637 research outputs found

    Investigation of the Relationship between Geomagnetic Activity and Solar Wind Parameters Based on A Novel Neural Network (Potential Learning)

    Full text link
    Predicting geomagnetic conditions based on in-situ solar wind observations allows us to evade disasters caused by large electromagnetic disturbances originating from the Sun to save lives and protect economic activity. In this study, we aimed to examine the relationship between the Kp index, representing global magnetospheric activity level, and solar wind conditions using an interpretable neural network known as potential learning (PL). Data analyses based on neural networks are difficult to interpret; however, PL learns by focusing on the "potentiality of input neurons" and can identify which inputs are significantly utilized by the network. Using the full advantage of PL, we extracted the influential solar wind parameters that disturb the magnetosphere under southward Interplanetary magnetic field (IMF) conditions. The input parameters of PL were the three components of the IMF (Bx, By, -Bz(Bs)), solar wind flow speed (Vx), and proton number density (Np) in geocentric solar ecliptic (GSE) coordinates obtained from the OMNI solar wind database between 1998 and 2019. Furthermore, we classified these input parameters into two groups (targets), depending on the Kp level: Kp = 6- to 9 (positive target) and Kp = 0 to 1+ (negative target). Negative target samples were randomly selected to ensure that numbers of positive and negative targets were equal. The PL results revealed that solar wind flow speed is an influential parameter for increasing Kp under southward IMF conditions, which was in good agreement with previous reports on the statistical relationship between the Kp index and solar wind velocity, and the Kp formulation based on the IMF and solar wind plasma parameters. Based on this new neural network, we aim to construct a more correct and parameter-dependent space weather forecasting model.Comment: This PDF is including the manuscript with 18 pages, 4 figures, 3 tables, and 1 graphical abstract. This paper has submitted to Earth, Planets and Space (EPS) and is under review. Also this paper has two corresponding authors: Ryozo Kitajima, and Motoharu Nowada. These two authors equally contribute to completing this pape

    How Insight Emerges in a Distributed, Content-addressable Memory

    Full text link
    We begin this chapter with the bold claim that it provides a neuroscientific explanation of the magic of creativity. Creativity presents a formidable challenge for neuroscience. Neuroscience generally involves studying what happens in the brain when someone engages in a task that involves responding to a stimulus, or retrieving information from memory and using it the right way, or at the right time. If the relevant information is not already encoded in memory, the task generally requires that the individual make systematic use of information that is encoded in memory. But creativity is different. It paradoxically involves studying how someone pulls out of their brain something that was never put into it! Moreover, it must be something both new and useful, or appropriate to the task at hand. The ability to pull out of memory something new and appropriate that was never stored there in the first place is what we refer to as the magic of creativity. Even if we are so fortunate as to determine which areas of the brain are active and how these areas interact during creative thought, we will not have an answer to the question of how the brain comes up with solutions and artworks that are new and appropriate. On the other hand, since the representational capacity of neurons emerges at a level that is higher than that of the individual neurons themselves, the inner workings of neurons is too low a level to explain the magic of creativity. Thus we look to a level that is midway between gross brain regions and neurons. Since creativity generally involves combining concepts from different domains, or seeing old ideas from new perspectives, we focus our efforts on the neural mechanisms underlying the representation of concepts and ideas. Thus we ask questions about the brain at the level that accounts for its representational capacity, i.e. at the level of distributed aggregates of neurons.Comment: 17 pages; 2 figure

    Cognitive Biology: Dealing with Information from Bacteria to Minds

    Get PDF
    Providing a new conceptual scaffold for further research in biology and cognition, this text introduces the new field of cognitive biology, treating developing organisms as information processors which use cognition to control and modify their environments

    Improving nonlinear search with Self-Organizing Maps - Application to Magnetic Resonance Relaxometry

