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Abstract

This master thesis proposes methods for improving fuel economy and emissions of

vehicles via use of future information of state of traffic lights, traffic flow, and deterministic

traffic flow models.

The first part of this thesis proposes use of upcoming traffic signal information

within the vehicle’s adaptive cruise control system to reduce idle time at stop lights and

lower fuel use. To achieve this goal an optimization-based control algorithm is formulated

for each equipped vehicle that uses short range radar and traffic signal information predic-

tively to schedule an optimum velocity trajectory for the vehicle. The objectives are timely

arrival at green light with minimal use of braking, maintaining safe distance between vehi-

cles, and cruising at or near set speed. Three example simulation case studies are presented

to demonstrate potential impact on fuel economy, emission levels, and trip time.

The second part of this thesis addresses the use of traffic flow information to derive

the fuel- or time-optimal velocity trajectory. A vehicle’s untimely arrival at a local traffic

wave with lots of stops and goes increases its fuel use. This paper proposes predictive plan-

ning of the vehicle velocity for reducing the velocity transients in upcoming traffic waves.

In this part of the thesis macroscopic evolution of traffic pattern along the vehicle route is

first estimated by combining a traffic flow model and real-time traffic data streams. The

fuel optimal velocity trajectory is calculated by solving an optimal control problem with

the spatiotemporally varying constraint imposed by the traffic. Simulation results indicate
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the potential for considerable improvements in fuel economy with a little compromise on

travel time.
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Chapter 1

Introduction

1.1 Motivation

Consider the following two examples in which lack of information of upcoming

events has a negative influence on fuel economy and possibly emissions of a vehicle:

1. Vehicles speeding up toward a green light and having to come to a sudden stop when

the light turns red (amber) losing fuel and wearing their brakes and engines. (Un-

known future status of traffic lights)

2. A vehicle’s untimely arrival at a local traffic wave with lots of stops and goes. (Un-

known future traffic flow)

Interestingly preview information of traffic light status and traffic flow is not far-

fetched today with GPS-enabled vehicle navigation systems. Google currently streams

real-time traffic information of major U.S. cities and includes accurate average speed of

vehicles in each road segment (see the latest edition of Google Earth and its traffic layer.).

Traffic light information is not currently broadcast to vehicles, however serious research

is underway in making this information available under Cooperative Intersection Collision
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Avoidance Systems (CICAS) initiative of the U.S. Department of Transportation [58]. In

fact the protocol for communicating signal phase and timing via Dedicated Short Range

Communications (DSRC) is now being finalized by a team of government, industry, and

university researchers [57].

Most uses of such information have been for navigation and routing purposes us-

ing mostly ad-hoc or proprietary routines [7, 21, 27, 66]. An untapped opportunity lies in

utilizing this vast source of dynamic information for better energy management of conven-

tional and hybrid vehicles. Preview can help plan an eco-friendly speed profile which saves

fuel and reduces emissions without increasing trip time. This eco-friendly speed can be

suggested to the driver or directly incorporated in vehicle’s adaptive cruise control module.

The objective of this Masters thesis is to, i) propose an effective velocity trajectory

planning for improving the fuel economy and reducing trip time on a particular driving

route when the traffic light information is available to the vehicle in advance, and ii) utilize

the spatiotemporal traffic information and dynamic behavior of traffic flow along the road

to find the fuel optimal velocity trajectory without compromising trip time.

1.2 Approach

In the first section of this thesis, the desired velocity trajectory is obtained through

a two-level optimization based control strategy: A supervisory level controller which is

based on logical rules generates a velocity trajectory that ensures timely arrival of the vehi-

cle to the green phase of the intersection, and a model predictive controller (MPC)[23, 51]

to track the generated trajectory. The second section of this thesis is allocated to the use

of traffic flow information to generate a near fuel optimal velocity trajectory via use of

dynamic programming approach. In this method spatiotemporal traffic flow pattern is first

predicted using a partial differential equation macroscopic traffic model which can be ini-

2



tialized using real-time traffic information. The predicted traffic surface serves as an upper

constraint on vehicle’s velocity in solving the fuel optimal problem.

1.3 Overview of Thesis

In Chapter 2 an overview is given on existing intelligent transportation system ini-

tiatives and methods. A brief introduction of existing traffic management through intelli-

gent highways and intelligent vehicle is given in this chapter with an overview of available

communication technologies used in the intelligent transportation systems. Also in this

chapter some of the existing algorithms in traffic management are reviewed.

Chapter 3 is on utilization of upcoming traffic signal information for improving fuel

economy and reducing emissions. In this chapter a two-level optimization-based control

strategy is introduced to derive a near-optimal trajectory which improves fuel economy and

emissions and may also reduce trip time. Taking the advantage of future state of traffic light

information, the resulting near-optimal velocity trajectory is shown to considerably reduce

fuel consumption and trip time. A same investigation on implementation of such control

strategy is done for fuel economy and trip time evaluation of a multi-vehicle scenario and

the reported results demonstrate improvement in fuel economy, emissions, and trip time.

Chapter 4 is dedicated to the use of spatiotemporal traffic flow preview in calcu-

lating the fuel optimal velocity trajectory enroute to a destination. In this chapter a partial

differential equation model of traffic flow is assumed and the optimal control strategy is

implemented with this traffic constraint to to find the fuel minimal velocity trajectory. In

this chapter we also describe the gas dynamic macroscopic model of traffic flow which is

used to predict spatiotemporal evolution of traffic down the rout. We report preliminary

results on fuel economy gains for both a passenger and a heavy commercial vehicle which

are positive and encourage further work in this area.
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Finally, in chapter 5 the contributions of this thesis are summarized. The areas in

which future potential research can be conducted have also been proposed in this chapter.
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Chapter 2

Existing Intelligent Highway and

Intelligent Vehicle Initiatives

2.1 Introduction

Various definitions, methodologies, and tools are largely in use in the areas of in-

telligent highways and intelligent vehicles. The purpose of this chapter is to introduce

technologies and tools used in these areas with a brief overview of research trends in the

field.

2.2 Intelligent Transportation Systems

Intelligent transportation systems (ITS) refers to the systems that benefit from in-

formation transport between the infrastructure and vehicles in an effort to improve safety,

traffic flow, and fuel economy. From the control perspective, technologies in ITS could be

categorized into two main topics: Intelligent Highways that deals with centralized intelli-

gent control of highways and Intelligent Vehicles which is focused on decentralized control
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of intelligent vehicles.

2.2.1 Intelligent Highways Initiatives

The Federal Highway Administration (FHWA) in cooperation with private industry,

and academia, established a program called ”Intelligent Vehicle Highway Systems (IVHS)”

in the 1990s. The general goal of IVHS was to use advanced communication technologies

to increase the capacity of current roadways, to improve the safety on highways, and to

improve fuel efficiency of moving vehicles.

One example of projects pursued under IVHS was vehicle platooning which would

allow partial automation of a large fleet of vehicles, increasing their fuel efficiency and

also with the target of increasing the highway throughput. However, USDOT canceled

implementation of this program in 1998, citing budget difficulties and the importance of

close driving safety systems[72]. During its active days, IVHS attracted many researchers

from different disciplines. Part of the research focused on modeling individual vehicles

in a fleet [38] and developing control systems for them, string stability of a fleet has also

been extensively studied [48, 48]. There has been also major research focus and findings

on communication technologies[68].

Although the idea of IVHS is partially shelved due to many institutional and orga-

nizational issues, the research findings of this period is valuable in the current trend in the

area of intelligent vehicles and networked vehicles. Many of the communication schemes

developed and control strategies are applicable today.

2.2.2 Intelligent Vehicles Initiative

More recently the focus has moved from centralized intelligent highway ideas in

the 1990s, to decentralized intelligence within each vehicle. Under this initiative the goal
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is to equip vehicles with communication devices that enable them to communicate with sur-

rounding vehicles and the infrastructure, via ad-hoc networks[11, 63] or cellular networks.

Such technology will enable 1) improve the safety of the future vehicles by collision pre-

vention, 2) improve fuel economy by allowing smart vehicles to choose better routes and

avoid congestion and traffic stops, and 3) reduce traffic congestion by allowing the infras-

tructure control the flow of smart vehicles. Research is being actively done on commu-

nication schemes and hardware by electrical engineers, on routing schemes by computer

science and operation research experts, and on traffic optimization by traffic engineers. Of

course many human factor issues need to be addressed as well.

In this chapter we provide an overview of the existing technologies, the ongoing

research which leads to the motivation for the current thesis: i.e. to use the vast amount

of information available today and the communication capability to help improve the fuel

economy of such vehicles; those that are equipped with communication capabilities and

have access to real-time information about their surrounding conditions.

2.2.2.1 Communication Technology

Two different forms of wireless communication technologies are suggested for in-

telligent vehicles: 1) Vehicle-to-Vehicle Communication and 2) Vehicle-Infrastructure. In

1999, the Federal Communications Commission has dedicated the 5.9GHz frequency ex-

clusively for vehicular communications that can transmit data over distances of up to 1km

(3,280 feet) between vehicles and with roadside infrastructures[69]. This communication

protocol is referred to as Dedicated Short Range Communication (DSRC) protocol.

1. Vehicle-to-Vehicle Communication: Vehicle to Vehicle(V2V) communication em-

powers automobiles to exchange information with each other. Vehicle to vehicle

communication is expected to be more widely deployed in the near future because
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they have the potential to improve convenience and safety of vehicles in traffic[75].

For instance, equipped cars that can communicate via wireless links and hence create

ad hoc networks can be used to reduce traffic accidents and facilitate traffic flow. An

international standard, IEEE 802.11p, also known as Wireless Access in Vehicular

Environments (WAVE), is recently published [54].

2. Vehicle-Infrastructure: Vehicle-Infrastructure (VI) communication is a technology

used to provide a communications link between vehicles and the roadside infrastruc-

ture (via Roadside Equipments), in order to increase the safety, fuel efficiency, and

convenience of the transportation system. It is based on deployment of dedicated

short-range communication (DSRC)[16] protocols. Recently, Vehicle-Infrastructure

communication technology is also envisioned through use of cell phones and GPS

navigators. GPS navigators are becoming standard in many new vehicles and are an

option on most new mid- and high-range vehicles. In addition, many users have cel-

lular phones which continuously transmit trackable signals (and may also be GPS-

enabled). Automatic registration plate recognition can also provide high levels of

data in many geographical regions. Ford recently showcased its own Smart Intersec-

tion technology, which relies on GPS and wireless communication technologies to

enable traffic lights and street signs to send warnings to approaching vehicles, and

both Nissan and Volvo have confirmed development plans for similar systems in the

past. In the near future, it is likely to have a standardized system where every vehicle

on the road will recognize the presence of other vehicles. The technology also has

the potential for creating a world where such communications may enable automated

driving [31].

end
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2.2.2.2 Algorithms

i. Traffic Signal Management: As a part of ITS, extensive research has been

conducted in traffic signal management. These works would be classified

into several topics according to their main goals.

