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ABSTRACT

Traditional geostatistical estimation techniques have been used predominantly in 

the mining industry for the purpose of ore reserve estimation. Determination of mineral 

reserve has always posed considerable challenge to mining engineers due to geological 

complexities that are generally associated with the phenomenon of ore body formation. 

Considerable research over the years has resulted in the development of a number of 

state-of-the-art methods for the task of predictive spatial mapping such as ore reserve 

estimation. Recent advances in the use of the machine learning algorithms (MLA) have 

provided a new approach to solve the age-old problem. Therefore, this thesis is focused 

on the use of two MLA, viz. the neural network (NN) and support vector machine 

(SVM), for the purpose of ore reserve estimation. Application of the MLA have been 

elaborated with two complex drill hole datasets. The first dataset is a placer gold drill 

hole data characterized by high degree of spatial variability, sparseness and noise while 

the second dataset is obtained from a continuous lode deposit.

The application and success of the models developed using these MLA for the 

purpose of ore reserve estimation depends to a large extent on the data subsets on which 

they are trained and subsequently on the selection of the appropriate model parameters. 

The model data subsets obtained by random data division are not desirable in sparse data 

conditions as it usually results in statistically dissimilar subsets, thereby reducing their 

applicability. Therefore, an ideal technique for data subdivision has been suggested in the 

thesis. Additionally, issues pertaining to the optimum model development have also been 

discussed.

To investigate the accuracy and the applicability of the MLA for ore reserve 

estimation, their generalization ability was compared with the geostatistical ordinary 

kriging (OK) method. The analysis o f Mean Square Error (MSE), Mean Absolute Error 

(MAE), Mean Error (ME) and the coefficient of determination (R ) as the indices of the 

model performance indicated that they may significantly improve the predictive ability 

and thereby reduce the inherent risk in ore reserve estimation.
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CHAPTER I 

INTRODUCTION

1.1 Ore Reserve Estimation

The ore reserve estimation problem, essentially a statistical problem, can be stated 

simply as the determination of the value (or quantity) of the ore in unsampled areas from 

a set of sample data (usually drill hole samples) Xi, X2, X3, ....Xn collected at specific 

locations within a deposit. During this process it is assumed that the samples used for the 

inference of the unknown population or the underlying function responsible for the data 

are random and independent of each other.

The ore reserve estimation is usually a continuous process that begins during the 

exploration phase of a project and in some cases, continues throughout the life of the 

mine. At the early stage when sampling is conducted in widely spaced drill hole intervals, 

the estimates are basically global and have low confidence. In spite of the low confidence 

this is the first step at which mineral appraisal is carried out, and the objective of this 

estimation is to obtain a reasonable approximation of the grade-tonnage curve within a 

deposit confined by recognizable geological boundaries or a mineralized envelope. It also 

clarifies if  further drilling is required. In that situation secondary drill holes are drilled at 

closer spacing to improve reliability. During the planning phase an estimate of the total 

recoverable reserves is made for various (i) cut-off grades and (ii) mining unit sizes. In 

this stage, the grade-tonnage curve is generated for blocks or for mining unit sizes. Based 

on the quality, quantity and location information of the ore grade obtained during this 

stage the subsequent mine operations are planned. Whatever the goal of reserve 

estimation, a reliable prediction is prerequisite for successful compilation of a mining 

project. Since the accuracy of grade estimation is one of the key factors for effective 

mining p lanning, design, and grade control, the estimation methodologies have 

undergone a great deal of improvement, keeping pace with the advancement of
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technology. There are a number of methodologies (Dutta et al., 2003; Dutta et al., 2006a; 

Dutta et al., 2006b; Samanta et al., 2005a, Samanta et al., 2005b) that can be used for the 

ore reserve estimation. The most common and widely used methods are the traditional 

geostatistical estimation techniques of kriging. Typically, the aforesaid criteria of 

randomness and independence among the samples are rarely observed. The samples are 

correlated spatially and it is this spatial relationship that is incorporated in the traditional 

geostatistical estimation procedure. This information is contained in a tool known as the 

“variogram function” which describes the continuity o f the mineralization within a 

deposit both graphically and numerically. It can be also used to study the anisotropies, 

zones of influence and the variability of the ore grade values in the deposit.

Prior to the application of geostatistics, the ore reserve estimation methods were 

mostly empirical in nature. They consisted of the block methods (triangular, polygonal, 

and irregular) and the methods of cross section (vertical, horizontal, inclined). Recent 

advances in computational fields brought about the methods such as inverse distance 

weighing (IDW), which weighs the samples inversely with the distance from the point 

under consideration and combines them linearly.

Apart from the IDW methods, there are a number of kriging variants which are 

linear estimators. The most common is the ordinary kriging (OK) method, also known as 

the best linear unbiased estimator (BLUE). Unlike the other linear estimators the 

distinguishing feature of the OK method lies in its ability to produce estimates with 

minimum error variance. Even this best linear estimator of OK, may not however, 

perform satisfactorily under conditions of non-linearity. Under such situations, when non

linearity is present in the data, which is common in the complex phenomenon of ore 

reserve estimation, efforts should be made towards the use of non-linear estimators to 

improve the confidence in the ore reserve estimates.
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The advent of modem computers has brought into light several machine learning 

algorithms that work in a quasi non-linear fashion. These artificial learning algorithms 

learn the underlying functional relationship inherently present in the data from the 

samples that are made available to them. The attractiveness of these non-linear estimators 

lies in their ability to work in a black box manner. Given sufficient data and appropriate 

training, they can learn the relationship between the input patterns (such as coordinates) 

and the output patterns (such as ore grades) in order to generalize and interpolate the ore 

grades for areas between drill holes. With this approach, no assumptions, such as 

linearity, are required to be made about any factors or relationships concerning the spatial 

variations of ore grade in the vicinity of boreholes.

1.2 Statement of the Ore Reserve Estimation Problem

The scope of the reserve estimation problem lies in the fact that an absolute or 

precise determination of the ore grade is not possible. It has always presented a challenge 

to mining engineers and geologists responsible for ore grade estimation. Reduction of the 

uncertainties in mineral appraisal invariably requires a reliable estimate o f tonnage and 

grade of a deposit and grade control. Most of the ore deposits are formed under complex 

geological structures. The process of mineralization is largely affected by these 

geological structures which may include, among others, folds, faults, shear zones and 

joints. These are the potential sources of intrusion by other materials within the main 

deposits. Mineralization has led to the occurrence of ores in nature with widely varying 

properties. Generally, most ore deposits exhibit the following behaviors: (i) large 

variation of physical and chemical composition in both vertical and lateral extents, (ii) 

variations in deposition and evidence of structural disturbances, (iii) multiplicity of ore 

structures, (iv) variation in thickness and quality in the same structure, and (v) variation 

in the nature of the associated formation. As a result, estimation of ore grade and reserve 

are difficult for complex ore formations.
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Since, an estimate of the ore grade includes a degree of uncertainty by the very 

nature of a deposit, it has led to the continual search for more reliable and robust 

estimation techniques. Apart from the nature of the mineralization and the complex 

geometry of an ore deposit, the choice of an estimation method is also dependent on the 

variability of the grade distribution, the characteristics of the ore boundary, the amount of 

resources available, extent of samples and the degree to which high grade outliers are 

present. There are numerous methodologies in use today which operate under 

fundamentally different concepts. Among the various techniques, the traditional approach 

has been the use of geostatistics.

In spite of the popularity of geostatistics in mineral appraisal, in recent times, 

researchers have opted and shown promising results in the field of predictive mapping 

using neural networks (Samanta et al., 2005a; Yama and Lineberry, 1999) and support 

vector machines (Kanevski et al., 2002; Pozdnoukhov, 2005). Since these artificial 

learning algorithms are trained from the samples that are made available to them, their 

efficiency of learning improves with an increase in the sample density. However, it must 

be realized that the sampling task in geological and mineral exploration is time 

consuming and expensive, and often the samples are noisy. Frequently, the sampling is 

done in wide drill-hole intervals, resulting in less representative data. Furthermore, the 

data are collected in non-optimal or near-optimal environments. As a result, the volume 

of data collected from drilling and sampling may be inadequate and even inappropriate to 

model a complex deposit. In such cases, due to the inherent sparseness and noise, ore 

reserve modeling becomes a challenging task. The reliability o f an ore reserve estimate 

under such conditions is not only decreased but also has a low level of confidence. Since 

it is inherent in the process, efforts should be made to select an estimation method, which 

will treat the available data prudently and develop the necessary functional relationship 

needed for ore reserve estimation.
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Selection of the estimation method aside, equally important in any modeling task 

is the validation o f the model performance. One way to validate the model performance is 

to test the actual ore grade with the predicted ore grade. However, in the context of 

reserve estimation, it is almost impossible to compare the ‘predicted’ ore grade with the 

‘actual’ ore grade. Several other factors during sample collection such as dilution, 

spillage, possible effects of stockpiling, possible sorting and concentration processes may 

hinder accurate comparisons. Therefore, in order to validate the model and its 

generalization ability several procedures such as bootstrapping, the split sampling method 

(or holdout method), the cross validation method (K-fold cross validation, leave-one-out 

cross validation) can be adopted. The basic idea of these techniques is to keep aside part 

of the data from the available dataset and not use them in the training process. These 

models, in general, learn the functional relationship from the training dataset. Thus, when 

the training is complete, the “partitioned” data will serve as the “new” dataset (known as 

the validation dataset) to assess the trained model performance. Each of these procedures 

has its own merits and demerits. The cross validation and split sampling method have 

been popular (Samanta et al., 2005b; Dutta et al., 2003; Twarakavi et al., 2006). Since, 

the predictive performance of the model depends to a large extent on the quality and the 

amount of data on which it is trained, the k-fold cross validation appears to be an 

appropriate choice when the dataset is sparse (Goutte, 1997). The disadvantage of this 

method is, however, that the training algorithm has to repeat k  times, thus requiring 

additional computational time. Under such circumstances, the split sampling approach 

appears to be a better choice. It must be noted that with split sampling the results rely 

heavily on the distribution of the ore grade values in the training dataset and in the 

validation dataset. Since the learning models are built by exploring and capturing similar 

properties of the various data subsets, these data subsets should be statistically similar to 

each other and should reflect the statistical properties of the entire dataset. The statistical 

similarity ensures that the comparisons made for the model built on the training dataset 

and tested on the prediction dataset are logical (Bowden et al., 2002, Yu et al., 2003). 

Traditionally used practices of random division of data might fail to achieve the desired
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statistical properties when the data are sparse and heterogenious. Due to the sparseness, 

limited data points categorized into the data subsets by random division might result in 

dissimilarity of the data subsets (Ganguli and Bandopadhyay, 2003). As a consequence, 

overall model performance will be decreased. Therefore, careful subdivision of data 

during model development is essential. Various methodologies should be investigated for 

proper data subdivision under such a modeling framework.

1.3 Literature Review

Geostatistics has been the most used procedure for the complex phenomenon of 

ore reserve estimation (Joumel and Huijbregts, 1978; Rendu, 1979; Pan, 1995). In recent 

times, several researchers have applied NN for ore reserve estimation. A representative 

application of NN for ore reserve estimation is reviewed below. Several artificial learning 

algorithms were applied for this purpose. Wu and Zhou, 1993 investigated a multi-layer 

feed forward neural network approach for copper reserve estimation. Initially, the 

network was trained with filed assay data at borehole locations and then was used to 

predict the distribution of ore grade in the drilling region. The NN results when compared 

with other traditional models indicated that after appropriate training on a comprehensive 

set of sample data, the NN could generalize reasonably well in the neighborhood of the 

sampling region.

Clarici et al. (1993) used the NN model for analyzing spatial data of drill hole 

locations, assay values (ppm) of arsenic, lead, and cadmium. The results when compared 

with kriging demonstrated the potential of NN as a tool for spatial data analysis. Denby 

and Burnett (1993) used GEMNET (grade estimation using mapping network) for 

estimation of grade in an iron ore deposit. Kapageridis and Denby (1998) presented a NN 

approach to model the ore grade spatial variability in a large undeveloped copper/gold 

deposit. They used a radial basis function network (RBFN) for the model development. 

The results indicated the potential of NN for ore reserve estimation. Others (Samanta et
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al., 2004a; Samanta et al., 2004b; Samanta et al., 2005a, Samanta et al., 2006) applied 

NN for the ore grade estimation of gold and bauxite deposits. The results in these studies 

indicated the potential of NN for the ore reserve estimation.

Dutta et al. (2006a) used a hybrid ensemble network model of NN and 

geostatistics to predict the ore grades in a bauxite deposit. Their study was based on the 

assumption that since kriging and NN capture different aspects of the spatial variability in 

the data, the hybrid model would give better estimates. Their study proved correct for the 

silica content of the bauxite. The alumina content was, however, predicted better with the 

kriging model. The failure of the hybrid model in the prediction of alumina was basically 

attributed to the high error of the individual NN models. For the same ore body, another 

study was also reported by using a Radial Basis Function (RBF) NN (Dutta et al., 2005d). 

In this study several important aspects related to RBF network modeling were discussed, 

including the appropriate division of the entire dataset into the modeling subsets using 

Genetic Algorithms (GA). Bowden et al. (2002), Samanta et al. (2004a), Samanta et al. 

(2004b), Ganguli and Bandopadhyay (2003) describe the importance of proper data 

division for development of model data subsets. They used different methodologies such 

as GA and Kohonen network for appropriate data division. Samanta et al. (2005a) used 

an ensemble NN model for the prediction of gold grades. The model consisting of 

multiple networks was constructed by applying the Adaboost algorithm using different 

training datasets. The purpose was to examine if  the use of an ensemble model would 

provide better performance than the single neural network. There are several advantages 

of using an ensemble model. First, each neural network in the ensemble model follows 

more or less the true output mapping function. Conceptually, if  one assumes that the 

output of an individual neural network of the ensemble consists of a true output plus a 

random error component with zero mean, then the combination of the outputs from the 

individual networks results in averaging of the random error components. Hence, it 

ensures reduction of the estimation error. Second, a single best network might get 

overfitted, thus, behaving poorly with unseen data. An ensemble of networks might
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reduce the overfitting, by combining different networks with different architectures. 

Third, the input-output relationship represented by a set of data with a distinct nature 

might not be captured adequately by a single network. It is possible to train individual 

networks using data having a nature to that of the entire set of data, and then combine the 

outputs of the individual networks to get a final improved ensemble output. Contrary to 

the information in the published literature (Sharky, 1999). Adaboost did not perform 

better than a single neural network in the cited application. The authors proposed a 

plausible reason to be the high noise inherent in the gold data used in the study. Multiple 

networks using the training data can also be constructed using a bagging or bootstrap 

aggregating technique (Breiman, 1996). In bagging, each network is independently 

trained on “n” samples picked randomly, with replacement from the “n” original samples 

of the training set. Each neural network is thereby trained on different but overlapping 

subsets of the original training data set, and will, therefore, give different predictions. 

Final prediction is the average of all the individual networks of the ensemble. When the 

Adaboost algorithm was used in an entirely different study (Dutta and Ganguli, 2005b) to 

determine the ash content of the raw coal in real time, the model performed appropriately. 

Dutta et al. (2003) also used an ensemble network for ore grade estimation. Their study 

revealed that the ensemble network performed slightly better than a single best neural 

network. Furthermore, in their application of an ensemble network for ore grade 

estimation, they selected the different networks by changing the network architectures 

and the number of hidden neurons, while the training data set was identical for each of 

the networks.

Application of NN has also been reported in several other mining applications 

such as in mineral processing plants (Hodouin et al., 1991), geological roof classification 

(Cardon and Hoogstraten, 1995), longwall stability prediction (Park et al., 1995), 

identification of failure models for underground openings (Lee and Sterling, 1992) and 

spatial continuity detection (Clarici et al., 1993). Apart from mining, it has also been 

applied to other related fields such as characterization of aquifer properties (Rizzo and
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Doughetry, 1994), calibration of on-line analyzers (Yu et al., 2003) and ground water 

modeling (Rogers and Dowla, 1994), vegetation and land cover mapping (Fitzgerald and 

Lees, 1996; Foody, 1997), land degradation (Mann and Benwell, 1996), geological 

mapping (An et al., 1995), and classifying remote sensing data (Miller et al, 1995). Dutta 

et al. (2005c) used a multilayer feed forward NN and RBF neural network to predict the 

radioactivity levels at a given test site in Germany. In most of these studies it was not 

evident if these techniques provided a better estimated value than that of the geostatistical 

technique. In most of these studies it was revealed that neither the neural network nor the 

geostatistics proved superior to the other. The efficiency of the two techniques varied 

from one application to another.

Apart from NN, one more machine learning algorithm which is gaining popularity 

in the field of predictive mapping in several benchmark problems is the support vector 

machines (SVM). Although relatively new, this method is getting widespread acceptance 

because of its robust mathematical background (Kecman, 2000; Kecman, 2004; Smola 

and Scholkopf, 1998; Smola and Scholkopf, 2004). Also known as support vector 

regression (SVR), the method is based on statistical learning theory (SLT) and performs 

structural risk minimization (SRM). There are relatively few applications of SVM to 

mining reported in the published literature. This research is perhaps the first application 

of SVR for ore reserve estimation.

Mukheijee et al. (1997) have shown the remarkable predictive capability of the 

SVM algorithm. Their study revealed that SVM performs better than NN, RBF and local 

polynomial techniques when applied to a database of chaotic time series. Pozdnoukhov 

(2005) applied SVM to detect the natural radioactivity levels in a given test site. The data 

consisted of X-coordinate (m), Y-coordinate (m) and mean gamma dose rate 

(nanoSieverts/m). Analysis was performed on the two sets of data: one with the noise 

patterns and the other without any noise. The SVM method produced comparatively 

better results when compared to other techniques. Chang and Lin (2001) describe the
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various procedures ideal for the development of the SVM model. Cherkassy and Ma 

(2002) in their study investigate the various practical aspects in the selection of the SVM 

parameters in the SVM regression.

Kanevski et al. (2002) and Pozdnoukhov et al. (2002) also demonstrated SVM 

application to spatial data analysis in the presence of some priori knowledge. Twarakavi 

et al. (2006) applied SVM to predict the arsenic concentrations in the bedrock derived 

stream sediments using the gold concentration distribution present within the sediments. 

Their study was based on the hypothesis that arsenic displays a consistent correlation 

with gold, which is typical for gold deposits in general. Their study showed improved 

predictions compared with an earlier study in which NN was used for the same purpose 

(Misra et al., 2005). Twarakavi et al. (2006) also applied SVM to develop an optimal 

ground water quality monitoring network for a watershed. The water quality indicator 

considered in their study was the nitrate concentrations in the watershed. The long-term 

nitrate concentrations were modeled as a function of the land use distribution, recharge 

potential and the spatial co-ordinates. Though the developed model generated relatively 

large errors compared to other models, its lesser data requirements made it attractive. 

This is encouraging under the conditions of limited resources.

The general characteristic of SVM and NN emphasized the fact that they can 

approximate any multivariate non-linear relation among the variables in a black box 

manner and that both are robust to noisy data. The added advantage of the SVM 

algorithm lies in the fact that it not only tries to reduce the empirical error (the training 

data error) but also reduces the model complexity. The ability o f the SVM to work with 

small datasets is extremely useful. SVM may be able to capture the spatial distribution of 

ore grade more effectively with careful modeling and selection of SVM parameters. 

Therefore, the purpose of the present study is another attempt to investigate the 

applicability of machine learning algorithms for ore reserve estimation.
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1.4 Scope of the Study

A number of state-of-the-art models are available for predictive spatial mapping. The 

application of these tools has been made possible due to recent advances in the 

computational platforms. The application of these techniques include but are not limited 

to the method of geostatistics: the family of kriging estimators (Isaaks and Srivastava, 

1989; Samanta et al., 2005a), machine learning algorithms such as Support Vector 

Machines (SVM); neural networks (NN), (Samanta et al., 2005b, Ganguli and 

Bandopadhyay, 2003; Dutta et al., 2005a, Yu et al., 2003) and hybrid models (Dutta et 

al., 2006a, Kanevski et al., 1996). The focus of this study is the application of the 

machine learning algorithms such as NN and SVM for ore reserve estimation. The 

working principle of SVM makes it robust against noisy and extreme value data. At the 

same time, it can capture the high-dimensional non-linear spatial trends if  they exist in 

the data. This noise and complexity are predominant in the mining domain. While the 

family of kriging estimators is popularly used in various fields, their performance 

depends to a large extent on the presence of good and sufficient data to map the spatial 

correlation structure. They also work better if  there is a linear relationship between the 

input and the output patterns. However, this is rarely the case in the mining domain. Even 

though there are a number of kriging variations, such as lognormal kriging and indicator 

kriging that apply certain specific transformations to capture the nonlinear relationships, 

they may not be sufficient to capture the broad nature of spatial nonlinearity. Moreover, 

earth sciences data are most often characterized by the presence of noisy patterns, that are 

also of unknown nature and are usually difficult to discemr. The SVM is effective for 

modeling using sparse datasets, because it only uses a few data points as features vectors 

for defining the model. Further, with SVM, there is no need to perform semi-variogram 

modeling, which is the core of the geostatistical estimation method. It works like a black 

box. With semi-variogram modeling, it is preferable to have the data normally 

distributed, which is usually not the case. This can be avoided while performing SVM 

modeling. Geostatistical techniques such as ordinary kriging work under the assumption
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of stationarity. However, in most deposits this might not be truly observable. Such an 

assumption is not required with SVM modeling. Also, at times, with geostatistical 

techniques, the anisotropies may not be evident in a particular direction when the samples 

are sparse. This may lead to unreliable estimates. Such a situation can be avoided while 

employing the SVM modeling. It has its own advantages when compared with NN. 

Although NN models are also a powerful tool to capture the nonlinear spatial 

relationships that may be present in the data, they are usually difficult to optimize under 

sparse data settings. Of the various NN alternatives, multilayer feed forward networks 

(MFFN) have been successfully applied in several fields (Samanta et al., 2005b; Dutta et 

al., 2005c). Despite their effectiveness, the model selection and estimation process is 

typically difficult, time consuming and computationally intensive, as it involves solving 

complex integration and/or optimization of parameters. Furthermore, they are susceptible 

to local minima and in the presence of a large number of local minima, the NN may fail 

to estimate the global minima. In SVM modeling, however, estimating the unknown 

parameters only involves optimization of a convex cost function. This can be achieved 

using standard quadratic programming algorithms (Kecman, 2004). The model 

constructed depends explicitly on the most “informative” data (the support vectors). From 

the previous sections it can be very well perceived that the extent to which various 

methodologies affect the grade estimation is quite variable. Therefore, the scope of this 

research includes the following objectives:

1) To examine the effect of the various data divisional approaches on the model 

performance, since the model datasets have a significant impact on the model 

generalization ability.

2) To develop a reserve model using machine learning algorithms (the support 

vector machine approach and the neural network approach) for improved ore grade 

estimation. Although successfully implemented in other fields (Pozdnoukhov, 2005; 

Dutta et al., 2005c; Kanevski et al., 2002), there is no known application of SVM to the 

ore reserve estimation problem. Two case studies have been carried out utilizing the 

actual drill-hole information. The first dataset is a placer gold drillhole data. The data are
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very noisy and sparse. The drilling of holes is not on a regular grid and the hole spacing 

is often too large to apply geostatistics in order to calculate placer gold reserve 

accurately. The second dataset is a lode deposit and is continuous in nature.

3) To apply the SVM and NN model on the placer gold dataset and compare the 

grade estimates with the traditional ordinary kriging method and develop the volume of 

the reserves for various cut off grades.