    Get PDF
    Quantification of myelin in vivo is crucial for the understanding of neurological diseases, like multiple sclerosis (MS). Multi-Component Driven Equilibrium Single Pulse Observation T1 and T2 (mcDESPOT) is a rapid and precise method for determination of the longitudinal and transverse relaxation times in a voxel wise fashion. Briefly, mcDESPOT couples sets of SPGR (spoiled gradient-recalled echo) and bSSFP (fully balance steady-state free precession) data acquired over a range of flip angles (α) with constant interpulse spacing (TR) to derive 6 parameters (free-water T1 and T2, myelin-associated water T1 and T2, relative myelin-associated water volume fraction, and the myelin-associated water proton residence time) based on water exchange models. However, this procedure is computationally expensive and extremely difficult due to the need to find the best fit to the 24 MRI signals volumes in a search of nonlinear 6 dimensional space of model parameters. In this context, the aim of this work is to improve mcDESPOT efficiency and accuracy using tissue information contained in the sets of signals (SPGR and bSSFP) acquired. The basic hypothesis is that similar acquired signals are referred to tissue portions with close features, which translate in similar parameters. This similarity could be used to drive the nonlinear mcDESPOT fitting, leading the optimization algorithm (that is based on a stochastic region contraction approach) to look for a solution (i.e. the 6 parameters vector) also in regions defined by previously computed solutions of others voxels with similar signals. For this reason, we clustered the sets of SPGR and bSSFP using the neural network called Self Organizing Map (SOM), which uses a competitive learning technique to train itself in an unsupervised manner. The similarity information obtained from the SOM was then used to accordingly suggest solutions to the optimization algorithm. A first validation phase with in silico data was performed to evaluate the performances of the SOM and of the modified method, SOM+mcDESPOT. The latter was further validated using real magnetic resonance images. The last step consisted of applying the SOM+mcDESPOT to a group of healthy subjects ( ) and a group of MS patients ( ) to look for differences in myelin-associated water fractions values between the two groups. The validation phases with in silico data verified the initial hypothesis: in more the 74% of the times, the correct solution of a certain voxel is in the space dictated by the cluster which that voxel is mapped to. Adding the information of similar solutions extracted from that cluster helps to improve the signals fitting and the accuracy in the determination of the 7 parameters. This result is still present even if the data are corrupted by a high level of noise (SNR=50). Using real images allowed to confirm the power of SOM+mcDESPOT underlined through the in silico data. The application of SOM+mcDESPOT to the controls and to the MS patients allowed firstly obtaining more feasible results than the traditional mcDESPOT. Moreover, a statistically significant difference of the myelin-associated water fraction values in the normal appearing white matter was found between the two groups: the MS patients, in fact, show lower fraction values compared to the normal subjects, indicating an abnormal presence of myelin in the normal appearing white matter of MS patients. In conclusion, we proposed the novel method SOM+mcDESPOT that is able to extract and exploit the information contained in the MRI signals to drive appropriately the optimization algorithm implemented in mcDESPOT. In so doing, the overall accuracy of the method in both the signals fitting and in the determination of the 7 parameters improves. Thus, the outstanding potentiality of SOM+mcDESPOT could assume a crucial role in improving the indirect quantification of myelin in both healthy subjects and patient

    Towards a robust, effective and resource-efficient machine learning technique for IoT security monitoring.

    Get PDF
    Internet of Things (IoT) devices are becoming increasingly popular and an integral part of our everyday lives, making them a lucrative target for attackers. These devices require suitable security mechanisms that enable robust and effective detection of attacks. Machine learning (ML) and its subdivision Deep Learning (DL) methods offer a promise, but they can be computationally expensive in providing better detection for resource-constrained IoT devices. Therefore, this research proposes an optimization method to train ML and DL methods for effective and efficient security monitoring of IoT devices. It first investigates the feasibility of the Light Gradient Boosting Machine (LGBM) for attack detection in IoT environments, proposing an optimization procedure to obtain its effective counterparts. The trained LGBM can successfully discern attacks and regular traffic in various IoT benchmark datasets used in this research. As LGBM is a traditional ML technique, it may be difficult to learn complex network traffic patterns present in IoT datasets. Therefore, we further examine Deep Neural Networks (DNNs), proposing an effective and efficient DNN-based security solution for IoT security monitoring to leverage more resource savings and accurate attack detection. Investigation results are promising, as the proposed optimization method exploits the mini-batch gradient descent with simulated micro-batching in building effective and efficient DNN-based IoT security solutions. Following the success of DNN for effective and efficient attack detection, we further exploit it in the context of adversarial attack resistance. The resulting DNN is more resistant to adversarial samples than its benchmark counterparts and other conventional ML methods. To evaluate the effectiveness of our proposal, we considered on-device learning in federated learning settings, using decentralized edge devices to augment data privacy in resource-constrained environments. To this end, the performance of the method was evaluated against various realistic IoT datasets (e.g. NBaIoT, MNIST) on virtual and realistic testbed set-ups with GB-BXBT-2807 edge-computing-like devices. The experimental results show that the proposed method can reduce memory and time usage by 81% and 22% in the simulated environment of virtual workers compared to its benchmark counterpart. In the realistic testbed scenario, it saves 6% of memory footprints with a reduction of execution time by 15%, while maintaining a better and state-of-the-art accuracy