Collision avoidance and intersection safety[65, 13] has been discussed in

the literature as one of the major goals of traffic signal management.

Traffic management at intersections has also been widely discussed in the

literature with the hope of improving traffic throughput optimization[10,

12]. The benefits of traffic signal synchronization are also investigated. It

has been shown that in many cases the green-light wave solutions can be

derived by taking advantage of this implementation[39]. Another method

of improving traffic flow for any density has been brought into literature as

”self-organizing traffic light” method[26]. In self-organizing traffic light

method, each traffic signal, i.e. intersection keeps a counter which is set to

zero when the light turns red and then increases with the number of cars

approaching the red light. When the counter (representative of number

of cars by the red light) reaches a specified threshold, the green light at

crossing way turns yellow.

Along with the widespread use of adaptive cruise control and installation

of communication equipments in luxury cars, many papers have focused

on traffic system traveling time reduction and safety improvement via uti-

lization of data interchange between signal and equipped vehicle. The idea

is that the autonomous vehicles call the upcoming intersection to reserve

a time-space gap to pass; which among other things can help improve the

fuel economy as well[15, 73].
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ii. Traffic Routing and Optimization: The origin of traffic routing optimiza-

tion problems goes back to graph theory emerged in 1736[17] in which

the goal is to find a route with particular specifications. For instance, if

a graph represents a road network, the weights assigned on its edges may

represent the length, grade, and traffic load of each road. This way, many

traffic routing optimization problem could be morphed to a graph.

Using graph theory, many papers in the literature have introduced algo-

rithms to find the optimum route based on various criteria such as less fuel,

less time, and less distance[18, 47, 64].

Older models and algorithms for routing problems were commonly devel-

oped based on default constant travel times between all locations in a traffic

network. This assumption is in contradiction with real dynamic travel time

between locations, particularly in urban area. However, consideration of

travel time that varies with the time of traveling is recently taken into ac-

count and more reliable solutions for routing optimization problem have

been derived[19]. With the increasing availability of real-time traffic in-

formation and communication systems, the need for more effective routing

algorithms arises. More recently, a dynamic routing system has been de-

veloped for shipping purchases quicker. This algorithm dispatches a fleet

of vehicles according to customer orders. Each customer order requires

a transport from a pickup location to a shipping address in a given time

horizon[20].

With the advent of global position system (GPS), developing new routing

technology is increasing in such a pace that online routing motors with

the hourly updated traffic information are available on public networks[1]

and even on equipped handy devices[2]. The exponential growth of online

10



routing technology makes this hope brighter that in near future all trans-

portation means can generate their optimum path online.

iii. Traffic Flow Modeling and Control: Modeling of traffic flow has been the

topic of many research projects since 1950s. The original motivation to

model the traffic flow was to investigate the situations in which traffic jam

appears, moves, and damps[24]. The initial idea was to derive mathemat-

ical equations based on either behavior of drivers in the road or analogy

between fluid dynamics and vehicles in traffic flow. Considerable research

has been done to modify vehicular traffic flow models to match realistic

traffic stream.

In general, traffic flow modeling could be categorized into three main branches

of study based on level of details: Microscopic, Mesoscopic, and Macro-

scopic.

In microscopic traffic models individual vehicles are represented as moving

particle and their procession is modeled by simple rules or using a cellu-

lar automata approach. Traffic scenarios are created by simulated a large

number of point vehicle models.

In mesoscopic traffic model, the mathematical representation of traffic sys-

tem focuses on individual vehicle action but with a more aggregate rep-

resentation of traffic dynamics. However, they are still restricted in their

ability to represent details of traffic operations, especially as related to ITS

systems. Typical applications of mesoscopic models are evaluations of

traveler information systems.

Macroscopic modeling of traffic flow refers to the representation of the

traffic with high level of aggregation as a flow without distinguishing its

constituent parts [37]. Typically, a macroscopic model defines a relation
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between the traffic density(the number of vehicles per kilometer), the aver-

age velocity, and the traffic flow(the number of vehicles passing a certain

point per hour)[8]. The attractive feature of this approach is that it does not

involve a detailed microscopic investigation of dynamical behavior of each

car in the system. This model was first introduced based on the assumption

that at any point of the road, the traffic flow is a function of traffic density

(the number of vehicles per unit distance) at the corresponding point[67].

However, it should be mentioned that the only accurate physical law in

traffic flow is ”conservation of mass”. It means that other introduced equa-

tions for macroscopic flow of traffic are based on coarse approximations

and has been inspired by equations govern on fluid mechanics.

More recently, with the benefit of traffic flow modeling, control strategies

have been developed to avoid congestion along traffic stream either via

enforcing dynamic speed limit in segments of a road or by ramp metering.

Using traffic model information, a control strategy is also proposed to avoid

traffic shock waves[32].
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Chapter 3

Predictive Cruise Control:

Utilizing Upcomming Traffic Signal

Information for Improving Fuel

Economy and Reducing Trip Time

3.1 Introduction

American drivers spend a total of 40 hours per year idling in traffic. The fuel

used during this idle time adds to 78 billion dollars per year [4]. A big portion

of our idle time is the time spent behind traffic lights. Poor traffic signal timing

is believed to account for an estimated 10 percent of all traffic delay (about 300

million vehicle-hours) on major roadways alone [6]. Effective advanced traffic

signal control methods such as traffic-actuated signals and signal synchroniza-

tion have been widely deployed across many of our traffic intersections which
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help save us precious time and expensive fuel every day. Such measures how-

ever are very costly to implement and maintain; just the annual cost of signal

timing updates is estimated at 217 million dollars a year according to [5]. Even

with these measures in place, we often cruise at full speed toward a green and

have to come to a sudden halt whenever the light turns red. This lack of infor-

mation about “future” state of the traffic signal increases fuel use, trip time, and

engine and brake wear. In an ideal situation if the future of a light timing and

phasing are known, the speed could be adjusted for a timely arrival at green.

While maybe unrealistic a few years ago, communicating traffic signal state to

the vehicles in advance is not far-fetched today. In fact researchers are now ex-

perimenting with broadcasting red light warnings to vehicles to improve traffic

intersection safety [52, 59]. As demonstrated in [59], the required informa-

tion broadcast technology is available today and is expected to be more widely

deployed in near future.

This chapter focuses on employing upcoming light time and phase information

within the vehicle’s adaptive cruise control system to reduce i) wait time at stop

lights and ii) fuel use which in turn may also reduce total trip time and CO2

emissions. To achieve this goal an optimization-based control algorithm will

be formulated for each equipped vehicle that uses short range radar and traffic

signal timing information to schedule an optimum velocity trajectory for the

vehicle. The objectives are timely arrival at green light with minimal use of

braking, maintaining safe distance between vehicles, and cruising at or near set

speed. Figure 3.1 shows a schematic of this proposed concept.

Adaptive cruise control is now in production and a well-matured technology.

Many ideas on intelligent transportation system (ITS) have been explored ex-
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Figure 3.1: Schematic of telematics-based predictive cruise control.

tensively during the 1990s within intelligent highway initiatives in the US,

Japan, and Europe [72]. Voluntary use of future signal and traffic informa-

tion has only recently attracted attention under CICAS (Cooperative Intersec-

tion Collision Avoidance Systems) initiative mainly for improving intersection

safety [65, 13]. Optimal traffic management at intersections has been mainly

studied from a signal-timing optimization perspective e.g. signal synchroniza-

tion [10, 39, 26]. More recently and for futuristic autonomous vehicles, Dresner

et al. [15, 73] have proposed replacing traffic lights and stop signs by intelli-

gent lights: via a two way communication protocol, the autonomous vehicles

call the intersection ahead to reserve a time-space slot to pass; which among

other things can help improve the fuel economy.

To the best knowledge of the authors, the Predictive Cruise Control (PCC) con-

cept that we propose in this chapter is first in its kind that utilizes the adaptive

cruise control function in a predictive manner to simultaneously improve fuel

economy and reduce signal wait time. The proposed predictive speed control

mode differs from current adaptive cruise control systems in that i) besides

maintaining a safe gap between vehicles, it decreases use of brakes, thus reduc-

ing brake wear and kinetic energy loss, ii) is applicable in stop and go traffic,
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and more importantly iii) receives a timing signal from an upcoming traffic light

in advance to safely and smoothly speed up or down to a timely arrival at green

light whenever possible, therefore reducing idling at red.

These sometimes conflicting objectives are unified under an optimization-based

model predictive control (MPC) framework. The proposed MPC formulation

allows tracking a target speed, calculated based on traffic signal information,

while reducing brake use. At the same time it enforces several physical con-

straints including a safe distance to the front vehicle. Simulation of complex

stop and go situations is facilitated relying on MPC as the “driving brain”

of each vehicle. Because model predictive control is an optimization-based

approach it may handle the traffic imposed constraints more systematically

than the existing microscopic and macroscopic models for traffic simulation

[56, 55, 37]. Many underlying functions or rules required to determine proces-

sion of vehicles in the existing methods limit embedding systematic optimiza-

tion routines in them.

Section II formulates the methodology for planning a desired velocity profile

around red lights and the tracking of this target velocity under motion con-

straints using model predictive control. Section II-C describes a detailed pow-

ertrain model used for evaluating the fuel economy and CO2 emissions of the

vehicle. Three simulation case studies are presented in Section III to illustrate

application of the proposed methodology in single- and multi-vehicle scenarios.

Conclusions are presented in Section IV.
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3.2 Methodology

One of the analytical challenges unique to this optimal control problem is dy-

namic switching of lights to red and green. These types of motion constraints

render the feasible solution space non-convex. Solution of a non-convex op-

timization problem is computationally intensive and may not converge to the

global optimum. In order to find a near-optimal solution with reasonable level

of computations, we handle the problem at two levels: i) a set of logical rules

that calculates a reference velocity for timely arrival at green lights combined

with ii) a model predictive controller that tracks this target velocity. The re-

sulting solution may be sub-optimal but is real-time implementable. A simple

model of the vehicle will be used at the supervisory level for velocity planning;

but the fuel economy, CO2 emissions, and drivability will be later evaluated

using a detailed model of the powertrain.

