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ABSTRACT

Traditional geostatistical estimation techniques have been used predominantly in
the mining industry for the purpose of ore reserve estimation. Determination of mineral
reserve has always posed considerable challenge to mining engineers due to geological
complexities that are generally associated with the phenomenon of ore body formation.
Considerable research over the years has resulted in the development of a number of
state-of-the-art methods for the task of predictive spatial mapping such as ore reserve
estimation. Recent advances in the use of the machine learning algorithms (MLA) have
provided a new approach to solve the age-old problem. Therefore, this thesis is focused
on the use of two MLA, viz. the neural network (NN) and support vector machine
(SVM), for the purpose of ore reserve estimation. Application of the MLA have been
elaborated with two complex drill hole datasets. The first dataset is a placer gold drill
hole data characterized by high degree of spatial variability, sparseness and noise while

the second dataset is obtained from a continuous lode deposit.

The application and success of the models developed using these MLA for the
purpose of ore reserve estimation depends to a large extent on the data subsets on which
they are trained and subsequently on the selection of the appropriate model parameters.
The model data subsets obtained by random data division are not desirable in sparse data
conditions as it usually results in statistically dissimilar subsets, thereby reducing their
applicability. Therefore, an ideal technique for data subdivision has been suggested in the
thesis. Additionally, issues pertaining to the optimum model development have also been

discussed.

To investigate the accuracy and the applicability of the MLA for ore reserve
estimation, their generalization ability was compared with the geostatistical ordinary
kriging (OK) method. The analysis of Mean Square Error (MSE), Mean Absolute Error
(MAE), Mean Error (ME) and the coefficient of determination (R?) as the indices of the
model performance indicated that they may significantly improve the predictive ability

and thereby reduce the inherent risk in ore reserve estimation.
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CHAPTER 1

INTRODUCTION

1.1  Ore Reserve Estimation

The ore reserve estimation problem, essentially a statistical problem, can be stated
simply as the determination of the value (or quantity) of the ore in unsampled areas from
a set of sample data (usually drill hole samples) X, X;, X3, ....X, collected at specific
locations within a deposit. During this process it is assumed that the samples used for the
inference of the unknown population or the underlying function responsible for the data

are random and independent of each other.

The ore reserve estimation is usually a continuous process that begins during the
exploration phase of a project and in some cases, continues throughout the life of the
mine. At the early stage when sampling is conducted in widely spaced drill hole intervals,
the estimates are basically global and have low confidence. In spite of the low confidence
this is the first step at which mineral appraisal is carried out, and the objective of this
estimation is to obtain a reasonable approximation of the grade-tonnage curve within a
deposit confined by recognizable geological boundaries or a mineralized envelope. It also
clarifies if further drilling is required. In that situation secondary drill holes are drilled at
closer spacing to improve reliability. During the planning phase an estimate of the total
recoverable reserves is made for various (i) cut-off grades and (ii) mining unit sizes. In
this stage, the grade-tonnage curve is generated for blocks or for mining unit sizes. Based
on the quality, quantity and location information of the ore grade obtained during this
stage the subsequent mine operations are planned. Whatever the goal of reserve
estimation, a reliable prediction is prerequisite for successful compilation of a mining
project. Since the accuracy of grade estimation is one of the key factors for effective
mining planning, design, and grade control, the estimation methodologies have

undergone a great deal of improvement, keeping pace with the advancement of
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technology. There are a number of methodologies (Dutta et al., 2003; Dutta et al., 2006a;
Dutta et al., 2006b; Samanta et al., 2005a, Samanta et al., 2005b) that can be used for the
ore reserve estimation. The most common and widely used methods are the traditional
geostatistical estimation techniques of kriging. Typically, the aforesaid criteria of
randomness and independence among the samples are rarely observed. The samples are
correlated spatially and it is this spatial relationship that is incorporated in the traditional
geostatistical estimation procedure. This information is contained in a tool known as the
“variogram function” which describes the continuity of the mineralization within a
deposit both graphically and numerically. It can be also used to study the anisotropies,

zones of influence and the variability of the ore grade values in the deposit.

Prior to the application of geostatistics, the ore reserve estimation methods were
mostly empirical in nature. They consisted of the block methods (triangular, polygonal,
and irregular) and the methods of cross section (vertical, horizontal, inclined). Recent
advances in computational fields brought about the methods such as inverse distance
weighing (IDW), which weighs the samples inversely with the distance from the point

under consideration and combines them linearly.

Apart from the IDW methods, there are a number of kriging variants which are
linear estimators. The most common is the ordinary kriging (OK) method, also known as
the best linear unbiased estimator (BLUE). Unlike the other linear estimators the
distinguishing feature of the OK method lies in its ability to produce estimates with
minimum error variance. Even this best linear estimator of OK, may not however,
perform satisfactorily under conditions of non-linearity. Under such situations, when non-
linearity is present in the data, which is common in the complex phenomenon of ore
reserve estimation, efforts should be made towards the use of non-linear estimators to

improve the confidence in the ore reserve estimates.
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The advent of modern computers has brought into light several machine learning
algorithms that work in a quasi non-linear fashion. These artificial learning algorithms
learn the underlying functional relationship inherently present in the data from the
samples that are made available to them. The attractiveness of these non-linear estimators
lies in their ability to work in a black box manner. Given sufficient data and appropriate
training, they can learn the relationship between the input patterns (such as coordinates)
and the output patterns (such as ore grades) in order to generalize and interpolate the ore
grades for areas between drill holes. With this approach, no assumptions, such as
linearity, are required to be made about any factors or relationships concerning the spatial

variations of ore grade in the vicinity of boreholes.

1.2 Statement of the Ore Reserve Estimation Problem

The scope of the reserve estimation problem lies in the fact that an absolute or
precise determination of the ore grade is not possible. It has always presented a challenge
to mining engineers and geologists responsible for ore grade estimation. Reduction of the
uncertainties in mineral appraisal invariably requires a reliable estimate of tonnage and
grade of a deposit and grade control. Most of the ore deposits are formed under complex
geological structures. The process of mineralization is largely affected by these
geological structures which may include, among others, folds, faults, shear zones and
joints. These are the potential sources of intrusion by other materials within the main
deposits. Mineralization has led to the occurrence of ores in nature with widely varying
properties. Generally, most ore deposits exhibit the following behaviors: (i) large
variation of physical and chemical composition in both vertical and lateral extents, (ii)
variations in deposition and evidence of structural disturbances, (iii) multiplicity of ore
structures, (iv) variation in thickness and quality in the same structure, and (v) variation
in the nature of the associated formation. As a result, estimation of ore grade and reserve

are difficult for complex ore formations.
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Since, an estimate of the ore grade includes a degree of uncertainty by the very
nature of a deposit, it has led to the continual search for more reliable and robust
estimation techniques. Apart from the nature of the mineralization and the complex
geometry of an ore deposit, the choice of an estimation method is also dependent on the
variability of the grade distribution, the characteristics of the ore boundary, the amount of
resources available, extent of samples and the degree to which high grade outliers are
present. There are numerous methodologies in use today which operate under
fundamentally different concepts. Among the various techniques, the traditional approach

has been the use of geostatistics.

In spite of the popularity of geostatistics in mineral appraisal, in recent times,
researchers have opted and shown promising results in the field of predictive mapping
using neural networks (Samanta et al., 2005a; Yama and Lineberry, 1999) and support
vector machines (Kanevski et al., 2002; Pozdnoukhov, 2005). Since these artificial
learning algorithms are trained from the samples that are made available to them, their
efficiency of learning improves with an increase in the sample density. However, it must
be realized that the sampling task in geological and mineral exploration is time
consuming and expensive, and often the samples are noisy. Frequently, the sampling is
done in wide drill-hole intervals, resulting in less representative data. Furthermore, the
data are collected in non-optimal or near-optimal environments. As a result, the volume
of data collected from drilling and sampling may be inadequate and even inappropriate to
model a complex deposit. In such cases, due to the inherent sparseness and noise, ore
reserve modeling becomes a challenging task. The reliability of an ore reserve estimate
under such conditions is not only decreased but also has a low level of confidence. Since
it is inherent in the process, efforts should be made to select an estimation method, which
will treat the available data prudently and develop the necessary functional relationship

needed for ore reserve estimation.
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Selection of the estimation method aside, equally important in any modeling task
is the validation of the model performance. One way to validate the model performance is
to test the actual ore grade with the predicted ore grade. However, in the context of
reserve estimation, it is almost impossible to compare the ‘predicted’ ore grade with the
‘actual’ ore grade. Several other factors during sample collection such as dilution,
spillage, possible effects of stockpiling, possible sorting and concentration processes may
hinder accurate comparisons. Therefore, in order to validate the model and its
generalization ability several procedures such as bootstrapping, the split sampling method
(or holdout method), the cross validation method (K-fold cross validation, leave-one-out
cross validation) can be adopted. The basic idea of these techniques is to keep aside part
of the data from the available dataset and not use them in the training process. These
models, in general, leam the functional relationship from the training dataset. Thus, when
the training is complete, the “partitioned” data will serve as the “new” dataset (known as
the validation dataset) to assess the trained model performance. Each of these procedures
has its own merits and demerits. The cross validation and split sampling method have
been popular (Samanta et al., 2005b; Dutta et al., 2003; Twarakavi et al., 2006). Since,
the predictive performance of the model depends to a large extent on the quality and the
amount of data on which it is trained, the k-fold cross validation appears to be an
appropriate choice when the dataset is sparse (Goutte, 1997). The disadvantage of this
method is, however, that the training algorithm has to repeat k times, thus requiring
additional computational time. Under such circumstances, the split sampling approach
appears to be a better choice. It must be noted that with split sampling the results rely
heavily on the distribution of the ore grade values in the training dataset and in the
validation dataset. Since the learning models are built by exploring and capturing similar
properties of the various data subsets, these data subsets should be statistically similar to
each other and should reflect the statistical properties of the entire dataset. The statistical
similarity ensures that the comparisons made for the model built on the training dataset
and tested on the prediction dataset are logical (Bowden et al., 2002, Yu et al., 2003).

Traditionally used practices of random division of data might fail to achieve the desired
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statistical properties when the data are sparse and heterogenious. Due to the sparseness,
limited data points categorized into the data subsets by random division might result in
dissimilarity of the data subsets (Ganguli and Bandopadhyay, 2003). As a consequence,
overall model performance will be decreased. Therefore, careful subdivision of data
during model development is essential. Various methodologies should be investigated for

proper data subdivision under such a modeling framework.

1.3 Literature Review

Geostatistics has been the most used procedure for the complex phenomenon of
ore reserve estimation (Journel and Huijbregts, 1978; Rendu, 1979; Pan, 1995). In recent
times, several researchers have applied NN for ore reserve estimation. A representative
application of NN for ore reserve estimation is reviewed below. Several artificial learning
algorithms were applied for this purpose. Wu and Zhou, 1993 investigated a multi-layer
feed forward neural network approach for copper reserve estimation. Initially, the
network was trained with filed assay data at borehole locations and then was used to
predict the distribution of ore grade in the drilling region. The NN results when compared
with other traditional models indicated that after appropriate training on a comprehensive
set of sample data, the NN could generalize reasonably well in the neighborhood of the

sampling region.

Clarici et al. (1993) used the NN model for analyzing spatial data of drill hole
locations, assay values (ppm) of arsenic, lead, and cadmium. The results when compared
with kriging demonstrated the potential of NN as a tool for spatial data analysis. Denby
and Burnett (1993) used GEMNET (grade estimation using mapping network) for
estimation of grade in an iron ore deposit. Kapageridis and Denby (1998) presented a NN
approach to model the ore grade spatial variability in a large undeveloped copper/gold
deposit. They used a radial basis function network (RBFN) for the model development.