4) To develop alternative mining blocks using the placer gold data, by clustering 

algorithms, and calculate the volume of reserves for various cut off grades.
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CHAPTER II 

THEORY OF GENETIC ALGORITHMS AND KOHONEN NETWORK

2.1 Genetic Algorithms and Data Division

Genetic algorithms (GA) are a search procedure based on the mechanics of 

genetics and natural selection. The advantages of GA in data divisional problem are that 

GA generates optimal data divisions quickly after examining only a small fraction of the 

search space in data divisional space. Genetic algorithms combine an artificial survival of 

the fittest approach with the various genetic operators to form a mechanism from which 

optimal solutions may eventually be produced for data division.

In nature, organisms evolve as the result of selective processes, such as mating 

between individuals, and occasional mutations. Genetic algorithms mimic these same 

operations and employ several operators that duplicate, recombine, and change the string 

of a current solution to create a new solution. These operators are known, respectively, 

as reproduction, crossover and mutation. Reproduction and crossover play the primary 

roles in an artificial genetic search. Reproduction emphasizes highly fit strings while 

crossover recombines these selected solutions to generate new, potentially better 

solutions. Mutation plays a secondary role in producing optimal solution by introducing 

the occasional original change in a solution. Mutation provides a mechanism to escape 

from a false local optimal solution through occasional alteration of the solution. Thus, 

genetic algorithms are recognized as global learning algorithms. The principle stages of 

genetic algorithms are shown in Figure 2.1 (Dutta et al., 2006a).

The genetic optimization of a data division is carried out in a manner similar to 

that described above. A data division is performed by selecting members of the sample in 

such a way that the first 50% of the selected samples are put in training set, the next 25%
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are placed in a calibration set and the remaining 25% into a validation set. In an optimal 

data division, samples are ordered in such a way that statistical differences between the 

three subsets are minimized. The methods and procedure for GA data divisions are 

described in the following sections and illustrated through a simple example in Figure 

2.2. The following steps are used for generating data divisions using genetic algorithms:

(a) Generation o f random solutions fo r  data division

Random solutions are created by arbitrarily ordering the samples, and splitting the 

dataset such that the first half is put into the training subset, the next quarter into the 

calibration subset and the remaining (quarter) into the testing subset. To start the process, 

a suite (“population”) o f solutions is generated. For example, assume one has eight 

samples to divide; division should occur so that the first four selected samples fall in the 

training set, the second two samples fall into the calibration set, and the remaining two 

samples are placed into a validation set. Random data divisions could be generated in the 

way shown in Figure 2.2. In this figure it is shown that a population of 20 random 

solutions could be created by different orderings of the samples. Note that numbers in the 

cells indicate the sample number (sample I_D) and the position of the cells indicate the 

sample order.

(b) Assessment o f the fitness values

The next step involves assessing the quality o f the generated solutions. The 

quality of a solution is determined by its “fitness” value. Fitness value is the criterion 

upon which a solution can be judged. In the present data divisional application, a 

criterion was developed which minimized the mean squared deviation as well as variance 

among the three subsets and the entire data set.

Note that the only intent of using GA is to ensure that the three subsets are statistically 

equal, i.e. the constituents of each subset are statistically similar to the corresponding
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constituents of the other two subsets. In the GA algorithms all the variables are taken into 

consideration.

Figure 2.1: Principal stages o f  genetic algorithms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

(c) Reproduction o f the solutions

The population of the solutions is then modified to obtain the next “generation” of 

solutions. This is done in two steps: first by selecting survivors and second by 

“evolution” of the survivors. Selection of survivors is done by remainder stochastic 

sampling (Golderg, 1989) with the constraint that solutions with better fitness values 

have a higher chance of survival. A particular solution may be selected many times, while 

another may not be selected at all (Figure 2.2). At this point, the population consists of 

the “good” quality solutions from the previous populations, sometimes with multiple 

copies of the same solutions. As a result, average fitness of the solutions in the population 

is increased.

(d) Crossover o f the solutions

During the crossover operation, solutions are randomly combined in pairs on a 

probabilistic basis (Figure 2.2). The individual solutions in a given pair (“parent”) are 

then modified by the crossing over of features between the solutions. It is important to 

remember that selected pairs and their respective cross-over points are chosen randomly. 

Crossover results in the crossed pair having modified characteristics of the parent 

solutions. Some of the modified solutions have superior fitness values, improving their 

chances of survival into future generations, whereas some have inferior fitness values, 

reducing their chances of survival. Normally, crossover involves swapping blocks of 

samples. For example, in Figure 2 the crossover point randomly generated for the parent- 

pair is 4 blocks down in a string of 8 samples. Crossing over then results in a single 

solution containing samples in slots one through three of parent # 1, and samples in slots 

four through eight of parent #2, while the other solution consists of samples in slots one 

through three of parent #2, and samples in slots 4 through 8 of parent #1.
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(e) Transformation into feasible solutions

Crossover results in infeasible data divisions in the sense that some duplicate 

samples are found in the solution and some samples are left off. For example, after the 

crossover, solution #2 (Figure 2.2) contained the duplicate samples three and eight. On 

the other hand, samples # 1 and 4 are not selected in any of the slots. Therefore, it is 

necessary to replace duplicate samples with the left off samples, aiming to do so with 

minimal disturbance of the solutions.

(e) Mutation o f the solutions

Mutation is performed on a probabilistic basis, where a sample from one subset is 

randomly swapped with a member of another subset. For example, a solution may be 

mutated by randomly swapping samples (3 and 87). The mutation o f the solutions helps 

to maintain genetic diversity and prevents the system from converging to a false optimum 

solution.
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2.2 Self Organizing Map and Data Division

The Self-Organizing Map (SOM) was introduced by Teuvo Kohonen. The SOM 

(also known as the Kohonen feature map) algorithm is one of the best known artificial 

neural network algorithms. In contrast to many other neural networks, which require 

using supervised learning, the SOM allows unsupervised learning. The SOM algorithm 

employs a technique known as competitive learning. All neurons in the output layer 

compete with each other in response to a particular input pattern, with only a single 

output neuron winning the competition to become activated. The winning neuron upon 

activation excites neighboring neurons, changing their respective weights in the learning 

process. In SOM, the output neurons are located on a one or two-dimensional lattice. 

The neurons in the lattice are selectively tuned to various input patterns during training. 

As a result, the locations of the neurons in the lattice become ordered in such a way that a 

coordinate system for different input patterns is created over the lattice. The basic idea of 

SOM is to define a one or two-dimensional map of output neurons from a higher 

dimensional input space. Each output neuron carries a reference location of a particular 

input pattern or group of similar patterns in the lattice. The output neurons are ordered 

in such a way that their neighborhood relation is dictated by the topological maps. This 

means two neurons have more in common if  they are located adjacent to each other than 

if they are some distance apart. Thus the SOM algorithm provides a non-linear clustering 

mechanism in which similar patterns can be grouped into an output neuron in the lattice.

Learning of a SOM network involves essentially three major tasks: competition, 

cooperation, and synaptic weight adaptation. For each input pattern, neurons in the 

output layer compute their respective distances to the input pattern. The neuron with the 

minimum distance wins the competition. A topological neighborhood is then defined 

around the winning neuron, in which neurons cooperate amongst themselves. The 

winning neuron locates itself in the center of the topological neighborhood of excited 

neurons. The excited neurons in the neighborhood respond by updating their synaptic
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weights in response to the input pattern, so that they are attracted towards any similar 

input patterns.

To start the learning process, an algorithm proceeds by initializing the synaptic weights in 

the network. This is generally done by assigning small values from a random number 

generator. The basic stages of the SOM learning process is as follows (Lippmann, 1987):

1. One sample vector x is randomly drawn from the input data set and its similarity 

(distance) to the output neurons is computed, e.g. by using the common Euclidean 

distance measure:

The best matching neural of the output layer is found. Wj=weight vector of neural i in 

the output layer

2. After the best matching unit has been found, the synaptic weights of the output 

neurons are updated. The best matching unit and its topological neighbors are moved 

closer to the input vector in the input space, i.e. the input vector attracts them. The 

magnitude of the attraction is governed by the learning rate. As the learning proceeds and 

new input vectors are given to the map, the learning rate gradually decreases to zero 

according to the specified learning rate function type. Along with the learning rate, the 

neighborhood radius also decreases as time progresses. 

The update rule for the reference vector of unit i is the following:

Where, a(t) is a scalar value adaptation with gain 0 < a(t) <1, which depends upon 

learning rate and neighborhood distance, and where Nc is the search neighborhood

J t i  -  W c \ mini*-HI) (2.1)

(2.2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

3. The steps 1 and 2 together constitute a single training step and they are repeated 

until the training ends. The number of training steps must be fixed prior to training the 

SOM because the rate o f convergence in the neighborhood function and the learning rate 

are calculated off of this value. After the training is over, the map should be topologically 

ordered.

The intent of SOM for this study is to use it as a clustering technique to group 

similar patterns. Since SOM assimilates similar patterns into a group, random selection of 

the samples from each group for training, calibration and validation will result in each 

subset of data acquiring all the larger diversified patterns. Therefore, three subsets of data 

will be fed, with similar types o f patterns. To cluster the data, all the inputs and output 

are presented to the network as SOM’s input. The output of SOM is obtained in terms of 

a number of output groups, and each group contains the winning patterns.
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CHAPTER III 

THEORY OF SUPPORT VECTOR MACHINES

3.1 Basics of Supervised Learning from Data

The process of supervised learning from the data involves the use of three basic 

components. They are the random input variable x, the system response variable y and a 

learning machine that determines the unknown dependency between the higher 

dimensional input vector x and the system responses y. During the learning phase the 

learning machine detects the relationship between the input and the output variable from 

the available data D in the regression task (or finds a decision boundary that separates the 

data for the classification tasks). The result of a successful learning process is an 

“approximating function” fa (x,w) which in the statistical literature is also known as the 

hypothesis function. This function belongs to a hypothesis space of function H (fa e H) 

and approximates the underlying (or true) dependency between the input and the output 

in case of regression and the decision boundary in case of classification. It also tries to 

minimize the associated risk function R (w). Such type of learning is also known as 

distribution free learning because there is no information available about the underlying 

joint probability distribution.

The approximating function described in the preceding paragraph is a 

mathematical structure that can map the inputs x into the output y. It can be a multilayer 

perceptron, a RBF network, fuzzy model or various other mathematical models. But in 

this chapter, a limited discussion of the support vector machines (SVM) is given. A 

detailed discussion on this subject can be found elsewhere (Kecman, 2002; Kecman, 

2004). Unlike the classic statistical inference problems, development of SVM is generally 

appropriate for the following contemporary problems:
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1) Modem problems are high dimensional. If they were to be solved based on the linear 

assumptions of the contemporary techniques it would have resulted in an exponential 

increase of the number of terms known as the “curse of dimensionality.”

2) In most situations, the underlying data generation laws may be far from normal.

3) In most practical situations collection of data is an extremely difficult task. In such 

sparse settings modeling can be difficult.

4) Because of the first two problems, the maximum likelihood estimator, and 

consequently the sum of error square assumption on which the classical techniques are 

based, are replaced in SVM by a new induction paradigm called the structural risk 

minimization (SRM) to model the non-Gaussian distributions.

In order to develop a model with a good generalization property two basic 

constructive approaches (Vapnik, 1995; Vapnik, 1998) must be used:

1. Selection of an appropriate model structure (number of hidden layer, number of 

hidden layer neurons, order of polynomial, number of rules in the fuzzy logic model) 

with the estimation error (a.k.a. variance of the model) fixed, and minimizing the training 

error (i.e. empirical risk).

2. For the training error (a.k.a. approximation error, empirical risk) fixed (equal to zero 

or some acceptable level) minimization of the estimation error.

Classical NN implement the first strategy while SVM implement the second 

approach. The goal o f both the approaches is to match the learning machines capacity, to 

the training data complexity. The only difference between them is the approach taken for 

the minimization of different cost functions. Table 1 tabulates the basic risk functions 

applied in developing the three statistical models.
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Table 3.1 Basic models and their error functions
Multilayer Perceptron 

(Neural Network)

Regularization Network 

( RBF network)
Support Vector Machine

*  =  X ( 4 " / ( * / . w ))2
i= l

closeness to data

*=1

closeness to data smoothness

R  =  j ^ L g + Q ( l , h )

i=1

closeness model capacity

In Table 3.1, dj is the desired value, w is the weight vector, X is the regularization 

parameter, P is the smoothness operator, Lg is the SVM loss function, h is the Vapnik 

Chervonenkis (VC) dimension and Q is known as the confidence term bounding the 

capacity of the learning machine. It could be seen from the table that unlike the classic 

algorithms such as NN and RBF, the SVM represents a novel learning technique which 

performs SRM. In general, the working of the SVM ensures that it creates a learning 

model with a minimized VC dimension. When the VC dimension of the model is low the 

expected probability of error is low as well. This in turn indicates good performance on 

the previously unseen data, i.e., a good generalization performance. The following 

sections briefly describe the theory and the methodology involved in the working of the 

regression aspect of support vector machines. A detailed description can be found 

elsewhere (Kecman, 2000; Kecman, 2004).

3.2 Support Vector Machines in Regression

The support vector machines comprise a set of powerful tools to perform 

classification and regression tasks. Apart from being systematic and principled, this 

approach, motivated by Statistical Learning Theory (SLT), has become very popular 

recently in the machine learning community. The regression aspect of SVM, known as 

the support vector regression (SVR) is based on the structural risk minimization (SRM) 

principle. While performing the regression, the SVR acquires knowledge from the 

experimental data in order to generalize to the previously unseen data. In general, they
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are non-parametric models based on supervised learning techniques because the 

parameters that define the capacity of the model are not predefined, rather their values are 

data driven in such a way as to match the model capacity to the data complexity. With 

spatial data this involves prediction of unknown mapping between the input (spatial co

ordinates, secondary variables) and the output (variables of interest) variables.

3.2.1 Statistical Learning Theory (SLT):

The process of SLT involves learning from relatively few training data points 

during which the expected risk R is approximated and minimized by the empirical risk 

Remp. This is the induction principle of empirical risk minimization (ERM). However, 

finding the minimum of empirical risk is an ‘ill-posed’ problem due to the infinite 

number of possible solutions or approximating functions that are available when the 

learning machine is trained using a particular subset of the true underlying function. The 

approximating functions are always biased depending on the specific training data pairs. 

The process of minimization of the expected risk by developing a model from the training 

data will always include a generalization error. The generalization error bound is given 

by

R(h) < Remp (h) + Q (h) (3.1)

Where, R is the bound on the testing error, Remp is the empirical risk on the training data 

and Q is the confidence term which depends on the complexity of the modeling function. 

The parameter that defines the model complexity is termed as the VC dimension (h). It is 

introduced in the SLT to describe the general notion of “complexity”, and is independent 

of any particular function used to model the data. Figure 3.1 shows the variation of the 

confidence term Q w.r.t VC dimension (h) while Figure 3.2 shows the variation of the 

error w.r.t. the VC dimension (h).
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VC Confidence i.e. Estimation Error

Figure 3.1: Dependence of VC confidence Q  on the VC 
dimension h and training data 1, h<l 
(from Kecman, 2000)

Figure 3.2: Bound on the test error derived in SLT. The 
minimum corresponds to an optimal model complexity 
(from Pozdnoukhov, 2005)

According to the bounds derived in SLT, the general strategy is to learn from 

finite training datasets and choose, from all the possible candidates, an appropriate model 

that minimizes the training error and has the smallest VC dimension (Figure 3.2). This is 

the principle of SRM, which in turn results in the smallest bound on the test error. While 

SRM results in improved generalization of the learning machine, algorithmically it is 

realized through SVM.

3.2.2 Support Vector Regression (SVR)

In SVR, given a training dataset {(x,y), i=l,....L} where x* are the inputs and yi 

are the measured values, a functional dependence between the two variables is 

established. The idea is to minimize the empirical risk by introducing a novel loss 

function termed as the Vapnik’s linear loss function with e- insensitivity zone. (Equation 

3.2)

E(x,y,f) = |y-f(x,w)| e = 0 if error < e

= (|y-f(x,w)| - e ) if error > 8 (3.2)
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The error less than the ‘s ’ is ignored. This error loss function defines an error tube 

as shown in Figure 3.3. For e = 0, Vapnik’s loss function equals a least modulus function 

and in that case the SVR performs an interpolation of the training data.

The objective in SRM is to select an approximating function that not only 

minimizes the confidence term but also the empirical risk. The confidence term Q is 

minimized by the minimization of ||wTw|| term. The overall risk that is minimized is 

given by the following objective function:

R= ||wTw|| + CXI y-f(x,w)| £ (3.3)

Where, C is the penalty parameter known as the cost function.

For training data outside the error tube,

|y-f(x,w)| g= for data “above” the error tube, i.e. positive errors.
|y-f(x,w)| e= £,*, for data “below” the error tube, i.e. negative errors.

Thus, the equation (3.3) can now be written as

minimize R= ||wTw|| + C[ + 1 ^ 1  (3.4)

Under the constraints,

yi- wTx-b < s + £,i (3.4a)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

T i v- *w x+b-yj < e + g
4*i >0, ^  >0

(3.4b)

(3.4c)

where, 4i, E,* are the positive slack variables shown in Figure 3.3 for measurement above

and below the tube. Since this is a classic optimization problem with inequality 

constraints, it can be solved by using lagrange multipliers in a systematic manner 

employing the Kharush-Kuhn-Tucker (KKT) method. During this a primal Lagrange 

function Lp is created by subtracting from the objective function the constraints 

multiplied by corresponding Lagrange multipliers a . The KKT method suggests the 

conversion o f an inequality constraint of the form h(x) > (or <) = 0 into an equation of the 

form h(x) =0 by adding or subtracting (depending upon the optimization problem) slack 

variables and then solving the corresponding equality constrained quadratic optimization 

problem (Miller, 2000). The risk function (in terms of the corresponding independent 

primary variables) in equation 3.4 can be expressed as a primal Lagrange function by

At the optimal point the first partial derivative of the Lagrange function w.r.t. the

b +8 + 40 -  Z a i (wTx+b- yi +e + 40 (3.5)

independent variables (w, b, 4i, 4i*> a i> a i*> Pi> Pi*) vanishes.

dLp/ dw =Wo- Z ( a_ a*)x; = 0 

dLp/ db = £ (  a - a*)= 0 

dLp/ d4i= C-cii- Pi 

dLp/ d4i = C-ai*- pi*

(3.5a)

(3.5b)

(3.5c)

(3.5d)

Also, the following complementary conditions must be satisfied for the first 

partial derivative o f Lp w.r.t. Lagrange multipliers (ctj, <Xj*,Pi, Pi*) and slack variable (s).

cti (wTx+b- yi +8 + 40 = 0, (3.5e)
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a,* (yi- wTx-b +e + £0=0 (3.5f)

Pi*^i*=(C-a*)£i*= 0 (3.5g)

P&= (C-a)£i= 0 (3.5h)

when the equations 3.5a-3.5b are substituted into the primal Lp in equation 3.5, it 

becomes a dual variable Lagrangian La (aj, a*) given by

max Ld (a i5 aj*) = (-1/2) £ ( aj- Oj*)( aj- a / )  XjT x, - e £ (  «i- «i*)

+ £ (  aj- ai*)yi (3.6)

subjected to

X( aj- <Xi*)=0 (3.6a)

0< a l< C (3.6b)

0< a*< C (3.6c)

The solution of this standard quadratic optimization problem results in T  pairs of 

(ctj, aj*), one for each of the training patterns. The pairs that result in non-zero aj or aj* 

are termed as the support vectors and they are the ones which influence the model. The 

complexity of the model is directly proportional to the number of support vectors. In this 

way the best regression hyper plane is given by

f(x,w) = w0Tx + b

= X( a -  «*) x,Tx + b (3.7)

When doing the non-linear regression model, a mapping function <t> (x) {such as 

polynomial kernels, Gaussian kernels} will be used to map the input space into the higher 

dimensional feature space and then construct the linear regression hyper plane in the 

feature space. The basic working principle remains the same.
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The process o f making a prediction employing the SVR can be shown graphically 

(Figure 3.4). It presents an overview of the different steps involved in the support vector 

regression to make a prediction. They can be summarized as follows:

1) Map the test pattern x into the feature space by a mapping function q>. The mapping 

function is selected during the model development stage.

2) Compute the dot product with the images of the training pattern mapped on (p. This is 

equivalent to evaluating the corresponding kernel function k (x j, x ) .

3) Add the dot products using the weights Vj = a* - aj*.

4) Add the constant term b to derive the final model output for the pattern x.

output L a l k{x.xj) + b

weights

mapped vectors 4>(x̂ , 4>(x)

support vectors Xj ...x,

test vector x

Figure 3.4: Architecture o f  a regression machine constructed by the SVM (from Smola and 
Scholkopf, 1998).
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3.3 SVM Model Development

The training and design of the SVM model is an iterative process and essentially it 

consists of performing the following basic steps (Chang and Lin, 2001; Kecman 2004):

1) Define the problem as classification or regression.

2) Standardize the input data.

3) Check for outliers, i.e. the strange data points.

4) Select the kernel function in order to transform the data to a higher dimensional 

feature space. This helps determine the hypothesis space of the decision or regression 

function in the classification or regression problem. One of the common kernels 

considered is the RBF kernel.

5) Select the ‘shape’, i.e., the smoothing parameter a  of the kernel function. This is the 

polynomial degree for the polynomial and variances for the Gaussian RBF kernel.

6) Choose the penalty parameter C and the desired accuracy defining the insensitivity 

zone e.

7) Solve the quadratic programming problem in the 2 x L variables for the 

corresponding regression task.

8) Train the model and validate it on a previously unseen dataset. If the validation result 

is not satisfactory, repeat the steps from 4 to 8.

9) Since the search for the individual C, e and the shape parameter G can be tedious and 

a time consuming task, an alternative approach could be cross-validation and grid search 

to find the best value of the cost parameter.
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CHAPTER IV 

ADDRESSING THE SPARSE DATA ISSUE IN NOME

4.1 Placer Gold in Nome

The Nome district is located on the south shore o f the Seward Peninsula at 

roughly latitude 64°30’ north and longitude 165°30’ west. It is 840 km west of Fairbanks 

and 860 km northwest of Anchorage (Figure 4.1). The first discovery of placer gold in 

Nome dates back to 1898. Gold and antimony have been produced from lode deposits in 

this district and tungsten concentrates have also been produced from residual material 

above the scheelite-bearing lodes near Nome. Other valuable metals, including iron, 

copper, bismuth, molybdenum, lead, and zinc, are also reported in the Nome district.

Hopkins and MacNeil (1960) among others, studied these deposits, recognizing 

their origins and chronicling their exploration, and speculated on their chronology and the 

events in the complex regional glacial history that allowed their formation and 

preservation. Figure 4.2 shows the composition of the offshore placer gold deposit. Due 

to the extent and richness of the Nome gold resources, the area was studied extensively, 

and geological, geophysical, and geo-chemical characteristics o f near-shore gold deposits 

are well documented in the published literature. Rusanowski (1994) presented an 

excellent summary of the Nome Offshore placer project, and some of the relevant details 

on the Nome Offshore placer project from Rusanowski’s work are reproduced here as a 

foundation for the present research.
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Figure 4.1: Location of the Nome area (from Rusanowski, 1994)
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4.1.1 The History of Offshore Exploration

There is a long history of offshore gold exploration off the coast of Nome in 

Alaska. Shell Oil Company conducted a seismic and magnetic survey of the area in the 

year 1962. After an extensive study in 1963, a drilling program was conducted to sample 

an area of about 22,000 acres. The program resulted in the completion of 568 drill holes 

in 1964.

In 1967 and 1968, the U.S. Geological Survey collected 700 bottom samples in 

the northern Bering Sea and sampled the beaches at Nome and other areas around Norton 

Sound. In addition, the U.S. Bureau of Mines drilled 51 holes offshore around Nome.