3.2.1 Reference Velocity Planning

A reference velocity vtarget is determined based on the driver’s set cruise speed,

and also the signal received from the upcoming traffic light. The basic idea is

to safely i) increase vtarget , up to a maximum allowable, when there is enough

green time to pass, or otherwise ii) decrease vtarget , down to a minimum allow-

able, to arrive at the next green. All will be done considering driver’s set cruise

control speed.The objective is to avoid stopping at a red light if feasible.

It is assumed that the approximate distance to the next traffic light(s) is known

at each time and shown by di where the subscript i denotes the light number

in a sequence of traffic lights, i.e. d1 is the approximate distance to the first

upcoming light and d2 to the second light at each time. The light(s) update and
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broadcast an expected sequence of their green and red times regularly. Suppose

gi j is start of the jth green of the ith traffic light and ri j is start of the jth red

of the ith light. For example, light number 1 broadcasts, at regular intervals, a

sequence

[g11, r11, g12, r12, g13, · · · ] = [40, 100, 150, 200, 240, · · · ]

which implies the first traffic light is currently red, it will turn green in 40 sec-

onds, red in 100 seconds, green again in 150 seconds, and so forth. Figure

3.2 shows a schematic of the map formed at each time step based on the in-

formation received from the lights. Equipped vehicles can use the remaining

distance to the next light(s) and the green and red sequence to set their tar-

get speed. This target speed (slope of each path) should be in the feasible range

[vmin,vmax] where vmin is the road’s minimum speed limit and vmax is the smaller

of two quantities: the velocity set by the driver and the road’s maximum speed

limit. Other constraints such as acceleration constraints, maintaining safe dis-

tance to the front vehicle, and reducing use of brakes are handled separately by

a dynamic optimization scheme (details in Section 3.2.2).

The following steps determine the target speed at each step k:

i. For a vehicle to pass during the first green of the first light, its velocity

should be in the interval [ d1
r11

, d1
g11

]. This is only feasible if this interval has

a set intersection with the feasible speed interval of [vmin,vmax]. If this set

intersection is empty, passing through the first green without stopping at

red is deemed infeasible. In that event, feasibility of passing during the

next green interval is checked and the process is repeated until for some ith

interval [ d1
r1i

, d1
g1i

] has a set intersection with [vmin,vmax]. This set intersection
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Figure 3.2: Schematics map of red lights distributed over space-time. The graphics shows
how a PCC car passes two consecutive traffic intersection without having to stop at a red.

is mathematically characterized by:

[
d1

r1i
,

d1

g1i
]∩ [vmin,vmax] (3.1)

and determines the range of speed that ensures passing the first light with-

out having to stop at a red.

For example assume the speed limits are [vmin,vmax] = [5,20]m/s and the

distance to the first traffic light is 1000m. The first light broadcasts,

g11 = 5s, r11 = 25s, g12 = 40s, r12 = 100s

then

[
d1

r11
,

d1

g11
] = [40,200] m/s
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does not meet the speed limit. The second interval

[
d1

r12
,

d1

g12
] = [10,25] m/s

intersects with the feasible speed at [10,20] m/s Therefore, if the velocity

of the vehicle is chosen between 10 m/s and 20 m/s, the vehicle passes the

first light without having to stop. If no feasible set intersection is found,

stopping at the light will be unavoidable and no further check is necessary.

ii. If passing without stop at the first light is determined to be feasible, the

process in step 1 is repeated for the second traffic light by checking the set

intersections

[
d2

r2i
,

d2

g2i
]∩ [vmin,vmax]

and picking the first non-empty one.

iii. Next, the set intersection of the feasible range of speeds determined in

step 1 and that of step 2 is calculated. A non-empty solution [vlow,vhigh]

indicates feasibility of passing the two lights without having to stop at a

red. However an empty solution does not imply that stopping at red is

necessarily required. It only means that passing the two consecutive lights

with the same speed is not feasible. In that event, the vehicle can re-adjust

its target speed after passing the first light to pass the green of the second

light.

iv. The process is continued by checking the next lights until a stop at red

becomes unavoidable. The last feasible range [vlow,vhigh] is an appropriate

target velocity. In this chapter we set vtarget = vhigh for reducing trip time.1

1One can argue that in some scenarios a decreasing target velocity profile may require less fuel than a
constant target velocity with same travel time. For example consider the scenario where the vehicle needs
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Note that the target velocity is updated at each sampling time and therefore

may change at each instant based on vehicle’s position and the most recent in-

formation from the lights. This set of rules is not necessarily “optimal”, but

helps break down a fundamentally non-convex optimization problem to a sim-

pler real-time implementable one. Tracking this target velocity, maintaining a

safe distance to the front vehicle, and reducing use of brakes are handled by this

optimization scheme described next.

3.2.2 Optimal Tracking of the Reference Velocity

A simple model of the vehicle is used at the supervisory level for calculating

the vehicle acceleration based on effective traction force of the engine fengine or

braking force fbrake and the road forces fd . For the ith vehicle with mass mi ,

the longitudinal dynamics is [28]:

mi
d2xi

dt2 = f i
engine− f i

brake + f i
d (3.2)

where f i
d lumps the road forces including aerodynamic drag, rolling resistance,

and road grade forces:

f i
d =−cDv2

i −mig(sin(θ)+µcos(θ)) (3.3)

to slow down after passing the first light to go through the second light without stopping. In this scenario a
decreasing target speed before the first light may be more fuel economical than a constant speed. In particular,
one can check feasibility of a target velocity decreasing linearly where the constant deceleration rate a before
the first light can be found from the following kinematic equation,

d1 =
1
2

ag2
11 + v0g11

where v0 is the initial speed. Because searching for variable speed profiles increases the search space and the
computational time, such profiles are not considered in this chapter.
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where θ is the road grade, cD is a “lumped” drag coefficient, µ is the coefficient

of rolling resistance, and g is gravitational acceleration. The f i
d term is treated

as a measured disturbance and updated at each sample time. Equation (3.2) can

be written in the following state-space discretized form:

zi(k +1) = Azi(k)+Buui(k)+Bwwi(k)

yi(k) = Czi(k)
(3.4)

where zi = [xi vi]T is the state vector, ui = [ f i
engine f i

brake]
T is the control in-

put, and wi = [ f i
d] is the measured disturbance. The main outputs of interest

are yi = [xi vi]T ; however other outputs are introduced in the simulation code

to handle the gap inequality constraint described later. The matrices A ∈ R2×2,

Bu ∈ R2×2, Bw ∈ R2×1, and C ∈ R2×2 are the discretized system matrices. The

engine and brake forces are manipulated for tracking the target speed as closely

as possible while maintaining a safe distance to the front vehicle. These objec-

tives along with the desire to reduce use of service brakes can be unified in a

Model Predictive Control (MPC) framework. The control performance index at

each step k for the ith vehicle is defined as:

Ji(k) =
k+P−1

∑
j=k

[w1(vi( j)− vtarget( j))2 +w2( f i
brake( j))2] (3.5)

The trip time is reduced by setting vtarget equal to maximum feasible speed

as explained in the previous section. This constant-velocity solution may be

suboptimal; the truly optimal solution requires explicit optimization of trip time

over space of all functionals vi.

Here w1 and w2 are simply penalty weights for each term. The above index

penalizes deviations of vehicle speed vi from the target speed vtarget and also
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reduces use of brake force over a future prediction window of P steps. Reduced

use of service brakes in the cost function indirectly contributes to fuel savings.

Fuel use is not explicitly penalized; this allows use of the simpler vehicle model

for control design. Fuel savings will be later evaluated using a detailed model

of the vehicle’s powertrain.

The speed limit, engine and brake force limits, and the minimum safe fol-

lowing distance are imposed as pointwise-in-time inequality constraints. The

constraints should be satisfied over the future prediction horizon ∀ j ∈ {k,k +

1, · · · ,k +P−1}. The speed limit constraint is,

vmin 6 vi( j) 6 vmax (3.6)

where vmin and vmax are speed limits and should also be smaller than the driver

set speed. Bounds on the traction force are represented by,

0 6 f i
engine( j) 6 f max

acceleration

0 6 f i
brake( j) 6 f max

deceleration

(3.7)

where f max
acceleration and f max

deceleration depend on tire and road condition and also

maximum engine and braking torque capability. The minimum safe distance

between the vehicle i and the front vehicle (target) should be a function of the

vehicle speed and is chosen as [72]:

xtarget( j)− xi( j) > αvi( j)+β (3.8)

where β is a “static gap” parameter and determines the minimum gap needed

when the vehicles are stopped and α is a “dynamic gap” parameter providing
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extra gap with increased speed. Note that when the vehicle is approaching a red

light, the light is considered similar to a stopped vehicle and the position xtarget

is fixed to the position of the light. This ensures that the vehicle comes to a stop

with distance β from the light (xtarget > xi +β).

The cost function (3.5) subject to the model equation (3.4) and inequality con-

straints (3.6), (3.7), and (3.8) is minimized at each sample time to determine the

sequence of next N 6 P control inputs Ui(k) = [ui(k) ui(k +1) · · · ui(k +

N− 1)] over the future horizon P. When N < P the remaining control moves

[ui(k + N) ui(k + N + 1) · · · ui(k + P− 1)] are assumed to be zero. Ac-

cording to the standard MPC design, only the first entry of the control sequence

Ui(k), is applied to the vehicle; the optimization horizon is moved one step

forward, the model and constraints are updated if necessary, and the optimiza-

tion process is repeated to obtain the next optimal control sequence Ui(k + 1)

[51, 22, 9].

3.2.3 Evaluation of Fuel Savings Potential with a Detailed

Powertrain Model

The MPC solution generates a constraint-admissible velocity profile that fol-

lows the set target speed as closely as possible. In order to estimate the fuel

economy of the vehicle when following this optimal velocity trajectory, a pro-

duction vehicle is selected and its powertrain model is assembled from the ex-

tensive database of Powertrain System Analysis Toolkit (PSAT). PSAT, devel-

oped by Argonne National Laboratory [46], is a powerful simulation tool for

evaluating the fuel economy of conventional and hybrid vehicles when follow-

ing a prescribed velocity cycle. Its physics-based component models combined
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Figure 3.3: Schematic of a PSAT powetrain model(Copyright 2002, University of Chicago)

with empirical maps obtained from production vehicles allow high-fidelity eval-

uation of fuel economy. Figure 4.3 shows schematics of a PSAT powertrain

model. This is a conventional (non-hybrid) powertrain with an automatic trans-

mission. The models for torque converter, transmission, and vehicle dynamics

are all very detailed and include several dynamic states and switching modes.