The results indicated the potential of NN for ore reserve estimation. Others (Samanta et
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al., 2004a; Samanta et al., 2004b; Samanta et al., 2005a, Samanta et al., 2006) applied
NN for the ore grade estimation of gold and bauxite deposits. The results in these studies

indicated the potential of NN for the ore reserve estimation.

Dutta et al. (2006a) used a hybrid ensemble network model of NN and
geostatistics to predict the ore grades in a bauxite deposit. Their study was based on the
assumption that since kriging and NN capture different aspects of the spatial variability in
the data, the hybrid model would give better estimates. Their study proved correct for the
silica content of the bauxite. The alumina content was, however, predicted better with the
kriging model. The failure of the hybrid model in the prediction of alumina was basically
attributed to the high error of the individual NN models. For the same ore body, another
study was also reported by using a Radial Basis Function (RBF) NN (Dutta et al., 2005d).
In this study several important aspects related to RBF network modeling were discussed,
including the appropriate division of the entire dataset into the modeling subsets using
Genetic Algorithms (GA). Bowden et al. (2002), Samanta et al. (2004a), Samanta et al.
(2004b), Ganguli and Bandopadhyay (2003) describe the importance of proper data
division for development of model data subsets. They used different methodologies such
as GA and Kohonen network for appropriate data division. Samanta et al. (2005a) used
an ensemble NN model for the prediction of gold grades. The model consisting of
multiple networks was constructed by applying the Adaboost algorithm using different
training datasets. The purpose was to examine if the use of an ensemble model would
provide better performance than the single neural network. There are several advantages
of using an ensemble model. First, each neural network in the ensemble model follows
more or less the true output mapping function. Conceptually, if one assumes that the
output of an individual neural network of the ensemble consists of a true output plus a
random error component with zero mean, then the combination of the outputs from the
individual networks results in averaging of the random error components. Hence, it
ensures reduction of the estimation error. Second, a single best network might get

overfitted, thus, behaving poorly with unseen data. An ensemble of networks might
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reduce the overfitting, by combining different networks with different architectures.
Third, the input-output relationship represented by a set of data with a distinct nature
might not be captured adequately by a single network. It is possible to train individual
networks using data having a nature to that of the entire set of data, and then combine the
outputs of the individual networks to get a final improved ensemble output. Contrary to
the information in the published literature (Sharky, 1999). Adaboost did not perform
better than a single neural network in the cited application. The authors proposed a
plausible reason to be the high noise inherent in the gold data used in the study. Multiple
networks using the training data can also be constructed using a bagging or bootstrap
aggregating technique (Breiman, 1996). In bagging, each network is independently
trained on “n” samples picked randomly, with replacement from the “n” original samples
of the training set. Each neural network is thereby trained on different but overlapping
subsets of the original training data set, and will, therefore, give different predictions.
Final prediction is the average of all the individual networks of the ensemble. When the
Adaboost algorithm was used in an entirely different study (Dutta and Ganguli, 2005b) to
determine the ash content of the raw coal in real time, the model performed appropriately.
Dutta et al. (2003) also used an ensemble network for ore grade estimation. Their study
revealed that the ensemble network performed slightly better than a single best neural
network. Furthermore, in their application of an ensemble network for ore grade
estimation, they selected the different networks by changing the network architectures
and the number of hidden neurons, while the training data set was identical for each of

the networks.

Application of NN has also been reported in several other mining applications
such as in mineral processing plants (Hodouin et al., 1991), geological roof classification
(Cardon and Hoogstraten, 1995), longwall stability prediction (Park et al., 1995),
identification of failure models for underground openings (Lee and Sterling, 1992) and
spatial continuity detection (Clarici et al., 1993). Apart from mining, it has also been

applied to other related fields such as characterization of aquifer properties (Rizzo and
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Doughetry, 1994), calibration of on-line analyzers (Yu et al., 2003) and ground water
modeling (Rogers and Dowla, 1994), vegetation and land cover mapping (Fitzgerald and
Lees, 1996; Foody, 1997), land degradation (Mann and Benwell, 1996), geological
mapping (An et al., 1995), and classifying remote sensing data (Miller et al, 1995). Dutta
et al. (2005c¢) used a multilayer feed forward NN and RBF neural network to predict the
radioactivity levels at a given test site in Germany. In most of these studies it was not
evident if these techniques provided a better estimated value than that of the geostatistical
technique. In most of these studies it was revealed that neither the neural network nor the
geostatistics proved superior to the other. The efficiency of the two techniques varied

from one application to another.

Apart from NN, one more machine learning algorithm which is gaining popularity
in the field of predictive mapping in several benchmark problems is the support vector
machines (SVM). Although relatively new, this method is getting widespread acceptance
because of its robust mathematical background (Kecman, 2000; Kecman, 2004; Smola
and Scholkopf, 1998; Smola and Scholkopf, 2004). Also known as support vector
regression (SVR), the method is based on statistical learning theory (SLT) and performs
structural risk minimization (SRM). There are relatively few applications of SVM to
mining reported in the published literature. This research is perhaps the first application

of SVR for ore reserve estimation.

Mukherjee et al. (1997) have shown the remarkable predictive capability of the
SVM algorithm. Their study revealed that SVM performs better than NN, RBF and local
polynomial techniques when applied to a database of chaotic time series. Pozdnoukhov
(2005) applied SVM to detect the natural radioactivity levels in a given test site. The data
consisted of X-coordinate (m), Y-coordinate (m) and mean gamma dose rate
(nanoSieverts/m). Analysis was performed on the two sets of data: one with the noise
patterns and the other without any noise. The SVM method produced comparatively

better results when compared to other techniques. Chang and Lin (2001) describe the
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various procedures ideal for the development of the SVM model. Cherkassy and Ma
(2002) in their study investigate the various practical aspects in the selection of the SVM

parameters in the SVM regression.

Kanevski et al. (2002) and Pozdnoukhov et al. (2002) also demonstrated SVM
application to spatial data analysis in the presence of some priori knowledge. Twarakavi
et al. (2006) applied SVM to predict the arsenic concentrations in the bedrock derived
stream sediments using the gold concentration distribution present within the sediments.
Their study was based on the hypothesis that arsenic displays a consistent correlation
with gold, which is typical for gold deposits in general. Their study showed improved
predictions compared with an earlier study in which NN was used for the same purpose
(Misra et al., 2005). Twarakavi et al. (2006) also applied SVM to develop an optimal
ground water quality monitoring network for a watershed. The water quality indicator
considered in their study was the nitrate concentrations in the watershed. The long-term
nitrate concentrations were modeled as a function of the land use distribution, recharge
potential and the spatial co-ordinates. Though the developed model generated relatively
large errors compared to other models, its lesser data requirements made it attractive.

This is encouraging under the conditions of limited resources.

The general characteristic of SVM and NN emphasized the fact that they can
approximate any multivariate non-linear relation among the variables in a black box
manner and that both are robust to noisy data. The added advantage of the SVM
algorithm lies in the fact that it not only tries to reduce the empirical error (the training
data error) but also reduces the model complexity. The ability of the SVM to work with
small datasets is extremely useful. SVM may be able to capture the spatial distribution of
ore grade more effectively with careful modeling and selection of SVM parameters.
Therefore, the purpose of the present study is another attempt to investigate the

applicability of machine learning algorithms for ore reserve estimation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

1.4  Scope of the Study

A number of state-of-the-art models are available for predictive spatial mapping. The
application of these tools has been made possible due to recent advances in the
computational platforms. The application of these techniques include but are not limited
to the method of geostatistics: the family of kriging estimators (Isaaks and Srivastava,
1989; Samanta et al., 2005a), machine learning algorithms such as Support Vector
Machines (SVM); neural networks (NN), (Samanta et al., 2005b, Ganguli and
Bandopadhyay, 2003; Dutta et al., 2005a, Yu et al., 2003) and hybrid models (Dutta et
al., 2006a, Kanevski et al., 1996). The focus of this study is the application of the
machine learning algorithms such as NN and SVM for ore reserve estimation. The
working principle of SVM makes it robust against noisy and extreme value data. At the
same time, it can capture the high-dimensional non-linear spatial trends if they exist in
the data. This noise and complexity are predominant in the mining domain. While the
family of kriging estimators is popularly used in various fields, their performance
depends to a large extent on the presence of good and sufficient data to map the spatial
correlation structure. They also work better if there is a linear relationship between the
input and the output patterns. However, this is rarely the case in the mining domain. Even
though there are a number of kriging variations, such as lognormal kriging and indicator
kriging that apply certain specific transformations to capture the nonlinear relationships,
they may not be sufficient to capture the broad nature of spatial nonlinearity. Moreover,
earth sciences data are most often characterized by the presence of noisy patterns, that are
also of unknown nature and are usually difficult to discernr. The SVM is effective for
modeling using sparse datasets, because it only uses a few data points as features vectors
for defining the model. Further, with SVM, there is no need to perform semi-variogram
modeling, which is the core of the geostatistical estimation method. It works like a black
box. With semi-variogram modeling, it is preferable to have the data normally
distributed, which is usually not the case. This can be avoided while performing SVM

modeling. Geostatistical techniques such as ordinary kriging work under the assumption
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of stationarity. However, in most deposits this might not be truly observable. Such an
assumption is not required with SVM modeling. Also, at times, with geostatistical
techniques, the anisotropies may not be evident in a particular direction when the samples
are sparse. This may lead to unreliable estimates. Such a situation can be avoided while
employing the SVM modeling. It has its own advantages when compared with NN.
Although NN models are also a powerful tool to capture the nonlinear spatial
relationships that may be present in the data, they are usually difficult to optimize under
sparse data settings. Of the various NN alternatives, multilayer feed forward networks
(MFFN) have been successfully applied in-several fields (Samanta et al., 2005b; Dutta et
al., 2005¢). Despite their effectiveness, the model selection and estimation process is
typically difficult, time consuming and computationally intensive, as it involves solving
complex integration and/or optimization of parameters. Furthermore, they are susceptible
to local minima and in the presence of a large number of local minima, the NN may fail
to estimate the global minima. In SVM modeling, however, estimating the unknown
parameters only involves optimization of a convex cost function. This can be achieved
using standard quadratic programming algorithms (Kecman, 2004). The model
constructed depends explicitly on the most “informative” data (the support vectors). From
the previous sections it can be very well perceived that the extent to which various
methodologies affect the grade estimation is quite variable. Therefore, the scope of this

research includes the following objectives:

1) To examine the effect of the various data divisional approaches on the model
performance, since the model datasets have a significant impact on the model

generalization ability.

2) To develop a reserve model using machine learning algorithms (the support
vector machine approach and the neural network approach) for improved ore grade
estimation. Although successfully implemented in other fields (Pozdnoukhov, 2005;
Dutta et al., 2005¢; Kanevski et al., 2002), there is no known application of SVM to the
ore reserve estimation problem. Two case studies have been carried out utilizing the

actual drill-hole information. The first dataset is a placer gold drillhole data. The data are
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very noisy and sparse. The drilling of holes is not on a regular grid and the hole spacing
is often too large to apply geostatistics in order to calculate placer gold reserve

accurately. The second dataset is a lode deposit and is continuous in nature.

3) To apply the SVM and NN model on the placer gold dataset and compare the
grade estimates with the traditional ordinary kriging method and develop the volume of

the reserves for various cut off grades.

4) To develop alternative mining blocks using the placer gold data, by clustering

algorithms, and calculate the volume of reserves for various cut off grades.
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CHAPTER 11

THEORY OF GENETIC ALGORITHMS AND KOHONEN NETWORK

2.1 Genetic Algorithms and Data Division

Genetic algorithms (GA) are a search procedure based on the mechanics of
genetics and natural selection. The advantages of GA in data divisional problem are that
GA generates optimal data divisions quickly after examining only a small fraction of the
search space in data divisional space. Genetic algorithms combine an artificial survival of
the fittest approach with the various genetic operators to form a mechanism from which

optimal solutions may eventually be produced for data division.