Asarco, Inc. took over the operation in 1968 and drilled an additional 500 holes 

through the ice on the newly optioned leases west of Nome in early 1969. Asarco also 

carried out investigations including bottom photography, current and wave 

measurements, bulk sampling, pilot scale mining, environmental assessment, and a 

preliminary engineering design and cost estimate. However, the economics were not 

favorable based on the price of gold at that time ($35 per ounce).

In 1983, Power Resources Corporation contacted Asarco and completed a reserve 

study and title evaluation. Application was filed for mining permits and the property was 

purchased by Nova. In 1985, the property was sold to Inspiration Mines, Inc. (later 

WestGold), but Nova retained the right of reassignment upon cessation of operations by 

WestGold. WestGold drilled 2,500 holes, collected 57 bulk samples, and transformed the 

data from the Shell-Asarco drilling to form one database. WestGold also carried out 

extensive high-resolution seismic surveys of the lease area. Side scan sonar was used to 

map sediment types on the seafloor.
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4.1.2 Problem of Gold Reserve Estimation

As described above, Shell Mining Company completed approximately 568 drill 

holes in 1964, and ASARCO drilled an additional 500 holes in 1969. The Shell- 

ASARCO drilling covered most of the shallower parts of the lease block and formed the 

basis for preliminary estimates. During the period from the winter of 1987 through the 

summer of 1989, WestGold and its predecessor, Inspiration Gold, conducted 5 drilling 

programs and one bulk sampling program, adding an additional 2500 drill holes and 57 

bulk samples. The data from 3,500 drill holes and 57 bulk samples were made available 

by Nova resources (1998) for this analysis.

The lease boundary, excluding the grounds previously dredged, is divided into 

two categories, “Proven” and “Probable”. Proven reserves are limited to areas where drill 

hole spacing does not exceed 70m x 70m, and probable reserves are generally defined by 

drilling on 100m x 200m grids. In addition to the proven-probable divisions, the lease 

area is divided into 9 blocks: COHO, HALIBUT, HERRING, HUMPY, KING, PINK, 

RED, SILVER, TOMCOD.

These blocks present a significant gold resource in the Nome area that possibly 

could be mined economically. Initial study was conducted by Ke, 2002 using a neural 

network (NN) technique for ore reserve estimation. The study did not take into account 

some of the remedial measures that could be taken to improve the NN model 

generalization. It is believed that significant risks associated with the ore reserve 

estimation could be prevented by proper model generalization and validation. However, 

NN model generalization and validation pose particular difficulties when the drill hole 

data are sparse and scanty. Researchers (Bowden et al., 2002; Samanta et al., 2004a; 

Samanta et al., 2004b) have tried various approaches to deal with sparse data by various 

data division techniques. Random data division is one such method. However, random 

data division in a sparse data situation might be unreliable. One of the goals of this 

research is to devise techniques for proper division of the data. In order to improve the
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generalization of the NN models the entire data set was divided into three subsets: 

training, calibration and validation, using various techniques. It was assumed that x- 

coordinate, y-coordinate, water-table depth and gold concentration are input variables. 

The output of the data division approaches will be three statistically similar subsets which 

can be used for NN modeling.

4.1.3 Sparse Data Problem

The exploratory boreholes (Table 4.1) provided by Nova Resources are the only 

available sources of information from which detailed reserve modeling was carried out. 

Figures 4.3 through 4.11 present the spatial plots of the borehole samples of the nine 

mining blocks. From the figures, it can be observed that borehole data are sparse for 

reserve estimation, considering the high spatial variation of ore grade that is commonly 

associated with placer gold deposit. The boreholes are also not evenly located in the 

areas. Characterization of the limited borehole data are essential for ore reserve 

estimation of the subject areas. In order to achieve this goal, descriptive statistical 

analyses of the data sets were conducted. Table 4.2 shows the mean and the standard 

deviation values of the Nome gold data sets, which indicate strong variation for all the 

nine fish blocks. The coefficient of variation is greater than one for all the blocks, which 

indicates the presence of extreme values in the data sets. Histogram plots of the gold data 

are also presented in Figure 4.12. The histogram plots illustrate that the gold values are 

positively skewed. A log-normal distribution may be a suitable fit to the data. Visual 

portrayal of the histogram plots also reveals that the gold data sets are composed of a 

large proportion of low values and a small proportion of extremely high values. A closer 

inspection of the spatial distribution of the high and the low gold grade values also 

portrays a distinct spatial characteristic of the deposit. For example, the high values do 

not exhibit any regular trend. Instead, one or two extreme high values occasionally occur 

in a mix of low values. This may pose a particular difficulty in ore grade modeling since 

the pattern of occurrence of extreme high values is somewhat unpredictable.
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A variography study was also undertaken to analyze the spatial correlation of the 

gold attributes. Figures 4.13 through 4.21 present the variogram plots of the gold data for 

all the blocks. The variogram plots exhibit a very small amount of regional component. 

Large proportions of spatial variability occur from the nugget effect. This indicates the 

presence of a poor spatial correlation structure in the deposit. Poor spatial correlation, in 

general, tends to suggest that prediction accuracy for this deposit might not be reliable.

Table 4.1: Number o f  drill holes in the various mining blocks
Mining Blocks No o f Drill holes

Coho 143
Halibut 323
Herring 415
Humpy 212

King 275
Pink 216
Red 530

Silver 415
Tomcod 450
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Figure 4.3: Location o f  drill holes 
in Coho block
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Figure 4.4: Location o f  drill holes 
in Halibut block

Figure 4.5: Location o f  drill holes 
in Herring block

Figure 4.6: Location o f  drill holes 
in Humpy block

Figure 4.7: Location o f  drill holes 
in King block
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Figure 4.8: Location o f drill holes 
in Pink block
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Figure 4.9: Location o f  drill holes 
in Red block
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Figure 4.10: Location o f  drill holes 
in Silver block
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Figure 4.11: Location o f drill holes 
in Tomcod block

Table 4.2: Summary statistics o f Nome gold data sets
Data Set Mean Standard

Deviation
Coefficient o f 
Variation

Coho 620.01 1233.8 1.98
Halibut 241.21 394.52 1.63
Herring 333.35 553.31 1.66
Humpy 449.60 690.64 1.54
King 348.50 665.64 1.91
Pink 125.90 167.74 1.33
Red 440.17 650.58 1.48
Silver 228.36 367.69 1.61
Tomcod 265.31 414.05 1.56
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Figure 4.12: Histogram plot o f  Nome Gold data (various fish blocks)
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Figure 4.12: Histogram plot o f  Nome Gold data (various fish blocks)
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Distance

Figure 4.13: Variogram plot o f 
Coho data set

Figure 4.14: Variogram plot of 
Halibut data set

Distance

Figure 4.15: Variogram plot of 
Herring data set

Distance

Figure 4.16: Variogram Plot of 
King data set

Figure 4.17: Variogram plot 
o f Humpy data set

Figure 4.18: Variogram Plot o f  Pink 
data Set
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Figure 4.21: Variogram Plot of 
Tomcod data set

It is recognized that the available gold data are sparse and exhibit a low level of 

spatial correlation. Spatial modeling of these data sets is complex. The prediction 

accuracy may further be reduced if the sparse data problem is not addressed. As 

described before, random divisions of data may be unrealistic when selecting the 

members of the sample group into training, calibration and validation subsets. Since the 

data are characterized by few extreme high values, the training, the calibration and the 

validation data sets may disproportionately assimilate extreme values if random data 

division is used.
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To demonstrate the severity of data sparseness in random data division, a 

simulation study was conducted using the Nome data sets. One hundred random data 

divisions were generated in which sample members for training, calibration and 

validation subsets were chosen randomly. Statistical similarity tests of the three data 

subsets, using analysis o f variance (ANOVA) and Wald tests, were conducted. All the 

important attributes (x-coordinate, y-coordinate, water-table depth and gold 

concentration) were considered in the data division.

Statistical tests such as ANOVA and F tests are most frequently used to compare 

the means of several population groups. The F test for this study was applied to compare 

the means of the three data subsets. Therefore, the null hypothesis is: pT=Pc=M-v=p, where 

Pt, Me, pv, p are the means of the training, the calibration, the validation and the entire 

data sets. The F statistic basically incorporates two factors: (a) within the group variance, 

and (b) between the group variance. In fact the, F statistic measures the ratio of the 

variance within the group to the variance between the groups. If the calculated F value 

exceeds a threshold limit, then the population means are deemed different and the null 

hypothesis is rejected. The threshold value is usually fixed at a 5% level of significance. 

This test was used to identify the unacceptable data divisions with respect to each of the 

variables listed above, namely the x-coordinate, the y-coordinate and the water-table 

depth, excluding the gold attributes. It is known that the F test often fails to provide a 

correct interpretation in skewed or log-normal populations. As the gold concentration is 

better represented by a log-normal distribution, the use of F test may not be advisable. 

Although log transformation of the data could be used for the F test, the problem, 

however, was complicated as the gold values were accompanied with some zero 

observations. Therefore, an F test for log transformed data was also prohibited.

A Wald test was proposed by Tu and Zhou (1999) for log-normal populations 

with zero values. Therefore, Wald test used for the analysis of the gold data. The Wald
tlitest for log-normal distribution with zero observations is based on the idea that the j
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population consists of njo number of zero observations, and nji number of nonzero 

observations, i.e., the total number of observations in the j th population is nj=nj0 + pp. It is 

assumed that nonzero observations follow lognormal distribution, i.e., log (Yjj)| nji ~ 

N(p,j, c 2j), and zero observations follow a delta distribution, i.e., Yjj|nj0~Bin (nj, 8j), where 

8j is the proportion of zero observations in the population. Using a likelihood-based Wald 

statistic, Tu and Zhou (1999) showed that the Wald statistic, W, has the following form:

_ *  nj exp(v,)(vi + //i + <7i2 / 2 -  (v j + A  + q?2 / 2))
j=2 1 -  exp(v?) +  d j2 +  &  / 2

Z  («/ exp(v;))(l -  exp(vy) + + a )  / 2) 1
J = l

v 1
(4.1)

f {nj exp(v,))(vi + fi\ + &] / 2 -  (1} + fa + &) / 2))

7=2 1 -  exp(v/) + <j 2j +&* 12

Under the null hypothesis, the statistic W converges to %T2 with r = K-l degrees of 

freedom and where K= number of populations (in this study K=3).

Vj = log— ’ fjj = —  Z lo g  yij ’ and = 7̂ 1 £  (logyo -  f t ) 2
nj nj\ /=i 1 i=i

Similar to the F test, for the three variables, the calculated value of W was compared for 

the gold attribute with a threshold limit chosen from the %2 table at the 5% level of 

significance with 2 degrees of freedom. If the calculated W exceeds the threshold limit, 

then the particular data division was considered bad with respect to the gold attribute.

The results of the simulation study are presented in Table 4.3. Table 4.3 shows the 

numbers of bad divisions out of 100 data divisions with respect to each of the variables,
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both separately and jointly. The numbers presented in Table 4.3 are the average values of 

the one hundred simulation runs, where each run consisted of 100 random data divisions. 

It may be observed that a large number of unacceptable data divisions could result if 

random data division is employed. For example, the Coho data set’s numbers of bad data 

divisions (out of one hundred) are 6, 6, 6 and 13 for the variables x-coordinate, y- 

coordinate, water-table depth and gold concentration respectively. Overall, a total of 27 

data divisions out of 100 are bad when all the variables are considered together. 

Furthermore, a particular data division might be bad with respect to one or more 

variables. Therefore, the numbers of bad divisions with respect to the individual variables 

do not sum up to the total number of bad divisions when all the variables are considered 

together.

It may be obvious that almost V* of the data divisions are bad in random data 

divisions due to the existing sparseness. This can be regarded as quite significant. 

Unreliability of the random data division is further explored through the inspection of bad 

data divisions. Statistical summaries for one of the arbitrarily selected random data 

divisions for all the nine data sets are presented in Tables 4.4 through 4.12. From the 

tables, it is seen that both the mean and the standard deviation values are significantly 

different among the data subsets for the blocks considered.

Table 4.3: Number o f bad divisions out o f  100 random divisions
Data set Xcordinate Ycordinate Water Table 

Depth
Gold Total

Coho 6 6 6 13 27
King 6 6 6 17 28
Halibut 6 7 6 15 29
Humpy 6 6 6 9 24
Red 6 6 6 9 22
Tomcod 6 5 5 22 32
Pink 6 6 6 13 24
Herring 6 6 6 11 27
Silver 6 6 6 7 19
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Table 4.4: Statistical summary o f one o f the random divisions for the Coho data set
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 8365.5 8661.5 8045.1 8100.5 724.16 847.2 362.71 451.47
Y 66119 66281 66040 65883 271.8 208.39 243.78 189.83

Gold 620.01 868.16 274.07 471.08 1233.8 1608.6 315.43 786.54
WTD 19.184 19.137 18.566 19.859 1.0061 0.8050 1.2693 0.6048

Table 4.5: Statistical summary of one o f the random divisions for the Halibut data set
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 6193.5 6153.9 6312.6 6151.2 1046.4 1034.9 1154.7 952.62
Y 68258 68243 68370 68172 412.7 453.9 386.0 321.35

Gold 241.21 189.64 131.78 457.23 394.52 212.0 112.07 682.24
WTD 15.603 15.653 15.301 15.81 1.3069 1.3337 1.2925 1.2262

Table 4.6: Statistical summary of one o f the random divisions for the Herring data set
Attri
bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

-tion
X 8507 8503.5 8436.3 8586.2 307.92 290.52 319.28 314.54
Y 9257.6 9228.7 9173.8 9401 440.03 474.5 447.17 312.25

Gold 333.35 228.47 246.02 633.1 553.31 269.91 285.99 944.00
WTD 8.1429 8.324 9.1762 6.72 4.408 4.61 4.4039 3.603

Table 4.7: Statistical summary o f one o f the random divisions for the Humpy data set
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 5624.7 5301.6 5788.9 6106.7 1225.4 1293 1148 960.2
Y 66527 66626 66513 66343 325.8 363.86 286 163.47

Gold 449.6 243.18 264.28 1047.8 690.64 345.15 0.653 1054.3
WTD 18.392 18.331 18.192 18.710 0.930 0.94 311.25 1.0760

Table 4.8: Statistical summary o f  one o f  the random divisions for the King data set
Attri
bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

-tion
X 177260 177150 177190 177530 423.73 373.53 496.23 307.5
Y 1169500 1169500 1169600 1169400 429.21 501.21 391.41 270.05

Gold 348.55 124.05 224.00 908.93 665.64 129.49 266.14 1106.2
WTD 8.293 8.78 7.28 8.31 3.94 4.48 3.60 2.84
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Table 4.9: Statistical summary o f one o f  the random divisions for the Pink data set
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 5839.1 5925.2 6039 5467 479.38 399.68 396.28 505.73
Y 10092 10033 10388 9914.1 467.16 469.57 195.25 523.12

Gold 125.98 180.06 71.589 72.20 167.74 215.32 71.840 58.840
WTD 6.022 6.242 3.264 8.340 3.9780 3.9290 1.2280 4.2600

Table 410 : Statistical summary o f one o f the random divisions for the Red data set
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 3941.8 3947.7 3838.2 4032.6 456.54 436.89 505.50 425.5
Y 10198 10174 10350 10097 469.75 483.19 487.22 384.06

Gold 440.17 297.75 781.77 385.00 650.58 353.31 10340 475.12
WTD 8.4845 8.94 6.6242 9.414 5.2063 5.1679 5.3559 4.69

Table 4.11: Statistical summary o f one o f  the random divisions for the Silver data set
Attri
bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

-tion
X 11511 11501 11387 11655 682.3 600.32 697.23 791.16
Y 10766 10721 10488 11127 612.96 571.75 491.16 632.22

Gold 228.36 318.56 168.11 109.62 367.69 483.44 169.90 113.53
WTD 10.305 10.716 12.646 7.200 4.7248 4.4091 3.2167 4.9710

Table 4.12: Statistical summary o f  one o f  the random divisions for the Tomcod data set
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 8508.2 8378.2 9002.9 8276.7 917.61 837.73 727.59 1055.7
Y 12010 12116 11501 12304 630.27 419.93 832.78 428.33

Gold 265.31 171.02 534.66 186.07 414.09 177.61 698.24 210.66
WTD 7.2951 6.990 9.7268 5.4912 3.9186 3.321 4.5255 3.133

4.1.4 Data Segmentation for Data Division

From the preceding discussion related to the sparse data, it is obvious that random 

data divisions are not satisfactory, particularly for gold attributes. Statistical indices, as 

well as the histogram plots presented earlier, indicated that the gold data are highly 

skewed and follow a log-normal distribution. There is considerable evidence that the gold
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distribution is represented by a few extreme high values, and that the presence or the 

absence of these extreme values in a data subset significantly influences the statistical 

characteristics of that subset. Since the spatial pattern of the few extreme high values is 

quite different from the low values, special attention should be paid so that extreme 

values are selected equally into the three data subsets. Furthermore, low and medium 

range values must also be present in the right proportion in these three data sets.

It is likely that the use of a genetic algorithm or kohonen network may not result 

in equal representation of the low, the medium and the high value patterns in the three 

data sets. Hence, prior to the application of a GA or Kohonen network for data division, 

data segmentation for low, medium and high range values should be used to improve the 

results. This assertion is supported through a study of data division using a GA or 

kohonen network with data segmentation and without data segmentation. A statistical 

summary of the data division without data segmentation using a genetic algorithm or 

kohonen network is presented in Table 4.13 for the King data set. From the table, it is 

seen that although the GA and kohonen networks appreciably improve the consistency of 

the data subsets, this could further be improved using data segmentation. Therefore, data 

sets were partitioned into three segments before applying the GA or kohonen network in 

the individual segments.

Table 4.13 (a): Genetic algorithm for data division in the King data set (without data segmentation)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 177260 177264 177274 177224 423.7 425.8 421.9 425.6
Y 1169500 1169497 1169471 1169510 429.2 430.9 433.6 426.6

Gold 348.55 365.0 333.6 330.8 665.6 691.3 649.1 636.6
WTD 8.293 8.24 8.53 8.51 3.94 3.95 3.97 3.96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

Table 4.13 (b): Kohonen network for data division in the King data set (without data segmentation)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 177260 177270 177240 177260 423.7 442.7 418.2 410
Y 1169500 1169500 1169500 1169500 429.2 453.8 420.8 411

Gold 348.55 425.3 318.6 289.40 665.6 831.1 586.3 503
WTD 8.293 8.25 8.52 8.10 3.94 4.05 3.94 3.86

4.1.4.1 Data Segmentation and GA for Data Division

Prior to applying GA, the data were divided into three prime segments. The 

segmentation was done based on a visual inspection of a histogram plot. Figure 4.22 

presents a schematic diagram of the data segmentation and the genetic algorithm 

approach. After the data segmentation, GA was applied in each of the segments: segment 

1, segment 2 and segment 3. A MATLAB program was developed for the GA application 

in data division. The members of the training, calibration and the validation data sets 

were selected using GA from each of the segments. Once the members for the training, 

calibration and validation data were chosen, the selected members from the segments 

were appended together to form the respective subsets. Tables 4.14 through 4.22 present 

the summary statistics of the mean and the standard deviation values for all the variables 

for the three data subsets and entire data set. It is observed that the mean and standard 

deviation values are similar for all the data subsets. The histogram plots of the three 

subsets and the entirety of the nine data sets are presented in Figures 4.23 through 4.31. 

From the figures, it is seen that all the data subsets assume an almost identical shape to 

that of the overall data set, and that the skewness of the data in the three subsets is also 

preserved.
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Figure 4.22: Data segmentation and genetic algorithms for data divisions

Table 4.14: Statistical summary of data division using GA (Coho)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 8365.5 8396.7 8334.2 8335.2 724.16 727.74 732.61 726.45
Y 66119 66125 66113 66112 271.8 274.06 272.64 273.83

Gold 620.01 626.63 611.65 615.30 1233.8 1265 1214.1 1225.3
WTD 19.184 19.03 19.32 19.33 1.0061 1.07 0.90 0.94

Table 4.15: Statistical summary of data division using GA (Halibut)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 6193.5 6193.0 6226.5 6162.4 1046.4 1049.4 1047.9 1051.1
Y 68258 6825.4 6827.5 6824.7 412.7 410.7 418.40 415.49

Gold 241.21 239.18 233.73 252.48 394.52 382.74 354.04 454.93
WTD 15.603 15.62 15.59 15.57 1.3069 1.29 1.32 1.32
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Table 4.16: Statistical summary of data division using GA (Herring)
Attri
bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

-tion
X 8507 8505.4 8509.6 8507.5 307.92 308.4 309.3 308.4
Y 9257.6 9256.9 9256.4 9260.3 440.03 443.15 441.49 436.46

Gold 333.35 324.04 350.24 334.43 553.31 561.09 558.38 536.83
WTD 8.1429 8.07 8.21 8.20 4.408 4.44 4.40 4.37

Table 4.17: Statistical summary o f  data division using GA (Humpy)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 5624.7 5647.8 5611.9 5592.7 1225.4 1232 1208.7 1249.7
Y 66527 66529 66519 66530 325.8 331.37 319.12 327.16

Gold 449.6 455.90 460.21 427.53 690.64 713.70 680.48 666.90
WTD 18.392 18.38 18.38 18.41 0.93 0.94 0.93 0.94

Table 4.18: Statistical summary of data division using GA (King)
Attri
bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

-tion
X 177260 177240 177270 177270 423.73 431.29 416.07 421.23
Y 1169500 1169500 1169500 1169500 429.21 430.23 432.20 429.51

Gold 348.55 337.44 366.27 353.25 665.64 689.16 639.66 652.07
WTD 8.293 8.436 8.170 8.132 3.94 3.951 4.024 3.915

Table 4.19: Statistical summary of data division using GA (Pink)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 5839.1 5829.6 5844.5 5852.2 479.38 481.9 485.46 477.01
Y 10092 10100 10092 10077 467.16 466.16 470.90 473.59

Gold 125.98 127.21 127.10 122.55 167.74 165.28 181.54 161.74
WTD 6.022 6.033 6.030 5.994 3.978 4.01 3.98 3.96

Table 4.20: Statistical summary o f data division using GA (Red)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 3941.8 3950 3935.6 3931.6 456.54 456.6 457.6 458.6
Y 10198 10194 10218 10186 469.75 471.2 467.2 472.4

Gold 440.17 461.99 418.46 418.59 650.58 673.97 627.89 628.8
WTD 8.4845 8.38 8.63 8.54 5.2063 5.23 5.19 5.19
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Table 4.21: Statistical summary of data division using GA (Silver)
Attri
bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

-tion
X 11511 11531 11507 11478 682.3 686.05 683.60 678.78
Y 10766 10766 10769 10763 612.96 616.36 614.43 610.70

Gold 228.36 229.12 219.27 235.53 367.69 375.16 335.18 385.56
WTD 10.305 10.31 10.30 10.28 4.7248 4.73 4.72 4.74

Table 4.22: Statistical summary o f data division using GA (Tomcod)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 8508.2 8518.8 8488.1 8506.9 917.61 920.86 920.84 915.70
Y 12010 12024 11983 12010 630.27 631.83 634.44 627.74

Gold 265.31 271.22 256.08 262.66 414.09 417.61 410.65 413.8
WTD 7.2951 7.17 7.47 7.35 3.9186 3.93 3.92 3.89
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4.1.4.2 Data Segmentation and Kohonen Network for Data Division

A kohonen network was also applied in each of the three segments to sample for 

the training, the calibration and the validation data sets. It was done to verify if improved 

results can be accrued using this approach. Figure 4.32 presents a schematic diagram of 

data segmentation and the kohonen network approach. The intent of the kohonen network 

was to apply an algorithm in each of the segments separately for grouping of the similar 

patterns in the segment. For this purpose, Neuroshell software (1993) was used. Since the 

number of clusters needed is not previously known, a large number of clusters, e.g 15, 

were chosen. Once the grouping were done, each group contained similar patterns. From 

each group, samples were selected randomly for training, calibration and validation. If
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there was only one sample in a group, that sample was put into the training set. If there 

were only two samples, one sample was put into the training, and the other in the 

validation set. Continuing in this way, the samples were selected from all three segments 

and the training, the calibration and the validation data sets were prepared. Tables 4.23

4.31 present the summary statistics of the mean and standard deviation values for all the 

variables of the three data subsets and the entire data set. It may be observed that the 

mean and the standard deviation values are similar for each of the datasets. In comparison 

with the genetic algorithm, however, this approach provided slightly inferior results. 