Details such as electrical accessory loads, the starter, generator, etc. are not

overlooked, and are modeled for simulation accuracy.

PSAT is a “forward-looking” causal simulation tool in which the vehicle speed

is determined by the combined influence of road loads and engine (or brake)

torque at the wheels. The resulting velocity is compared to the prescribed de-

sired velocity; the difference is fed to a driver model (a PI controller) which

in turn determines a torque demand. The torque demand is met by the engine

(or brake) torques and the above simulation loop is repeated. The engine fuel

rate is determined using an empirical engine map and as a function of engine

speed and engine torque. The fuel rate is integrated over the whole cycle time

to determine the amount of fuel used.
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3.3 Simulation Case Studies

This section presents the results of a few simulations performed to demonstrate

validity of the proposed PCC methodology and to observe the fuel economy,

emissions, and travel time gains in these example simulations. To understand

the impact of PCC on the average and under different traffic lights and vehi-

cle parameters, an extensive simulation study is needed which is outside the

scope of the current thesis. We hope the following simulation results motivate

a detailed statistical analysis in the future.

The simulations are run first with the Predictive Cruise Control (PCC) off which

serves as a baseline for comparison and then with PCC on during which ad-

vanced information of the lights phasing and timing is available. The compari-

son baseline is a vehicle without advanced access to signal phasing and timing

information. For a fair comparison, the baseline vehicle is assumed to operate

in adaptive cruise control mode as well2. The baseline vehicle tracks a target

velocity using the MPC strategy explained in section 3.2.2. Its controller mini-

mizes (3.5) subject to the same model equation (3.4) and inequality constraints

(3.6), (3.7), and (3.8). However the target velocity vtarget is always equal to the

driver set speed for the baseline vehicle. The need for a timely stop at red light

is enforced through the constraint (3.8) and by fixing xi+1 to the position of the

light as soon as the light turns amber or if an upcoming light is found to be red

(thus no advanced phase and time information).

The parameters of the supervisory level controller are summarized in Table 3.1.

In all simulations, the vehicle mass is assumed to be m = 1000 kg. Maximum

acceleration is assumed to be amax = 3 m/s2 which is a conservative estimate
2Adaptive cruise control assumption can be thought of as a systematic mean to model a driver behavior in

flowing traffic. In other words the comparison is not limited only to ACC equipped vehicles.
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of the maximum acceleration capability of a midsize vehicle. From there we

calculate f max
acceleration = mamax = 3000N. Assuming braking on dry asphalt, the

coefficient of braking is chosen to be µb = 0.69 [28]. The maximum possible

braking force is then calculated as f max
deceleration = µbmg≈ 6800N. The sampling

time of 0.2 seconds allowed capturing the relevant dynamics. After several tri-

als prediction and control horizons of 8 and 2 seconds respectively, were found

to be adequate beyond which the performance did not change considerably.

The penalty weights W1 and W2 were tuned to track the target velocity with rea-

sonable braking effort. The gap parameters are most relevant in multi-vehicle

simulations and are chosen to ensure sufficient distance between vehicles.

Table 3.1: MPC Parameters
parameter description value units (SI)

Ts sample time 0.2 s
P prediction horizon 8 s
N control horizon 2 s

W1 penalty weight 1 3000 (m/s)−2

W2 penalty weight 2 150 N−2

α dynamic gap parameter 0.2 s
β static gap parameter 5 m

f max
acceleration max positive traction 3000 N

f max
deceleration max negative traction 6800 N

3.3.1 Single Vehicle Scenario

Case I-Suburban Driving

The first simulation case study is created to approximate suburban driving con-

ditions: the driver set speed is 30 m/s, the maximum speed is vmax = 30 m/s, and

the minimum speed vmin is zero. A sequence of 10 traffic lights spaced at 1km

intervals is assumed for this simulation study. The light timing and phasing is
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Figure 3.4: Trajectory of PCC and baseline vehicles with respect to the red-light map.
Horizontal solid lines represent red intervals.

assumed to be fixed and independent of the incoming traffic. Future work can

consider situations of synchronized or traffic-actuated lights. Figure 3.4 sum-

marizes the light timing information. Also on this graph we show the trajectory

of PCC and baseline vehicles.

Figure 3.5 shows the velocity profile, control inputs, and the distance traveled

by the baseline vehicle. Zero portions of the velocity profile show that the

baseline vehicle stops at multiple red signals. In a period of 400 seconds, the

vehicle travels the distance of 7.66 km and passes 7 lights. The average ve-

locity is therefore 19.15 m/s. During the same time and with the same initial

conditions the PCC-equipped vehicle was able to travel 8.92 km as shown in

Figure 3.6. By predictive use of signal information, the PCC vehicle schedules
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Figure 3.5: Velocity, control inputs and the position for a vehicle without advanced signal
information.

its velocity to a timely arrival at a green light whenever possible. As a result

the average velocity is 22.32 m/s which is a 16.5 percent improvement over

the baseline vehicle. During the simulation the minimum and maximum speed

constraints as well as all other constraints are met.

To evaluate the resulting fuel economy and emissions, an economy-sized pas-

senger vehicle with the mass of 1000 kg and 5-speed automatic transmission

was selected in PSAT. The vehicle has a 1.7 L 4-cylinder gasoline engine with

the maximum power of 115 hp. The detailed vehicle model is assembled in

PSAT v6.2. The velocity profiles shown in the first subplot of Figures 3.5 and

3.6 are fed as inputs to the PSAT simulation environment. A driver-model fol-

lows this input velocities very closely. Table 3.2 summarizes the statistics of

the resulting velocity and acceleration. The maximum acceleration and decel-
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Figure 3.6: Velocity, control inputs and the position for a vehicle with advanced signal
information.

eration for both PCC and baseline vehicles are within physical constraints and

comparable to maximum acceleration and deceleration levels in many standard

city cycles3. The calculated fuel economy and CO2 emissions are shown in Ta-

ble 3.3. In this particular simulation, the PCC-equipped vehicle uses 47 percent

less fuel with 56 percent less CO2 emissions than the vehicle with the conven-

tional ACC for the same travel time. This is while the PCC vehicle travels a

longer distance.

To determine if real-time implementation of the proposed optimization-based

strategy is computationally viable, we also recorded the total computational

time for solving the MPC optimization problem. The simulations were run in
3For example US06 Supplemental Federal Test Procedure (SFTP) which has been developed to address

the shortcomings with the FTP-75 test cycle in the representation of aggressive, high speed and/or high ac-
celeration driving behavior, rapid speed fluctuations, and driving behavior following startup has a maximum
acceleration of 3.75 m/s2 and maximum deceleration of -3.08 m/s2.
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SIMULINK on a dual-core Intel4 Pentium IV processor with 1GHz processing

speed per core, 4MB of cache, and 2GB of RAM. An estimate of CPU time was

obtained using the CPU command in MATLAB 5. For a simulation interval of

400 seconds the CPU time for running the MPC optimization was 19.1 seconds.

Table 3.2: Drive-cycle statistics for PCC and baseline vehicles.
PCC vehicle Max Average Standard Dev. Unit

Speed 30.00 22.32 7.81 m/s
Acceleration 2.04 0.28 0.58 m/s2

Deceleration -3.23 -0.21 0.57 m/s2

Baseline vehicle Max Average Standard Dev. Unit
Speed 30.00 19.15 11.79 m/s

Acceleration 2.04 0.97 0.87 m/s2

Deceleration -3.10 -0.79 1.03 m/s2

Table 3.3: PSAT simulation results for an economy-size vehicle.
Value PCC Baseline

Fuel Economy (miles/gallon) 28.72 19.22
CO2 Emissions(g/mile) 290 453

Case II-City Driving

The second single vehicle simulation case study represents inner-city driving.

For this we were able to acquire traffic signal phasing and timing data from

a stretch of Pleasantburg Drive6 inside the city of Greenville, South Carolina.

Figure 3.7 shows a Google Map7 of this street and 10 of its consecutive in-

tersections selected for this study. The distances between these intersections

have been measured using the map. Observing the posted speed limit of 45

4Intel is a registered trademark of Intel Corporation, Santa Clara, CA.
5MATLAB and SIMULINK are registered trademarks of The MathWorks Inc. of Natick, MA.
6Pleasantburg Drive, south bound, starting from Century Drive and ending at Cleveland Street. The lights

phasing and timing are those in place in April of 2009 and obtained from the Traffic Engineering Department
of the City of Greenville.

7Google Map is a registered trademark of Google Inc. Mountainview, CA.
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Figure 3.7: Google map(Google Inc.) of a part of Pleasantburg Drive in Greenville, South
Carolina used in the second simulation case study.

mph along Pleasantburg Drive, we set vmax = 20 m/s. The driver set speed is

also selected at 20 m/s, and the minimum speed vmin is set to zero. The other

simulation parameters are those of Case I.

The simulations were run with two sets of initial conditions. Figures 3.8 and

Figure 3.9 show the trajectories of PCC and baseline vehicles in these two sce-

narios. With the first set of initial conditions, the PCC vehicle saves 65 seconds

of trip time with 29% less fuel (25.97 mpg versus 20.07 mpg for the baseline).

If the start time is delayed by 20 seconds, the PCC’s trip time advantage will

only be 2 seconds and the fuel economy gain will reduce to 24 % (25.11 mpg

versus 20.26 mpg for the baseline).
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Figure 3.8: First set of PCC and baseline trajectories simulated with Pleasantburg Drive
signal timings. Horizontal solid lines represent red intervals.

3.3.2 Multi-Vehicle Scenario

In this section we investigate the trip time and fuel economy for a fleet of PCC-

equipped vehicles in a multi-vehicle simulation. Each vehicle runs a copy of the

control strategy presented in Section 4.2 in a decentralized fashion. All vehicle

and signal parameters are those chosen in Case I of single vehicle scenario.

The former set of constraints in equations (3.6) and (3.7) remains unchanged.

When a vehicle is detected at a distance γ in front, the constraint in (3.8) is also

activated with xtarget set as the position of the lead vehicle. Otherwise xtarget will

be the position of the next targeted red light. The parameter γ can be chosen

based on the a vehicle’s maximum braking distance (See Fig. 3.10).