In nature, organisms evolve as the result of selective processes, such as mating
between individuals, and occasional mutations. Genetic algorithms mimic these same
operations and employ several operators that duplicate, recombine, and change the string
of a current solution to create a new solution. These operators are known, respectively,
as reproduction, crossover and mutation. Reproduction and crossover play the primary
roles in an artificial genetic search. Reproduction emphasizes highly fit strings while
crossover recombines these selected solutions to generate new, potentially better
solutions. Mutation plays a secondary role in producing optimal solution by introducing
the occasional original change in a solution. Mutation provides a mechanism to escape
from a false local optimal solution through occasional alteration of the solution. Thus,
genetic algorithms are recognized as global learning algorithms. The principle stages of

genetic algorithms are shown in Figure 2.1 (Dutta et al., 2006a).

The genetic optimization of a data division is carried out in a manner similar to
that described above. A data division is performed by selecting members of the sample in

such a way that the first 50% of the selected samples are put in training set, the next 25%
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are placed in a calibration set and the remaining 25% into a validation set. In an optimal
data division, samples are ordered in such a way that statistical differences between the
three subsets are minimized. The methods and procedure for GA data divisions are
described in the following sections and illustrated through a simple example in Figure

2.2. The following steps are used for generating data divisions using genetic algorithms:

(a) Generation of random solutions for data division

Random solutions are created by arbitrarily ordering the samples, and splitting the
dataset such that the first half is put into the training subset, the next quarter into the
calibration subset and the remaining (quarter) into the testing subset. To start the process,
a suite (“population”) of solutions is generated. For example, assume one has eight
samples to divide; division should occur so that the first four selected samples fall in the
training set, the second two samples fall into the calibration set, and the remaining two
samples are placed into a validation set. Random data divisions could be generated in the
way shown in Figure 2.2. In this figure it is shown that a population of 20 random
solutions could be created by different orderings of the samples. Note that numbers in the
cells indicate the sample number (sample I D) and the position of the cells indicate the

sample order.

(b) Assessment of the fitness values

The next step involves assessing the quality of the generated solutions. The
quality of a solution is determined by its “fitness” value. Fitness value is the criterion
upon which a solution can be judged. In the present data divisional application, a
criterion was developed which minimized the mean squared deviation as well as variance

among the three subsets and the entire data set.

Note that the only intent of using GA is to ensure that the three subsets are statistically

equal, i.e. the constituents of each subset are statistically similar to the corresponding
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constituents of the other two subsets. In the GA algorithms all the variables are taken into

consideration.

Generate Initial
Population

v

Assess Fitness Value

Reproduce
Population

Crossover
Population

y

Mutate
Population

Final
Population

Figure 2.1: Principal stages of genetic algorithms
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(c) Reproduction of the solutions

The population of the solutions is then modified to obtain the next “generation” of
solutions. This is done in two steps: first by selecting survivors and second by
“evolution” of the survivors. Selection of survivors is done by remainder stochastic
sampling (Golderg, 1989) with the constraint that solutions with better fitness values
have a higher chance of survival. A particular solution may be selected many times, while
another may not be selected at all (Figure 2.2). At this point, the population consists of
the “good” quality solutions from the previous populations, sometimes with multiple
copies of the same solutions. As a result, average fitness of the solutions in the population

is increased.

(d) Crossover of the solutions

During the crossover operation, solutions are randomly combined in pairs on a
probabilistic basis (Figure 2.2). The individual solutions in a given pair (“parent”) are
then modified by the crossing over of features between the solutions. It is important to
remember that selected pairs and their respective cross-over points are chosen randomly.
Crossover results in the crossed pair having modified characteristics of the parent
solutions. Some of the modified solutions have superior fitness values, improving their
chances of survival into future generations, whereas some have inferior fitness values,
reducing their chances of survival. Normally, crossover involves swapping blocks of
samples. For example, in Figure 2 the crossover point randomly generated for the parent-
pair is 4 blocks down in a string of 8 samples. Crossing over then results in a single
solution containing samples in slots one through three of parent #1, and samples in slots
four through eight of parent #2, while the other solution consists of samples in slots one

through three of parent #2, and samples in slots 4 through 8 of parent #1.
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(e) Transformation into feasible solutions

Crossover results in infeasible data divisions in the sense that some duplicate
samples are found in the solution and some samples are left off. For example, after the
crossover, solution #2 (Figure 2.2) contained the duplicate samples three and eight. On
the other hand, samples # 1 and 4 are not selected in any of the slots. Therefore, it is
necessary to replace duplicate samples with the left off samples, aiming to do so with

minimal disturbance of the solutions.

(e) Mutation of the solutions

Mutation is performed on a probabilistic basis, where a sample from one subset is
randomly swapped with a member of another subset. For example, a solution may be
mutated by randomly swapping samples (3 and 87). The mutation of the solutions helps
to maintain genetic diversity and prevents the system from converging to a false optimum

solution.
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2.2 Self Organizing Map and Data Division

The Self-Organizing Map (SOM) was introduced by Teuvo Kohonen. The SOM
(also known as the Kohonen feature map) algorithm is one of the best known artificial
neural network algorithms. In contrast to many other neural networks, which require
using supervised learning, the SOM allows unsupervised learning. The SOM algorithm
employs a technique known as competitive learning. All neurons in the output layer
compete with each other in response to a particular input pattern, with only a single
output neuron winning the competition to become activated. The winning neuron upon
activation excites neighboring neurons, changing their respective weights in the learning
process. In SOM, the output neurons are located on a one or two-dimensional lattice.
The neurons in the lattice are selectively tuned to various input patterns during training,
As aresult, the locations of the neurons in the lattice become ordered in such a way that a
coordinate system for different input patterns is created over the lattice. The basic idea of
SOM is to define a one or two-dimensional map of output neurons from a higher
dimensional input space. Each output neuron carries a reference location of a particular
input pattern or group of similar patterns in the lattice. The output neurons are ordered
in such a way that their neighborhood relation is dictated by the topological maps. This
means two neurons have more in common if they are located adjacent to each other than
if they are some distance apart. Thus the SOM algorithm provides a non-linear clustering

mechanism in which similar patterns can be grouped into an output neuron in the lattice.

Learning of a SOM network involves essentially three major tasks: competition,
cooperation, and synaptic weight adaptation. For each input pattern, neurons in the
output layer compute their respective distances to the input pattern. The neuron with the
minimum distance wins the competition. A topological neighborhood is then defined
around the winning neuron, in which neurons cooperate amongst themselves. The
winning neuron locates itself in the center of the topological neighborhood of excited

neurons. The excited neurons in the neighborhood respond by updating their synaptic
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weights in response to the input pattern, so that they are attracted towards any similar

input patterns.

To start the learning process, an algorithm proceeds by initializing the synaptic weights in
the network. This is generally done by assigning small values from a random number

generator. The basic stages of the SOM learning process is as follows (Lippmann, 1987):

1. One sample vector x is randomly drawn from the input data set and its similarity
(distance) to the output neurons is computed, e.g. by using the common Euclidean

distance measure:

||xi — W = Il’llll'l (”x - w.-") (2.1)

The best matching neural of the output layer is found. W;=weight vector of neural i in

the output layer

2. After the best matching unit has been found, the synaptic weights of the output
neurons are updated. The best matching unit and its topological neighbors are moved
closer to the input vector in the input space, i.e. the input vector attracts them. The
magnitude of the attraction is governed by the learning rate. As the learning proceeds and
new input vectors are given to the map, the learning rate gradually decreases to zero
according to the specified learning rate function type. Along with the learning rate, the
neighborhood radius also decreases as time progresses.

The update rule for the reference vector of unit i is the following:

2.2)

wi(t) + a(E)(x(t) — wit))] SN
wi(?)

wi(t+1) = {
igN(1)

Where, o(t) is a scalar value adaptation with gain 0 < a(t) <1, which depends upon

learning rate and neighborhood distance, and where N is the search neighborhood
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3. The steps 1 and 2 together constitute a single training step and they are repeated
until the training ends. The number of training steps must be fixed prior to training the
SOM because the rate of convergence in the neighborhood function and the learning rate
are calculated off of this value. After the training is over, the map should be topologically

ordered.

The intent of SOM for this study is to use it as a clustering technique to group
similar patterns. Since SOM assimilates similar patterns into a group, random selection of
the samples from each group for training, calibration and validation will result in each
subset of data acquiring all the larger diversified patterns. Therefore, three subsets of data
will be fed, with similar types of patterns. To cluster the data, all the inputs and output
are presented to the network as SOM’s input. The output of SOM is obtained in terms of

a number of output groups, and each group contains the winning patterns.
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CHAPTER 111

THEORY OF SUPPORT VECTOR MACHINES

3.1  Basics of Supervised Learning from Data

The process of supervised learning from the data involves the use of three basic
components. They are the random input variable x, the system response variable y and a
learning machine that determines the unknown dependency between the higher
dimensional input vector x and the system responses y. During the learning phase the
learning machine detects the relationship between the input and the output variable from
the available data D in the regression task (or finds a decision boundary that separates the
data for the classification tasks). The result of a successful learning process is an
“approximating function” f; (x,w) which in the statistical literature is also known as the
hypothesis function. This function belongs to a hypothesis space of function H (f, € H)
and approximates the underlying (or true) dependency between the input and the output
in case of regression and the decision boundary in case of classification. It also tries to
minimize the associated risk function R (w). Such type of learning is also known as
distribution free learning because there is no information available about the underlying

joint probability distribution.

The approximating function described in the preceding paragraph is a
mathematical structure that can map the inputs x into the output y. It can be a multilayer
perceptron, a RBF network, fuzzy model or various other mathematical models. But in
this chapter, a limited discussion of the support vector machines (SVM) is given. A
detailed discussion on this subject can be found elsewhere (Kecman, 2002; Kecman,
2004). Unlike the classic statistical inference problems, development of SVM is generally

appropriate for the following contemporary problems:
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1) Modern problems are high dimensional. If they were to be solved based on the linear
assumptions of the contemporary techniques it would have resulted in an exponential
increase of the number of terms known as the “curse of dimensionality.”

2) In most situations, the underlying data generation laws may be far from normal.

3) In most practical situations collection of data is an extremely difficult task. In such
sparse settings modeling can be difficult.

4) Because of the first two problems, the maximum likelihood estimator, and
consequently the sum of error square assumption on which the classical techniques are
based, are replaced in SVM by a new induction paradigm called the structural risk

minimization (SRM) to model the non-Gaussian distributions.

In order to develop a model with a good generalization property two basic
constructive approaches (Vapnik, 1995; Vapnik, 1998) must be used:
1. Selection of an appropriate model structure (number of hidden layer, number of
hidden layer neurons, order of polynomial, number of rules in the fuzzy logic model)
with the estimation error (a.k.a. variance of the model) fixed, and minimizing the training
error (i.e. empirical risk).
2. For the training error (a.k.a. approximation error, empirical risk) fixed (equal to zero

or some acceptable level) minimization of the estimation error.

Classical NN implement the first strategy while SVM implement the second
approach. The goal of both the approaches is to match the learning machines capacity, to
the training data complexity. The only difference between them is the approach taken for
the minimization of different cost functions. Table 1 tabulates the basic risk functions

applied in developing the three statistical models.
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Table 3.1 Basic models and their error functions

Multilayer Perceptron Regularization Network

Support Vector Machine
(Neural Network) ( RBF network)

R=Y(d; = fGpw) | R=2(d; =[x, W) + IS I R=Y L, +Q(,h)

closeness to data closeness to data smoothness
closeness  model capacity

In Table 3.1, d; is the desired value, w is the weight vector, A is the regularization
parameter, P is the smoothness operator, L; is the SVM loss function, h is the Vapnik
Chervonenkis (VC) dimension and Q is known as the confidence term bounding the
capacity of the learning machine. It could be seen from the table that unlike the classic
algorithms such as NN and RBF, the SVM represents a novel leamning technique which
performs SRM. In general, the working of the SVM ensures that it creates a learning
model with a minimized VC dimension. When the VC dimension of the model is low the
expected probability of error is low as well. This in turn indicates good performance on
the previously unseen data, i.e., a good generalization performance. The following
sections briefly describe the theory and the methodology involved in the working of the
regression aspect of support vector machines. A detailed description can be found
elsewhere (Kecman, 2000; Kecman, 2004).