Despite this outcome, the experimentation showed that data segmentation using the 

genetic algorithm and kohonen networks is appropriate for division of the data.

Figure 4.32: Data segmentation and kohonen network for data division
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Table 4.23 : Summary of the data division using Kohonen network (Coho)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 8365.5 8317.40 8479.20 8377.30 24.16 675.45 788.04 790.47
Y 66119 66083 66202 66129 271.8 265.82 260.52 287.74

Gold 620.01 681.32 597.43 482.42 1233.8 1198.6 1498.50 1048.1
WTD 19.184 19.219 18.929 19.348 1.0061 1.0988 0.80216 0.911

Table 4.24: Summary o f the data division using Kohonen network (Halibut)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 6193.5 6121.7 6285.50 6209.60 1046.4 1011.3 1060.90 1086.8
Y 68258 68232 68264 68290 412.7 422.34 400.82 411.73

Gold 241.21 268.58 220.27 220.96 394.52 470.40 324.70 328.86
WTD 15.603 15.701 15.612 15.444 1.3069 1.3322 1.2968 1.2771

Table 4.25: Summary o f  the data division using Kohonen network (Herring)
Attri
bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

-tion
X 8507 8509.50 8500.50 8510 307.92 314.17 300.64 308.54
Y 9257.6 9269.70 9269.70 9228.20 440.03 434.65 435.61 454.15

Gold 333.35 355.78 328.29 306.35 553.31 629.10 565.12 409.99
WTD 8.1429 8.0231 8.2033 8.2537 4.408 4.3273 4.4979 4.4664

Table 4.26: Summary o f  the data division using Kohonen network (Humpy)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 5624.7 5531 5739.80 5683.30 1225.4 1224.6 1192.40 1267.7
Y 66527 66533 66517 66526 325.8 340.14 327.57 301.55

Gold 449.6 371.22 540.45 504.11 690.64 586.24 849.30 690.38
WTD 18.392 18.415 18.353 18.391 0.93 0.8519 0.97084 1.0561

Table 4.27: Summary o f the data division using Kohonen network (King)
Attri
bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

-tion
X 177260 177250 177260 177270 423.7 414.1 436.6 428.9
Y 169500 1169500 1169500 1169500 429.2 417.2 424.7 454.5

Gold 348.55 365.9 328.3 344.6 665.6 771.2 590.4 579.1
WTD 8.293 8.04 8.56 8.36 3.94 3.74 4.18 4.01
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Table 4.28: Summary of the data division using Kohonen network (Pink)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 5839.1 5844.10 5835.90 5834.90 479.38 486.39 480.56 475.44
Y 10092 10097 10076 10102 467.16 478.47 443.91 479.82

Gold 125.98 139.08 125.96 106.56 167.74 189.65 179.85 111.92
WTD 6.022 5.9239 6.1258 6.0661 3.978 3.9213 3.9322 4.1675

Table 4.29: Summary o f the data division using Kohonen network (Red)
Attri
bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

-tion
X 3941.8 3937 3928.10 3961.80 456.54 459.96 450.13 460.72
Y 10198 10180 10222 10198 469.75 458.43 451.35 503.46

Gold 440.17 478.90 400.76 428.46 650.58 708.20 5.1278 630.42
WTD 8.4845 8.6561 8.2953 8.4473 5.2063 5.2216 589.52 5.291

Table 4.30: Summary o f  the data division using Kohonen network (Silver)
Attri
-bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

tion
X 11511 11516 11492 11523 686.05 647.86 709.37 708.59
Y 10766 10754 10767 10783 616.36 633.36 604.14 595.88

Gold 228.36 252.49 212.24 209.28 375.16 387.73 356.55 349.18
WTD 10.305 10.394 10.283 10.197 4.73 4.8336 4.6563 4.6688

Table 4.31: Summary o f the data division using Kohonen network (Tomcod)
Attri
bute

Mean Standard Deviation
Overall Training Calibration Validation Overall Training Calibration Valida

-tion
X 8508.2 8499.7 8518.8 8508.4 917.61 912.19 947.17 900.99
Y 12010 12025 11987 12014 630.27 675.65 629.73 571.58

Gold 265.31 268.56 264.0 262.43 414.09 422.28 424.97 394.98
WTD 7.2951 7.1114 7.481 7.3453 3.9186 4.0781 3.8627 3.7807
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CHAPTER V

NOME GOLD RESERVE ESTIMATION USING ORIGINAL FISH BLOCKS

The Nome gold reserve estimation is challenging owing to the complexity 

associated with the placer gold deposits, in addition to the scarcity and sparseness of the 

drill hole data. The drill hole samples are located on an irregular grid and sparsely 

scattered throughout the region. As described earlier, the lease boundary is divided into 9 

blocks viz., Coho, Halibut, Herring, Humpy, King, Pink, Red, Silver and Tomcod for the 

purpose of grade and reserve estimation.

Each drill hole information contains Northing (Y-coordinate), Easting (X- 

coordinate), water-table depth, gold grade in mg/m3, along with other relevant 

information. An example of drill hole data for the King mining block is presented in 

Table 5.1. For grade estimation, Northing, Easting and water-table depth were considered 

as input variables, and the gold grade was considered as an output variable. The 

composite values of the gold grade, up to a 5m sea-floor depth, were considered in this 

study. The total number of holes drilled in each fish block is presented in Table 4.1 and 

the total number of patterns in the validation dataset for all the blocks is shown in Table 

5.2.

In this chapter, the gold grade associated in the nine blocks of the Nome deposit 

has been estimated using the traditional geostatistical ordinary kriging (OK) technique 

and two machine learning algorithms namely, the neural network (NN) method and the 

support vector machine (SVM) method. The various issues involved in the use of these 

techniques for grade estimation are discussed in the following sections.
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Table 5.1: Example of drill hole data for King block

DHD XSPM YSPM W  D BE G N IEND ^ T E R DRIVE MGCM G T CUVMG CUVMG'CM

343 1780424 1168820.5 27 -274 -687 1.13 1.13 216 244.06 244.06 21600

343 1780424 11698285 27 -687 -609 235 122 106 1281 37218 15837

343 1780424 11696285 27 -609 -631 657 122 106 1281 50028 140.13

343 1780424 11698285 27 -631 -7.53 4.79 122 53 64.66 564.94 117.94

343 1780424 11698285 27 -7.53 -997 722 244 0 0 564.94 7825

343 1780424 11698285 27 -997 -11.19 844 122 231 281.82 84676 100.33

343 1780424 11696285 27 -11.19 -1241 966 122 105 1281 974.86 10992

343 1780424 11696285 27 -1241 -14.84 121 244 0 0 974.86 80.57

343 1780424 11696285 27 -14.84 -1606 1632 122 32 3904 101890 7612

343 1780424 11696285 27 -1606 -172B 14.54 122 0 0 101890 6973

343 1780424 11696285 27 -172B -165 1676 122 0 0 101890 64.33

343 1780424 11696285 27 -185 -1951 1676 1.01 344 347.44 1361.34 8123

343 1780424 11696285 27 -1951 -1954 1679 903 0 0 1361.34 81.06

344 177894.1 116941425 87 -671 -7.62 991 991 270 2457 24570 270.00

344 177894.1 116941425 87 -7.62 -884 213 122 0 0 24570 11535

344 177894.1 116941425 67 -884 -125 579 666 17 fQ7> 307.92 5818

344 177894.1 116941425 67 -125 -1672 7.01 122 0 0 307.92 4893

344 177894.1 116941425 67 -1672 -14.94 823 122 20 24.4 33232 4938

344 177894.1 116941425 67 -14.94 -1615 945 122 162 197.64 52996 5606

344 177894.1 116941425 67 -1615 -17.37 10.67 122 71 8662 61656 57.79

Where,

DHID: Drill hole identification

XSPM: X-coordinate, m 

YSPM: Y-coordinate, m

W_D: Water depth, m 

IBEGIN: Sample interval begin, m 

IEND: Sample interval end, m

METER: the cumulate thickness of the sample intervals, m 

DRIVE: the thickness of each sample interval, m 

MGCM: gold grade per meter in composite depth, mg/m3 

G_T: Total gravity in composite depth, mg/m2 

CUMMG: cumulate gold grade of the sample intervals, mg/m2 

CUMMG/CM: average gold grade per meter in depth, mg/m3.
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Table 5.2: Number o f samples in the validation dataset for the fish blocks.
Mining Blocks No o f Drill holes ( Prediction Dataset)

Coho 36
Halibut 79
Herring 102
Humpy 55

King 71
Pink 56
Red 126

Silver 107
Tomcod 114

5.1 Geostatistical Modeling

5.1.1 Ordinary Kriging for Ore Grade Estimation

Ordinary Kriging (OK) is the most commonly used geostatistical estimation 

technique. It is often associated with the acronym B.L.U.E known as the “best linear 

unbiased estimator.” Since the kriging estimates are the weighted linear combinations of 

the available data, it is termed as “linear.” It is “unbiased” because of its characteristic 

property of minimizing the mean error and “best” because of its inherent tendency to 

minimize the error variance. The theoretical distinguishing feature of OK is its ability to 

minimize the error variance. However, in practical situations the knowledge of the 

population error variance and the mean error is not known and the best that can be done 

is to build a model from the available data and work with the average error and the error 

variance of the model. Even when the entire available sample data is used, the estimates 

at the unknown locations will have an associated uncertainty. Therefore in order to reflect 

the uncertainty, a probabilistic random function model is used in OK. This random 

function model calculates the bias, the error variance, and the weights of the nearby 

samples. During the calculation of the OK weights, the random function model requires a 

pattern of the spatial continuity existing in the data. This is usually obtained from the 

spatial continuity evident in the sample dataset. The spatial continuity can be defined by 

fitting a function to the sample variogram.
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If the sample values at the known locations are, V(xi), V(xn), and suppose one at the 

unknown location has a true value, V(xo), then an estimate of this unknown value V (xo) 

is given by

V{x0) = ± w ,n x , )  (5.1)
1=1

The weights Wj are obtained from the ordinary kriging system of equations given by

+V = C ,
7=1

fO (5.2)

Where, Qj —  the covariance

p. —  Lagrange Parameter

It can be written in matrix notation as

C W = D (5.3)

or

" c , l ............. .............c , „ 1 ' ' w , " C 10

C n \ ............... 1
• —

C n0

1................... .................1 0
(n + l)* (n + l) J* . (» + l)* l

1
(„ + l)* l

Multiplying both sides by C'1, the weight matrix is obtained as: 

W = C 1 D (5.4)

A detailed description on the working principle of the OK and the derivation of the above 

system of equations is presented elsewhere (Isaaks & Srivastava, 1989).
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5.1.2 Nome Ore Grade Estimation Results using OK

The semi-variogram function that describes the spatial continuity for the nine 

blocks in the Nome deposit was presented in Chapter 4 (Figure 4.13 - Figure 4.21). It is 

quite evident from all the plots that there is no definite trend in the spatial patterns. The 

nugget constitutes a major portion of the total sample variability in all the plots. When 

dealing with geologic datasets, it is common to see a trend or structure. The absence of a 

trend in the Nome datasets is unusual. This is perhaps due to the sparseness of the data. 

The mean square error (MSE), mean absolute error (MAE), mean error (ME) and the 

coefficient of determination (R2) obtained on the prediction dataset were used as the test 

statistic to assess the model performance. The MSE criterion which is a measure of the 

quality of estimation reflects the mean of the square error between the actual and 

predicted value while the R2 expressed by equation 5.5 gives an idea of the percentage of 

the variation captured by the model. As the number of the predictor variables increases 

the model captures more of the ore grade variation, thereby, resulting m a larger R value. 

ME or Bias is the average error of estimation and is an indicator for over-estimation or 

under-estimation. The MAE measures the average absolute deviation between actual and 

the estimate.

* 2 = l - S ^ ! — (5.5)

Where y\ is the true ore grade, y  is the mean ore grade and y  is the predicted ore grade 

value. Apart from the R2 being used as one of the yardstick for evaluating the model 

performance, there are a number of other statistics that can be used for evaluating the 

effectiveness of a model. These measures such as the confusion matrix, kappa statistic 

and the receiver operating characteristic (ROC) are, however, applicable towards the 

classification tasks. The confusion matrix is a sort of classification table o f the predicted 

and observed values based on the fitted model. The measure of accuracy obtained from 

this matrix is sometimes misleading owing to the fact that its interpretation depends on 

knowledge of the prior probability of occurrence of the subject in question (Boyce et al.,
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2002). Apart from this, in the confusion matrix a bias is also introduced when a 

continuous variable is dichotomized. This limitation is overcome by ROC which is 

independent of the probability cut-off levels.

Generally, a model with less error and high R2 is considered as the one generating 

a better fit. The estimates obtained on the validation dataset for all the nine fish blocks 

are shown in Table 5.3. The results are expectedly poor because ordinary kriging 

produces local linear estimates. Therefore, attempt has been made to model the deposit 

using non-linear artificial machine learning algorithms. These are presented in sections

5.2 and 5.3 in this chapter. Similar studies of applying the kriging technique for building 

the model and using it for predicting on a validation dataset has also been reported in 

spatial interpolation comparison (SIC-2004) (Dubois, 2005).

Table 5.3 OK estimates for the fish blocks.
Data Set Mean Error Mean Absolute 

Error

Mean Squared 

Error

R2 (in %)

Coho -91.50 729.20 1855934.54 0.07

Halibut 2.55 207.94 132351.88 11.10

Herring -5.83 566.98 268719.57 8.80

Humpy 75.76 484.27 446436.34 0.40

King 8.17 329.44 298962.30 30.50

Pink 33.83 128.97 47171.00 3.00

Red 33.54 353.02 319487.8 19.30

Silver 12.58 221.46 138499.46 7.70

Tomcod -6.02 15.037 141441.00 17.50
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5.2 Neural Network Modeling

5.2.1 Neural Network for Ore Grade Estimation

Neural network (NN) is a computational structure inspired by the study of 

biological neural processing. This structure exhibits certain brain-like capabilities, 

including perception, pattern recognition, and pattern prediction in a variety of situations. 

As in the brain, information processing is done in parallel using a network of “neurons.” 

As a result, NNs have capabilities that go beyond algorithmic programming and work 

exceptionally well for non-linear input-output mapping. It is this property of non-linear 

mapping that makes neural network appealing for ore grade estimation.

There is a fundamental difference in the principles o f OK and NN. While OK 

utilizes information from local samples only, NN utilizes information from all of the 

samples. OK is regarded as a local estimation technique, whereas NN is a global 

estimation technique. If any non-linear spatial trend is present in a deposit, it is expected 

that the neural network will capture it reasonably well. The basic mechanisms of neural 

networks have been discussed at length in literature (Bishop, 1995; Hagan et al., 1995). 

A brief discussion on NN theory is presented below to provide an overview of the topic.

Neural networks process information in interconnected layers. A layer is simply a 

group of elements designated as neurons. There is the input layer consisting of the inputs, 

one or more hidden layers consisting of a number of neurons, and the output layer 

consisting of the outputs. Thus, a neural network has three or more layers. Typical 

network architecture is presented in Figure 5.1. The network present in the figure has 3 

layers. The inputs (elements in the input layer) are first manipulated to determine the 

value of the elements of the hidden layer. It should be noted that while the input layer and 

the output layer have a fixed number of elements for a given problem, the number of 

elements in the hidden layer is arbitrary.
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Total input (Ik) to the 
output layer element

Figure 5.1: A neural network architecture

Each input jc, is assigned a weight wtj and connected to element j  of the hidden 

layer. Each input is connected to each node of the hidden layer just as each node of the 

hidden layer is connected to each node of the output layer. Mathematically, each hidden 

layer element is equal to the sum of the product of the inputs and their assigned weights. 

The output of each hidden layer element is obtained by applying a function (JJ) to the sum 

(i.e. the input of the element). As in the case of the input layer, this output, in turn, is 

weighted (wjk) and sent as inputs to each of the output elements. The final output, i.e. 

each output element, yt, is obtained by applying a function (f/J to the sum of the inputs 

from the hidden layer. Therefore,

( (  \ >1

I w j k f j

v - » \ } - * i  , 7
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In the present analysis, as there is only one output, the generic output will be 

referred to as y  rather than yk. The functions fj(«) and fk(«) are typically a Logistic 

function as shown below:

However, other activation functions like tanh, gaussian, gaussian-complementary or their 

combinations might be used.

From the preceding discussion, it may be apparent that the obtained output 

depends on the weights of the interconnections. Therefore, it is obvious that these 

weights need to be determined in such a way that produces accurate outputs. The process 

of determination of weights is called “learning” or “training.” Learning is a process by 

which the neural network adjusts its weights to reflect the changes in the data fluctuations 

in a spatial coordinate. During learning, the neural network maps the patterns pre-existing 

in the data. The sample data set for a given deposit is used for this purpose. Assume that 

there are n sample points. The network starts learning with sample point number one. It 

begins with arbitrary weights; typically, all weights are set to random numbers with a 

mean of zero and a standard deviation of one. In most cases, it doesn’t matter what initial 

weights are chosen. Using the initial weights, the network computes the output y  as 

described previously. Depending on the output, weights are adjusted based on their 

contribution to the error. This process of propagating the effect o f the error onto all the 

weights is called back propagation. Using the adjusted weights, the network then 

computes an output for sample number two. The weights are adjusted once again to 

reflect the error. Ultimately, it goes through all the samples, adjusting the weights on 

each occasion. When a neural network is done training on a sample set, it is said to have 

completed an epoch. The process of completing epochs is called online learning. There is 

another method called batch learning where the error is calculated on an individual 

sample basis. In this method, the weight is updated only once in an epoch, with the new 

weight being based on the errors of all the samples in the training data set.
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Typically, the weights after a single epoch are usually unsatisfactory. To make the 

network satisfactory, the learning/training process is restarted with the initial weights 

being the final weights of the previous epoch. When the error for an epoch is deemed 

satisfactory, the network is considered “trained.”

5.2.2 Optimization of Neural Network Training

Among the many practical modeling issues, neural network training is still 

debated. A neural network model working on a grade estimation problem performs 

mappings from an input space to an output space. For example, given the spatial co

ordinates and other relevant attributes as input, and grade attribute as output, neural 

network will be able to generate a mapping function through a set o f connection weights 

between the input and the output. Hence, output O of a neural network can be regarded as 

a function of inputs X and connection weights W: O =9 (X), where (p is a mapping 

function. Training of a neural network involves finding a good mapping function that 

maps the input-output patterns correctly. This is done, as previously described, by 

adjusting the connection weights between the neurons of a network using a suitable 

learning algorithm, while simultaneously fixing the network architecture and activation 

function. In essence, given a set of training patterns consisting of input-output data pairs 

of spatial co-ordinates and other attributes and grade attribute {(Ii, Di), (I2, D2) . .. (In, Dn), 

the learning algorithm strives to minimize the training error. One popular error function 

is a squared-error function in which error is described as, e (W, Ij, D,)= (9 (Ij, W)-D, )2. 

Using a suitable learning rule, a set of connection weights, W, is found so that the 

squared error function is minimized.

In a multilayer feed forward neural network, a supervised learning algorithm is 

applied to train a network. Supervised learning used in neural network training can be 

considered as an unconstrained nonlinear optimization problem in which the objective
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function, defined here as the squared error function, should be minimized in the search of 

weight space. Error functions spanned by the weight space in a neural network may have 

a single minimum as the global minimum. On the other hand, an error function may 

generate a very complicated error surface with many local minima in the weight space, 

where only one is a global minimum. Gallaher (1999) argued that a local minimum in 

neural network is not a major problem, where as Shang and Wang (1996) showed that the 

error surface could be very rugged and may have several local minima. For the first case, 

local learning algorithms may be adequate. Obviously in the presence of many local 

minima, local learning algorithms could have difficulty in finding the optimal solution 

and may get trapped in the local minimum point. In the present context, an investigation 

was carried out to observe the performance of few local learning algorithms for neural 

network modeling and was applied for ore grade estimation in the nome area.

Three local optimization techniques that were investigated are: (i) standard 

gradient descent back-propagation (SBP) with fixed learning rate, (ii) back-propagation 

with momentum learning (MBP), and (iii) Levenberg-Marquardt back-propagation 

(LMBP) learning. Comparative evaluation of these techniques in neural network learning 

optimization was also carried out with the data sets from Nome area.

5.2.2.1 Local Learning Algorithms

Learning the weights of a neural network can be considered to be an 

unconstrained continuous non-linear minimization problem. In the past, many techniques 

have been developed for solving non-linear optimization problems (Battiti, 1992; Dixon, 

1994). Optimization methods can be classified into local optimization and global 

optimization. Examples of local optimization techniques include gradient descent 

algorithm, Newton’s method, and the conjugate-gradient method. These techniques are 

also applicable in neural network learning as well.
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Each of the local optimization techniques use some form of gradient information 

in their search strategy, and requires the calculation of the gradient of error with respect 

to the weight vector. Due to hidden layers topology in a neural network, it is not possible 

for a direct calculation of the error gradient with respect to the hidden layers connection 

weights. Instead, an algorithm called back-propagation is used to calculate the gradient. 

Back-propagation algorithms apply a chain rule for calculating the gradient, which is 

done by back propagating the sensitivities (change of error function with respect to net 

input to a neuron) from output layers to previous layers step by step in the backward 

direction (output-hidden-input). This study applied three local optimization algorithms, 

the properties of which were studied in the Nome ore reserve estimation problem. The 

basic mechanisms and mathematical foundation of these techniques can be found in 

published literature (Haykins, 1998; Bishop, 1995; Hagan, 1995). For completeness a 

brief overview of the optimization is presented below.

5.2.2.1.1 Standard back propagation with gradient descent (SBP)

The gradient-descent algorithm finds a locally optimal solution by iteratively 

taking small steps in the gradient descent direction. The search procedure starts with a 

random initial guess of parameters in the weight space. The weight is updated in each 

iteration according to following equation:

w (n+1) - w(n)-r) Ve(w) (5.8)

Where, r| is learning rate parameter.

Ve(w) is the gradient of error.

The learning rate parameter,r), plays a major role in convergence of the algorithm. 

A small learning parameter causes a small change of the weight vector along the gradient 

descent direction, which results in very slow progress along the search trajectory. On the 

other hand, a large learning parameter may cause an overshoot of the minimum point,
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although it provides a faster convergence. Back-propagation is the generalization of this 

gradient-descent algorithm, which employs the chain rule in calculating gradients at 

hidden layers. A complete description of back propagation algorithm can be found in 

Hagan (1995).