    Exploration of biological neural wiring using self-organizing agents

    Get PDF
    Cette thèse présente un nouveau modèle computationnel capable de détecter les configurations temporelles d'une voie neuronale donnée afin d'en construire sa copie artificielle. Cette construction représente un véritable défi puisqu'il est impossible de faire des mesures directes sur des neurones individuels dans le système nerveux central humain et que la voie neuronale sous-jacente doit être considérée comme une boîte noire. La théorie des Systèmes Multi-Agents Adaptatifs (AMAS) est utilisée pour relever ce défi. Dans ces systèmes auto-organisateurs, un grand nombre d'agents logiciels coopératifs interagissent localement pour donner naissance à un comportement collectif ascendant. Le résultat est un modèle émergent dans lequel chaque entité logicielle représente un neurone " intègre-et-tire ". Ce modèle est appliqué aux réponses réflexes d'unités motrices isolées obtenues sur des sujets humains conscients. Les résultats expérimentaux, comparés à des données obtenues expérimentalement, montrent que le modèle découvre la fonctionnalité de voies neuronales humaines. Ce qui rend le modèle prometteur est le fait que c'est, à notre connaissance, le premier modèle réaliste capable d'auto-construire un réseau neuronal artificiel en combinant efficacement les neurosciences et des systèmes multi-agents adaptatifs. Bien qu'aucune preuve n'existe encore sur la correspondance exacte entre connectivité du modèle et connectivité du système humain, tout laisse à penser que ce modèle peut aider les neuroscientifiques à améliorer leur compréhension des réseaux neuronaux humains et qu'il peut être utilisé pour établir des hypothèses afin de conduire de futures expérimentations.In this thesis, a novel computational model that detects temporal configurations of a given human neuronal pathway and constructs its artificial replication is presented. This poses a great challenge since direct recordings from individual neurons are impossible in the human central nervous system and therefore the underlying neuronal pathway has to be considered as a black box. For tackling this challenge, the Adaptive Multi-Agent Systems (AMAS) theory in which large sets of cooperative software agents interacting locally give rise to collective behavior bottom-up is used. The result is an emergent model where each software entity represents an integrate-and-fire neuron. We then applied the model to the reflex responses of single motor units obtained from conscious human subjects. Experimental results show that the model uncovers functionality of real human neuronal pathways by comparing it to appropriate surrogate data. What makes the model promising is the fact that, to the best of our knowledge, it is the first realistic model to self-wire an artificial neuronal network by efficiently combining neuroscience with self-adaptive multi-agent systems. Although there is no evidence yet of the model's connectivity mapping onto the human connectivity, we anticipate this model will help neuroscientists to learn much more about human neuronal networks, and could also be used for predicting hypotheses to lead future experiments

    Predictive Performance Of Machine Learning Algorithms For Ore Reserve Estimation In Sparse And Imprecise Data

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2006Traditional geostatistical estimation techniques have been used predominantly in the mining industry for the purpose of ore reserve estimation. Determination of mineral reserve has always posed considerable challenge to mining engineers due to geological complexities that are generally associated with the phenomenon of ore body formation. Considerable research over the years has resulted in the development of a number of state-of-the-art methods for the task of predictive spatial mapping such as ore reserve estimation. Recent advances in the use of the machine learning algorithms (MLA) have provided a new approach to solve the age-old problem. Therefore, this thesis is focused on the use of two MLA, viz. the neural network (NN) and support vector machine (SVM), for the purpose of ore reserve estimation. Application of the MLA have been elaborated with two complex drill hole datasets. The first dataset is a placer gold drill hole data characterized by high degree of spatial variability, sparseness and noise while the second dataset is obtained from a continuous lode deposit. The application and success of the models developed using these MLA for the purpose of ore reserve estimation depends to a large extent on the data subsets on which they are trained and subsequently on the selection of the appropriate model parameters. The model data subsets obtained by random data division are not desirable in sparse data conditions as it usually results in statistically dissimilar subsets, thereby reducing their applicability. Therefore, an ideal technique for data subdivision has been suggested in the thesis. Additionally, issues pertaining to the optimum model development have also been discussed. To investigate the accuracy and the applicability of the MLA for ore reserve estimation, their generalization ability was compared with the geostatistical ordinary kriging (OK) method. The analysis of Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Error (ME) and the coefficient of determination (R2) as the indices of the model performance indicated that they may significantly improve the predictive ability and thereby reduce the inherent risk in ore reserve estimation
    • …
    corecore