3.2 Support Vector Machines in Regression

The support vector machines comprise a set of powerful tools to perform
classification and regression tasks. Apart from being systematic and principled, this
approach, motivated by Statistical Learning Theory (SLT), has become very popular
recently in the machine learning community. The regression aspect of SVM, known as

~ the support vector regression (SVR) is based on the structural risk minimization (SRM)
principle. While performing the regression, the SVR acquires knowledge from the

experimental data in order to generalize to the previously unseen data. In general, they

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

are non-parametric models based on supervised learning techniques because the
parameters that define the capacity of the model are not predefined, rather their values are
data driven in such a way as to match the model capacity to the data complexity. With
spatial data this involves prediction of unknown mapping between the input (spatial co-

ordinates, secondary variables) and the output (variables of interest) variables.

3.2.1 Statistical Learning Theory (SLT):

The process of SLT involves learning from relatively few training data points
during which the expected risk R is approximated and minimized by the empirical risk
Remp. This is the induction principle of empirical risk minimization (ERM). However,
finding the minimum of empirical risk is an ‘ill-posed’ problem due to the infinite
number of possible solutions or approximating functions that are available when the
learning machine is trained using a particular subset of the true underlying function. The
approximating functions are always biased depending on the specific training data pairs.
The process of minimization of the expected risk by developing a model from the training

data will always include a generalization error. The generalization error bound is given

by

R(h) =Remp (h) +Q (h) G.1)

Where, R is the bound on the testing error, Remp is the empirical risk on the training data
and Q is the confidence term which depends on the complexity of the modeling function.
The parameter that defines the model complexity is termed as the VC dimension (h). It is
introduced in the SLT to describe the general notion of “complexity”’, and is independent
of any particular function used to model the data. Figure 3.1 shows the variation of the
confidence term Q w.r.t VC dimension (h) while Figure 3.2 shows the variation of the

error w.r.t. the VC dimension (h).
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Figure 3.1: Dependence of VC confidence 2 on the VC  Figure 3.2: Bound on the test error derived in SLT. The
dimension h and training data 1, h<l minimum corresponds to an optimal model complexity
(from Kecman, 2000) (from Pozdnoukhov, 2005)

According to the bounds derived in SLT, the general strategy is to learn from
finite training datasets and choose, from all the possible candidates, an appropriate model
that minimizes the training error and has the smallest VC dimension (Figure 3.2). This is
the principle of SRM, which in turn results in the smallest bound on the test error. While
SRM results in improved generalization of the learning machine, algorithmically it is
realized through SVM.

3.2.2 Support Vector Regression (SVR)

In SVR, given a training dataset {(x,y), i=1,....L} where x; are the inputs and y;
are the measured values, a functional dependence between the two variables is
established. The idea is to minimize the empirical risk by introducing a novel loss
function termed as the Vapnik’s linear loss function with ¢- insensitivity zone. (Equation
3.2)

E(x,y,f) = |y-f(x,w)| . =0 iferror<g
=(ly-f(x,w)|-¢) iferror>ege (3.2)
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The error less than the ‘e’ is ignored. This error loss function defines an error tube
as shown in Figure 3.3. For € = 0, Vapnik’s loss function equals a least modulus function

and in that case the SVR performs an interpolation of the training data.

error

Im

y- f(x,w)
Figure 3.3: € insensitivity loss function

The objective in SRM is to select an approximating function that not only
minimizes the confidence term but also the empirical risk. The confidence term Q2 is
minimized by the minimization of |[w'w|| term. The overall risk that is minimized is

given by the following objective function:

R=||w'w|| + CZ| y-f(x,w)| . (3.3)
Where, C is the penalty parameter known as the cost function.
For training data outside the error tube,

ly-f(x,w)| . = &, for data “above” the error tube, i.e. positive errors.
ly-f(x,w)| . = &*, for data “below” the error tube, i.e. negative errors.

Thus, the equation (3.3) can now be written as

minimize  R=||w'w]|| + C[ & +Y&] (3.4

Under the constraints,

Yi- Wx-b<e+§ (3.42)
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wixtb-yi<e+ & (3.4b)
£' 20, & 20 (3.4¢c)

where, & & are the positive slack variables shown in Figure 3.3 for measurement above
and below the tube. Since this is a classic optimization problem with inequality
constraints, it can be solved by using lagrange multipliers in a systematic manner
employing the Kharush-Kuhn-Tucker (KKT) method. During this a primal Lagrange
function L, is created by subtracting from the objective function the constraints
multiplied by corresponding Lagrange multipliers a. The KKT method suggests the
conversion of an inequality constraint of the form h(x) > (or <) = 0 into an equation of the
form h(x) =0 by adding or subtracting (depending upon the optimization problem) slack
variables and then solving the corresponding equality constrained quadratic optimization
problem (Miller, 2000). The risk function (in terms of the corresponding independent

primary variables) in equation 3.4 can be expressed as a primal Lagrange function by

Ly(w,b, &, &', o, a',B, B) = ()llw'wi| + C[ T& +3E" - D(BE" + Bi&) — Tou (vi- w'x-
b +e + &) — Yo (W x+b- y; +€ + &) (3.5)

At the optimal point the first partial derivative of the Lagrange function w.r.t. the

independent variables (w, b, &, é’;i', N A B;, Bi') vanishes.

dL,/ dw =wo- ¥ a- a)x; =0 (3.53)
dL,/ db=Y(a-a’)=0 (3.5b)
dLy/ d§= C-au- B; (3.5¢)
dLy/ d&’= C-oi - Bi" (3.5d)

Also, the following complementary conditions must be satisfied for the first
partial derivative of L, w.r.t. Lagrange multipliers (a;, ai',Bi, B:") and slack variable (s).
a; (Wix+b-y; +e + &) =0, (3.5¢)
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o (yi- w'x-b +e + £)=0 3.59
Bi'E"=(C-a")E ™= 0 (3.58)
Bi&= (C-a)&=0 (3.5h)

when the equations 3.5a-3.5b are substituted into the primal L, in equation 3.5, it

becomes a dual variable Lagrangian Lg (i, o) given by

max Lg (o, o) =(-1/2) T oti- o ) oy- a,-*) Xi' Xi - €Y ( - o)

+ (o o)y; (3.6)
subjected to
> (oi- 04 )=0 (3.6a)
0< < C (3.6b)
0<a,’<C (3.6c)

The solution of this standard quadratic optimization problem results in ‘1’ pairs of
(o, o), one for each of the training patterns. The pairs that result in non-zero o; or o*
are termed as the support vectors and they are the ones which influence the model. The
complexity of the model is directly proportional to the number of support vectors. In this

way the best regression hyper plane is given by

fix,w) =wo'x +b

=Y(o-a)x'x+b 3.7

When doing the non-linear regression model, a mapping function @ (x) {such as
polynomial kernels, Gaussian kernels} will be used to map the input space into the higher
dimensional feature space and then construct the linear regression hyper plane in the

feature space. The basic working principle remains the same.
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The process of making a prediction employing the SVR can be shown graphically
(Figure 3.4). It presents an overview of the different steps involved in the support vector

regression to make a prediction. They can be summarized as follows:

1) Map the test pattern x into the feature space by a mapping function ¢. The mapping
function is selected during the model development stage.

2) Compute the dot product with the images of the training pattern mapped on ¢. This is
equivalent to evaluating the corresponding kernel function k (x;, x).

3) Add the dot products using the weights vi= q; - 0.

4) Add the constant term b to derive the final model output for the pattern x.

cmt;mt £ ok () + b

ot product (B0 Bx))=k(xx,)

mapped vectors 96 96%)

SUDPOIt VECIOrS X, ... X,

test vector X

Figure 3.4: Architecture of a regression machine constructed by the SVM (from Smola and
Scholkopf, 1998).
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3.3 SVM Model Development

The training and design of the SVM model is an iterative process and essentially it
consists of performing the following basic steps (Chang and Lin, 2001; Kecman 2004):

1) Define the problem as classification or regression.

2) Standardize the input data.

3) Check for outliers, i.e. the strange data points.

4) Select the kernel function in order to transform the data to a higher dimensional
feature space. This helps determine the hypothesis space of the decision or regression
function in the classification or regression problem. One of the common kernels
considered is the RBF kernel.

5) Select the ‘shape’, i.e., the smoothing parameter ¢ of the kernel function. This is the
polynomial degree for the polynomial and variances for the Gaussian RBF kernel.

6) Choose the penalty parameter C and the desired accuracy defining the insensitivity
Zone €.

7) Solve the quadratic programming problem in the 2 x L variables for the
corresponding regression task.

8) Train the model and validate it on a previously unseen dataset. If the validation result
is not satisfactory, repeat the steps from 4 to 8.

9) Since the search for the individual C, € and the shape parameter 6 can be tedious and
a time consuming task, an alternative approach could be cross-validation and grid search

to find the best value of the cost parameter.
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CHAPTERI1V

ADDRESSING THE SPARSE DATA ISSUE IN NOME

4.1 Placer Gold in Nome

The Nome district is located on the south shore of the Seward Peninsula at
roughly latitude 64°30° north and longitude 165°30” west. It is 840 km west of Fairbanks
and 860 km northwest of Anchorage (Figure 4.1). The first discovery of placer gold in
Nome dates back to 1898. Gold and antimony have been produced from lode deposits in
this district and tungsten concentrates have also been produced from residual material
above the scheelite-bearing lodes near Nome. Other valuable metals, including iron,

copper, bismuth, molybdenum, lead, and zinc, are also reported in the Nome district.

Hopkins and MacNeil (1960) among others, studied these deposits, recognizing
their origins and chronicling their exploration, and speculated on their chronology and the
events in the complex regional glacial history that allowed their formation and
preservation. Figure 4.2 shows the composition of the offshore placer gold deposit. Due
to the extent and richness of the Nome gold resources, the area was studied extensively,
and geological, geophysical, and geo-chemical characteristics of near-shore gold deposits
are well documented in the published literature. Rusanowski (1994) presented an
excellent summary of the Nome Offshore placer project, and some of the relevant details
on the Nome Offshore placer project from Rusanowski’s work are reproduced here as a

foundation for the present research.
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Figure 4.1: Location of the Nome area (from Rusanowski, 1994)
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4.1.1 The History of Offshore Exploration

There is a long history of offshore gold exploration off the coast of Nome in
Alaska. Shell Oil Company conducted a seismic and magnetic survey of the area in the
year 1962. After an extensive study in 1963, a drilling program was conducted to sample
an area of about 22,000 acres. The program resulted in the completion of 568 drill holes
in 1964.

In 1967 and 1968, the U.S. Geological Survey collected 700 bottom samples in
the northern Bering Sea and sampled the beaches at Nome and other areas around Norton
Sound. In addition, the U.S. Bureau of Mines drilled 51 holes offshore around Nome.

Asarco, Inc. took over the operation in 1968 and drilled an additional 500 holes
through the ice on the newly optioned leases west of Nome in early 1969. Asarco also
carried out investigations including bottom photography, current and wave
measurements, bulk sampling, pilot scale mining, environmental assessment, and a
preliminary engineering design and cost estimate. However, the economics were not

favorable based on the price of gold at that time ($35 per ounce).