5.2.2.1.2 Back propagation with momentum (MBP)

Use of a large learning rate causes gradient descent algorithms to oscillate along 

the search trajectory, and may even cause divergence. In order to get the full benefit of a 

faster convergence with large learning rate, the oscillation along the search path must be 

reduced. Use of a momentum algorithm facilitates the dampening of the oscillations and 

renders fast convergence. Momentum algorithm introduces a momentum factor and 

makes the new weight change as follows:

Aw (n) =y Aw(n-l)-(l-y).ri Ve(w) (5.9)

Where, Aw (n)=w(n)-w(n-l)

y = momentum co-efficient, 0<y<l

Ve(w) = the gradient of error

5.2.2.1.3 Levenberg-Marquardt algorithms (LMBP)

The Levenberg-Marquardt algorithm is a modification of the Newton’s method 

for non-linear optimization. The Levenberg-Marquardt and Newton method use, in 

addition to the gradient, other numerical quantities such as the Hessian matrix of the error 

surface, which consists of the 2nd order derivative of the error function. These methods 

are also based on the concept of quadratic approximation of the error function in a local 

region. If the error function is truly quadratic in nature, the Newton’s method finds the 

minimum solution in a single iteration. Therefore, the success of this technique depends 

upon how closely the error function resembles the quadratic function. Even the
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Levenberg-Marquardt algorithm will diverge if the quadratic approximation is not 

appropriate. Searching for an optimal solution using this method requires the calculation 

of the inverse of the Hessian matrix, which should be positive definite. Newton’s method 

does not always guarantee the positive definiteness of Hessian matrix. The Levenberg- 

Marquardt introduces a regularization term into the Hessian matrix so that positive 

definiteness of the Hessian matrix is guaranteed.

5.2.2.2 Model Generalization

5.2.2.2.1 Quick-Stop Training

A simple criterion for optimization of the neural network architecture is to choose 

the network with minimal generalization error. The quality of the predictions made by the 

network is measured in terms of the so-called generalization error. The main goal of 

neural network modeling is not to exactly fit to the training data, but to generalize a 

model which well-represents the underlying characteristic of a process. A simple model 

may result in poor generalization, since it cannot take into account all the intricacies that 

may be present in the data. On the other hand, too complex a model is flexible enough to 

fit data with anomalies or noise. Therefore, complexity of a model should be well 

matched to improve generalization properties of the data. Much research was devoted in 

the past to improve the generalization of NN models, with results that included 

techniques such as regularization, quick-stop training, smoothing and training with noise, 

and combining several learning models using various ensemble techniques like Bragging 

and Boosting. In this research a quick-stop training method is employed to improve the 

NN model generalization.

The quick stop-training works under the notion that generalization performance 

varies over time as the network adapts during training (Hagan et al., 1995). Randomly 

selected initial weights are likely to be completely inconsistent with the samples, so both 

the training set and the generalization errors are likely to be high before learning begins.
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During training, the network adapts to decrease the error on the training patterns. In the 

early stages of learning, the generalization error tends to decrease in step with the training 

error as the network captures the major features of the underlying function. If the training 

data is noisy or incomplete, there may still be a possibility that a trend may exist. In such 

situation, in addition to representing the general properties of the target function, it is 

likely to contain peculiarities unique to the particular data set and uncharacteristic of the 

target function. As these idiosyncrasies are exploited in later stages of learning, the 

improvement in generalization that comes from being right on the training examples is 

offset by errors introduced elsewhere and the generalization error begins to increase again 

even though the training error continues to decrease.

By using the quick stop training method, the data set is split into three subsets, 

training, calibration and validation. The network actually undergoes training on the 

training set. However, the decision to stop the training is made on the network’s 

performance in the calibration set. The training error for the training set decreases 

monotonically for an increasing number of epochs, in the usual manner. In contrast, the 

error for the calibration set decreases monotonically to a minimum, and then starts to 

increase as the training continues. A typical profile of training and calibration error of 

neural network model looks like a pattern as presented in Figure 5.2. This observed 

behavior is due to the fact that, unlike the training data, the calibration error is not used to 

train the network. The calibration data is simply used as an independent measure of the 

model performance. Therefore, it is possible to stop over-training by monitoring the 

performance of the network on the calibration subset, and then stopping the training when 

the calibration error starts increasing.
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5.2.2.3 Model Performance Measurement

A direct way to estimate the generalization ability of a system is to measure the 

error on a separate data set that the network has not seen during training. The neural 

network model performance can be improved in terms of generalization error, if a 

suitable validation of the model is carried out. Since the model generalization error is 

evaluated on a validation data set other than the training set, the entire data set might be 

divided into two sets: the training set and the validation set (for simple validation of the 

model). Since quick-stop training is also used to improve model generalization, the 

training data set can again be divided to obtain a calibration data set. Therefore, the entire 

data set is divided into three subsets: training, calibration and validation.

In order to make a valid model performance measurement, training, calibration 

and validation subsets should, however, have similar statistical properties. Therefore, the 

members of the data in the training, calibration and the validation subsets should be 

selected in such a way that the three data subsets acquire similar statistical properties. 

The traditional approach for the data division employs a random division of data into 

training, calibration and validation subsets. Random selection of data may not be
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appropriate. Therefore, an integrated approach using data segmentation and genetic 

algorithm as described in the previous chapter was applied for appropriate division of the 

data.

5.2.3 NN Nome Ore Grade Estimation Results

Separate neural networks models were developed for each of the fish blocks. The 

architecture selected for the NN modeling was a ward-net network. An advantage of 

ward-net architecture is that this type of network employs different activation functions in 

the hidden layers. As a result, complex non-linear input-output pattern is captured by a 

combination of multiple hidden units with different activation functions. Although the 

same network architecture was used for the entire datasets, the number of hidden units 

was varied for each individual fish block. Mixture of Logistic, Tanh, Gaussian, and 

Gaussian Complimentary activation functions were used in the network. A general 

configuration of the ward-net architecture used in this study is presented in Figure 6.4. 

The architecture has three layers: the input layer, the hidden layer, and the output layer. 

The hidden layer consists of three hidden slabs of Gaussian, Tanh, and a second Gaussian 

activation functions. The number of input and output nodes is dictated by the problem. In 

this case, three nodes for the three input variables: X co-ordinate, Y co-ordinate, and 

Water-table depth, and one node for a single output variable of gold attribute. The 

number of nodes in the hidden slabs varies for different data sets. The number of hidden 

neurons used for each of the fish blocks is presented in Table 5.4. The number of hidden 

neurons was chosen based on the minimum generalization errors of the NN models while 

experimenting with a different number of hidden nodes in the hidden slabs. MATLAB 

code was developed for conducting all the studies associated with NN modeling.
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5.2.3.1 Performance of optimization algorithms

Prior to applying the neural network model, the output data values were 

normalized. Therefore, the error presented is based on the normalized transformed data. 

The neural network model was trained using the local learning algorithms. The behavior 

of the local learning algorithms was examined for all the data sets mentioned earlier using 

the three local learning algorithms. The starting point for all the learning algorithms, local 

and global, was the same. As an example, the properties of the learning algorithms for the 

king data set are presented in Figure 5.3.

Figure 5.3(a) shows the learning curve of the three algorithms for the King data 

set with learning rate (r\ 0.4), and momentum (y = 0.4). The mean squared error for the

LMBP algorithm decreases rapidly with the increased learning epochs. Hence, the LMBP 

algorithm provides a faster convergence than the other two algorithms. The SBP 

algorithm learns very slowly since the learning rate parameter is small. The MBP 

algorithm is even slower when compared to SBP. However, SBP and MBP algorithms 

are faster when the learning rate was increased to 2. In spite of the increased learning 

rate the time to converge still lags the LMBP (Figure 5.3 (b)). After learning the pattern 

of the local algorithms for first few epochs, the model was run for 20,000 epochs. The 

best solution, in terms of minimum mean squared error, within 20,000 epochs was then 

obtained for the three algorithms. Table 5.5 presents the best solutions for the three 

algorithms. From the table, it can be observed that the LMBP algorithm provided 

superior performance for all the data sets. The minimum mean squared errors were the 

least for the LMBP algorithm.
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Table 5.4: Number of neurons for various data sets in NN modeling
Data Set No. o f  Input No. o f  Hidden No. o f  output

Coho 3 24 1

Halibut 3 30 1

Herring 3 30 1

Humpy 3 6 1

King 3 15 1

Pink 3 36 1

Red 3 12 1

Silver 3 9 1

Tomcod 3 15 1
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Figure 5.3 (a): Network learning with various learning algorithms (King data)
(y=.4, a= .4)
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Figure 5.3(b): Network learning with various learning algorithms (King data)
(y=.4, a=2)
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Table 5.5: Performance of various local learning algorithms
Data set Learning algorithm Minimum

MSE

Coho SBP .0176

MBP .0176

LMBP .0043

Halibut SBP .0281

MBP .0147

LMBP .0070

Herring SBP .0065

MBP .0087

LMBP .0028

Humpy SBP .0163

MBP .0166

LMBP .0083

King SBP .0099

MBP .0101

LMBP .0032

Pink SBP .0168

MBP .0168

LMBP .0030

Red SBP .0176

MBP .0176

LMBP .0043

Silver SBP .0193

MBP .0194

LMBP .0073

Tomcod SBP .0263

MBP .0263

LMBP .0100
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The results presented above pertain to the neural network performance on the 

training data. They indicate the comparative performance of various learning algorithms 

while the neural network is on training. A minimum training error does not guarantee a 

reliable estimate o f the predictive ability of the model. Since, the model was run for large 

number of epochs; it was not known a priori whether the network was over-trained. An 

in-depth analysis indicated that the neural network model was over-trained. As an 

example, overtraining could be seen from the performance of the neural network model 

using LMBP algorithm on a training and associated validation data sets for the King 

block (Figure 5.4 (a & b)). From the figures, it is seen that the neural network model gets 

is excessively overfitted with the training data. The R2 values for the training and the 

validation data sets are 0.79 and 0.12 respectively. Hence, the trained model overstates 

the model performance in the validation dataset.

Since the predictive quality can only be judged based on the generalization 

performance of a model, an attempt was made to improve the generalization ability of the 

neural network model using the quick-stop training method. In this method, the network 

was trained using the training data, and its performance was observed on the calibration 

data on an epoch by epoch basis. The model was selected when the minimum mean 

squared error is reached on the calibration data. However, the training of the model was 

continued for another 10,000 epochs after reaching the minimum error to ensure the 

stability of the solution. It was also verified whether the solution is stable to 20,000 

epochs.

Table 5.6 presents summary statistics of the generalization performance of the 

neural network model for all the fish blocks. The number of data points in the validation 

dataset for each block is presented in Table 5.2. Furthermore, the scatter plots of the 

actual vs. the predicted values for the validation data are also presented in Figures 5.5 

through 5.13. From these results, it can be seen that the neural network model
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performance is not adequate for the Nome gold data sets. Both the mean squared error 

and R2 values indicate poor model generalization.

Figure 5.4 (a): Actual vs. predicted for the training data on King 
data set

Figure 5.4 (b): Actual vs. predicted for the validation data on King 
data set
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Table 5.6: Generalization performance ofNN models in fish blocks
Data Set Bias Mean Absolute 

Error

Mean Squared 

Error

R2(in

%)

Coho -33.44 704.01 1294300.00 12.20

Halibut -3.59 230.00 153650.00 3.10

Herring -37.25 304.70 259850.00 10.20

Humpy -44.29 453.79 444090.00 2.10

King 25.43 346.79 351240.00 19.30

Pink -13.03 108.66 24576.00 5.10

Red -1.30 351.50 318490.00 19.10

Silver -16.42 226.30 143540.00 3.20

Tomcod 0.87 222.66 152150.00 10.50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pr
ed

ic
te

d

88

■o0}gT3S>
CL

1 0 0 0 5000 6 0 0 02 0 0 0  3 0 0 0  4 0 0 0
A c t u a l

Figure 5.5: Actual vs. predicted for the validation data o f  Coho block

Fieure 5.6: Actual vs. oredicted for the validation data o f  Halibut block
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Figure 5.7: Actual vs. predicted for the validation data o f  Herring block
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Figure 5.8: Actual vs. predicted for the validation data o f  Humpy block

Figure 5.9: Actual vs. predicted for the validation data o f  King block

&
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Figure 5.11: Actual vs. predicted for the validation data o f  Red block

Figure 5.12: Actual vs. predicted for the validation data o f  Silver block

Figure 5.13: Actual vs. predicted for the validation data o f  Tomcod block
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5.3 Support Vector Machine Modeling

5.3.1 SVM for Ore Grade Estimation

The regression abilities of the support vector machine can be used for grade 

estimation purposes. During this process, a mapping function is developed between the 

input variables (spatial coordinates, secondary variables) and the output variables (ore 

grades). The principle of SVR approach is described previously in chapter 3. Broadly, the 

methodology for the ore grade estimation consists of three distinct stages: (a) 

transformation and preprocessing of data, (b) model application, (c) post-processing of 

the model results. For this particular application, the placer gold grade is related to the 

spatial coordinates and the water table depth by a support-vector machine based non

linear model. Stage (a) involves preparing the raw data for model simulation. Ke (2002) 

explained in detail the steps involved in the transformation and the preprocessing of the 

data. The reserve estimation was performed separately for each of the nine blocks. Stage 

(b) involves the model application to the input data. The recommendations of Kecman 

(2004), Change and Lin (2001) were considered carefully in the development of the 

SVM-based model. As per the recommendations, the input data is first scaled. The 

scaling of the independent variables (spatial coordinates, water table depth) and the 

output variable (ore grade) was done assuming a uniform distribution. In other words, the 

scaled value of an attribute is calculated using the maximum and the minimum values of 

the attribute. The next step in developing an SVM-model is to select a kernel for 

linearizing the problem.

Many options are available for kernel selection in SVM. Table 5.7 presents a list 

of the commonly used kernels. For this study, a radial basis kernel (RBF) is selected as it 

is translation invariant and the parameters are estimated during the cross-validation stage.
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Table 5.7 Commonly used kernels in SVM.

K erne l T y p e E xpression

S im p le  d o t p ro d u c t3 
P o ly n o m ia l

AT(x, x ')  =  x * x *
K ( \ ,  x ') — (x * x ' +  1 )J ,

d  is u se r sp ec ified
T w o -lay er n eu ra l n e tw o rk A.’(x, xy) — tanh  ( h ( x * x f )  c ))  ,

R ad ia l b asis1*
b  a n d  e a re  u se r sp ec ified  

A'(x, x ') — ex p  (y ’ IIx -  x l i 2),
2 • r* i ?•y" is u se r sp ec ified

“T h is  kernel co rre sp o n d s  to lin ear m ach ine.
’’T h is  k erne l is transla tion  invarian t. C an  b e  w ritten  a s  G aussian

covariance  k erne l w ith  unit variance: A'fx, \ ' )  — a 2  exp  

ex p  , w h e re  a 2  —  1, r2 — 1/y2, and  h 2  —  j |x  -- x 'J |2.exp

The drill holes for each block (Table 4.1) were used to estimate the SVM 

parameters, the cost function (C), the radial basis kernel parameter (y) and the error 

margin (€). One way of conducting the training/ validation is with a split sample 

approach. This approach divides the available data into two subsets and uses one for the 

training and the remaining for the validation. Optimal SVM parameters were determined 

based on a K-fold cross-validation technique applied to the training dataset. The K-fold 

cross-validation approach splits the available data into more or less K equal parts. Of the 

K parts of the data, only K-l parts of the data were used to find the SVM estimate and 

calculate the error of the fitted model, and for predicting the kth part of the data as part of 

the validation process. The procedure then continues for k = 1 , 2 , . . . ,  K, and the selection 

of parameters is based on the minimum prediction error estimates over all K parts. The 

selection of K based on the shape of a “ learning curve” (Hastie et al. (2001)). A learning 

curve is a plot of the training error versus the training size. For given SVM parameters (y, 

C and €), different training errors are calculated by progressively estimating the SVM 

model for increased number of the training size, constituting a plot of the learning curve. 

From the learning curve an optimum training size (or in other words the number of folds, 

K) can be obtained where the error is minimal.
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Even though the actual value of the training error may differ for different 

combinations of SVM parameters, the shape of the learning curve remains more or less 

the same (i.e., the training size that corresponds to the optimum point). The learning 

curve procedure was used for each o f the blocks in the Nome area to train and to validate 

the model. Once the optimal number of folds, K, is selected, the SVM model is trained 

using the K-fold cross validation. The training and testing involves a thorough grid- 

search for the optimal C and y values.

Stage (c) involves post-processing of the model results during which maps are 

developed to show the gold grade distribution in each block. The predicted gold grades in 

an individual block were used to estimate the maximum mineral inventory within 5 

meters of the sediment surface. Cutoff grades of 300, 400, 500, 600 and 700 mg/cu.m 

were used for calculation of the in-place mineral reserve.

5.3.2 SVM Nome Ore Grade Estimation Results

In this study the SVM based model was trained and validated using a ten -fold 

cross-validation. Unlike the neural networks where training involves passing a data set 

through hidden layers to optimize the weights, optimal training of SVM involves 

estimation of the parameters, C and y through a grid search such that the error is 

minimized.
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Table 5.8. Cost function and kernel width values for the blocks

C o h o H a l i b u t H e r r i n g H u m p y K i n g P i n k R e d S i l v e r T o m c o d

c 2 2 1.2 0.6 0.8 1.4 0.53 0.5 1.8

Y 2 2 2.5 4.5 2.3 3.5 9.5 3.1 5.5

The optimal C and y values (Table 5.8) for each of the blocks were selected from 

different combinations of C and y values depicted by the troughs and the flat regions of 

the error surfaces (Figure 5.14- Figure 5.22). Once the optimal values for the SVM model 

parameters were obtained the model was tested for its generalization ability on the 

validation datasets for each of the fish blocks shown in Table 5.2. Figure 5.23-Figure 

5.31 show the performance of the SVM model in predicting the gold grade for the nine 

blocks. The performance statistics of the model are presented in Table 5.9. It could be 

seen from the Table 5.9 that the SVM based model produced better estimates compared 

to the other two methods. However, the improvement was only marginal which may be 

due to the presence of the extreme data values.

Performance of ”»vm* Perform ance of avm '

Figure 5.15: Effect o f cost and kernel 
Figure 5.14: Effect of cost and width varjation Qn error (Red)
kernel width variation on error
(Pink)
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Performance of svm'

0.0134 u  ■

Figure 5.16: Effect of cost and kernel 
width variation on error (Halibut)

0.0072

Figure 5.17: Effect of cost and kernel 
width variation on error (Herring)

Performance of avm'
Performance of evm*

Figure 5.18: Effect o f cost and kernel 
width variation on error (Humpy)

Figure 5.19: Effect o f cost and kernel 
width variation on error (King)
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Figure 5.20: Effect o f cost and kernel 
width variation on error (Silver)

Figure 5.21: Effect of cost and kernel 
width variation on error (Tomcod)

Performance of •vm'

I  «

Figure 5.22: Effect o f cost and kernel 
width variation on error (Coho)
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Table 5.9 Performance o f  the SVM moc el for the various fish blocks

Data Set Bias
Mean Absolute 

Error

Mean Squared 

Error
R2 (in %)

Coho -36.9 210.2 149536.9 13.9

Halibut 7.44 194.7 108833.5 12.6

Herring -0.0003 271.11 251998.6 12.4

Humpy -0.89 394.1 369430.2 23.9
King -0.01 346.9 359991.5 26.5

Pink -12.2 120.5 25780.8 5.3

Red -8 .1 341.2 317117.3 23.4

Silver -22.1 199.1 137845.4 8.1

Tomcod -41.1 206.3 147488.4 16.9

Actual O rada

Figure 5.23: Scatter plot for actual vs. predicted grade (Herring)
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Figure 5.24: Scatter plot for actual vs. predicted grade (Halibut)
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Figure 5.26: Scatter plot for actual vs. predicted grade (King)
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Figure 5.27: Scatter plot for actual vs. predicted grade (Pink)
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Figure 5.29: Scatter plot for actual vs. predicted grade (Silver)
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Figure 5.30: Scatter plot for actual vs. predicted grade (Tomcod)
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A ctual O ra d a

Figure 5.31: Scatter plot for actual vs. predicted grade (Coho)

5.4 Grade Forecasting and Reserve Estimation

A comparison of the two machine learning algorithms and the ordinary kriging 

method on the prediction dataset of the individual blocks indicates that the SVM 

methodology produced better estimates. It was ascertained from the high R2 and low error 

values obtained with SVM as compared to the other two methods. Therefore, for 

estimating the ore reserve within the boundary limits of each fish block the SVM 

methodology was used. The reserve estimation generally involves the following three 

steps. The first step involves the development of a network model from the available drill 

hole data. The second step involves the estimation of grades at the unknown locations. 

These locations were carefully chosen so as to prevent extrapolation beyond the sampling 

domain. The final step involves the determination of the tonnage associated with the 

grade at each location. As mentioned in the earlier section, a SVM model with model 

parameters listed in Table 5.8 was used to estimate the total mineral inventory associated 

within the nine fish bocks. The selection of the unknown locations involved the 

transformation of the scattered drill hole data from each block into a grid base system. 

Each grid had a dimension of 25m x 25m along the northing and easting. The surface 

mapping system software Surfer (2002) was used for this purpose. To prevent
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extrapolation, the data grids outside the leased boundaries were removed. This is a two- 

step procedure. The first step involved the formation of grids o f 25m x 25m dimension 

along the entire sampling region and then the removal o f the grids outside of the 

polygonal area which enclosed the sampled points. Figure 5.32 shows one such polygonal 

area enclosed by the Humpy block. The grade estimation in each of the fish blocks was 

done for the grids that are enclosed within these polygons. Table 5.10 shows the total 

number of grids within the sampling region and the number of grids that are within the 

polygonal area. The inventory was calculated at cutoff grades of 300,400,500,600 and 

700 mg/cu.m within 5m of the sediment surface.

To estimate the grade at the unknown locations, three variables, the X coordinate, 

the Y coordinate and the water table depth of each of the grid were used as input 

parameters for the model.

Table 5.10: Number o f  grids inside the sampling region and in polygonal area
Block Total grids Grids in the Polygonal region
Coho 5636 2394

Halibut 13778 7032
Herring 4260 2419
Humpy 11247 3344

King 5390 2818
Pink 6080 2661
Red 9828 3560

Silver 12390 6920
Tomcod 24252 6392

The amount of ore in each grid cell is calculated by the following equation:

Amount of Ore = 25(m) x 25(m) x 5(m) x grade (mg/cu.m) (5.10)

Once the estimations at the grids locations were done, the grade values less than 

the cut-off grade were neglected in the total reserve estimation. Table 5.11 shows the
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reserve estimate for each block. The grade values for the Pink fish block were less than 

300mg/cu.m. Therefore, in the estimate column no reserve was reported for the pink 

block (Table 5.11). For visualization purpose of the estimated gold distributions within 

the sampling regions of the various fish blocks, contour plots have been presented in 

Figures 5.33 - 5.41. The Plots show the variation of the grades in a given fish block. 

From Table 5.11 it can be observed that the Coho, the King and the Red fish blocks 

contain adequate amount of reserve for mining operation. The reliability in the 

estimations is, however, low owing to the poor performance of the SVM models.