Simulations are performed for two fleets of vehicles: A PCC-equipped fleet and
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Figure 3.9: Second set of PCC and baseline trajectories simulated with Pleasantburg Drive
signal timings. Horizontal solid lines represent red intervals.

a fleet of the same vehicles without PCC. Each fleet has six vehicles aligned

initially with the set of initial conditions shown in table 3.4.

Table 3.4: Initial speed and position for the fleet vehicles.
heightVehicle Initial Position(m) Initial Speed(m/s)

1 9000 20
2 8950 25
3 8900 20
4 8800 25
5 8750 20
6 8720 15

Figures 3.11 and 3.12 show the trajectories of PCC and baseline fleets for a

simulation period of 400 seconds. The distance traveled by each vehicle as well

as the total distance traveled by the vehicles of each fleet during this period

are tabulated in table 3.5 for this simulation case study. The average velocity

of the PCC fleet is 19.31 m/s as compared to the 18.53 m/s of the baseline
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Figure 3.10: Illustration of γ as the gap constraint activation area. Top views of Honda
Accord and S2000, Honda Motor Co..
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Figure 3.11: Trajectories of fleet of PCC vehicles.

fleet; in other words the PCC fleet is 4.2 percent faster than the baseline fleet.

Figure 3.13 shows the gap and gap constraint activation area between each two

vehicles in the PCC fleet. It can be seen that the gap always remains above the

velocity-dependent gap constraint line.

The vehicle velocity trajectories are fed to PSAT to determine the fuel used

by each fleet. The vehicle configuration and parameters are those described in
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Figure 3.12: Trajectories of fleet of Baseline vehicles.

Table 3.5: Total traveled distance for PCC and Baseline fleets.
Vehicle 1 2 3 4 5 6 Total

PCC(km) 8.9 7.6 7.5 7.5 7.4 7.4 46.3
Baseline(km) 7.6 7.5 7.5 7.4 7.3 7.0 44.4

Section 3.3.1. Table 3.6 summarizes the results. The average fuel economy of

the PCC fleet is 41.8 percent better than that of the baseline fleet in this case

study.

Table 3.6: Fuel economy comparison for PCC and Baseline fleets.
Vehicle 1 2 3 4 5 6 Average

PCC(mpg) 28.7 27.7 27.9 28.1 28.1 27.5 28.0
Baseline(mpg) 19.2 19.7 20.2 21.3 20.3 17.3 19.7
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Figure 3.13: Gap and Gap constraint between each two vehicles in the PCC fleet. The
velocity-dependent constraint line is shown with the lower solid line; the dashed-line shows
the border beyond which the constraint is switched on.

3.4 Conclusion

Communicating the signal state to vehicles has been recently proposed for im-

proving traffic intersection safety. The positive simulation results of this chapter

promise that signal-to-vehicle communication technology may also enable re-

duction of fuel consumption, greenhouse gas emissions, and trip time of future

vehicles by predictive velocity planning. By this, we hope to encourage fur-

ther research and innovation towards more intelligent traffic intersection control

systems. Of course, any gain from the proposed PCC methodology depends on

timing and phasing of traffic lights and the distance between them and the ve-

hicle parameters. A detailed statistical analysis using Monte Carlo simulations
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is one possible way of determining average gains with PCC which is a good

direction for future simulation analysis.

From an analytical perspective, formulation of the trip optimization in this chap-

ter in a model predictive control framework is novel and lends itself well to

many traffic-imposed hard constraints. In an ongoing work we hope to eval-

uate the impact of traffic on the PCC strategy and vice versa by combining a

macroscopic traffic model and the microscopic MPC methodology.
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Chapter 4

Traffic Flow Preview For Planning

Fuel Optimal Vehicle Velocity

4.1 Introduction

Frequent stops and goes in traffic waves increase the fuel usage and emissions

of passenger and commercial vehicles. Many of such stop and go conditions oc-

cur due to lack of information about the upcoming traffic pattern down the road.

Many drivers choose to aggressively speed up to near the speed limit, only to

be forced to abruptly decelerate their vehicles when faced with the slower traf-

fic ahead of them and then perhaps idle or crawl in slow-moving traffic. If the

upcoming traffic pattern is somehow “revealed” to the drivers in advance, the

opportunity exits to adjust the speed more predictively to reduce harsh decel-

eration and idling or crawling intervals. Such planning of velocity could lower

fuel use and emissions, improve the ride, and reduce brake and engine wear.

In the connected vehicles of today, the vehicle navigation system or handheld
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Figure 4.1: Real-time traffic information shown by green and red circles on traffic layer of
Google Earth(Google Inc.). Average velocity at each node is also shown. This is a portion
of Interstate 385 inside Washington DC, time is 3:00 pm on February 4th, 2009.

wireless devices put real-time traffic information at our fingertips. Via these

devices it is possible to now retrieve coarse traffic flow information en route

to our destination via several online traffic information services. For example

Google Maps provides real-time traffic information around 30 major U.S. cities

now []; the traffic layer of Google Earth also shows the average velocity of

vehicles at numerous nodes on a road (see Figure 4.1). In the near future it

may be technically plausible to get higher resolution information on the im-

mediate state of traffic; i.e. the velocity of individual nearby vehicles. In the

Mobile Millennium project [3], a collaboration between Nokia, UC Berkeley’s

California Center for Innovative Transportation (CCIT), California Department

of Transportation (CALTRANS) and NAVTEQ, in-vehicle cellular phones are

used as traffic sensors and form traffic velocity fields that can then be transmit-

ted back to participating vehicles. One can envision access to a complete map

of surrounding traffic, once such technologies are more widely deployed.
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This level of information can potentially revolutionize the way we drive our

vehicles. In fact many navigation systems today suggest alternate shortest-time

routes based on traffic conditions. Several research papers have addressed the

routing problem based on traffic information [43, 70]. The authors believe that

there is more that can be done: By calculating a speed profile that reduces

time spent behind a local traffic jam, fuel can be saved with little influence

on trip time. To the best knowledge of the authors such an investigation is

missing in the literature; its results if positive can cut the cost of running fleets of

commercial heavy trucks and provide an eco-friendly option for passenger cars.

The proposed approach relies mostly on software and information and needs

minimal hardware investments. This impacts not only the high-tech vehicle of

the future but the current fleet when equipped with add-on accessories such as

a smart phone.

This chapter formulates such predictive planning of velocity and demonstrates

its impact on fuel economy and emissions of passenger and commercial vehi-

cles via several simulation case studies. We cast the problem as an optimal con-

trol problem with the goal of reducing velocity transients while also penalizing

trip time. This optimal problem will be solved numerically by a two dimen-

sional dynamic program. A key to this work is realizing the traffic-imposed

constraints on the velocity which requires a spatiotemporal estimation of traf-

fic velocity. In this we differentiate between inner-city driving and inter-city

highway driving:

• In inner-city or urban driving, sensing/predicting the immediate state of

traffic is probably critical and short preview horizons will be most effective.

At the same time short preview horizons call for more accurate traffic in-
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formation than the averaged information provided by services like Google

traffic. Therefore in an urban driving scenario we assume such information

is available to us via vehicle-to-vehicle [71, 74] or infrastructure-to-vehicle

[40] communication. The required communication technology is expected

to be more widely deployed in the future.

• In Inter-city highway trips a longer traffic preview horizon along with

coarser traffic information can be effective. For this type of planning knowl-

edge of current state of traffic is not sufficient and a predictive traffic model

may be used to estimate the evolving pattern of traffic down the road. The

averaged information from Google, projected forward in time and space

using a PDE model, could be utilized and will be explored in this work.

An alternative is using historic traffic data to estimate the speed of traffic

at each segment of a route at different times of a day.

Because a feedfoward traffic estimator that predicts evolution of traffic along the

vehicle route is a key part of this work, it is discussed in detail next in Section

4.2.1.1. This is followed by formulation of the optimal velocity planning prob-

lem in Section 4.2.2. The numerical dynamic programming solution process is

described in Section 4.2.3. Section 4.2.4 describes the modeling process used

for evaluation of fuel economy. Several simulation case studies are presented

in Section 4.3 followed by Conclusions.
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4.2 Methodology

4.2.1 Traffic Models

There is a vast body of work by traffic engineers, physicists, and computer sci-

entists on traffic modeling. Excellent and thorough review of such models can

be found in [37, 55, 56]. Microscopic traffic models use simple car-following

rules to model procession and interaction of individual vehicles. These models

are described by a system of ordinary differential equations or in the cellular

automata approach by rules for advancing individual vehicle in a fine grid in

discrete time steps. The drawback of microscopic models is the high compu-

tational load as the number of vehicles increases. Macroscopic models use the

analogy of traffic flow to fluid flow and formulate spatiotemporal evolution of

speed and traffic density using coupled PDEs. Aggregating a large number of

vehicles into a continuum macroscopic model has the advantage of being much

faster computationally. At the same time via macroscopic models it is possible

to capture complex traffic phenomena such as a congestion wave, instabilities,

and phase transitions of traffic flow [34]. Macroscopic models have also been

used for calculating average travel times, fuel consumption and emission levels

[61], for short-term forecasts of traffic flow for rerouting [35, 45], and for de-

sign of traffic flow control systems [33, 41]. More recently in [29], a gas-kinetic

traffic model is used to simulate the influence of ramps on future velocity of a

plug-in hybrid vehicle. Missing from the literature are methods that help plan

the velocity of an individual vehicle to reduce the chance of its untimely arrival

at a local traffic wave.

One way of forming a spatiotemporal traffic map is through these existing gas-
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kinetic PDE models of traffic to predict its evolution. Specifically in inter-city

highway driving use of a predictive model is important due to the long planning

horizon.

In this section a progressive development of macroscopic traffic model descrip-

tion is provided based on the fundamental equations of fluid dynamics.

4.2.1.1 Derivation of Macroscopic traffic flow

A good starting point for derivation of macroscopic traffic flow would be the

mathematical interconnection of three dependent traffic flow variables: V (x, t)

(velocity), ρ(x, t) (density), and q(x, t) (flow). For a flow of a fluid, the continu-

ity equation could be expressed as:

∂
∂t

ρ+
∂
∂x

q = 0 (4.1)

where, x(position) and t(time) are independent variables and q = ρV . This im-

plies that the rate of traffic density is a function of traffic flow gradient and net

input flow of vehicles to the considered road segment (right hand side of the

equation 4.1). Equation (4.1) has two unknown variables. This, highlights the

need of at least one more equation to relate two unknown variables V and ρ.