In 1983, Power Resources Corporation contacted Asarco and completed a reserve
study and title evaluation. Application was filed for mining permits and the property was
purchased by Nova. In 1985, the property was sold to Inspiration Mines, Inc. (later
WestGold), but Nova retained the right of reassignment upon cessation of operations by
WestGold. WestGold drilled 2,500 holes, collected 57 bulk samples, and transformed the
data from the Shell-Asarco drilling to form one database. WestGold also carried out
extensive high-resolution seismic surveys of the lease area. Side scan sonar was used to

map sediment types on the seafloor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37
4.1.2 Problem of Gold Reserve Estimation

As described above, Shell Mining Company completed approximately 568 drill
holes in 1964, and ASARCO drilled an additional 500 holes in 1969. The Shell-
ASARCO drilling covered most of the shallower parts of the lease block and formed the
basis for preliminary estimates. During the period from the winter of 1987 through the
summer of 1989, WestGold and its predecessor, Inspiration Gold, conducted 5 drilling
programs and one bulk sampling program, adding an additional 2500 drill holes and 57
bulk samples. The data from 3,500 drill holes and 57 bulk samples were made available
by Nova resources (1998) for this analysis.

The lease boundary, excluding the grounds previously dredged, is divided into
two categories, “Proven” and “Probable”. Proven reserves are limited to areas where drill
hole spacing does not exceed 70m x 70m, and probable reserves are generally defined by
drilling on 100m x 200m grids. In addition to the proven-probable divisions, the lease
area is divided into 9 blocks: COHO, HALIBUT, HERRING, HUMPY, KING, PINK,
RED, SILVER, TOMCOD.

These blocks present a significant gold resource in the Nome area that possibly
could be mined economically. Initial study was conducted by Ke, 2002 using a neural
network (NN) technique for ore reserve estimation. The study did not take into account
some of the remedial measures that could be taken to improve the NN model
generalization. It is believed that significant risks associated with the ore reserve
estimation could be prevented by proper model generalization and validation. However,
NN model generalization and validation pose particular difficulties when the drill hole
data are sparse and scanty. Researchers (Bowden et al., 2002; Samanta et al., 2004a;
Samanta et al., 2004b) have tried various approaches to deal with sparse data by various
data division techniques. Random data division is one such method. However, random
data division in a sparse data situation might be unreliable. One of the goals of this

research is to devise techniques for proper division of the data. In order to improve the
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generalization of the NN models the entire data set was divided into three subsets:
training, calibration and validation, using various techniques. It was assumed that x-
coordinate, y-coordinate, water-table depth and gold concentration are input variables.
The output of the data division approaches will be three statistically similar subsets which

can be used for NN modeling.

4.1.3 Sparse Data Problem

The exploratory boreholes (Table 4.1) provided by Nova Resources are the only
available sources of information from which detailed reserve modeling was carried out.
Figures 4.3 through 4.11 present the spatial plots of the borehole samples of the nine
mining blocks. From the figures, it can be observed that borehole data are sparse for
reserve estimation, considering the high spatial variation of ore grade that is commonly
associated with placer gold deposit. The boreholes are also not evenly located in the
areas. Characterization of the limited borehole data are essential for ore reserve
estimation of the subject areas. In order to achieve this goal, descriptive statistical
analyses of the data sets were conducted. Table 4.2 shows the mean and the standard
deviation values of the Nome gold data sets, which indicate strong variation for all the
nine fish blocks. The coefficient of variation is greater than one for all the blocks, which
indicates the presence of extreme values in the data sets. Histogram plots of the gold data
are also presented in Figure 4.12. The histogram plots illustrate that the gold values are
positively skewed. A log-normal distribution may be a suitable fit to the data. Visual
portrayal of the histogram plots also reveals that the gold data sets are composed of a
large proportion of low values and a small proportion of extremely high values. A closer
inspection of the spatial distribution of the high and the low gold grade values also
portrays a distinct spatial characteristic of the deposit. For example, the high values do
not exhibit any regular trend. Instead, one or two extreme high values occasionally occur
in a mix of low values. This may pose a particular difficulty in ore grade modeling since

the pattern of occurrence of extreme high values is somewhat unpredictable.
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A variography study was also undertaken to analyze the spatial correlation of the
gold attributes. Figures 4.13 through 4.21 present the variogram plots of the gold data for
all the blocks. The variogram plots exhibit a very small amount of regional component.
Large proportions of spatial variability occur from the nugget effect. This indicates the
presence of a poor spatial correlation structure in the deposit. Poor spatial correlation, in

general, tends to suggest that prediction accuracy for this deposit might not be reliable.

Table 4.1: Number of drill holes in the various mining blocks

Mining Blocks No of Drill holes

Coho 143
Halibut 323
Herring 415
Humpy 212
King 275
Pink 216

Red 530
Silver 415
Tomcod 450
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Table 4.2: Summary statistics of Nome gold data sets

Data Set Mean Standard Coefficient of
Deviation Variation
Coho 620.01 1233.8 1.98
Halibut 241.21 394.52 1.63
Herring 333.35 553.31 1.66
Humpy 449.60 690.64 1.54
King 348.50 665.64 1.91
Pink 125.90 167.74 1.33
Red 440.17 650.58 1.48
Silver 228.36 367.69 1.61
Tomcod 265.31 414.05 1.56
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It is recognized that the available gold data are sparse and exhibit a low level of
spatial correlation. Spatial modeling of these data sets is complex. The prediction
accuracy may further be reduced if the sparse data problem is not addressed. As
described before, random divisions of data may be unrealistic when selecting the
members of the sample group into training, calibration and validation subsets. Since the
data are characterized by few extreme high values, the training, the calibration and the
validation data sets may disproportionately assimilate extreme values if random data

division is used.
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To demonstrate the severity of data sparseness in random data division, a
simulation study was conducted using the Nome data sets. One hundred random data
divisions were generated in which sample members for training, calibration and
validation subsets were chosen randomly. Statistical similarity tests of the three data
subsets, using analysis of variance (ANOVA) and Wald tests, were conducted. All the
important attributes (x-coordinate, y-coordinate, water-table depth and gold

concentration) were considered in the data division.

Statistical tests such as ANOVA and F tests are most frequently used to compare
the means of several population groups. The F test for this study was applied to compare
the means of the three data subsets. Therefore, the null hypothesis is: pr=pc=p,=p, where
U1, Ko, Ky, B are the means of the training, the calibration, the validation and the entire
data sets. The F statistic basically incorporates two factors: (a) within the group variance,
and (b) between the group variance. In fact the, F statistic measures the ratio of the
variance within the group to the variance between the groups. If the calculated F value
exceeds a threshold limit, then the population means are deemed different and the null
hypothesis is rejected. The threshold value is usually fixed at a 5% level of significance.
This test was used to identify the unacceptable data divisions with respect to each of the
variables listed above, namely the x-coordinate, the y-coordinate and the water-table
depth, excluding the gold attributes. It is known that the F test often fails to provide a
correct interpretation in skewed or log-normal populations. As the gold concentration is
better represented by a log-normal distribution, the use of F test may not be advisable.
Although log transformation of the data could be used for the F test, the problem,
however, was complicated as the gold values were accompanied with some zero

observations. Therefore, an F test for log transformed data was also prohibited.
A Wald test was proposed by Tu and Zhou (1999) for log-normal populations

with zero values. Therefore, Wald test used for the analysis of the gold data. The Wald

test for log-normal distribution with zero observations is based on the idea that the "
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population consists of njp number of zero observations, and n;; number of nonzero
observations, i.e., the total number of observations in the jth population is nj=nj, + n;;. It is
assumed that nonzero observations follow lognormal distribution, i.e., log (Yy)| nji ~
N(u;, 6%), and zero observations follow a delta distribution, i.e., Y;nj~Bin (nj, 3;), where
9; is the proportion of zero observations in the population. Using a likelihood-based Wald

statistic, Tu and Zhou (1999) showed that the Wald statistic, W, has the following form:

o PN+ fu + 12—+ fu+a 12))
=2 l-exp(W)+G> +6' /2

-1
-(i (mexp())(1—exp() + o’ + 67 /2) ") @.1)
j=1

[ § LBV 1261123+ s+ 6712) ’
=2 1-exp(v)+ 87 +67/2

Under the null hypothesis, the statistic W converges to ;> with r = K-1 degrees of
freedom and where K= number of populations (in this study K=3).
1 njl

. ni s njl R
V= Ing’ p=—>logyj and g #ﬁg(logyy—;g)z

) nj1 i=1

Similar to the F test, for the three variables, the calculated value of W was compared for
the gold attribute with a threshold limit chosen from the v? table at the 5% level of
significance with 2 degrees of freedom. If the calculated W exceeds the threshold limit,
then the particular data division was considered bad with respect to the gold attribute.

The results of the simulation study are presented in Table 4.3. Table 4.3 shows the

numbers of bad divisions out of 100 data divisions with respect to each of the variables,
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both separately and jointly. The numbers presented in Table 4.3 are the average values of
the one hundred simulation runs, where each run consisted of 100 random data divisions.
It may be observed that a large number of unacceptable data divisions could result if
random data division is employed. For example, the Coho data set’s numbers of bad data
divisions (out of one hundred) are 6, 6, 6 and 13 for the variables x-coordinate, y-
coordinate, water-table depth and gold concentration respectively. Overall, a total of 27
data divisions out of 100 are bad when all the variables are considered together.
Furthermore, a particular data division might be bad with respect to one or more
variables. Therefore, the numbers of bad divisions with respect to the individual variables
do not sum up to the total number of bad divisions when all the variables are considered

together.

It may be obvious that almost Y4 of the data divisions are bad in random data
divisions due to the existing sparseness. This can be regarded as quite significant.
Unreliability of the random data division is further explored through the inspection of bad
data divisions. Statistical summaries for one of the arbitrarily selected random data
divisions for all the nine data sets are presented in Tables 4.4 through 4.12. From the
tables, it is seen that both the mean and the standard deviation values are significantly

different among the data subsets for the blocks considered.

Table 4.3: Number of bad divisions out of 100 random divisions

Data set Xcordinate Ycordinate Water Table Gold Total
Depth
Coho 6 6 6 13 27
King 6 6 6 17 28
Halibut 6 7 6 15 29
Humpy 6 6 6 9 24
Red 6 6 6 9 22
Tomcod 6 5 5 22 32
Pink 6 6 6 13 24
Herring 6 6 6 11 27
Silver 6 6 6 7 19
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Table 4.4: Statistical summary of one of the random divisions for the Coho data set

Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation Overall | Training | Calibration Valida
tion
X 8365.5 8661.5 8045.1 8100.5 [ 724.16 | 847.2 | 362.71 | 45147
Y 66119 66281 66040 65883 271.8 | 208.39 | 243.78 | 189.83
Gold 620.01 868.16 274.07 471.08 | 12338 | 1608.6 | 31543 | 786.54
WTD 19.184 19.137 18.566 19.859 | 1.0061 | 0.8050 | 1.2693 | 0.6048
Table 4.5: Statistical summary of one of the random divisions for the Halibut data set
Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation | Overall | Training | Calibration | Valida
tion
X 6193.5 6153.9 | 6312.6 6151.2 | 1046.4 | 10349 1154.7 | 952.62
Y 68258 68243 68370 68172 412.7 | 453.9 386.0 321.35
Gold 241.21 189.64 | 131.78 457.23 | 394.52 | 212.0 112.07 | 682.24
WTD 15.603 15.653 | 15.301 15.81 1.3069 | 1.3337 | 1.2925 | 1.2262
Table 4.6: Statistical summary of one of the random divisions for the Herring data set
Attri- Mean Standard Deviation
bute Overall Training Calibration | Validation Overall | Training | Calibration Valida
-tion
X 8507 8503.5 8436.3 8586.2 307.92 | 290.52 319.28 | 314.54
Y 9257.6 9228.7 9173.8 9401 440.03 | 4745 | 447.17 | 312.25
Gold | 333.35 228.47 246.02 633.1 553.31 | 26991 | 285.99 | 944.00
WTD | 8.1429 8.324 9.1762 6.72 4.408 4.61 4.4039 | 3.603
Table 4.7: Statistical summary of one of the random divisions for the Humpy data set
Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation Overall | Training | Calibration | Valida
tion
X 5624.7 5301.6 | 5788.9 6106.7 1225.4 1293 1148 960.2
Y 66527 66626 66513 66343 325.8 | 363.86 286 163.47
Gold 449.6 243.18 | 264.28 1047.8 690.64 | 345.15 0.653 | 1054.3
WTD 18.392 18.331 | 18.192 18.710 0.930 0.94 311.25 | 1.0760
Table 4.8: Statistical summary of one of the random divisions for the King data set
Attri- Mean Standard Deviation
bute Overall Training Calibration | Validation Overall | Training | Calibration Valida
-tion
X 177260 177150 177190 177530 423.73 | 373.53 | 496.23 307.5
Y 1169500 | 1169500 | 1169600 | 1169400 | 429.21 | 501.21 | 39141 | 270.05
Gold | 348.55 124.05 224.00 908.93 665.64 | 129,49 266.14 | 1106.2
WTD | 8.293 8.78 7.28 8.31 3.94 4.48 3.60 2.84
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Table 4.9: Statistical summary of one of the random divisions for the Pink data set

Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation Overall Training | Calibration Valida
tion
X 5839.1 5925.2 | 6039 5467 479.38 | 399.68 | 396.28 505.73
Y 10092 10033 | 10388 9914.1 467.16 | 469.57 | 195.25 523.12
Gold 125.98 180.06 | 71.589 72.20 167.74 | 215.32 | 71.840 58.840
WTD 6.022 6.242 3.264 8.340 3.9780 | 3.9290 | 1.2280 4.2600

Table 4.10: Statistical summary of one of the random divisions for the Red data set

Attri Mean Standard Deviation

-bute Overall Training | Calibration | Validation | Overall | Training | Calibration | Valida

tion
X 3941.8 3947.7 3838.2 4032.6 456.54 | 436.89 | 505.50 425.5
Y 10198 10174 10350 10097 469.75 | 483.19 | 487.22 384.06

Gold | 440.17 297.75 781.77 385.00 650.58 | 353.31 | 10340 475.12

WTD | 8.4845 8.94 6.6242 9.414 5.2063 | 5.1679 | 5.3559 4.69

Table 4.11: Statistical summary of one of the random divisions for the Silver data set

Attri- Mean Standard Deviation

bute Overall Training Calibration | Validation | Overall | Training | Calibration | Valida

-tion
X 11511 11501 11387 11655 682.3 | 600.32 [ 697.23 791.16
Y 10766 10721 | 10488 11127 612.96 | 571.75 | 491.16 632.22

Gold 228.36 318.56 | 168.11 109.62 367.69 | 483.44 | 169.90 113.53

WTD 10.305 10.716 | 12.646 7.200 4.7248 | 4.4091 | 3.2167 4.9710

Table 4.12: Statistical summary of one of the random divisions for the Tomcod data set
Attri Mean Standard Deviation

-bute Overall Training | Calibration | Validation | Overall | Training | Calibration | Valida
tion
X 8508.2 8378.2 | 9002.9 8276.7 917.61 | 837.73 [ 727.59 1055.7
Y 12010 12116 | 11501 12304 630.27 | 419.93 | 832.78 428.33
Gold | 265.31 171.02 | 534.66 186.07 414.09 | 177.61 | 698.24 210.66
WTD 7.2951 6.990 9.7268 5.4912 3.9186 | 3.321 | 4.5255 3.133

4.1.4 Data Segmentation for Data Division

From the preceding discussion related to the sparse data, it is obvious that random
data divisions are not satisfactory, particularly for gold attributes. Statistical indices, as
well as the histogram plots presented earlier, indicated that the gold data are highly

skewed and follow a log-normal distribution. There is considerable evidence that the gold
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distribution is represented by a few extreme high values, and that the presence or the
absence of these extreme values in a data subset significantly influences the statistical
characteristics of that subset. Since the spatial pattern of the few extreme high values is
quite different from the low values, special attention should be paid so that extreme
values are selected equally into the three data subsets. Furthermore, low and medium

range values must also be present in the right proportion in these three data sets.

It is likely that the use of a genetic algorithm or kohonen network may not result
in equal representation of the low, the medium and the high value patterns in the three
data sets. Hence, prior to the application of a GA or Kohonen network for data division,
data segmentation for low, medium and high range values should be used to improve the
results. This assertion is supported through a study of data division using a GA or
kohonen network with data segmentation and without data segmentation. A statistical
summary of the data division without data segmentation using a genetic algorithm or
kohonen network is presented in Table 4.13 for the King data set. From the table, it is
seen that although the GA and kohonen networks appreciably improve the consistency of
the data subsets, this could further be improved using data segmentation. Therefore, data
sets were partitioned into three segments before applying the GA or kohonen network in

the individual segments.

Table 4.13 (a). Genetic algorithm for data division in the King data set (without data segmentation)
Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation Overall | Training | Calibration Vglida
tion
X 177260 | 177264 | 177274 | 177224 | 423.7 | 4258 | 4219 425.6
Y 1169500 | 1169497 | 1169471 | 1169510 | 429.2 | 430.9 | 433.6 426.6
Gold | 348.55 365.0 333.6 330.8 665.6 | 6913 | 649.1 636.6
WTD | 8.293 8.24 8.53 8.51 3.94 3.95 3.97 3.96
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Table 4.13 (b): Kohonen network for data division in the King data set (without data segmentation)
Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation Overall Training | Calibration Valida
tion
X 177260 177270 177240 177260 4237 | 442.7 418.2 410
Y 1169500 | 1169500 | 1169500 | 1169500 | 429.2 453.8 420.8 411
Gold | 348.55 4253 318.6 289.40 665.6 831.1 586.3 503
WTD | 8.293 8.25 8.52 8.10 3.94 4.05 3.94 3.86

4.1.4.1 Data Segmentation and GA for Data Division

Prior to applying GA, the data were divided into three prime segments. The
segmentation was done based on a visual inspection of a histogram plot. Figure 4.22
presents a schematic diagram of the data segmentation and the genetic algorithm
approach. After the data segmentation, GA was applied in each of the segments: segment
1, segment 2 and segment 3. A MATLAB program was developed for the GA application
in data division. The members of the training, calibration and the validation data sets
were selected using GA from each of the segments. Once the members for the training,
calibration and validation data were chosen, the selected members from the segments
were appended together to form the respective subsets. Tables 4.14 through 4.22 present
the summary statistics of the mean and the standard deviation values for all the variables
for the three data subsets and entire data set. It is observed that the mean and standard
deviation values are similar for all the data subsets. The histogram plots of the three
subsets and the entirety of the nine data sets are presented in Figures 4.23 through 4.31.
From the figures, it is seen that all the data subsets assume an almost identical shape to
that of the overall data set, and that the skewness of the data in the three subsets is also

preserved.
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Figure 4.22: Data segmentation and genetic algorithms for data divisions

Table 4.14: Statistical summary of data division using GA (Coho)

Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation Overall | Training | Calibration Valida
tion
X 8365.5 8396.7 8334.2 8335.2 724.16 | 727.74 | 732.61 726.45
Y 66119 66125 66113 66112 271.8 274.06 | 272.64 273.83
Gold | 620.01 626.63 611.65 615.30 1233.8 | 1265 1214.1 1225.3
WTD | 19.184 19.03 19.32 19.33 1.0061 | 1.07 0.90 0.94
Table 4.15: Statistical summary of data division using GA (Halibut)
Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation Overall | Training | Calibration Valida
tion
X 6193.5 6193.0 6226.5 6162.4 1046.4 | 1049.4 | 1047.9 1051.1
Y 68258 6825.4 6827.5 6824.7 412.7 410.7 418.40 415.49
Gold | 241.21 239.18 233.73 252.48 394.52 | 382.74 | 354.04 454,93
WTD | 15.603 15.62 15.59 15.57 1.3069 | 1.29 1.32 1.32
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Table 4.16: Statistical summary of data division using GA (Herring)

Attri- Mean Standard Deviation
bute Overall Training Calibration | Validation Overall | Training | Calibration Valida
-tion
X 8507 8505.4 8509.6 8507.5 307.92 | 308.4 309.3 308.4
Y 9257.6 9256.9 9256.4 9260.3 440.03 | 443.15 | 441.49 436.46
Gold | 333.35 324.04 350.24 334.43 553.31 | 561.09 | 558.38 536.83
WTD | 8.1429 8.07 8.21 8.20 4.408 4.44 4.40 437
Table 4.17: Statistical summary of data division using GA (Humpy)
Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation | Overall | Training | Calibration | Valida
tion
X 5624.7 5647.8 5611.9 5592.7 12254 | 1232 1208.7 1249.7
Y 66527 66529 66519 66530 325.8 331.37 | 319.12 327.16
Gold | 449.6 455.90 460.21 427.53 690.64 | 713.70 | 680.48 666.90
WTD | 18.392 18.38 18.38 18.41 0.93 0.94 0.93 0.94
Table 4.18: Statistical summary of data division using GA (King)
Attri- Mean Standard Deviation
bute Overall Training Calibration | Validation | Overall | Training | Calibration | Valida
-tion
X 177260 177240 177270 177270 423.73 | 431.29 | 416.07 421.23
Y 1169500 | 1169500 | 1169500 | 1169500 | 429.21 | 430.23 | 432.20 429.51
Gold | 348.55 337.44 366.27 353.25 665.64 | 689.16 | 639.66 652.07
WTD | 8.293 8.436 8.170 8.132 3.94 3.951 4.024 3.915
Table 4.19: Statistical summary of data division using GA (Pink)
Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation | Overall | Training | Calibration | Valida
tion
X 5839.1 5829.6 5844.5 5852.2 479.38 | 481.9 | 485.46 477.01
Y 10092 10100 10092 10077 467.16 | 466.16 | 470.90 473.59
Gold | 125.98 127.21 127.10 122.55 167.74 | 165.28 | 181.54 161.74
WTD | 6.022 6.033 6.030 5.994 3.978 4.01 3.98 3.96
Table 4.20: Statistical summary of data division using GA (Red)
Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation { Overall | Training | Calibration | Valida
tion
X 3941.8 3950 3935.6 3931.6 456.54 | 456.6 | 457.6 458.6
Y 10198 10194 10218 10186 469.75 | 471.2 467.2 4724
Gold | 440.17 461.99 418.46 418.59 650.58 | 673.97 | 627.89 628.8
WTD | 8.4845 8.38 8.63 8.54 5.2063 | 5.23 5.19 5.19
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Table 4.21: Statistical summary of data division using GA (Silver)

Attri- Mean Standard Deviation
bute Overall Training Calibration | Validation Overall | Training | Calibration | Valida
-tion
X 11511 11531 11507 11478 682.3 686.05 | 683.60 678.78
Y 10766 10766 10769 10763 612,96 | 616.36 | 614.43 610.70
Gold | 228.36 229.12 219.27 235.53 367.69 | 375.16 | 335.18 385.56
WTD | 10.305 10.31 10.30 10.28 47248 | 4.73 472 474
Table 4.22: Statistical summary of data division using GA (Tomcod)
Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation | Overall | Training | Calibration | Valida
tion
X 8508.2 8518.8 8488.1 8506.9 917.61 | 920.86 | 920.84 915.70
Y 12010 12024 11983 12010 630.27 | 631.83 | 634.44 627.74
Gold | 265.31 271.22 256.08 262.66 414.09 | 417.61 | 410.65 413.8
WTD | 7.2951 7.17 7.47 7.35 3.9186 | 3.93 3.92 3.89
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Fig 4.30: Histogram plot of Silver data set
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4.1.4.2 Data Segmentation and Kohonen Network for Data Division

A kohonen network was also applied in each of the three segments to sample for
the training, the calibration and the validation data sets. It was done to verify if improved
results can be accrued using this approach. Figure 4.32 presents a schematic diagram of
data segmentation and the kohonen network approach. The intent of the kohonen network
was to apply an algorithm in each of the segments separately for grouping of the similar
patterns in the segment. For this purpose, Neuroshell software (1993) was used. Since the
number of clusters needed is not previously known, a large number of clusters, e.g 15,
were chosen. Once the grouping were done, each group contained similar patterns. From

each group, samples were selected randomly for training, calibration and validation. If
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there was only one sample in a group, that sample was put into the training set. If there
were only two samples, one sample was put into the training, and the other in the
validation set. Continuing in this way, the samples were selected from all three segments
and the training, the calibration and the validation data sets were prepared. Tables 4.23-
4.31 present the summary statistics of the mean and standard deviation values for all the
variables of the three data subsets and the entire data set. It may be observed that the
mean and the standard deviation values are similar for each of the datasets. In comparison
with the genetic algorithm, however, this approach provided slightly inferior results.
Despite this outcome, the experimentation showed that data segmentation using the

genetic algorithm and kohonen networks is appropriate for division of the data.