Table 5.11: Total reserve estimate for each block (in tones):
Block COG 300 COG 400 COG 500 COG 600 COG 700
Coho 3.9188 3.8376 3.6939 3.5527 3.3556

Herring 1.6731 1.1954 0.6751 0.2648 0.015451
Humpy 4.9387 4.9387 0.3192 - -

King 1.3805 1.2277 1.1081 0.9738 0.8127
Pink - - - - -

Red 4.026 2.896 2.1173 1.7179 1.5234
Silver 0.7945 0.005 - - -

Tomcod 2.786 1.056 0.0825 0.0118 0.0022
Halibut 0.73561 0.38202 0.22787 - -

Figure 5.32: Polygonal region formed within the Humpy block.
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Figure 5.33: Contour plot for the predicted gold reserve (Coho)
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Figure 5.34: Contour plot for the predicted gold reserve (Halibut)
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Figure 5.35: Contour plot for the predicted gold reserve (Humpy)
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Figure 5.36: Contour plot for the predicted gold reserve (Herring)

1170400

1170200

1170000

-1160800

1100600

i i o e « o o

1168200

1160000

1160800 -

176400 178800 178800 177000 177300 177400 177800 177800 178000

Figure 5.37: Contour plot for the predicted gold reserve (King)
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Figure 5.38: Contour plot for the predicted gold reserve (Pink)
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Figure 5.39: Contour plot for the predicted gold reserve (Red)

Figure 5.40: Contour plot for the predicted gold reserve (Silver)
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Figure 5.41: Contour plot for the predicted gold reserve (Tomcod)
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CHAPTER VI

COMPARATIVE ANALYSIS OF THE ESTIMATION TECHNIQUES IN A
LODE DEPOSIT

The application of the machine learning algorithms, namely the neural network 

(NN) and the support vector machine (SVM) on the Nome datasets (Chapter 5) resulted 

in an improved generalization performance for the model datasets. The performance was 

not only better than the traditional geostatistical ordinary kriging (OK) method but the 

use of these techniques also provided a comprehensive way of treating the complex 

phenomenon of ore reserve estimation for sparse and noisy data. The improvement, 

though marginal, was largely affected by the extreme spatial variations associated with 

the typical placer gold characteristics. In other words, the datasets dictated more than the 

models used for the prediction. As a result, they didn’t generalize as well as one might 

expect and the results were difficult to analyze. This is a common problem that arises 

when model comparison studies are based on a single dataset. Therefore, in order to 

further establish these models as a reliable tool for ore reserve estimation, they have been 

applied to an entirely different type of deposit. The depositional environment of the 

deposit (lode) is devoid of the characteristics associated with the Nome placer gold 

deposit. An analysis similar to the Nome data was performed, i.e. the ordinary kriging, 

neural network and the support vector regression (SVR) were used to estimate the grade 

of the silver associated with the lode deposit.

6.1 Description of the Study Area

The data for the following study was obtained from the Greenscreek mine located 

in southeast Alaska on the northern end of Admiralty Island, approximately 25 km south 

of Juneau (Figure 6.1). The underground mine which is a joint venture between 

Kennecott Minerals and Hecla is operated by the Kennecott Greens Creek Mining 

Company. The orebody, which is polymetallic (silver, zinc, gold, and lead), stratiform,
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and a massive sulfide deposit, was discovered in 1975. The exploration drilling in the 

deposit began in 1978. It is hosted in Kamian/Norian-age black argillite occurring below 

the flood basalts and is linked to an active rift segment plumbed by sepentinite/gabbro 

and filled with euxenic argillite. The host rock is predominantly marine sedimentary, and 

mafic to ultramafic volcanic and plutonic rocks, which have been subjected to multiple 

periods of deformation. These deformations have imposed intense tectonic fabrics on the 

rocks as a result of which the mineralization occurs discontinuously along the contact 

between a structural hanging wall of quartz mica carbonate phyllites and a structural 

footwall of graphitic and calcareous argillite. Major sulfide minerals are pyrite, 

sphalerite, galena, and tetrahedrite/tennanite ( www.hecla-mining.com/propGreens.html).

Figure 6.1: Location of the Greens Creek Mine, Alaska ( from 
http://www.kennecottminerals.com/S&E_2002/GreensCreek.pdf)
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6.2 Model Development and Analysis of the Data

The data used for the study consisted of 432 exploratory boreholes. The data is 

available in terms of easting (x) and northing (y) co-ordinates (in m), gold, silver, lead, 

zinc and copper content (in ppm). A statistical analysis of the data indicated that the mean 

and the standard deviation values are 0.96 ppm and 1.32 ppm of silver. Visual 

examination of the histogram plot indicates that silver follows an approximately 

lognormal distribution (Figure 6.2). Spatial continuity of the silver values was also 

explored through the variography study. Figures 6.3 presents a snapshot of the semi- 

variogram modeling using the log-transformed data of silver values. Since a lognormal 

distribution of the silver values is assumed, it was decided to incorporate lognormal 

kriging to treat this variable. This choice was further supported by an independent 

comparative study of lognormal kriging with ordinary kriging which indicated that 

lognormal kriging produced better estimates than the ordinary kriging.

Figure 6.2: Histogram plot for the Silver values
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Figure 6.3: Snapshot of the semi-variogram modeling on the variable Silver

The major difficulty with any ore reserve estimation method is the inability to 

verify if the predicted value bears a close resemblance with the actual one. Before actual 

production in a mine, the only reliable way to verify the reliability of the estimation 

method is to test the actual value with the predicted value using a data set which was not 

used previously for training of the model. Therefore, prior to the model development, the 

available data was divided into three statistically similar subsets employing the genetic 

algorithms (GA). The training dataset constituted half of the samples while the 

calibration and the prediction dataset constituted the remaining half. Table 6.1 shows the
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statistical summaries o f the three datasets in terms of the mean and the standard deviation 

values. It could be seen that the values are in close agreement for the three datasets.

Table 6.1: Statistical Properties o f the Greens Creek model datasets.

Training Dataset Mean SD
X 5541.924316 409.3363647
Y 3752.673828 541.2883911

Gold 0.025 0.0572633
Lead 0.151389 0.2821809
Zinc 3.4138887 7.3849754

Copper 2.8874996 3.9141705
Silver 0.9583336 1.4291731

Calibration Dataset
X 5558.49707 416.8015442
Y 3707.911133 494.9816589

Gold 0.0259259 0.0536001
Lead 0.1342593 0.2271982
Zinc 3.740741 5.0234962

Copper 2.7462976 3.3884475
Silver 0.9185182 1.179113

Validation Dataset
X 5567.846191 429.4827576
Y 3670.762695 520.6760254

Gold 0.0277778 0.056093
Lead 0.1398148 0.2557525
Zinc 3.0342593 4.0313764

Copper 2.689815 3.529341
Silver 0.8907409 1.202143

For the NN model development the training dataset was used to train the model 

while the prediction dataset was used to assess the model generalization ability. During 

this process the calibration dataset served as an independent observer of the entire 

training process as described in chapter 5. Since there was no need of a calibration dataset 

in SVR and OK modeling approach, the calibration dataset was merged with the training 

dataset in order to select the optimal model parameters.
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For NN modeling, the commercially available software package Neuroshell, 1993 

was used. Various network architectures with different numbers o f hidden layers and 

neurons in each layer were investigated prior to the selection of a slab architecture as 

shown in Figure 6.4. The purpose behind this modeling exercise was to ensure that the 

model is neither overfitted nor underfitted. Overfitting of a NN model is a condition 

which arises when there are too many neurons in the hidden layer as a result the network 

performs exceptionally well in the training dataset but doesn’t generalize well. On the 

other hand, underfitting is a condition arising due to less number of neurons during which 

the network results in high training and high generalization error. For this modeling 

exercise, the network comprised of 5 slabs: one input slab, 3 hidden slabs and 1 output 

slab ( a slab is basically a group of neurons; a particular layer may have multiple slabs). 

Each slab in the hidden layer and the output layer consisted of different activation 

functions. The input slab has six neurons for each of the input variables while the output 

slab has one neuron for the silver values as the output variable. The slabs in the hidden 

layer have 8, 6 and 8 neurons respectively. The three slabs in the hidden layer use three 

different activation functions viz. tanh, gaussian and complementary gaussian whereas 

the output layer slab uses a linear activation function. The concept behind using different 

combinations of the activation functions is to identify various patterns in the dataset. A 

particular activation function may be more suitable for a few typical patterns; however, it 

may not work at all for others patterns. Thus, the use of different activation functions 

ensures that at least some of the underlying trends in the data are captured. For example, 

a gaussian activation function in one hidden slab may detect features in the mid-range of 

the data while a gaussian complement activation function in another hidden slab may 

detect features from the upper and the lower extremes of the data. Similarly, a tanh 

activation function will tend to group together data at the low and the high ends of the 

original data range. This may be helpful in reducing the effects of outliers. 

Implementation of these features in the output layer may result in better predictions. The 

characteristic equation of the output signal from the gaussian, complementary gaussian 

and tanh activation function are given in equations 6.1-6.4.
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Gaussian activation function = exp(-jc2) (6.1)

Gaussian-complement activation function= 1 -  exp(-x2) (6.2)

QXD* 0X0 ^Tanh activation function= — ------  — (6.3)
exp*+ exp *

Linear activation function = x (6.4)

Where, x is the input to the activation function.

Y

X

Figure 6.4: Ward net architecture for 
the NN modeling

For the SVM modeling, a grid based approach with 10 fold cross validation on the 

training dataset was employed to select the optimal model parameters C, a  and e. Figure

6.5 shows the plot for the model performance (troughs and flat regions) for different 

combinations of the C and a  values. The cross-validation MSE was used as a criterion to
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select the optimum parameter values of C, a  and 8. The flat regions correspond to the 

various possible combinations for the optimal values of C and a. The optimal estimates 

of C and o were found to be 2.5 and 0.5 respectively.

113

2  <4 e e

gamma

Figure 6.5: Effect of the cost and kernel width on the error for the Silver values

Once the optimum values of these parameters were determined the next step 

involved the selection of an optimum value of 8. This was selected by fixing the values 

of C and a  at their optimum values, while varying the parameter s. This exercise was also 

carried out through a cross-validation study on the training data set. Figure 6.6 shows the 

variation of the mean squared error with respect to the parameter s for the training 

dataset.
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Figure 6.6: Variation o f error with epsilon e for the variable Silver.

Following this exercise, the optimum model parameter values of C, c  and 8 for 

the silver values were found to be 2.5, 0.5 and 0.05 respectively. The final step involved 

the assessment of the model generalization ability through the examination of the 

generalization error on the prediction data set.

6.3 Results and Discussion

An independent prediction data set consisting of 108 observations was used to 

validate the overall performance and the generalization capability of the OK, NN and 

SVM models. Table 6.2 presents the performance of the individual models on the 

prediction dataset. The various criteria that were used to compare the model performance 

was the mean error (ME), the mean absolute error (MAE), the root mean squared error 

(RMSE) and the coefficient of determination (R ). Based on these, a summary statistic 

was developed as a measure of performance. This summary statistic, termed the “skill 

value,” is an entirely subjective measurement and is expressed by equation 6.5. 

Numerous skill measures can be devised; however, the one proposed considers the ME, 

MAE, RMSE equally and applies a scaling to the R2 so that it is of the same order of 

magnitude as the others. It should be noted that the lower the skill value, the better the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

method is. In this way various methods can be ranked based on their skill values i.e. by 

their overall performance on the prediction dataset.

‘skill value’ = abs (ME) + MAE + RMSE + 100 * (1-R2) (6.5)

Table 6.2: Generalization performance o f the models for the variable Silver
Statistics (Silver) SVM NN OK

Mean Error 0.02 0.08 0.25
Mean Absolute Error 0.25 0.36 0.64

Root Mean Squared Error 0.48 0.72 1.04
R* 0.91 0.79 0.59

Table 6.3 presents the skill values and the ranks for the various methods that were 

used on the prediction dataset. It could be seen from the table that the machine learning 

algorithms performed significantly better than the traditional kriging method. The 

difference in the skill values is mainly due to the high variation in the R (Table 6.2).

Table 6.3: Model performances based on skill values
Statistics (Silver) SVM NN OK

skill value 9.75 22.16 42.93
Rank 01 02 03

Figures 6.7-6.9 show the scatter plots of the true vs. predicted grade values for 

variable Silver. It could be seen from the plots that the SVM method overperforms 

compared to the other two methods. To further investigate the performance of the model, 

the errors in the prediction set were analyzed. Figures 6.10-6.12 show the prediction error 

distribution plots for the OK, NN and the SVM methods. It can be noted that error 

distribution of Silver values for the SVM model and the NN model approximates a 

normal distribution, whereas for the OK method it is more of a lognormal shape. A 

normality assumption of the model errors is always preferred. Thus, a lognormal error
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distribution of the OK method could be seen as a disadvantage. This is particularly 

significant where uncertainty analysis is conducted.
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Figure 6.8: True vs. predicted (NN)
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Figure 6.9: True vs. predicted (OK)
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Figure 6.10: Error distribution for the Silver values (OK)

45

Figure 6.11: Error distribution for the Silver values (NN)

Figure 6.12: Error distribution for the Silver values fSVMl
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ESTIMATION OF GOLD RESERVE BY SUPPORT VECTOR MACHINES: 
DATA DIVISION USING CLUSTERING ALGORITHMS

In Chapter 5, the methodologies of OK, NN and SVM were applied on the Nome 

data after a manual division of the entire dataset into nine fish blocks. A major objective 

during data division was to divide the data such that (a) the data within each block are 

spatially correlated, (b) the dataset of any two blocks are not spatially correlated and, (c) 

each of the data blocks are spatially discrete and does not overlap with another. The 

division of the data into fish blocks {Coho, Halibut, Herring, Humpy, King, Pink, Red, 

Silver and Tomcod) was done arbitrarily. From a mining point of view, these arbitrary 

fish blocks do not make much sense. The lease boundary could be divided based on the 

concentration of ore grade values and could be clustered differently. In this chapter, 

clustering algorithms were used to divide the entire dataset into an optimal number of 

clusters. Each cluster can be identified as a mining block. The SVM methodology was 

then applied separately on each of the clusters. Two contemporary clustering algorithms 

were considered for the data division: the Fuzzy C-means algorithm (Chung and Lee, 

1992; Hoppner et al., 1999) and the K-means algorithm (Forgy, 1965; Hartigan and 

Wong, 1979).

7.1 Clustering Algorithms

Analysis of the results involved two steps:

• Clustering the data set in to k  clusters using the spatial coordinates and the gold 

estimates as the influencing variables (feature vectors).

• Using support vector machines on each of the clusters to estimate the gold grade.

CHAPTER VII
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The k-means clustering algorithm is well known in published literature. Its computational 

complexity is a function of the number of data points (feature vectors) to be clustered. 

The algorithm to perform k-means clustering in a set of data is described below:

1. Consider a set of n data points (feature vectors).

2. Assume the number of clusters, k, 2 < k < n.

3. Randomly select k initial cluster center locations.

4. All data points are assigned to a partition, defined by the nearest cluster center.

5. The cluster centers are moved to the geometric centroid of the data points in their

respective partitions.

6. Repeat from (4) until the overall objective function is smaller than a given 

tolerance or the centers do not move to a new point.

The k-means clustering algorithm tries to minimize an objective function. In 

this case, it is a squared error function. The data is clustered by the k-means method, 

which aims to partition the points into k groups such that the sum of squares from points 

to the assigned cluster centers is minimized. At the minimum, all cluster centers are at the 

mean of their Voronoi sets (the set of data points which are nearest to the cluster centre). 

The objective function can be expressed as:

7.1.1 K-Means Algorithm

centre Cj and is an indicator o f the distance of the ndata points from their respective 

cluster centers.

Although it can be proved that the procedure will always converge, the k-means 

algorithm does not necessarily find the most optimal configuration, corresponding to the

7=1 /=1
2 . 

where x(0) -  Cj is a chosen distance measure between a data point x. j) and the cluster
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global objective function minimum. The algorithm is also significantly sensitive to the 

initial randomly selected cluster centers. The k-means algorithm can be run multiple 

times to lessen this affect (Hartigan and Wong, 1979).

7.1.2 Fuzzy C-means Algorithm

Fuzzy C-means Clustering (FCM), also known as Fuzzy ISODATA, is a 

clustering technique which is separated from hard k-means that employs hard 

partitioning. The FCM employs fuzzy partitioning such that a data point can belong to all 

groups with different membership grades between 0 and 1. FCM is an iterative algorithm. 

The aim of FCM is to find cluster centers (centroids) that minimize a dissimilarity 

function.

In fuzzy partitioning, the membership matrix (U) is randomly initialized 

according to the following equation:
C

£ w ..  = l,V / = l,...,n (7.2)
i=i

The dissimilarity function which is used in FCM is given as:

y(t/,c1,c2,...,cc) = J y ,  = S Z Mi,%2 <7-3)
,=1 ;=i j =l

Where uy is between 0 and 1; c; is the centroid of cluster i; dy is the Euclidian distance 

between ith centroid (cO and j th data point; m e [l,oo] is a weighting exponent. To reach a 

minimum of dissimilarity function, two conditions must be satisfied. These are given in 

the following equations:

Zn m

c, Zn r,
J=iUH

(7.4)
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Uij =

Y

,  n̂2/(j»-1)
ij

\ d k j J

(7.5)

Various steps involved in fuzzy C-means algorithm is presented below.

1. Randomly initialize the membership matrix (U) that has constraints.

2. Calculate the centroids (c;).

3. Compute the dissimilarity between the centroids and the data points. Stop if  its 

improvement over previous iteration is below a threshold.

4. Compute a new membership matrix, U. Go to step 2.

By iteratively updating the cluster centers and the membership grades for each 

data point, FCM iteratively moves the cluster centers to the "right" location within a data 

set. FCM does not, however, ensure that it converges to an optimal solution. It is because 

the cluster centers (centroids) are formed using U that are randomly initialized. The 

performance depends on the initial centroids. For a robust approach an algorithm can be 

used to determine all of the centroids (for example: arithmetic means of all data points), 

or FCM can be executed several times each starting with different initial centroids. In this 

study, a robust clustering of the data set was defined using an algorithm to determine all 

of the centroids.

7.2 Results and Discussion

As previously noted the k-means and the FCM clustering algorithms were used to 

cluster the entire dataset into a pre-defined number of clusters. The SVM methodology 

was then applied on each of the clusters to assess the utility of the clustering algorithms 

for data division. The number of clusters was varied from 2 to 16. The optimal number of
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clusters was determined using the criteria as follows: (a) SVM model performance on 

each of the clusters, (b) the spatial integrity of the data in each of the clusters.

Several measures of error such as Root Mean Square Error (RMSE), Absolute 

Error (AE) and coefficient of determination (R2) were used to determine the best 

clustering algorithm and the corresponding optimal number of clusters. As described in 

Chapter 5, a 10-fold cross validation technique was used to train and to validate the SVM 

model for each of the clusters. With increasing number o f cluster, the clustering 

algorithms tend to create clusters that overlap with each other.

The entire dataset was segregated into a predefined number of clusters using the 

k-means and FCM clustering algorithms. Figure 7.1 and Figure 7.2 show the clustered 

datasets obtained using the k-means and the FCM clustering algorithm respectively. It is 

clear that k-means clustering algorithm tends to generate overlapping clusters when the 

number of clusters increases beyond ten clusters.

On the other hand, the FCM clustering tends to create spatially discrete clusters 

for any number of predefined clusters. The stability of FCM clustering algorithm is 

further evident in Figure 7.3.

The distribution of the entire dataset among different clusters for varying number 

of predefined clusters can also be observed from Figure 7.3. It is interesting to note that 

the FCM clustering method indicates a better distribution of the dataset compared to the 

k-means. Considering the spatial discreteness of the clusters, the FCM clustering 

algorithm has performed better than the k-means clustering algorithm.
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Figure 7.1: Map showing clustered dataset using K-means algorithm
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Figure 7.2: Map showing clustered dataset using FCM algorithm.

Another interesting point is the comparison between the clusters generated using 

the clustering algorithms and the fish blocks created arbitrarily. It may be observed that 

even though the trend in data division is the same, the division itself varies significantly.

n 1--- 1--- 1----r T I I I I I I r
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Figure 7.3. Partitioning of the dataset in clusters using (a) K-means algorithm 
and, (b) Fuzzy C-means algorithm.
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Figure 7.4. Variation of performance statistics among clusters (K- means)
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Figure 7.5. Variation of performance statistics among clusters (FCM)
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To select the optimal number of clusters, the SVM methodology was trained and 

validated for each of the clustered datasets. Figure 7.4 and Figure 7.5 show the variation 

in the model performance measures (RMSE, MAE, and R ) for the clustered datasets 

using the k-means and FCM clustering algorithms. An optimal number of clusters is 

desirable so that the model performance measures for all the clusters are high. Figure 7.5 

for the FCM algorithm indicates that the model performance is best when five clusters 

were selected. Figure 7.6 shows the variation in key statistics for model performance
'y

measures in terms of R for both the algorithms. The model performance on clusters 

generated by k-means is marginally better than the FCM clustering algorithm. Upon 

consideration of the spatial discreteness of the clusters and the SVM model performance 

on the clusters, the FCM methodology is selected for gold mineral reserve estimation in 

the study area. Figure 7.7 shows the location of the clusters for the optimal situation.

♦  F C M -M n  o  KM-min KM-Mean A  FC-M eans ■  KM-Median □  FC-Median • KM-Maximum o  FC-M ax

Number o f C lusters

Figure 7.6. Variation in R2 for the clusters created using the K-means and FCM
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Using five clusters for optimality, the FCM clustering algorithm was used to 

generate clusters. The SVM method was then applied to predict the gold grades on the 

datasets set aside and unseen during the process of training of the model for the 

development of the five clusters (Table 7.1). Figure 7.8 shows the observed and predicted 

gold grades for optimal clustering by the SVM method. Table 7.2 lists the SVM model 

performance measures for each of the five clusters. Unlike the results from the SVM 

application on the arbitrary fish blocks, the SVM performance is slightly improved and 

uniform for all the blocks.

Table 7.1: Number o f  samples in the cluster validation datasets
Mining Blocks No. o f  Drill holes (validation dataset)

Cluster 1 97
Cluster 2 85
Cluster 3 91
Cluster 4 164
Cluster 5 154

Table 1 .2 :  Model performance for the optimal clusters (FCM )
C luster # RM SE M E R2

1 847.0 11.1 0.18

2 369.5 -52.5 0.27

3 363.5 -27.5 0.29

4 463.2 -40.0 0.26

5 562.1 -120.0 0.15

Presence of high gold grades and moderate-high gold grades in the study area are 

prerequisites for a successful mining venture. Figure 7.7 shows an important result of the 

FCM clustering application in mineral reserve estimation. The FCM clustering algorithm 

has shown great promise in delineating the zones of high grades within the study area. 

Based on the value of the maximum gold grade estimated, clusters that offer profitable 

mining conditions can be identified. Out of the five clusters generated, two clusters
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(cluster # 1 and 4) seem to contain high gold grades and probably represent mining 

blocks with high potential. Consequently, zones of poor grade are also identified (such as 

cluster # 5).

Actual Grada

Figure 7.8. Predicted vs. observed gold grades for the clusters by FCM
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7.2.1 Gold Reserve Estimation

After the clustering analysis, the gold grades are predicted throughout each of the 

clusters for a depth of 5m from the seafloor. For this purpose, the spatial extent of each of 

the clusters was divided into 25m * 25m grids and the SVM methodology was used to 

predict the gold grade in each of the grids. Figure 7.9 - Figure 7.13 show the predicted 

gold grades at each of the five clusters. It is of interest to note that most of the clusters 

with high grade potential are located in the eastern section of the study area.
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66000-
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Figure 7.9. Predicted gold grade (in mg/ cu.m) in cluster # 1
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Figure 7.10. Predicted gold grade (in mg/ cu.m) in cluster # 2.
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Figure 7.11. Predicted gold grade (in mg/ cu.m) in cluster # 3.
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Figure 7.12: Predicted gold grade (in mg/cu.m) in cluster #4
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4000 5000 6000 7000 8000 9000

Figure 7.13. Predicted gold grade (in mg/ cu.m) in cluster # 5.