One suggestion is to assume that the velocity is a function of traffic density

only. Based on this assumption, Lighthill and Whitham proposed a modified

expression for continuity equation for traffic flow as[49]:

∂
∂t

ρ+
∂

∂ρ
q+

∂
∂x

ρ = 0 (4.2)
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This equation can be solved by using a linear change of variable method[30].

However, due to difference between amplitude of input and output waves in

certain shock areas, a traffic density discontinuity appears in particular locations

of the stream. Therefore, in practice, a second order viscosity term is added to

equation 4.2 to play as a damping factor:

∂
∂t

ρ+
∂

∂ρ
q+

∂
∂x

ρ = λ
∂2

∂x2 ρ (4.3)

Further development of the traffic flow equations deals with inclusion of con-

servation of momentum into the traffic flow characteristic equation. To this end,

Payne [60] suggested the first continuum traffic flow model based on conserva-

tion of momentum in the flow of traffic as:

∂
∂t

V +V
∂
∂x

V =
[V ∗(ρ)−V ]

τ
− (

c2
0

ρ
)

∂
∂x

ρ (4.4)

Two major terms are introduced in the Payne model: Anticipation and Relax-

ation. Anticipation represents the deriver’s readiness in adjusting the speed on

forthcoming spatial changes in traffic density. It is usually shown by:

(
c2

0
ρ

)
∂
∂x

ρ

where c0 is a constant and is typically chosen equal to 4.16m/s[44]. Relaxation

describes the tendency of the traffic flow to reach the desired speed. Commonly

it is presented as:
[V ∗(ρ)−V ]

τ

where, V ∗(ρ) is a predefined function which is representative of desired velocity
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and τ is a constant and is on the order of 10−3sec[14]. A good equilibrium

velocity function could be suggested as:

V ∗(ρ) = V f (1− ρ
ρ jam

) (4.5)

where, ρ jam represents the minimum density required to expect a traffic jam

and V f represents the maximum vehicle’s speed when only one vehicle is on

the road[25].

It is worth mentioning that the model proposed by Payne fails to explain a few

issues:

i. Vehicles can only react to downstream traffic flow conditions.

ii. Personality of the vehicles remains unaffected by prevailing traffic condi-

tions.

iii. In interaction between two vehicles the slow vehicle remains virtually un-

affected by the faster vehicle.[36]

Since traffic is a compressible flow, a more general form of equation 4.4 has

been suggested to modify the behavior of the model to a more realistic traffic

flow[50, 42]:

D
Dt

V =
∂
∂t

V +V
∂
∂x

V =
[V ∗(ρ)−V ]

τ
− (

c2
0

ρ
)

∂
∂x

ρ+α
∂2

∂x2V (4.6)

where, D
Dt is material derivative operator and α represent the viscosity of the

flow. Increasing viscosity leads to a smoother velocity profile.

Summarizing the aforesaid modified continuity and modified momentum equa-

tion, a system of partial differential equations may render the solution for the
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discussed flow of traffic:

∂
∂t

ρ+
∂

∂ρ
q+

∂
∂x

ρ = λ
∂2

∂x2 ρ

∂
∂t

V +V
∂
∂x

V =
[V ∗(ρ)−V ]

τ
− (

c2
0

ρ
)

∂
∂x

ρ+α
∂2

∂x2V
(4.7)

Approximate boundary and initial conditions and the ramp inputs q(x, t) can be

retrieved from real-time traffic information services such as Google traffic (Fig.

4.1) or streamed from local traffic information channels. The set of coupled

PDEs will be solved using a finite-difference approach in real-time to deter-

mine traffic-imposed constraints in the future path of a vehicle. For inner-city

driving, the immediate traffic-imposed bounds on speed can be obtained via

infrastructure-to-vehicle communication [40] or via ad-hoc [71, 74] vehicle-to-

vehicle communication networks.

4.2.2 Optimal Control Problem Setup

The average traffic velocity vt(x, t) estimated above will be an upper limit to

the velocity each vehicle can assume at position x at time t. The goal is to

find a velocity profile that i) meets this traffic-imposed speed limit (and the

speed limits of the road) and ii) lowers fuel use without compromising trip

time. In other words, the slope of each feasible path is now upper-bounded

by the spatiotemporally varying limit vt(x, t) imposed by traffic. The problem

of finding the optimal speed trajectory v(x, t) can be formalized as an optimal

control problem which will be solved numerically. The cost function is:

min
v(x,t)

J =
∫ x f

xi

‖L(v(x, t))‖2
Q

dx
v(x, t)

(4.8)
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subject to road speed limits [vmin,vmax], traffic-imposed bound on speed vt(x, t),

and driver set speed vset :

vmin 6 v(x, t) 6 min(vmax,vt(x, t),vset) (4.9)

and with acceleration and deceleration constraints imposed on v̇(x, t). In (4.8),

xi and x f are the origin and destination and ‖•‖Q denotes the weighted 2-norm

with the diagonal penalty weighting matrix Q. Appropriate choice of the the

cost functional L(v(x, t)) is an open problem. For example the choice L(v) =[
ṁ f NOx (v(x, t)− vset)

]T

penalizes the fuel rate ṁ f and NOx emissions,

while also penalizing deviations from the driver set speed. The latter ensures

travel time is not compromised. Another choice is to explicitly penalize trip

time by selecting L(v) =
[

ṁ f NOx 1

]T

which will result in trip time t f −ti,

appearing in the cost function. However inclusion of fuel rate and emissions in

the cost function add to the complexity of this optimal control problem, because

it requires inclusion of a detailed model of the vehicle powertrain. Therefore in

this first work on the topic we use a simpler cost functional L(v) =
[

v̇2 1

]T

to penalize trip time and velocity transients v̇ (accelerations and decelerations)

which indirectly contribute to increase in fuel use. The other factor increasing

the fuel use is idling at zero speed; penalizing the total trip time should cut

unnecessary idling. The solution v(x, t) can then be issued as a reference to the

low-level vehicle controller. Alternatively the velocity v(x, t) can be suggested

to the driver as the eco-friendly speed.
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4.2.3 Numerical Solution Via Dynamic Programming

The optimal control problem posed above cannot be solved analytically due to

the spatiotemporally varying constraints imposed on its optimization variables

along with several other pointwise-in-time constraints. In this work we solve

this problem numerically using a dynamic program.

The vehicle kinematics is represented by the following two-state dynamic equa-

tions:





ẋ = v

v̇ = u
(4.10)

where x and v are position and velocity of the vehicle respectively and u is its

acceleration which is selected as an input. Therefore L =
[

u2 1

]T

is set in

the cost function (4.8). In addition to the velocity constraint (4.9), we impose

the acceleration constraint on the input u:

amin ≤ u(x, t)≤ amax (4.11)

where amax is positive maximum allowable acceleration and amin is negative

maximum allowable deceleration.

The cost function can be written as follows:

J =
∫ x f

xi

u2 dx
v(x, t)

+φ(t f , ti) (4.12)

where φ(t f , ti) is a terminal cost on trip time and proportional to t f − ti by a

penalty weight.

The cost function in (4.12) is rewritten in discretized space calculated back-
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Figure 4.2: Schematic of the DP grid and value function iteration.

ward:

J =
Nmax

∑
n=0

u2(xn, txn)
v(xn, txn)

∆x+φ(t f , ti) (4.13)

We also define the the cost function JXN (v, t) as the cost-to-go from position xN

to the final position which is a function of variables v and t:

JXN (v, t) =
Nmax

∑
n=N

u2(xn, txn)
v(xn, txn)

∆x+φ(t f , ti) (4.14)

The optimal cost-to-go from position xN to the final position will then be:

J∗XN
(v, t) = min

u

Nmax

∑
n=N

u2(xn, txn)
v(xn, txn)

∆x+φ(t f , ti) (4.15)

The optimal acceleration u can be found relying on Bellman’s optimality prin-

ciple and by value function iterations backward-in-position as shown in Figure
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4.2. Given the optimal cost-to-go J∗XN
iterations over each node on the planar

grid at xN−1 will yield the optimal cost-to-go J∗XN−1
:

J∗XN−1
(v, t) = min

u
(J∗XN

(v, t)+
u2(xN−1)
v(xN−1)

) (4.16)

and also determines the optimal control u(xN−1). The process is continued

backward-in-position until the sequence of optimal control inputs over the en-

tire trip is determined.

4.2.4 Evaluation of Fuel Savings Potential with a Detailed

Powertrain Model

In order to estimate the fuel economy of the vehicle when following the optimal

velocity trajectory, a production vehicle is selected and its powertrain model is

assembled from the extensive database of Powertrain System Analysis Toolkit

(PSAT). PSAT developed by Argonne National Laboratory [46] is a powerful

simulation tool for evaluating the fuel economy of conventional and hybrid ve-

hicles when following a prescribed velocity cycle. Its physics-based component

models combined with empirical maps obtained from production vehicles al-

low high-fidelity evaluation of fuel economy. Figure 4.3 shows schematics of a

PSAT powertrain. This is a conventional (non-hybrid) powertrain with an auto-

matic transmission. The models for torque converter, transmission, and vehicle

dynamics are all very detailed and include several dynamic states and switching

modes. Details such as electrical accessory loads, the starter, generator, etc. are

not overlooked and modeled for simulation accuracy.

PSAT is a “forward-looking” causal simulation tool in which the vehicle speed
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Figure 4.3: Schematic of a PSAT powetrain model(Copyright 2002, University of Chicago)

is determined by the combined influence of road loads and engine (or brake)

torque at the wheels. The resulting velocity is compared to the prescribed de-

sired velocity; the difference is fed to a driver model which in turn determines a

torque demand. The torque demand is met by the engine (or brake) torques and

the above simulation loop is repeated. The engine fuel rate is determined using

an empirical engine map and as a function of engine speed and engine torque.

The fuel rate is integrated over the whole cycle time to determine the amount

of fuel used.

4.3 Simulation Results

In this section, we present the outcome of implementation of the discussed opti-

mal control strategy to an arbitrary traffic pattern. Simulations are performed to

determine the potential impact on fuel economy and trip time of a vehicle when

future state of traffic is available either via predictive databases or through the

model formulated in section 4.2.1. For the fuel economy evaluation, two differ-

ent size of vehicles have been considered: a passenger vehicle and a mid-size

truck. The passenger vehicle is an economy-sized car with 5-speed automatic
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transmission, 1000kg mass and 115hp maximum power, and the midsize truck

has 6-speed automatic transmission, 8500kg mass and 500hp maximum power.