Selection
From
| each
cluster

Random
Selection
From
each

83
, —
'

Random
Selection
From
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Cluster

Data
Cluster

Figure 4.32: Data segmentation and kohonen network for data division
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Table 4.23: Summary of the data division using Kohonen network (Coho)
Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation | Overall | Training | Calibration | Valida
tion
X 8365.5 8317.40 | 8479.20 | 8377.30 | 24.16 | 675.45 | 788.04 790.47
Y 66119 66083 66202 66129 271.8 | 265.82 | 260.52 287.74
Gold | 620.01 681.32 597.43 482.42 1233.8 | 1198.6 | 1498.50 | 1048.1
WTD | 19.184 19.219 18.929 19.348 1.0061 | 1.0988 | 0.80216 | 0.911
Table 4.24: Summary of the data division using Kohonen network (Halibut)
Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation | Overall | Training | Calibration | Valida
tion
X 6193.5 6121.7 6285.50 | 6209.60 | 10464 | 1011.3 | 1060.90 [ 1086.8
Y 68258 68232 68264 68290 412.7 | 422.34 | 400.82 411.73
Gold | 241.21 268.58 220.27 220.96 394.52 | 470.40 | 324.70 328.86
WTD | 15.603 15.701 15.612 15.444 1.3069 | 1.3322 | 1.2968 1.2771
Table 4.25: Summary of the data division using Kohonen network (Herring)
Attri- Mean Standard Deviation
bute Overall Training Calibration | Validation | Overall | Training | Calibration | Valida
-tion
X 8507 8509.50 | 8500.50 | 8510 307.92 | 314.17 | 300.64 308.54
Y 9257.6 9269.70 [ 9269.70 | 9228.20 | 440.03 | 434.65 | 435.61 454.15
Gold | 333.35 355.78 328.29 306.35 553.31 [ 629.10 | 565.12 409.99
WTD | 8.1429 8.0231 8.2033 8.2537 4.408 | 4.3273 | 4.4979 44664
Table 4.26: Summary of the data division using Kohonen network (Humpy)
Attri Mean Standard Deviation
-bute Overall Training | Calibration | Validation | Overall | Training | Calibration | Valida
tion
X 5624.7 5531 5739.80 | 5683.30 | 12254 | 1224.6 | 1192.40 | 1267.7
Y 66527 66533 66517 66526 325.8 | 340.14 | 327.57 301.55
Gold | 449.6 371.22 540.45 504.11 690.64 | 586.24 | 849.30 690.38
WTD | 18.392 18.415 18.353 18.391 0.93 0.8519 | 0.97084 | 1.0561
Table 4.27: Summary of the data division using Kohonen network (King)
Attri- Mean Standard Deviation
bute Overall Training | Calibration | Validation | Overall | Training | Calibration | Valida
-tion
X 177260 | 177250 177260 177270 | 423.7 | 414.1 436.6 428.9
Y 169500 | 1169500 | 1169500 | 1169500 | 429.2 | 417.2 | 4247 454.5
Gold 348.55 {365.9 328.3 344.6 665.6 [ 771.2 |5904 579.1
WTD 8.293 8.04 8.56 8.36 3.94 3.74 4.18 4.01
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Table 4.28: Summary of the data division using Kohonen network (Pink)

Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation | Overall | Training | Calibration | Valida
tion
X 5839.1 5844.10 | 5835.90 | 5834.90 | 479.38 | 486.39 | 480.56 | 475.44
Y 10092 10097 10076 10102 467.16 | 478.47 | 443.91 479.82
Gold 125.98 139.08 125.96 106.56 167.74 | 189.65 179.85 111.92
WTD 6.022 5.9239 6.1258 6.0661 3.978 | 3.9213 3.9322 | 4.1675
Table 4.29: Summary of the data division using Kohonen network (Red)
Attri- Mean Standard Deviation
bute Overall Training Calibration | Validation | Overall | Training | Calibration | Valida
-tion
X 3941.8 3937 3928.10 | 3961.80 | 456.54 | 459.96 | 450.13 460.72
Y 10198 10180 10222 10198 469.75 | 458.43 | 451.35 503.46
Gold | 440.17 478.90 400.76 428.46 650.58 | 708.20 | 5.1278 630.42
WTD | 8.4845 8.6561 8.2953 8.4473 5.2063 | 5.2216 | 589.52 5.291
Table 4.30: Summary of the data division using Kohonen network (Silver)
Attri Mean Standard Deviation
-bute Overall Training Calibration | Validation Overall | Training | Calibration | Valida
tion
X 11511 11516 11492 11523 686.05 | 647.86 | 709.37 708.59
Y 10766 10754 10767 10783 616.36 | 633.36 | 604.14 595.88
Gold | 228.36 252.49 212.24 209.28 375.16 | 387.73 | 356.55 349.18
WTD | 10.305 10.394 10.283 10.197 4.73 4.8336 | 4.6563 4.6688
Table 4.31: Summary of the data division using Kohonen network (Tomcod)
Attri- Mean Standard Deviation
bute Overall Training Calibration | Validation | Overall | Training | Calibration | Valida
-tion
X 8508.2 8499.7 8518.8 8508.4 917.61 { 912.19 | 947.17 900.99
Y 12010 12025 11987 12014 630.27 | 675.65 | 629.73 571.58
Gold | 265.31 268.56 264.0 262.43 414.09 | 422.28 | 424.97 394.98
WTD | 7.2951 7.1114 7.481 7.3453 3.9186 | 4.0781 | 3.8627 3.7807
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CHAPTER V

NOME GOLD RESERVE ESTIMATION USING ORIGINAL FISH BLOCKS

The Nome gold reserve estimation is challenging owing to the complexity
associated with the placer gold deposits, in addition to the scarcity and sparseness of the
drill hole data. The drill hole samples are located on an irregular grid and sparsely
scattered throughout the region. As described earlier, the lease boundary is divided into 9
blocks viz., Coho, Halibut, Herring, Humpy, King, Pink, Red, Silver and Tomcod for the

purpose of grade and reserve estimation.

Each drill hole information contains Northing (Y-coordinate), Easting (X-
coordinate), water-table depth, gold grade in mg/m’, along with other relevant
information. An example of drill hole data for the King mining block is presented in
Table 5.1. For grade estimation, Northing, Easting and water-table depth were considered
as input variables, and the gold grade was considered as an output variable. The
composite values of the gold grade, up to a 5Sm sea-floor depth, were considered in this
study. The total number of holes drilled in each fish block is presented in Table 4.1 and
the total number of patterns in the validation dataset for all the blocks is shown in Table
5.2.

In this chapter, the gold grade associated in the nine blocks of the Nome deposit
has been estimated using the traditional geostatistical ordinary kriging (OK) technique
and two machine learning algorithms namely, the neural network (NN) method and the
support vector machine (SVM) method. The various issues involved in the use of these

techniques for grade estimation are discussed in the following sections.
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Table 5.1: Example of drill hole data for King block

DHD {XSPM |[YSPM |W D [IBEGIN |IEND |METER |DRIVE IMGCM |G T  |CUMMG |CUMMGICM
43 1780424 1eoRRS 271 274 3871 143 113 216 2408 24408 21600
A3 1780424 11608285  27] 387 604 23 122 108 1281] 37218 158.37]
A3 1780124] 11698285 271 609 631 350 122 108 1281 50028 14013
33 1780404 11608285 27| 631 758 479 122 53 6466  564.94 17.94
A3 1790024 1160885 271 753 Q97 729 244 0 o 55494 7825
A3 1780424 11608285 271 997 1119 844 1220 231 818 84679 100.33
343 1780424 11608085 27| 1119 1241 9 122l 108 1281 97486 100.92}
33 1700424 11608285 27 -1241] 1484  121] 244 0 o 97489 80,571
33 1780424 11608285 27] -1484 1608 133 1.2 2 .04 10130 76.12
33 1700124] 1160885 27| 1606 -17280 1454 1.2 0 1013.90 6973
A3 1780424 11608285 271 1728 185 1576 1.2 0 101390 64.33
3 1780424] 1160885  27] 185 1951 1676 101 344 4744 136134 81.23
33| 1780424 11608285 27] -1951| -19: 679 0 0 o 1%1.34 81
a4l 1770041| 116041428 671 671 762 o091l o091 20 Ms7l  sm) 270.00

1778041 116041425 67] 762 884 213 1.2 0 0 2457 115.35

4 177804.1] 116:1425 67 884 125 579 366 17 @2 7w 5318

34 177e41| 1169414250 67] 128 1372 701 1 0 0 7R 4393

U4 177641| 116941428 67] 1372 1494 823 1 0 M4 32 4038

4| 1778041] 116041425  67] 1494 1615 948 124 16 19764 52095 56.08

U4l 177804.1) 11641425 67 1615 -17.37] 1067 1 7 8. 616.58 57.79
Where,

DHID: Drill hole identification
XSPM: X-coordinate, m
YSPM: Y-coordinate, m
W_D: Water depth, m
IBEGIN: Sample interval begin, m

IEND: Sample interval end, m

METER: the cumulate thickness of the sample intervals, m
DRIVE: the thickness of each sample interval, m

MGCM: gold grade per meter in composite depth, mg/m’
G_T: Total gravity in composite depth, mg/m’

CUMMG: cumulate gold grade of the sample intervals, mg/m’
CUMMG/CM: average gold grade per meter in depth, mg/m’.
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Table 5.2: Number of samples in the validation dataset for the fish blocks.