The predicted gold reserves for a depth of 5m in each of the clusters for different 

cutoff grades are presented in Table 7.3. The estimated gold grades indicate that clusters# 

1 and 4 have high mining potential. Clusters# 2 and 3 have moderate potential while the 

cluster# 5 has the lowest potential. For selective mining, the density of gold grade is an 

important attribute. Therefore, the gold grade densities were calculated for each of the 

clusters. Based on the predicted density of gold grades, cluster #1 and #4 appear to have 

the most mining potential (Table 7.4). Figure 7.14 delineates the study area based on the 

gold mining potential.

Table 7.3. Estimated gold reserves for the cluster blocks

Cluster#

Total reserve estimate (in tons) for different cut-off grades 
(COG, in mg/cu.m))
COG300 COG400 COG500 COG600 COG700

1 19.45 19.45 2.05 0 0
2 1.21 0.624 0.237 0 0
3 1.48 0.685 0.105 0 0
4 6.21 5.03 3.90 3.05 2.51
5 0.06 0 0 0 0
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Table 7.4. Estimated density of gold reserves for the cluster blocks

Cluster#

Density of gold reserves (tonnes/ Sq.km) for different cut-off 
grades (COG, in mg/cu.m))
COG300 COG400 COG500 COG600 COG700

1 2.34 2.34 0.25 0 0
2 0.16 0.086 0.033 0 0
3 0.20 0.091 0.014 0 0
4 0.73 0.592 0.458 0.358 0.295
5 0.007 0 0 0 0

Figure 7.14. Map showing zones of varying potentiality for a gold mining scenario

The clustering methods, especially the FCM clustering algorithm, improved the 

performance of the SVM methodology over the entire dataset. The most important 

advantage of the clustering analysis is the ability to identify zones of high ore grade. 

Identification of high grade zones can be especially useful in the decision making process 

of future mining or exploration.
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Chapter VIII 

SUMMARY AND CONCLUSIONS

In this thesis, two machine learning algorithms, namely the neural network (NN) 

and support vector machine (SVM), were developed for the ore reserve estimation. The 

models were applied to a sparse and noisy drill hole dataset from the Nome gold district 

for the purpose of ore reserve estimation. Additionally, it was also applied on the Greens 

Creek dataset to estimate the silver content.

One of the characteristics of the Nome gold deposits is that the deposits were 

explored using few exploratory drill holes due to the prohibitive cost of sampling in the 

deposit. The sampling of the drill holes were further complicated due to high sea and 

general difficulties associated with undersea drilling and sampling. The problem was 

further compounded due to the depositional environment and sorting characteristics of 

the placer gold. As a result the data exhibits extreme spatial variations. In spite of these 

issues, attempts were made to treat the data judiciously, so that most of the information 

could be utilized for ore grade modeling. Several issues pertaining to the NN learning and 

model generalization were addressed. This included techniques for the development of 

the model data subsets (the training dataset, the calibration dataset and the validation 

dataset) and a study of three local optimization algorithms: (a) standard gradient descent 

back-propagation, (b) back-propagation with momentum algorithm (c) Levenberg- 

Marquardt backpropagation algorithm (LMBP).

The datasets which are used to develop a model play a critical role in its 

generalization ability and subsequently on the parameters that are obtained for ore reserve 

estimation. Conventional methods of randomly distributing the samples can result in 

statistically dissimilar data subsets, thereby reducing its reliability. In this regard, an ideal 

technique for legitimate data division has been suggested in the thesis. An integrated

8.1 Summary
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approach of data segmentation and genetic algorithms /kohonen network was 

investigated. The reason for data segmentation was primarily the presence of extreme 

high values in the data. Disproportionate representation of these extreme values in the 

subsets might result in dissimilar statistical characteristics. Therefore, data segmentation 

was carried out to divide the entire data into three segments such that each segment 

represented the low, the medium and the high grade gold values in equal proportion. 

Either genetic algorithms or kohonen networks were applied in each segment for 

sampling the data into the corresponding data subsets. The results indicated that a 

combination of data segmentation and genetic algorithms produced the best data division.

Several network architectures with different number of hidden layers and neurons 

in each layer were also investigated to determine the optimum network parameters. Once 

the behavior of the various optimization algorithms was identified and the network 

parameters obtained, they were used to develop the NN model. During the model 

development, it was trained on the training dataset and its performance was observed in a 

calibration dataset. The training was stopped, employing the quick stop method, which is 

aimed at improving the model generalization ability. The NN model was then used to 

estimate the ore grades associated in each of the fish block in the study area. Following 

the state lease pattern, the entire study area was divided into nine fish blocks (coho, 

halibut, herring, humpy, king, pink, red, silver and tomcod) for the purpose of gold 

reserve estimation. Apart from developing the NN model, a novel statistical learning 

based SVM approach was also considered. This approach tends to alleviate the data 

sparseness, impreciseness and the noise characteristics o f the data.

For the development of a SVM based model, a calibration dataset is not required. 

So the training and the calibration datasets were merged during the SVM model 

development. A rigorous grid search employing the k-fold cross validation technique was 

carried out using the training dataset to select the optimal model parameters. Once the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

optimal parameters were selected, the SVM model was used for the estimation of the 

nome placer gold reserve.

To investigate the accuracy and promise of the SVM and NN as a tool for ore 

reserve estimation, the ore grade and the tonnage obtained from these machine learning 

algorithms is compared with those estimated by the predominantly used geostatistical 

ordinary kriging (OK) technique under various cut-off grades. The overall performance 

compared by the analysis of Mean Square Error (MSE), Mean Absolute Error (MAE), 

Mean Error (ME) and the coefficient of determination (R2) indicated that the SVM model 

performance is better.

The improvement from the summary statistics stated above was however marginal 

and largely affected by the extreme spatial variations associated with the typical placer 

depositional characteristics of the Nome gold. Since the datasets used for the model 

development generally dictates the prediction, the generalization was poor and results 

were difficult to interpret. This problem is often observed when model comparison is 

based on only a single dataset. Therefore, in order to further establish the reliability of 

these models as a tool for ore reserve estimation, they were also applied to a dataset 

obtained from a lode deposit. The dataset obtained from Greens Creek ore deposit is 

devoid of the typical characteristics seen in the Nome placer gold deposit. An analysis 

similar to the Nome data was performed i.e. the ordinary kriging, neural network and the 

support vector machine were used to estimate the grade of the variable silver values 

associated with the deposit. A new performance statistic was suggested to compare the 

results. This summary statistic termed as the ‘skill value’ is an entirely subjective 

measurement. It considers the ME, MAE, RMSE equally and applies a scaling to the R . 

By doing so it enables one to rank the various models based on their performance such 

that a lower skill value implies a better model. In this way, different models can be 

assessed for their relevance to a particular task.
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The initial studies on the Nome placer ore reserve were based on nine fish blocks. 

These blocks were obtained arbitrarily from the study area. From a mining point of view, 

these arbitrary fish blocks do not make much sense. The lease boundary could be divided 

based on the concentration of ore grade values and could be clustered differently. 

Therefore, clustering algorithms were applied in a separate study to divide the entire 

dataset into an optimal number of clusters where each cluster corresponded to a mining 

block. The goal behind performing this exercise was to obtain feasible mining blocks that 

are spatially discrete and do not overlap with one another.

8.2 Conclusions

This study investigated various modeling issues pertaining to the application of 

the machine learning algorithms viz. the neural network and support vector machine for 

ore grade estimation. They were applied to calculate the ore reserve for Nome placer gold 

deposit and the Greens Creek lode deposit. Based on the study results, the following 

specific conclusions are derived:

(i) The drill hole information for the placer gold deposit of the Nome district is very 

sparse; as a result, random division of data fails to achieve the desired statistical 

similarity among the subsets of data on which the NN model is built. A simulation study 

revealed that almost 25% of the time, random data divisions are bad.

(ii) Genetic algorithm and Kohonen network emerged as two promising tools for 

effective data division. When compared to the kohonen network, genetic algorithm 

resulted in superior data division.

(iii) Data segmentation resulted in improved performances of genetic algorithm and 

kohonen network in data division.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

(iv) An integrated approach of data segmentation and genetic algorithm proved to be 

the best way for data divisions.

(v) LMBP algorithm performed best among the local optimization algorithms for all 

the data sets in terms of the speed of convergence and the error generated.

(vi) Training the network for large number of epoch’s results in an overfitting of a 

model. Quick-stop training provides an efficient way to improve the model 

generalization; and thus a better solution.

(vii) Clustering algorithms generated five clusters as the optimum number of feasible 

mining blocks as compared to the nine fish blocks that were arbitrarily used.

(viii) The machine learning algorithms improved the generalization performance for 

most of the fish blocks in the Nome dataset except for the King and Tomcod blocks 

where the OK method generalized well. Among the two machine learning algorithms 

SVM produced the better results. The improvement was however marginal and it was 

largely affected by the extreme spatial variations associated with the typical placer gold 

depositional characteristics of the Nome gold.

(ix) Since the extreme variation in the Nome datasets heavily influenced the predictive 

capability of the three developed models and reduced their performance, their utility as a 

tool for reserve estimation could not be supported. So in order to further verify their 

ability for ore grade estimation they were used to predict the grade of silver values in a 

lode dataset. The SVM model produced the best estimates.

(x) Since the machine learning algorithms exhibited better performances it could be 

concluded, in general, that these methods can be used for the purpose of predictive 

mapping if the available data is used sensibly. Ore reserve estimation is one such
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predictive mapping. The choice of SVM and NN methods can also prove to be good since 

they are computationally fast compared to the OK method when the datasets are of small 

size. However, when the size of the dataset increases all of them are equally time 

consuming.
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MATLAB CODE 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Genetic Algorithm for Data Division 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function sortdata=geneticfdv(data,ptr,pcal,pval,npop)

% THis function used the genetic algorithms for data division

xdata=data(l :end,l);

ydata=data(l :end,2);

wdata=data(l :end,3);

gdata=data(l :end,4);

dl=length(data);

mxdata=mean(xdata);

mydata=mean(ydata);

mwdata=mean(wdata);

mgdata=mean(gdata);

xstd=std(xdata);

ystd=std(ydata);

wstd=std(wdata);

gstd=std(gdata);

normx=(xdata-mxdata) ,/xstd;

normy=(ydata-mydata)./ystd;

normw=(wdata-mwdata)./wstd;

APPENDIX A
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normg=(gdata-mgdata)./gstd; 

normdata=[normx normy normw normg]; 

ntr=floor(0.01 .*dl.*ptr); 

ncal=floor(0.01 .*dl.*pcal); 

nval=dl-(ntr+ncal); 

dset=[]; 

for i=l :npop 

ran=rand(dl,l); 

sran=sort(ran); 

for j=l:dl 

for k=l :dl 

if(sran(j)=ran(k)) 

dset=[dset;k]; 

end; 

end; 

end;

datset(:,i)=dset;

dset=[];

end;

parentdat=datset;

% Setting dfittestl to a arbitary intial high value

dfittestl=1000;

bCondition=0;
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while(bCondition=0) 

for i=l:npop

f(i)=fitness(parentdat(: ,i),normdata,ntr,ncal,nval,dl); 

end;

dfittest2=min(f); 

for i=l :npop

if(f(i)==dfittest2)

bestpos=i;

end;

end;

if(dfittest 1 <=dfittest2)

nConditionCount=nConditionCount+l; 

else

nConditionCount=0; 

dfittest 1 =dfittest2 

bestsol=parentdat(:,bestpos); 

end;

%check whether the changes in the fittest gene has occurred since 250 

if(nConditionCount >250) 

bCondition=l; 

end;

slct=select(f,npop);

childdat=generation(parentdat,slct,dl,npop);
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child=childdat(: ,i); 

child=normalization(child,dl); 

childdat(: ,i)=child; 

end;

parentdat=childdat;

end;

bestsol;

sortdata=[];

for i=l :dl

sortdata=[sortdata; data(bestsol(i),l) data(bestsol(i),2) data(bestsol(i),3) 

data(bestsol(i),4)];

end;

mxdata=mean(xdata);

mydata=mean(ydata);

mwdata=mean(wdata);

mgdata=mean(gdata);

xstd=std(xdata);

ystd=std(ydata);

wstd=std(wdata);

gstd=std(gdata);

mxtr=mean(sortdata( 1 :ntr, 1));

stdxtr=std(sortdata(l :ntr, 1));

for i=l :npop
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mxcal=mean(sortdata(ntr+1 :ntr+ncal, 1)); 

stdxcal=std(sortdata(ntr+1 :ntr+ncal, 1)); 

mxval=mean(sortdata(ntr+ncal+1 :dl, 1)); 

stdxval=std(sortdata(ntr+ncal+1 :dl, 1)); 

mytr=mean(sortdata(l :ntr,2)); 

stdytr=std(sortdata(l :ntr,2)); 

mycal=mean(sortdata(ntr+l:ntr+ncal,2)); 

stdycal=std(sortdata(ntr+1 :ntr+ncal,2)); 

myval=mean(sortdata(ntr+ncal+l:dl,2)); 

stdyval=std(sortdata(ntr+ncal+l:dl,2)); 

mwtr=mean(sortdata(l :ntr,3)); 

stdwtr=std(sortdata(l :ntr,3)); 

mwcal=mean(sortdata(ntr+1 :ntr+-ncal,3)); 

stdwcal=std(sortdata(ntr+1 :ntr+ncal,3)); 

mwval=mean(sortdata(ntr+-ncal+l:dl,3)); 

stdwval=std(sortdata(ntr+ncal+l:dl,3)); 

mgtr=mean(sortdata(l :ntr,4)); 

stdgtr=std(sortdata(l :ntr,4)); 

mgcal=mean(sortdata(ntr+l:ntr+ncal,4)); 

stdgcal=std(sortdata(ntr+ 1 :ntr+ncal,4)); 

mgval=mean(sortdata(ntr+ncal+ 1 :dl,4)); 

stdgval=std(sortdata(ntr+ncal+1: dl,4)); 

ol=[mxdata mydata mwdata mgdata xstd ystd wstd gstd]
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tr=[mxtr mytr mwtr mgtr stdxtr stdytr stdwtr stdgtr] 

cal=[mxcal mycal mwcal mgcal stdxcal stdycal stdwcal stdgcal] 

val=[mxval myval mwval mgval stdxval stdyval stdwval stdgval] 

ntr; ncal; nval;
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£:|c$:k:k:|c:k:k3|c:|c$$$$$s|c$$$$s|c$$s|c$s|c$$£$$)|c$$s|c3|c3|cs|c$4es|c9k:|‘jte$:|'j|c:|c:|t9k9|e:|'9kjteai‘ :|cjtejtejtejtejtejtejte9kjte$$jtejte

function tdev=fitness(parentg, data, ntr,ncal,nval,dl)

% This function for assessing the fitness of the data division 

for i=l :dl 

datax(i)=data(parentg(i), 1); 

datay(i)=data(parentg(i),2); 

dataw(i)=data(parentg(i),3); 

datag(i)=data(p arentg(i) ,4); 

end;

mxtr=mean(datax( 1 :ntr)); 

mxcal=mean(datax(ntr+1 :ntr+ncal)); 

mxval=mean(datax(ntr+ncal+l: ntr+ncal+nval)); 

varxtr=std(datax(l :ntr)); 

varxcal=std(datax(ntrt-l :ntr+ncal)); 

varxval=std(datax(ntr+ncal+1: ntr+ncal+nval)); 

mytr=mean(datay(l :ntr)); 

mycal=mean(datay(ntr+l :ntr+ncal)); 

myval=mean(datay(ntr+ncal+l: ntr+ncal+nval)); 

varytr=std(datay(l :ntr));

Function Fitness
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varycal=std(datay(ntr+1 :ntr+ncal));

varyval=std(datay(ntr+ncal+l: ntr+ncal+nval));

mwtr=mean(datay(l :ntr));

mwcal=mean(dataw(ntr+ 1 :ntr+ncal));

mwval=mean(dataw(ntr+ncal+1: ntr+ncal+nval));

varwtr=std(dataw(l :ntr));

varwcal=std(dataw(ntr+l :ntr+ncal));

varwval=std(dataw(ntr+ncal+l: ntr+ncal+nval));

mgtr=mean(datag(l :ntr));

mgcal=mean(datag(ntr+l :ntr+ncal));

mgval=mean(datag(ntr+ncal+l: ntr+ncal+nval));

vargtr=std(datag( 1 :ntr));

vargcal=std(datag(ntr+l :ntr+ncal));

vargval=std(datag(ntr+ncal+l: ntr+ncal+nval));

mxdev=(mxtr-mxcal)A2+(mxcal-mxval)A2+(mxtr-mxval)A2;

mydev=(mytr-mycal)A2+(rnycal-myval)A2+(mytr-myval)A2;

mwdev=(mwtr-mwcal)A2+(mwcal-mwval)A2+(mwtr-mwval)A2;

mgdev=(mgtr-mgcal)A2+(mgcal-mgval)A2+(mgtr-mgval)A2;

varxdev=abs(varxtr-varxcal)+abs(varxcal-varxval)+abs(varxtr-varxval);

varydev=abs(varytr-varycal)+abs(varycal-varyval)+abs(varytr-varyval);

varwdev=abs(varwtr-varwcal)+abs(varwcal-varwval)+abs(varwtr-varwval);

vargdev=abs(vargtr-vargcal)+abs(vargcal-vargval)+abs(vargtr-vargval);

tdev=mxdev+mydev+mwdev+mgdev+varxdev+varydev+varwdev+vargdev;
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Function generation 

unction child=generation(parent,slct,dl>npop)

% This function is for the production of population in the next generation

dpcrossover=.95;

dpmutate=.01;

j=U

k=2;

while (k<=npop)

w=flip(dpcrossover);

if (w = l)

ncross=ceil(rand(l, l).*dl); 

else 

ncross=dl; 

end;

pl=slct(j);

p2=slct(k);

[childl,child2]=crossover(parent(:,pl),parent(:,p2),ncross,dl); 

child(: j)=childl; 

child(:,k)=child2; 

w 1 =flip(dpmutate);
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i f (w l= l)

ncross 1 =ceil(rand( 1,1). * dl); 

ncross2=ceil(rand(l, l).*dl); 

else 

ncross l=dl; 

ncross2=dl; 

end;

[child(: j),child(:,k)]=mutation(child(:j),child(:,k),ncrossl,ncross2,dl); 

j=k+l;

k=j+l;

end;
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Function Crossover

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function[childl ,child2]=crossover(parentl ,parent2,ncross,dl)

% This function is for the crossover operation

if(ncross<dl)

for i=l :ncross

child 1 (i, 1 )=parent 1 (i); 

child2(i, 1 )=parent2(i);

end;

for j=(ncross+l):dl 

child 1 (j, 1 )=parent2(j); 

child2(j, 1 )=parent 1 (j);

end;

else

childl=parentl;

child2=parent2;

end;

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Function Mutation

*  *  *  * *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *

function [childl ,child2]=mutation(childl ,child2,ncrossl ,ncross2,dl)

% This is mutation function 

if((ncross l <dl) | (ncross2<dl)) 

x=child l (ncross l ); 

child l (ncross l )=child2(ncross2); 

child2(ncross2)=x;

else

childl=childl;

child2=child2;

end

161

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



162

Function Select

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function slct=select(f,npop)

% This function is for the selection of random data division

for i=l :npop

invf(i)=l./f(i);

end;

suminvf=sum(invf); 

for i=l :npop

expected(i)=npop.*invf(i) ./suminvf;

%expected(i)=npop. * f(i) ./sumf; 

j assign(i)=floor(expected(i)); 

fraction(i)=expected(i)-jassign(i); 

end; 

k=0;

for i=l :npop 

while(j assign(i)>0) 

k=k+l; 

choices(k)=i; 

j assign(i)=j assign(i)-1; 

end; 

end;

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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while(k<npop)

H + i ;
if (j>npop)

j= i;

end;

if(ffaction(j)>0) 

winner=flip(fraction(j)); 

if(w inner=l) 

k=k+l; 

choices(k)=j; 

fraction(j)=fraction(j)-l; 

end; 

end; 

end;

ran=rand(npop,l); 

sran=sort(ran); 

for i=l :npop 

forj=l:npop 

if(sran(i)=ran(j)) 

slct(i)=choices(j); 

end; 

end;
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end;

a|ea|ca|ea|ea|ea|ea|e9|ea|ea|ea|e9|ea|ca|ea|ea|ea|ea|ea|ea|ea|ea|e9|ea|e9|ea|e9|ea|ea|ea|ea|ea|ea|ea|ea|ea|ea|ea)c9|ea|ea|ea|e9|ea|ea|ea|ea|ea|ea|ea|e9|ea|e

Function Flip

* * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * *

function winner=flip(dnum)

% This function is for generating 1 Or 0 

dn=rand(l,l); 

if(dnum>dn) 

winner=l; 

else 

winner=0; 

end;
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&  $  $  $  $  $  $  $  *  $  *  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  $  £  $  $  $  $  $  $  a|e $  $  $  afe $  $  $  % $  $  % % $  $  % % $  $  $

This function for the simulation study of data divisions

function simutest(data,nita,ptr,pc,pval)

% This function is for the testing of sparse data issues

dl=length(data);

ntr=ceil(0.01. *dl. *ptr);

ncal=ceil(0.01 .*dl.*pc);

nval=dl-(ntr+-ncal);

xdata=data(l :end,l);

ydata=data(l :end,2);

wdata=data( 1 :end,3);

gold=data(l :end,4);

xset=[];

yset=[];

wset=[];

gset=[];

nxt=0;

nyt=0;

nwt=0;

ngt=0;

nt=0;

for p = l:100
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for i=l::nita 

ran=rand(dl,l); 

ran(l);

sran=sort(ran); 

for j= l.dl 

for k=l:dl 

if(sran(j )=ran(k)) 

xset=[xset; xdata(k)]; 

yset=[yset; ydata(k)]; 

wset=[wset; wdata(k)]; 

gset=[gset;gold(k)]; 

end; 

end; 

end;

trxset=xset(l :ntr); 

calxset=xset(ntr+l :ntr+ncal); 

valxset=xset(ntr+-ncal+l :dl); 

fl=anova(trxset,calxset,valxset); 

if[fl>3.0) 

nxt=nxt+l; 

end;

tryset=yset(l:ntr); 

calyset=yset(ntr+l :ntr+ncal);
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valyset=yset(ntr+ncal+l :dl); 

f2=anova(tryset,calyset,valyset); 

if(£2>3.0) 

nyt=nyt+l; 

end;

trwset=wset(l :ntr); 

calwset=wset(ntr+l :ntr+ncal); 

valwset=wset(ntr+ncal+ 1 :dl); 

f3=anova(trwset,calwset,valwset); 

if(B>3.0) 

nwt=nwt+l; 

end;

trgset=gset(l :ntr); 

calgset=gset(ntr+1 :ntr+ncal); 

valgset=gset(ntr+ncal+l :dl); 

w=waldtest(trgset,calgset,valgset); 

mean(trgset); 

if(w>5.99) 

ngt=ngt+l; 

end;

if((fl>3.0)|(f2>3.0)|(w>5.99)|(f3>3.0))

nt=nt+l;

end;
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xset=[];

yset=[];

gset=[];

wset=[];

end;

end;

nxt=nxt./100

nyt=nyt./100

nwt=nwt./100

ngt=ngt./100

nt=nt./100
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Function ANOVA

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function f=anova(trdat,caldat,valdat)

% This function is for f  test using anova

ntr=length(trdat);

ncal=length(caldat);

nval=length(valdat);

dl=ntr+ncal+nval;

mtr=mean(trdat);

mcal=mean(caldat);

mval=mean(valdat);

vartr=var(trdat);

varcal=var(caldat);

varval=var(valdat);

omean=(mtr+mcal+mval) ,/3;

msbs=((ntr.*(omean-mtr)A2)+(ncal.*(omean-mcal)A2)+(nval.*(omean-mval)A2))./2; 

msws=(((ntr-1). * vartr)+((ncal-1). * varcal)+ ((nval-1). * varval)) ./(dl-3); 

f=msbs./msws;

