12,653 research outputs found

    PREDICTIVE ENERGY MANAGEMENT IN SMART VEHICLES: EXPLOITING TRAFFIC AND TRAFFIC SIGNAL PREVIEW FOR FUEL SAVING

    Get PDF
    This master thesis proposes methods for improving fuel economy and emissions of vehicles via use of future information of state of traffic lights, traffic flow, and deterministic traffic flow models. The first part of this thesis proposes use of upcoming traffic signal information within the vehicle\u27s adaptive cruise control system to reduce idle time at stop lights and lower fuel use. To achieve this goal an optimization-based control algorithm is formulated for each equipped vehicle that uses short range radar and traffic signal information predictively to schedule an optimum velocity trajectory for the vehicle. The objectives are timely arrival at green light with minimal use of braking, maintaining safe distance between vehicles, and cruising at or near set speed. Three example simulation case studies are presented to demonstrate potential impact on fuel economy, emission levels, and trip time. The second part of this thesis addresses the use of traffic flow information to derive the fuel- or time-optimal velocity trajectory. A vehicle\u27s untimely arrival at a local traffic wave with lots of stops and goes increases its fuel use. This paper proposes predictive planning of the vehicle velocity for reducing the velocity transients in upcoming traffic waves. In this part of the thesis macroscopic evolution of traffic pattern along the vehicle route is first estimated by combining a traffic flow model and real-time traffic data streams. The fuel optimal velocity trajectory is calculated by solving an optimal control problem with the spatiotemporally varying constraint imposed by the traffic. Simulation results indicatethe potential for considerable improvements in fuel economy with a little compromise on travel time

    A comprehensive survey on cooperative intersection management for heterogeneous connected vehicles

    Get PDF
    Nowadays, with the advancement of technology, world is trending toward high mobility and dynamics. In this context, intersection management (IM) as one of the most crucial elements of the transportation sector demands high attention. Today, road entities including infrastructures, vulnerable road users (VRUs) such as motorcycles, moped, scooters, pedestrians, bicycles, and other types of vehicles such as trucks, buses, cars, emergency vehicles, and railway vehicles like trains or trams are able to communicate cooperatively using vehicle-to-everything (V2X) communications and provide traffic safety, efficiency, infotainment and ecological improvements. In this paper, we take into account different types of intersections in terms of signalized, semi-autonomous (hybrid) and autonomous intersections and conduct a comprehensive survey on various intersection management methods for heterogeneous connected vehicles (CVs). We consider heterogeneous classes of vehicles such as road and rail vehicles as well as VRUs including bicycles, scooters and motorcycles. All kinds of intersection goals, modeling, coordination architectures, scheduling policies are thoroughly discussed. Signalized and semi-autonomous intersections are assessed with respect to these parameters. We especially focus on autonomous intersection management (AIM) and categorize this section based on four major goals involving safety, efficiency, infotainment and environment. Each intersection goal provides an in-depth investigation on the corresponding literature from the aforementioned perspectives. Moreover, robustness and resiliency of IM are explored from diverse points of view encompassing sensors, information management and sharing, planning universal scheme, heterogeneous collaboration, vehicle classification, quality measurement, external factors, intersection types, localization faults, communication anomalies and channel optimization, synchronization, vehicle dynamics and model mismatch, model uncertainties, recovery, security and privacy

    Representation Wars: Enacting an Armistice Through Active Inference

    Get PDF
    Over the last 30 years, representationalist and dynamicist positions in the philosophy of cognitive science have argued over whether neurocognitive processes should be viewed as representational or not. Major scientific and technological developments over the years have furnished both parties with ever more sophisticated conceptual weaponry. In recent years, an enactive generalization of predictive processing – known as active inference – has been proposed as a unifying theory of brain functions. Since then, active inference has fueled both representationalist and dynamicist campaigns. However, we believe that when diving into the formal details of active inference, one should be able to find a solution to the war; if not a peace treaty, surely an armistice of a sort. Based on an analysis of these formal details, this paper shows how both representationalist and dynamicist sensibilities can peacefully coexist within the new territory of active inference
    • …
    corecore