The fuel economy evaluation process is done in PSAT v6.2 where the detailed

vehicle models are assembled. For the fist part of this section, two pre-planned

spatiotemporal traffic velocity profiles are us and are fed to the optimal control

problem as the velocity constraint. These velocity profiles are obtained based

on the expected distribution of traffic along a mid-load traffic road. Then the

optimal control problem is run and the results demonstrate the level of fidelity

of the proposed optimal controller. The second part of this section corresponds

to a preliminary fuel economy evaluation and optimal control simulation results

for the velocity planning based on macroscopic traffic flow models.

According to the shape of the traffic flow surface, four different set of cases

have been investigated in this study. Then, in each case, simulations are run

for a conventional vehicle and for a vehicle with a predictive cruise control sys-

tem. Simulations are repeated for two different penalty weights on trip times to

investigate the sensitivity of the results. In all simulations the maximum accel-

eration is assumed to be 2m/s2 which is a conservative estimate of maximum

acceleration capability of a midsize vehicle. Assuming braking on dry asphalt,

the friction coefficient of µb = 0.69 yields the maximum possible deceleration

of 6.7m/s2. However, to avoid aggressive driving, maximum braking decelera-

tion of 3m/s2 is taken into consideration.
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4.3.1 Velocity Planning Based on Pre-defined Traffic Velocity

Distribution

Case I: The first set of simulations belongs to a case in which a pre-defined

traffic flow velocity distribution is suggested based on estimated forward wave

of traffic congestion. In this case the appeared congestion in the road section

moves forward along the road as a function of time. In order to allocate a

specific average velocity to each location of the vehicle’s path, a section of a

road is assumed with the length of 9km and for the duration of 1000 seconds.

We discretized the length of the road to 18 elements in space and 9 time inter-

vals. All simulations start with the initial velocity of 25km/h. The road speed

limit is vmax = 60km/h and the minimum allowable velocity in all of elements

is vmin = 0. In order to clarify the role of normalized penalty wight of termi-

nal time (Trip Time) for vehicles equipped with future traffic conditions, two

simulations are run; the first and second simulations are run with normalized

terminal time penalty of 0.5 and 50 respectively. Simulations are performed in

the space and time limits of 9km and 1000 seconds.

Figure 4.4 shows the velocity trajectory of a conventional vehicle compared to

the trajectories of PCC-equipped vehicles. As shown, the conventional vehi-

cle reaches the target in 795 seconds while the PCC vehicles with normalized

terminal time penalty of 0.5 and 50 pass the target in 845 and 855 seconds

respectively. This observation indicates trip time loss of 7 and 8 percents com-

pared to the velocity trajectory of a same conventional vehicle. All the speed

and acceleration constraint are met during the above-mentioned simulations.

Case II: Another set of simulations is arranged with a different spatiotemporal

distribution of velocity over the same time and space limit on the defined road
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Figure 4.4: Trajectories delivered for conventional vehicle (solid blue) versus PCC vehicles
for forward congestion wave. Solid red and dashed blue line corresponds to the normalized
time penalty of 0.5 and 50 respectively.

section but in a backward wave of traffic congestion. In this case the appeared

congestion in the road moves backward along the road as a function of time.

Output and state constraints are same as the above simulations.

Figure 4.5 shows the velocity trajectory of a conventional vehicle compared to

the trajectories of PCC-equipped vehicles. As shown, the conventional vehicle

passes the target in 910 seconds while the PCC vehicles with normalized termi-

nal time penalty of 0.5 and 50 pass the target in 966 and 970 seconds respec-

tively. This observation indicates trip time loss of 6 and 6.5 percents compared

to the velocity trajectory of a same conventional vehicle. All the speed and

acceleration constraint are met during the above-mentioned simulations.
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Figure 4.5: Trajectories delivered for conventional vehicle (solid blue) versus PCC vehi-
cles for backward congestion wave. Solid red and dashed blue line corresponds to the
normalized time penalty of 0.5 and 50 respectively.

Next, a fuel economy evaluation is done for each case in PSAT. A driver model

follows these trajectories very closely. Table 4.1 summarizes the PSAT evalu-

ation of fuel economy for each case. For the case I, the PCC-equipped vehicle

can save up to 21 percent fuel over the conventional vehicle (56 mpg versus 46

mpg). In case II, the PCC-equipped vehicle can save up to 8 percent fuel as

compared to the conventional vehicle (54 mpg versus 50 mpg).

Table 4.1: Fuel economy results in mile per gallon for conventional and PCC-equipped
vehicles

Conventional PCC (Wt = 0.5) PCC (Wt = 50)
Case I 46 56 54
Case II 50 54 52

56



4.3.2 Velocity Planning Based on Macroscopic Traffic Flow

Model

In this section two different traffic models are assumed based on the possible

practical boundary conditions seen in the daily commutes. It should be noted

that due to lack of information about the parameters of the models, surfaces

generated as the traffic flow velocity distribution do not necessarily represent

the actual traffic flow behavior. Hence, we consider this section as an ongoing

research area and present our preliminary results. The main goal is to present

the idea behind using a traffic flow model for better velocity planning and more

research is needed to investigate the merits in realistic traffic scenarios.

In all traffic flow models in this section, the resolution of the velocity distribu-

tion surface is 900 by 450 which corresponds to 20 meters and 1 second along

position and time vectors. Other parameters of the system of partial differential

equations 4.7 are summarized in Table 4.2.

Table 4.2: Macroscopic traffic model parameters
Parameter Value Unit

λ 110 veh/m.s
τ 0.01 s
c0 4.16 m/s
v f 20 m/s

ρ jam 0.2 vehicle/m
α 0.1 1/m

In order to generate a three dimensional spatiotemporal traffic flow surface, the

macroscopic traffic flow governing equations (system of PDEs in 4.7) need to

be provided with a set of boundary and initial conditions. Two different sets of

initial and boundary conditions form two case studies A and B.
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4.3.2.1 Traffic Model-Case A

The first traffic model was created based on semi-sinusoidal initial and bound-

ary conditions. In this case the general form of the boundary conditions were

assumed to be a first-order constant value functions as:

V (xle f t , t) = A

ρ(xle f t , t) = Ã

V (xright , t) = A′

ρ(xright , t) = Ã′

(4.17)

The constant functions of 4.17 imply that the flow of vehicles entering to and

exiting from the boundaries of the simulated road segment has a constant veloc-

ity of Am/s and Bm/s respectively. It is worth mentioning that the density ρ and

velocity V are assumed to counter balance each other. It means that the higher

values of density corresponds to the lower values of velocity in all locations of

the flow. For the initial condition, a sinusoidal function of position is assumed

to present the state of the traffic over the road at the beginning of the simulation

as:

V (x, t0) = Bsin(ωx)+B′

ρ(x, t0) = B̃cos(ω̃x)+ B̃′
(4.18)

The form of equations 4.18 is arbitrary; however it shows a reasonable arrange-

ment of traffic through the road based on real life driving experience. The sim-

ulation parameters appeared in equations 4.17 and 4.18 are tabulated in Table

4.3. Figure 4.6 shows the surface indicating traffic velocity distribution for case

study A.
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Table 4.3: Initial and boundary conditions parameters value for Case A
Parameter Value Unit Parameter Value Unit

A 18 m/s Ã 0.074 vehicle/m
A′ 12 m/s Ã′ 0.087 vehicle/m
B 6 m/s B̃ 0.053 vehicle/m
B′ 12 m/s B̃′ 0.084 vehicle/m
ω 16π/9000 rad/s ω̃ 16π/9000 rad/m
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Figure 4.6: Spatiotemporal traffic flow surface generated for case A.

Given the traffic flow information derived above, a velocity planning analysis

is done via dynamic programming and is then compared to the case in which a

conventional vehicle follows the traffic. The conventional vehicle is expected to

move with the traffic stream. In other words, a conventional vehicle trajectory

moves on the solution surface of Figures 4.6 and 4.6. In order to gain a better

understanding of sensitivity of the cost function and the shape of the trajecto-

ries on the penalty factors, two different values of penalty factors have been
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Figure 4.7: Trajectories delivered for conventional vehicle (in red) versus PCC vehicle for
Case A. Dashed and solid blue curves represents time penalties of 0.5 and 50 respectively.

applied to the cost function and the results are shown in Figure 4.7. Table 4.4

summarizes the statistics of the resulting velocity profiles of conventional and

PCC-equipped vehicles with the two different penalties on trip time.

Table 4.4: Drive-Cycle statistics for Case A: Conventional and PCC-equipped vehicles.
Conventional PCC (Wt = 0.1) PCC (Wt = 10) Unit

Max velocity 12.76 11.4 12.59 m/s
Min Velocity 7 7 7 m/s

Trip time 702 748 732 s

The fuel economy analysis were run for a passenger and a midsize heavy ve-

hicle. The results are reflected in the Table 4.5. For case A, the fuel economy

evaluation results in up to 12 percent fuel saving for a passenger vehicle and 8

percent fuel saving for the heavy vehicle when the traffic information is predic-
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tively utilized.

Table 4.5: Fuel economy results in miles per gallon for passenger and heavy vehicle - Case
A.

Fuel economy Conventional PCC (Wt = 0.5) PCC (Wt = 50)
Passenger Vehicle 49.26 53.05 55.00

Heavy Vehicle 7.38 8.05 8.00

4.3.2.2 Traffic Model-Case B

The second traffic model is created based on fully-sinusoidal initial and bound-

ary conditions. In this case the general form of the boundary conditions is

assumed to be a sinusoidal function of time as:

V (xle f t , t) = C sin(εt)+D

ρ(xle f t , t) = C̃ cos(εt)+ D̃

V (xright , t) = C′ sin(εt)+D′

ρ(xright , t) = C̃′ cos(ε′t)+ D̃′

(4.19)

The sinusoidal boundary conditions imply that the flow of vehicles on the bound-

aries of the simulation road section has a peak. Constants and coefficients

brought into equations 4.19 constitute the shape of the input and output flow

of the road section. For the initial condition, similar to case A a sinusoidal

function of position with the same values of parameters indicated in 4.3 is as-

sumed to present the state of the traffic over the road at the beginning of the

simulation time. The parameters appeared in equations 4.19 are tabulated in

Table 4.6. Figure 4.8 shows the surface indicating traffic velocity distribution

for case study B.