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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3|ca|ea|ea|ea|ea|ea|ea|ea|ea|ea|ea|e9|e9|eaftea|ea|e9|e9|ea|ea|ea|ca|ea|ea|ea|ea|e9|ea|ea|ea|ea|ea|e9|ea|ea|ea|ea|ea|ea|ea|ea|ea|ea|ea|ea|e9|ca|ca|ea|ea|ea|ea|e3|ca|ea|ea|6a|ea|ea|ca|ca|ca|ea|ca|ca|ca|c â|c9|ca|ea|e

Function Waldtest

************************************************************************

function w=waldtest(trgset,calgset,valgset)

% This function is for wald test of lognormal data 

ntr=length(trgset); 

ncal=length(calgset); 

nval=length(valgset); 

logtrgset=[]; 

logcalgset=[]; 

logvalgset=[]; 

for i=l:ntr 

if(trgset(i)~=0)

logtrgset=[logtrgset; log(trgset(i))]; 

end; 

end;

llogtrgset=length(logtrgset); 

mlogtrgset=mean(logtrgset); 

varlogtrgset=var(logtrgset); 

vtrgset=log(llogtrgset./ntr); 

for j=l:ncal 

if(calgset(j)~=0)

logcalgset=[logcalgset; log(calgset(j))];
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end;

end;

llogcalgset=length(logcalgset); 

mlogcalgset=mean(logcalgset); 

varlogcalgset=var(logcalgset); 

vcalgset=log(llogcalgset./ncal); 

for k=l :nval 

if(valgset(k)~=0)

logvalgset=[logvalgset; log(valgset(k))]; 

end; 

end;

llogvalgset=length(logvalgset); 

mlogvalgset=mean(logvalgset); 

varlogvalgset=var(logvalgset); 

walgset=log(llogvalgset./nval);

wl=(ncal.*exp(vcalgset).*(vtrgset+mlogtrgset+0.5.*varlogtrgset -

(vcalgset+mlogcalgset+0.5.*varlogcalgset))A2)./(l-

exp(vcalgset)+varlogcalgset+0.5*varlogcalgsetA2)+

(nval. *exp(walgset). * (vtrgset+mlogtrgset+0.5. * varlogtrgset - 

(walgset+mlogvalgset+0.5.*varlogvalgset))A2)./(l- 

exp(walgset)+varlogvalgset+0.5 *varlogvalgsetA2);

w2=(((ntr*exp(vtrgset))* (1 -exp(vtrgset)+varlogtrgset+0.5 * varlogtrgsetA2)A-1)+ 

((ncal*exp(vcalgset))*(l-exp(vcalgset)+varlogcalgset+0.5*varlogcalgsetA2)A-l)+ 

((nval*exp(walgset))*( 1 -exp(walgset)+varlogvalgset+0.5 *varlogvalgsetA2)A-1 ))A-1;
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w=wl-w3;

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

FUNCTION GRIDSEP 

******************************************************************

function [a,blc,gd]=gridsep(num)

% This function separates the grids insides the polygonal area from within 

% the sampling region 

load c:\blc.txt; 

load c:\gd.txt;

a=[];

for i=l:size(blc,l)

if  b lc(i,3 )= l .7e+038

a=[a;gd(i,:)];

end

end

w3=wl*w2;
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FUNCTION ESTMATION

9|ea|ca|ea|e4e9|e9|e9|es|ea|eate9|e3|catea|eatea|e9|eateateatea|ca|ca|eatea|eateateate9|ea|ca|cateateateateatea|ca|ca|ca|e9|ca|catea|ea|ea|ea|ea|ca|ea|ea|ea|ca|estca|e9|e3|c3|ea|ea|ca|eatea|ea|ea|e

function[est,res300,res400,res500,res600,res700,gr300,gr400,gr500,gr600,gr700]= 

estimation(traindata,data,ninput,nhidden, noutput, w l, w2, b l, b2)

%This function esrimates for a particular cut-off grade.

inputl =traindata(l :end, 1);

input2=traindata(l .end,2);

input3=traindata(l :end,3);

output=traindata(l :end,4);

mininl =min(input 1);

maxinl =max(input 1);

minin2=min(input2);

maxin2=max(input2);

minin3=min(input3);

maxin3=max(input3);

mino=min(output);

maxo=max(output);

%"Data" is the Prediction data from the theoritical grid block 

datainl=data(l :end,l); 

datain2=data(l :end,2); 

datain3=data(l :end,3);

nntrainl=(datainl-mininl)./(maxinl-mininl);
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nntrain2=(datain2-minin2)./(maxin2-minin2);

nntrain3=(datain3-minin3)./(maxin3-minin3);

dl=length(data);

[estimation]=crossval(nntrain 1 ,imtrain2,nntrain3 ,ninput,nhidden,noutput,w 1, w2,b 1, 

b2,mino,maxo);

est=estimation';

res300=0;

res400=0;

res500=0;

res600=0;

res700=0;

z300=[];

gr300=[];

z400=[];

gr400=[];

z500=[];

gr500=[];

z600=[];

gr600=[];

z700=[]; 

gr70O=[]; 

fori=l:size(est,l) 

if  (est(i)<300)
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z300=[z300;est(i)]; 

else

gr300=[gr300;est(i)];

res300=res300+est(i)*25*25*5;

end

end

avggrade300=sum(gr300)/size(est, 1); 

totalreserve300=avggrade300*25*25*5*size(est,l); 

for i=l:size(est,l) 

if (est(i)<400) 

z400=[z400;est(i)]; 

else

gr400=[gr400; est(i)]; 

res400=res400+est(i)*25*25*5; 

end 

end

avggrade400=sum(gr400)/size(est, 1); 

totalreserve400=avggrade400*25*25*5*size(est,l); 

fori=l:size(est,l) 

if (est(i)<500) 

z500=[z500;est(i)]; 

else

gr500=[gr500;est(i)];
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res500=res500+est(i)*25*25*5;

end

end

for i=l:size(est,l) 

if (est(i)<600) 

z600=[z600;est(i)]; 

else

gr600=[gr600;est(i)]; 

res600=res600+est(i)*25*25*5; 

end 

end

for i=l :size(est,l) 

if (est(i)<700) 

z700=[z700;est(i)]; 

else

gr700=[gr700;est(i)]; 

res700=res700+est(i)*25*25*5; 

end 

end
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APPENDIX B 

RCODE

************************************************************************

#FIRST DATASET 

library(‘class’) 

library(’el071') 

train<-read.table('grp l_tr.txt') 

xtrain=train[,l :3] 

ytrain=train[,4] 

xtrainl=xtrain 

ytrainl=ytrain

xtrainl [, 1]= (xtrain[, l]-min(xtrain[, 1 ]))/(max(xtrain[, l])-min(xtrain[, 1])) 

xtrainl[,2]= (xtrain[,2]-min(xtrain[,2]))/(max(xtrain[,2])-min(xtrain[,2])) 

xtrainl[,3]= (xtrain[,3]miin(xtrain[,3]))/(max(xtrain[,3])-min(xtrain[,3])) 

ytrain 1 =(ytrain-min(ytrain))/(max(ytrain)-inin(ytrain))

## Select the number of folds.

##attributes(model)— gives the list of attributes in the object.

a=l:7

b=l:7

for (cro in 1:7) {

model <- svm(xtrainl, ytrainl,type="eps-regression",fitted=TRUE,cross=cro*2)

a[cro]=model$tot.MSE

b[cro]=cro*2

}
plot(b,a,xlab= "Number of Folds", ylab="MSE")
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## TEST SET

test<-read.table('grp l_pr.txt')

xtest=test[,l:3]

ytest=test[,4]

xtestl=xtest

ytestl=ytest

xtest 1 [, 1 ]= (xtest[, 1 ] -min(xtrain[, 1 ]))/(max(xtrain[, 1 ])-min(xtrain[, 1 ])) 

xtestl[,2]= (xtest[,2]-min(xtrain[,2]))/(max(xtrain[,2])-inin(xtrain[,2])) 

xtestl[,3]= (xtest[,3]-min(xtrain[,3]))/(max(xtrain[,3])-min(xtrain[,3])) 

ytest 1 =(ytest-min(ytrain))/(max(ytrain)-min(ytrain))

##OBJECTIVE TUNING

obj 1 <-tune(svm,xtrainl, ytrainl,ranges = list(gamma=seq(0.05,10, by=0.10), 

cost=seq(l,15, by=0.5)),tunecontrol = tune.control(sampling="cross",cross=10), 

type="eps-regression",kemel="radiari,epsilon=0.05,scale=l)

plot(objl)

#obj 1 <-tune(svm,xtrainl, ytrainl,validation.x=xtestl ,validation.y=ytestl, ranges 

list(gamma =seq(0.05,9, by=0.10), cost=seq(l,10, by=0.5)),tunecontrol = 

tune.control(sampling="fix",fix=l), type-'eps- 

regression" ,kemel="radial" ,epsilon=0.05 ,scale= 1)

plot(objl)
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## SELECTING EPSILON

k=l

a=l:75

b=l:75

for (eps in 1:75) {

model <- svm(xtrainl, ytrainl,type="eps- 

regression",cross= 10,gamma=4.5 ,cost=. 01 ,epsilon=eps/100) 

result<-predict(model,xtrainl) 

a[k]=sum((result-ytrain 1) A2)/length(ytest 1) 

b[k]=eps/100 

k=k+l 

}
plot(b,a,xlab-'epsilon",ylab="MSE")

## RUN THE MODEL 

model<-svm(xtrainl,ytrainl ,type="eps-

regression",kemel="radial",cross=10,cost=0.03,epsilon=0.5,gamma=4.55)

## TEST DATASET RESULTS 

result_test<-predict(model,xtest 1)

yresult_test=result_test* (max(ytrain)-min(ytrain)) +min(ytrain)

sq_error=sum((yresult_test-ytest)A2)

rmse=sqrt(sq_error/length(ytest))

mse=(sq_error/length(ytest))

me=sum((yresult_test-ytest))/(length(ytest))

mae=sum(abs(yresult_test-ytest))/(length(ytest))

test_est<-cbind(ytest,yresult_test)
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libraryCboot')

r=corr(test_est, w=rep(l ,nrow(test_est))/nrow(test_est))

rmse

mse

mse

me

mae

rsq

write.table(test_est,file="c:/test_est_grpl.txt",row.names=FALSE,

col.names=FALSE)

plot(ytest,yresult_test, xlab= "Actual Grade", ylab-'Predicted Grade") 

## TRAINING DATASET RESULT 

result_tr<-predict(model,xtrainl)

ytr_pred = result_tr*(max(ytrain)-min(ytrain)) +min(ytrain)

sq_error=sum((ytr_pred-ytrain)A2)

rmse=sqrt(sq_error/length(ytrain))

mse=(sq_error/length(ytrain))

me=sum((ytrjpred-ytrain))/(length(ytrain))

mae=sum(abs(ytr_pred-ytrain))/(length(ytrain))

tr_est<-cbind(ytrain,ytr_pred)

libraryCboot1)

r=corr(tr_est, w=rep( 1 ,nrow(tr_est))/nrow(tr_est))

rsq^l

rmse
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mse

me

mae

rsq

plot(ytrain, ytr_pred, xlab= "Actual Grade", ylab-'Predicted Grade")

write.table(tr_est,file="c:/tr_est_grpl.txt",row.names=FALSE,

col.names=FALSE)

remove(xtrainl,ytrainl, xtrain, ytrain,

result_tr,obj 1,train,model,xtest,xtestl ,result_test,ytest,yresult_test,ytr_pred,ytr_pred) 

attributes(object name)
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R Code for Clustering Algoritms

##K-means Clustering

op <- par(mfrow = c(5,3), mar = .1+ c(2,2,3,l)) 

rmsesum=mat.or.vec(15,5) 

abssum=mat.or.vec(l 5,5) 

r2sum=mat.or.vec(l 5,5) 

number=mat.or.vec(16,16)

for (n in 2:16) {

rm(cl,alldata,datal ,data2,x,y,m,new, error) 

alldata<-read.table('data.txt')

(cl <- kmeans(alldata, n, nstart = 25))

plot(alldata[,l],alldata[,2], col = cl$cluster,xlab="X-coordinate", ylab="Y- 

coordinate",main=paste("Number of Clusters=",n,sep=" "),cex=0.3, pch=0.35); 

alldata[,5]=cl$cluster 

number[ 1 :n,n-1 ]=cl$size 

error=mat. or. vec(n,3)

if ( n = 2) {

test<-write.table(alldata,"clustered2.txt",row.names = FALSE,col.names = FALSE)} 

if(n = 3 ){

test<-write.table(alldata,"clustered3.txt" ,row.names = FALSE,col.names = FALSE)} 

if (n=4){

test<-write.table(alldata,"clustered4.txt",row.names = FALSE,col.names = FALSE)} 

if(n = 5 ){

test<-write.table(alldata,"clustered5.txt",row.names = FALSE,col.names = FALSE)} 

if ( n = 6){
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test<-write.table(alldata,"clustered6.txt",row.names = FALSE, col.names = FALSE)} 

if(n = 7 ){

test<-write.table(alldata,"clustered7.txt", row.names = FALSE,col.names = FALSE)} 

if(n—8){
test<-write.table(alldata,"clustered8.txt",row.names = FALSE,col.names = FALSE)} 

if(n = 9 ){

test<-write.table(alldata,"clustered9.txt",row.names = FALSE,col.names = FALSE)} 

if ( n = 10){

test<-write.table(alldata,"clusteredl0.txt",row.names = FALSE,col.names = FALSE)}

if(n—11){
test<-write.table(alldata,"clusteredll.txt",row.names = FALSE,col.names = FALSE)} 

if ( n = 12){

test<-write.table(alldata,"clusteredl 2.txt",row.names = FALSE,col.names = FALSE)} 

if (n=13){

test<-write.table(alldata,"clusteredl3.txt",row.names = FALSE,col.names = FALSE)} 

if (n=14){

test<-write.table(alldata,"clusteredl4.txt",row .names = FALSE,col.names = FALSE)} 

if (n=15){

test<-write.table(alldata,"clusteredl5.txt",row.names = FALSE,col.names = FALSE)} 

if (n=16){

test<-write.table(alldata,"clusteredl6.txt",row.names = FALSE,col.names = FALSE)} 

for (i in l:n) {

datal <-alldata[which(alldata$ V 5= i),] 

data2<-subset(datal ,select=-V 5) 

attach(data2)

x <- subset(data2, select = -V4) 

y <- V4

obj <- tune(svm, x,y,ranges = list(gamma =seq(0.05,3, by=0.2), cost=seq(l,12,
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by=. 5)),telecontrol = tune.control(sampling = "cross",cross=5)) 

m <- svm(x, y,cost=obj$best.parameters[2], 

gamma=obj $best.parameters[2], epsilon=0.05) 

new <- predict(m, x)

error[i, 1 ]= sqrt(sum((y-new)A2))/length(y) 

error[i,2]=sum(abs(y-new))/length(y) 

error[i,3]=(length(y)*sum(y*new)- 

sum(y)*sum(new))/(sqrt(length(y)*sum(y*y)- 

(sum(y)A2))*sqrt(length(y)*sum(new*new)-(sum(new)A2)))

rmsesum[n-1,1 ]=min(error[, 1 ]) 

rmsesum[n-1,2]=mean(error[, 1 ]) 

rmsesum[n-1,3]=median(error[, 1 ]) 

rmsesum[n-1,4]=max(error[, 1 ]) 

rmsesum[n-1,5]=sd(error[, 1 ])

abssum[n-1,1 ]=min(error[,2]) 

abssum[n-1,2]=mean(error[,2]) 

abssum[n-1,3]=median(error[,2]) 

abssum[n-1,4]=max(error[,2]) 

abssum[n-1,5]=sd(error[,2])

r2sum[n-1,1 ]=min(error[,3]) 

r2sum[n-1,2]=mean(error[,3]) 

r2sum[n-1,3]=median(error[,3]) 

r2sum[n-l ,4]=max(error[,3]) 

r2sum[n-l ,5]=sd(error[,3])
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### write all the errors and rsq values to the workspace. 

testl<-write.table(rmsesum,''rmsesum_km.txt",row.names = FALSE,coLnames 

FALSH)

test2<-write.table(abssum,"abssum_km.txt" ,row.names = FALSE,col.names = FALSE) 

test3<-write.table(r2sum,"r2sum_km.txt" ,row.names = FALSE,col.names = FALSE) 

test4<-write.table(number,"kmeanclustersize.txt" ,row.names = FALSE,col.names = 

FALSE)

##Fuzzy C-means clustering

op <- par(mfrow = c(5,3), mar = .1+ c(2,2,3,l)) 

fuzrmsesum=mat.or.vec(l 5,5) 

fuzabssum=mat.or. vec(l 5,5) 

fuzr2sum=mat.or.vec(l 5,5) 

number=mat.or.vec(16,16)

for (n in 2:16) {

rm(cl,alldata,datal ,data2,x,y,m,new, error)

library(’el071')

alldata<-read.table('data.txt')

(cl <- cmeans(alldata, n, iter.max=150)) 

number[ 1 :n,n-1 ]=sort(cl$size,decreasing=TRUE)

plot(alldata[,l],alldata[,2], col = cl$cluster,xlab="X-coordinate", ylab="Y- 

coordinate",main=paste("Number of Clusters=",n,sep=" "),cex=0.3, pch=0.35) 

alldata[,5]=cl$cluster 

error=mat.or.vec(n,3)
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test<-write.table(alldata,"clustered2.txt",row.names = FALSE,col.names = FALSE)} 

if(n = 3 ){

test<-write.table(alldata,"clustered3.txt",row.names = FALSE,col.names = FALSE)} 

if (n=4){

test<-write.table(alldata,"clustered4.txt",row.names = FALSE,col.names = FALSE)} 

if (n= 5 ){

test<-write.table(alldata,"clustered5.txt", row.names = FALSE,col.names = FALSE)} 

i f ( n = 6){

test<-write.table(alldata,"clustered6.txt",row.names = FALSE,col.names = FALSE)} 

if(n = 7 ){

test<-write.table(alldata,"clustered7.txt",row.names = FALSE,col.names = FALSE)}

if(n— 8){

test<-write.table(alldata,"clustered8.txt",row.names = FALSE,col.names = FALSE)} 

if(n = 9 ){

test<-write.table(alldata,"clustered9.txt",row.names = FALSE,col.names = FALSE)} 

if ( n = 10){

test<-write.table(alldata,"clusteredl0.txt" .row.names = FALSE,col.names = FALSE)}

if(n— 11){

test<-write.table(alldata,"clusteredl 1 .txt",row.names = FALSE,col.names = FALSE)} 

if ( n = 12){

test<-write.table(alldata,"clusteredl2.txt",row.names = FALSE,col.names = FALSE)} 

if  (n=13){

test<-write.table(alldata,"clusteredl3.txt" .row.names = FALSE,col.names = FALSE)} 

if (n=14){

test<-write.table(alldata,"clusteredl4.txt" .row.names = FALSE,col.names = FALSE)} 

if (n=15){

test<-write.table(alldata,"clusteredl 5.txt" .row.names = FALSE,col.names = FALSE)}
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if  (n=16){

test<-write.table(alldata,"clusteredl 6.txt" ,row.names = FALSE,col.names = FALSE)} 

for (i in 1 :n) {

datal <-alldata[which(alldata$ V 5= i),] 

data2<-subset(datal,select—V 5) 

attach(data2)

x <- subset(data2, select = -V4) 

y < - V 4

obj <- tune(svm, x,y,ranges = list(gamma =seq(0.05,3, by=0.2), 

cost=seq(l,12, by=.5)),tunecontrol = tune.control(sampling = "cross",cross=5)) 

m <- svm(x, y,cost=obj$best.parameters[2], 

gamma=obj$best.parameters[2], epsilon=0.05) 

new <- predict(m, x)

error[i, 1 ]= sqrt(sum((y-new)A2))/length(y) 

error[i,2]= sum(abs(y-new))/length(y) 

error[i,3]=(length(y)*sum(y*new)- 

sum(y)*sum(new))/(sqrt(length(y)*sum(y*y)- 

(sum(y)A2))*sqrt(length(y)*snm(new*new)-(sum(new)A2)))

fuzrmsesum[n-1,1 ]=min(error[, 1 ]) 

fuzrmsesum[n-1,2]=mean(error[, 1 ]) 

fuzrmsesum[n-1,3]=median(error[, 1 ]) 

fuzrmsesum[n-1,4]=max(error[, 1 ]) 

fuzrmsesum[n-1,5]=sd(error[, 1 ]) 

fuzabssum[n-1,1 ]=min(error[,2]) 

fuzabssum[n-1,2]=mean(error[,2])
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fuzabssum[n-l ,3]=median(error[,2]) 

fuzabssum[n-1,4]=max(error[,2]) 

fuzabssum[n-1,5]=sd(error[,2]) 

fuzr2sum[n-1,1 ]=min(error[,3]) 

fuzr2sum[n-1,2]=mean(error[,3]) 

fuzr2sum[n-1,3]=median(error[,3]) 

fuzr2sum[n-1,4]=max(error[,3]) 

fuzr2sum[n-l,5]=sd(error[,3])

}

}

###SRIDHAR - write all the errors and rsq values to the workspace. 

testl<-write.table(fuzrmsesum,"fuzrmsesum_km.txt",row.names = FALSE,col.names = 

FALSE)

test2<-write.table(fuzabssum,"fuzabssum_km.txt", row.names = FALSE,col.names = 

FALSE)

test3<-write.table(fuzr2sum,"fuzr2sum_km.txt1', row.names = FALSE,col.names = 

FALSE)

test4<-write.table(number,"fuzclustersize.txt",row .names = FALSE,col.names = FALSE)

##optimal number o f clusters for Fuzzy c-means

op <- par(mfrow = c(3,3)) 

fuzrmsesum=mat.or. vec( 15,5) 

fuzabssum=mat.or.vec(l 5,5) 

fuzr2sum=mat.or.vec(15,5) 

gammal=c(6.5,8.0,8.0,9.0,12.0, 

number=mat.or.vec(16,16) 

r2=mat.or.vec(9, 3)
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11=9 #Optimal number of clusters 

rm(cl, alldata, datal ,data2,x,y,m,new, error) 

library('el071') 

alldata<-read.table('data.txt')

(cl <- cmeans(alldata, n, iter.max=150)) 

number[ 1 :n,n-1 ]=sort(cl$size,decreasing=TRUE)

alldata[,5]=cl$cluster 

error=mat.or.vec(n,3) 

for (i in 1 :n) {

data 1 <-alldata[ which(alldata$ V 5=i),] 

data2<-subset(datal ,select=-V 5) 

attach(data2)

x <- subset(data2, select = -V4) 

y <- V4

#obj <- tune(svm, V4~., data = iris,ranges = list(gamma = 1:100/100, cost = 

l:10),tunecontrol = tune.control(sampling = "cross",cross=5)) 

m <- svm(x, y) #, cost=obj$best.parameters[2], 

gamma=obj$best.parameters[2], epsilon=0.05) 

new <- predict(m, x)

plot(y,new, xlab="Observed Grade (mg/Cu.m)", ylab="Predicted Grade 

(mg/Cu.m)", xlim=c(min(y),max(y)), ylim=c(min(y),max(y)), cex=0.3, pch=0.35) 

r2[i, 1 ]=sqrt(sum((y-new)A2))/length(y) 

r2[i,2]=sum(abs(y-new))/length(y)

r2[i,3]=(length(y)*sum(y*new)-sum(y)*sum(new))/(sqrt(length(y)*sum(y*y)-

(sum(y)A2))*sqrt(length(y)*sum(new*new)-(sum(new)A2)))}
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