origens, a adoção de um paradigma de computação em nuvem ter servido de suporte a este modelo de computação ubíqua, a crescente complexidade dos sistemas IoT tem conduzido ao paulatino esvanecer do tradicional modelo hierárquico da computação em nuvem. A procura por soluções para os problemas de latência, escalabilidade e garantia de qualidade de serviço tem, nos últimos anos, impulsionado a deslocação do processamento e armazenamento de dados, da nuvem, para a periferia da rede (computação periférica). Partindo do caso particular de computação periférica que mantém o foco no alargar das fronteiras da inteligência artificial para a periferia da rede - Periferia inteligente - um levantamento do atual estado da arte é levado a cabo, culminando na especificação de uma arquitetura de suporte a cenários de periferia inteligente. Com vista à validação da arquitetura proposta, dois cenários são apresentados. No âmbito da gestão de resíduos e reciclagem energética, um sistema para classificação de óleo alimentar usado, numa rede nacional de recolha doméstica é apresentado. Com classificação local da veracidade de cada depósito foi possível encurtar significativamente os tempos de resposta, com impacto direto nos níveis de consumo energético. Direcionado às cidades inteligentes, um segundo cenário de aplicação, propõe uma abordagem baseada em visão computacional e aprendizagem profunda, para deteção local de peões em passadeiras. Neste contexto, um paradigma de periferia inteligente permitiu ultrapassar questões relativas à privacidade na transmissão de dados, assim como reduzir em mais de 80 vezes os tempos de resposta, quando comparado com uma solução de computação em nuvem

    6G White Paper on Edge Intelligence

    Get PDF
    In this white paper we provide a vision for 6G Edge Intelligence. Moving towards 5G and beyond the future 6G networks, intelligent solutions utilizing data-driven machine learning and artificial intelligence become crucial for several real-world applications including but not limited to, more efficient manufacturing, novel personal smart device environments and experiences, urban computing and autonomous traffic settings. We present edge computing along with other 6G enablers as a key component to establish the future 2030 intelligent Internet technologies as shown in this series of 6G White Papers. In this white paper, we focus in the domains of edge computing infrastructure and platforms, data and edge network management, software development for edge, and real-time and distributed training of ML/AI algorithms, along with security, privacy, pricing, and end-user aspects. We discuss the key enablers and challenges and identify the key research questions for the development of the Intelligent Edge services. As a main outcome of this white paper, we envision a transition from Internet of Things to Intelligent Internet of Intelligent Things and provide a roadmap for development of 6G Intelligent Edge

    Intelligence at the Extreme Edge: A Survey on Reformable TinyML

    Full text link
    The rapid miniaturization of Machine Learning (ML) for low powered processing has opened gateways to provide cognition at the extreme edge (E.g., sensors and actuators). Dubbed Tiny Machine Learning (TinyML), this upsurging research field proposes to democratize the use of Machine Learning (ML) and Deep Learning (DL) on frugal Microcontroller Units (MCUs). MCUs are highly energy-efficient pervasive devices capable of operating with less than a few Milliwatts of power. Nevertheless, many solutions assume that TinyML can only run inference. Despite this, growing interest in TinyML has led to work that makes them reformable, i.e., work that permits TinyML to improve once deployed. In line with this, roadblocks in MCU based solutions in general, such as reduced physical access and long deployment periods of MCUs, deem reformable TinyML to play a significant part in more effective solutions. In this work, we present a survey on reformable TinyML solutions with the proposal of a novel taxonomy for ease of separation. Here, we also discuss the suitability of each hierarchical layer in the taxonomy for allowing reformability. In addition to these, we explore the workflow of TinyML and analyze the identified deployment schemes and the scarcely available benchmarking tools. Furthermore, we discuss how reformable TinyML can impact a few selected industrial areas and discuss the challenges and future directions
    corecore