Given the traffic flow information derived for case B, a velocity planning anal-
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Table 4.6: Initial and boundary conditions parameters value for Case B
Parameter Value Unit Parameter Value Unit

C 6 m/s C̃ 0.06 vehicle/m
D 12 m/s D̃ 0.08 vehicle/m
C′ 0.5 m/s C̃′ 0.01 vehicle/m
D′ 12 m/s D̃′ 0.07 vehicle/m
ε 1/300 rad/s ε′ 1/300 rad/s
ω 16π/9000 rad/s ω̃′ 16π/9000 rad/m
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Figure 4.8: Spatiotemporal traffic flow surface generated for case B.

ysis is done via dynamic programming. Similar comparisons of case A are

performed for case B. The conventional vehicle’s trajectory is supposed to

move on the solution surface of Figure 4.8. Two different values of normal-

ized penalty factors mentioned in case A have been applied to the cost function

and the results are shown in Figure 4.9. Table 4.7 summarizes the statistics of

the resulting velocity profiles of conventional and PCC-equipped vehicles with
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Figure 4.9: Trajectories delivered for conventional vehicle (in red) versus PCC vehicle for
Case B. Dashed and solid blue curves represents time penalties of 0.5 and 50 respectively.

two different penalties on trip time.

Table 4.7: Drive-Cycle statistics for Case B: Conventional and PCC-equipped vehicles.
Conventional PCC (Wt = 0.5) PCC (Wt = 50) Unit

Maxvelocity 13.56 11.4 13.50 m/s
MinVelocity 7 7 7 m/s

Triptime 635 675 655 s

Table 4.8: Fuel economy results in miles per gallon for passenger and heavy vehicle - Case
B.

Fuel economy Conventional PCC (Wt = 0.5) PCC (Wt = 50)
Passenger Vehicle 43.55 54.7 44.17

Heavy Vehicle 7.12 8.05 7.77

The fuel economy analysis were run for two passenger and typical heavy ve-

hicles studied in case B. The results are reflected in the Table 4.8. The fuel
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economy evaluation shows that a passenger vehicle driving in traffic flow mod-

eled in case B saves 25 percent fuel with predictive velocity planning. This

improvement is 13 percent for the heavy vehicle.

4.4 Conclusion

In this chapter we proposed the idea of predictively planning a vehicle’s speed

for reducing the velocity transients in upcoming traffic waves in order to re-

duce its fuel consumption. It was assumed that future state of traffic in space

and time can be estimated to be used as an spatiotemporal upper bound to how

fast individual vehicles can travel. One possible method for estimation of ve-

locity that was proposed in this paper is using real-time traffic information as

initial conditions to a macroscopic traffic model represented by a set of coupled

nonlinear partial differential equations.

An optimal control problem was cast with the estimated traffic flow surface as

the constraint for the velocity and with the target of improving fuel economy.

The validity of the approach was investigated in four different simulation case

studies; in two cases spatiotemporal distribution of traffic speed was assumed

and in two other cases the PDE traffic model was solved to generate the traffic

surface. The fuel evaluation simulations showed up to 25 percent improvement

of fuel economy was possible in some scenarios when the future state of traf-

fic was known. This improvement was achieved at the cost of 6 to 8 percent

increase in trip time.

It should be noted that the ideas presented in this chapter are still preliminary

and more work is needed to understand the validity of the claims here in more

realistic traffic scenarios. As the future work, we believe that application of
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macroscopic traffic flow as a reference for an optimal control problem is a

good tool to determine the best departure time and in some particular cases

to generate a fuel/trip-time optimal trajectory. Since the computational load of

the proposed algorithm is high, investigating running part of the computations

off-vehicle and on a backend cluster than communicates with the vehicle via

cellular network is another direction envisioned for future work.
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Chapter 5

Conclusion

This manuscript focused on use of traffic signal and traffic flow preview for

predictively planning a fuel minimal velocity trajectory for a “connected” ve-

hicle that has access to realtime traffic information services. To the best of our

knowledge predictive use of traffic signal and traffic flow for reducing fuel use

and emissions has not be addressed in the past (at least systematically). There-

fore a main contribution of this thesis may be showing the opportunities that

exist for fuel saving by mere use of information and software and with minimal

hardware investments. This is also a timely topic because traffic information is

now available through various providers and can be integrated into the vehicle

navigation system or into its add-on accessories. In this work we also present

novel solutions based on a mix of advanced optimal control and optimization

techniques with predictive macroscopic traffic models and logical rules that can

be considered analytical contributions of this work.

Positive simulation results in the first part of this work promise that signal-to-

vehicle communication technology may enable reduction of fuel consumption,

greenhouse gas emissions, and trip time of future vehicles by predictive veloc-
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ity planning. By this, we hope to encourage further research and innovation

towards more intelligent traffic intersection control systems. Of course, any

gain from the proposed PCC methodology depends on timing and phasing of

traffic lights and the distance between them and the vehicle parameters. A de-

tailed statistical analysis using Monte Carlo simulations is one possible way of

determining average gains with PCC which is a good direction for future sim-

ulation analysis. Also business models for getting access to real-time signal

information and effective communication protocols for broadcasting them is an

open area for future work.

From an analytical perspective, formulation of the trip optimization in this ap-

proach in a model predictive control framework is novel and lends itself well to

many traffic-imposed hard constraints.

In the second portion of this thesis, we proposed the idea of predictively plan-

ning a vehicle’s speed for reducing the velocity transients in upcoming traffic

waves in order to reduce its fuel consumption. It was assumed that future state

of traffic in space and time can be estimated to be used as an spatiotemporal up-

per bound to how fast individual vehicles can travel. One possible method for

estimation of velocity that was proposed in this thesis is using real-time traffic

information as initial conditions to a macroscopic traffic model represented by

a set of coupled nonlinear partial differential equations.

An optimal control problem was cast with the estimated traffic flow surface as

the constraint for the velocity and with the target of improving fuel economy.

The validity of the approach was investigated in four different simulation case

studies; in two cases spatiotemporal distribution of traffic speed was assumed

and in two other cases the PDE traffic model was solved to generate the traffic
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surface. The fuel evaluation simulations showed up to 25 percent improvement

of fuel economy was possible in some scenarios when the future state of traf-

fic was known. This improvement was achieved at the cost of 6 to 8 percent

increase in trip time.

It should be noted that the ideas presented in the second part of this thesis

are still preliminary and more work is needed to understand the validity of the

claims here in more realistic traffic scenarios. As the future work, we believe

that application of macroscopic traffic flow as a reference for an optimal con-

trol problem is a good tool to determine the best departure time and in some

particular cases to generate a fuel/trip-time optimal trajectory. Since the com-

putational load of the proposed algorithm is high, investigating running part of

the computations off-vehicle and on a backend cluster than communicates with

the vehicle via cellular network is another direction envisioned for future work.
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Appendix A

Model Predictive Control

A.1 Introduction

In this section we introduce the control approach that is used in chapter 3 to

solve lower level optimal controller module. We will start with definition of

model predictive control framework and its application. Then, a general formu-

lation of such control problems will be explained briefly.

A.1.1 Definition

Model predictive control (MPC) or model-based predictive control or receding

horizon control is a powerful control framework which is receiving continues

interest from academia and industry.

In general, model predictive control refers to a strategy in control engineering in

which current control action is derived by solving a finite horizon open-loop op-

timal control problem on-line and at each sampling step, using the current state

of the plant as the initial state [53]. Given the current states as initial states, a
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model predictive controller has an internal model to predict the response of the

plant over a future prediction horizon. Then the controller is able to calculate

the appropriate control move for optimizing the pre-defined desired criteria in

the overlooked prediction horizon. Dealing with a tracking problem rather than

a regulation problem and a set of constraints to be satisfied through determina-

tion of control moves, makes MPC a strong control approach candidate to apply

to this problem.

A.1.2 Basic Structure

Figure A.1 shows a schematic structure of a model predictive controller. Taking

all constraints applied to the dynamics and outputs of the system, the first con-

trol input is calculated in the optimizer to minimize the cost function over the

prediction horizon. Then, the following control input is applied to the system

and the optimization process is repeated in a receding horizon manner.

A.1.3 Formulation

In order to reduce the computational time, the system model and constraints in

this thesis are considered as a discrete-time linear time invariant system. Several

notations have been suggested in literature for MPC formulation. In this section

we introduce a popular notation for a simple model predictive control problem.

Consider a discrete-time linear time invariant system regulation problem to the

origin as:

xk+1 = Axk +Buk +Gwk

yk = Cxk +ξk

(A.1)
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Figure A.1: Schematic of a Model Predictive Controller

Where, x ∈ Rn, y ∈ Rm, and u ∈ Rl are the process states to be controlled,

measured process output, and process inputs(manipulated variables) vectors re-

spectively. wk and ξk represent the state measured disturbance and measurement

noise respectively. The initial state x0 is assumed to be Gaussian with non-zero

mean[62].

The state-space system of equations A.1 is supposed to fulfill the constraints:

ymin 6 y(k) 6 ymax

∆y 6 M

umin 6 u(k) 6 umax

∆u 6 N

(A.2)

Where, ∆ represents the variation of a particular variable over one step.
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Suppose that a full measurement of states of A.1 is available at the current step

k. Then objective is to minimize the cost function J which penalizes the squared

deviation of input and state from a reference trajectory. A basic formulation of

the cost function would be defined as:

J(k) =
H p

∑
i=Hw

‖z(k + i)|k− r(k + i|k)‖2
W (i) +

Hu−1

∑
i=0

‖∆û(k + i|k)‖2
R(i) (A.3)

where, Hp is the prediction horizon, Hu is the control horizon, r is the reference

trajectory, W and R are the weighting vectors for states and control moves and

”|” denotes the step to which the state or control output is allocated. Selecting

appropriate weighting vectors, The cost function A.3 penalizes deviation of the

controlled outputs from the reference desired trajectory r(k + i|k). The main

aim of the controller is to select the control signal u(k) that can minimize the

performance index A.3 in the region confined by the set of state, output, and

input constraints. The control input set is the optimum solution only for the

prediction horizon Hp. Then, the first element of calculated control move will

be applied to the plant among the elements included in derived control move set.

Tuning the parameters of the cost function such as prediction horizon, control

horizon and wights will adjust the behavior of the systems. However, there is a

tradeoff between the computation time and the performance of the controller.

A.1.4 Conclusion

In this chapter we have presented a formal description of model predictive con-

trol. It could be stated that the model predictive control would be a proper ap-
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proach in dealing with linear and nonlinear systems with complex constraints

with the goal of tracking fed time varying trajectories.
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