Mining Blocks No of Drill holes ( Prediction Dataset)
Coho 36
Halibut 79
Herring 102
Humpy 55
King 71
Pink 56
Red 126
Silver 107
Tomcod 114

5.1 Geostatistical Modeling
5.1.1 Ordinary Kriging for Ore Grade Estimation

Ordinary Kriging (OK) is the most commonly used geostatistical estimation
technique. It is often associated with the acronym B.L.U.E known as the “best linear
unbiased estimator.” Since the kriging estimates are the weighted linear combinations of
the available data, it is termed as “linear.” It is “unbiased” because of its characteristic
property of minimizing the mean error and “best” because of its inherent tendency to
minimize the error variance. The theoretical distinguishing feature of OK is its ability to
minimize the error variance. However, in practical situations the knowledge of the
population error variance and the mean error is not known and the best that can be done
is to build a model from the available data and work with the average error and the error
variance of the model. Even when the entire available sample data is used, the estimates
at the unknown locations will have an associated uncertainty. Therefore in order to reflect
the uncertainty, a probabilistic random function model is used in OK. This random
function model calculates the bias, the error variance, and the weights of the nearby
samples. During the calculation of the OK weights, the random function model requires a
pattern of the spatial continuity existing in the data. This is usually obtained from the
spatial continuity evident in the sample dataset. The spatial continuity can be defined by

fitting a function to the sample variogram.
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If the sample values at the known locations are, V(x), ..., V(Xp), and suppose one at the

unknown location has a true value, V(x¢), then an estimate of this unknown value 14 (Xo)

is given by
V(x,) = 2wl (x) E3))
i=1

The weights w; are obtained from the ordinary kriging system of equations given by
> w,C; +u=C, Vi=l,..,n (5.2)
Jj=1

Where, C;; ---- the covariance

p ---- Lagrange Parameter

It can be written in matrix notation as

C - W =D (5.3)
Cp oereerennnenns ¢, 1 w, Co
or | e . _
Cppeeerenessrnnnn oo ¢, 1 w, Cho
) S 1 0 B Ly L P

(n+1)*(n+1)
Multiplying both sides by C™, the weight matrix is obtained as:

w=C'-D (5.4)

A detailed description on the working principle of the OK and the derivation of the above

system of equations is presented elsewhere (Isaaks & Srivastava, 1989).
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5.1.2 Nome Ore Grade Estimation Results using OK

The semi-variogram function that describes the spatial continuity for the nine
blocks in the Nome deposit was presented in Chapter 4 (Figure 4.13 - Figure 4.21). It is
quite evident from all the plots that there is no definite trend in the spatial patterns. The
nugget constitutes a major portion of the total sample variability in all the plots. When
dealing with geologic datasets, it is common to see a trend or structure. The absence of a
trend in the Nome datasets is unusual. This is perhaps due to the sparseness of the data.
The mean square error (MSE), mean absolute error (MAE), mean error (ME) and the
coefficient of determination (R?) obtained on the prediction dataset were used as the test
statistic to assess the model performance. The MSE criterion which is a measure of the
quality of estimation reflects the mean of the square error between the actual and
predicted value while the R expressed by equation 5.5 gives an idea of the percentage of
the variation captured by the model. As the number of the predictor variables increases
the model captures more of the ore grade variation, thereby, resulting in a larger R? value.
ME or Bias is the average error of estimation and is an indicator for over-estimation or
under-estimation. The MAE measures the average absolute deviation between actual and

the estimate.

g 1o 209 (5.5)
> -y
Where y; is the true ore grade, y is the mean ore grade and  is the predicted ore grade
value. Apart from the R? being used as one of the yardstick for evaluating the model
performance, there are a number of other statistics that can be used for evaluating the
effectiveness of a model. These measures such as the confusion matrix, kappa statistic
and the receiver operating characteristic (ROC) are, however, applicable towards the
classification tasks. The confusion matrix is a sort of classification table of the predicted
and observed values based on the fitted model. The measure of accuracy obtained from
this matrix is sometimes misleading owing to the fact that its interpretation depends on

knowledge of the prior probability of occurrence of the subject in question (Boyce et al.,
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2002). Apart from this, in the confusion matrix a bias is also introduced when a
continuous variable is dichotomized. This limitation is overcome by ROC which is

independent of the probability cut-off levels.

Generally, a model with less error and high R? is considered as the one generating
a better fit. The estimates obtained on the validation dataset for all the nine fish blocks
are shown in Table 5.3. The results are expectedly poor because ordinary kriging
produces local linear estimates. Therefore, attempt has been made to model the deposit
using non-linear artificial machine learning algorithms. These are presented in sections
5.2 and 5.3 in this chapter. Similar studies of applying the kriging technique for building
the model and using it for predicting on a validation dataset has also been reported in

spatial interpolation comparison (SIC-2004) (Dubois, 2005).

Table 5.3 OK estimates for the fish blocks.

Data Set Mean Error Mean Absolute Mean Squared R’ (in %)
Error Error

Coho -91.50 729.20 1855934.54 0.07
Halibut 2.55 207.94 132351.88 11.10
Herring -5.83 566.98 268719.57 8.80
Humpy 75.76 484.27 446436.34 0.40
King 8.17 329.44 298962.30 30.50
Pink 33.83 128.97 47171.00 3.00
Red 33.54 353.02 319487.8 19.30
Silver 12.58 221.46 138499.46 7.70
Tomcod -6.02 15.037 141441.00 17.50
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5.2 Neural Network Modeling

5.2.1 Neural Network for Ore Grade Estimation

Neural network (NN) is a computational structure inspired by the study of
biological neural processing. This structure exhibits certain brain-like capabilities,
including perception, pattern recognition, and pattern prediction in a variety of situations.
As in the brain, information processing is done in parallel using a network of “neurons.”
As a result, NNs have capabilities that go beyond algorithmic programming and work
exceptionally well for non-linear input-output mapping. It is this property of non-linear

mapping that makes neural network appealing for ore grade estimation.

There is a fundamental difference in the principles of OK and NN. While OK
utilizes information from local samples only, NN utilizes information from all of the
samples. OK is regarded as a local estimation technique, whereas NN is a global
estimation technique. If any non-linear spatial trend is present in a deposit, it is expected
that the neural network will capture it reasonably well. The basic mechanisms of neural
networks have been discussed at length in literature (Bishop, 1995; Hagan et al., 1995).

A brief discussion on NN theory is presented below to provide an overview of the topic.

Neural networks process information in interconnected layers. A layer is simply a
group of elements designated as neurons. There is the input layer consisting of the inputs,
one or more hidden layers consisting of a number of neurons, and the output layer
consisting of the outputs. Thus, a neural network has three or more layers. Typical
network architecture is presented in Figure 5.1. The network present in the figure has 3
layers. The inputs (elements in the input layer) are first manipulated to determine the
value of the elements of the hidden layer. It should be noted that while the input layer and
the output layer have a fixed number of elements for a given problem, the number of

elements in the hidden layer is arbitrary.
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Total input (Iy) to the
output layer element
Total input (I,) to the
hidden layer element

Output of the hidden
layer element fi(I;)

= -

- s

wa

Figure 5.1: A neural network architecture

Each input x; is assigned a weight w;; and connected to element j of the hidden
layer. Each input is connected to each node of the hidden layer just as each node of the
hidden layer is connected to each node of the output layer. Mathematically, each hidden
layer element is equal to the sum of the product of the inputs and their assigned weights.
The output of each hidden layer element is obtained by applying a function (f;) to the sum
(i.e. the input of the element). As in the case of the input layer, this output, in turn, is
weighted (w;) and sent as inputs to each of the output elements. The final output, i.e.
each output element, y, is obtained by applying a function (f) to the sum of the inputs
from the hidden layer. Therefore,

Vi =fk[zwjk.fj(2wijxiJJ (5.6)
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In the present analysis, as there is only one output, the generic output will be
referred to as y rather than y;. The functions fj(e) and fi(e) are typically a Logistic
function as shown below:

1
1+e™*

f: (.7

However, other activation functions like tanh, gaussian, gaussian-complementary or their

combinations might be used.

From the preceding discussion, it may be apparent that the obtained output
depends on the weights of the interconnections. Therefore, it is obvious that these
weights need to be determined in such a way that produces accurate outputs. The process
of determination of weights is called “learning” or “training.” Learning is a process by
which the neural network adjusts its weights to reflect the changes in the data fluctuations
in a spatial coordinate. During learning, the neural network maps the patterns pre-existing
in the data. The sample data set for a given deposit is used for this purpose. Assume that
there are n sample points. The network starts learning with sample point number one. It
begins with arbitrary weights; typically, all weights are set to random numbers with a
mean of zero and a standard deviation of one. In most cases, it doesn’t matter what initial
weights are chosen. Using the initial weights, the network computes the output y as
described previously. Depending on the output, weights are adjusted based on their
contribution to the error. This process of propagating the effect of the error onto all the
weights is called back propagation. Using the adjusted weights, the network then
computes an output for sample number two. The weights are adjusted once again to
reflect the error. Ultimately, it goes through all the samples, adjusting the weights on
each occasion. When a neural network is done training on a sample set, it is said to have
completed an epoch. The process of completing epochs is called online learning. There is
another method called batch learning where the error is calculated on an individual
sample basis. In this method, the weight is updated only once in an epoch, with the new

weight being based on the errors of all the samples in the training data set.
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Typically, the weights after a single epoch are usually unsatisfactory. To make the
network satisfactory, the learning/training process is restarted with the initial weights
being the final weights of the previous epoch. When the error for an epoch is deemed

satisfactory, the network is considered “trained.”

5.2.2 Optimization of Neural Network Training

Among the many practical modeling issues, neural network training is still
debated. A neural network model working on a grade estimation problem performs
mappings from an input space to an output space. For example, given the spatial co-
ordinates and other relevant attributes as input, and grade attribute as output, neural
network will be able to generate a mapping function through a set of connection weights
between the input and the output. Hence, output O of a neural network can be regarded as
a function of inputs X and connection weights W: O =¢ (X), where ¢ is a mapping
function. Training of a neural network involves finding a good mapping function that
maps the input-output patterns correctly. This is done, as previously described, by
adjusting the connection weights between the neurons of a network using a suitable
learning algorithm, while simultaneously fixing the network architecture and activation
function. In essence, given a set of training patterns consisting of input-output data pairs
of spatial co-ordinates and other attributes and grade attribute {(I,, D), (I, D2)... (In, Dn),
the learning algorithm strives to minimize the training error. One popular error function
is a squared-error function in which error is described as, e (W, I, D;)= (¢ (Ii, W)-D; Y.
Using a suitable learning rule, a set of connection weights, W, is found so that the

squared error function is minimized.
In a multilayer feed forward neural network, a supervised learning algorithm is

applied to train a network. Supervised learning used in neural network training can be

considered as an unconstrained nonlinear optimization problem in which the objective
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function, defined here as the squared error function, should be minimized in the search of
weight space. Error functions spanned by the weight space in a neural network may have
a single minimum as the global minimum. On the other hand, an error function may
generate a very complicated error surface with many local minima in the weight space,
where only one is a global minimum. Gallaher (1999) argued that a local minimum in
neural network is not a major problem, where as Shang and Wang (1996) showed that the
error surface could be very rugged and may have several local minima. For the first case,
local learning algorithms may be adequate. Obviously in the presence of many local
minima, local learning algorithms could have difficulty in finding the optimal solution
and may get trapped in the local minimum point. In the present context, an investigation
was carried out to observe the performance of few local learning algorithms for neural

network modeling and was applied for ore grade estimation in the nome area.

Three local optimization techniques that were investigated are: (i) standard
gradient descent back-propagation (SBP) with fixed learning rate, (ii) back-propagation
with momentum learning (MBP), and (iii) Levenberg-Marquardt back-propagation
(LMBP) learning. Comparative evaluation of these techniques in neural network learning

optimization was also carried out with the data sets from Nome area.

5.2.2.1 Local Learning Algorithms

Learning the weights of a neural network can be considered to be an
unconstrained continuous non-linear minimization problem. In the past, many techniques
have been developed for solving non-linear optimization problems (Battiti, 1992; Dixon,
1994). Optimization methods can be classified into local optimization and global
optimization. Examples of local optimization techniques include gradient descent
algorithm, Newton’s method, and the conjugate-gradient method. These techniques are

also applicable in neural network learning as well.
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Each of the local optimization techniques use some form of gradient information
in their search strategy, and requires the calculation of the gradient of error with respect
to the weight vector. Due to hidden layers topology in a neural network, it is not possible
for a direct calculation of the error gradient with respect to the hidden layers connection
weights. Instead, an algorithm called back-propagation is used to calculate the gradient.
Back-propagation algorithms apply a chain rule for calculating the gradient, which is
done by back propagating the sensitivities (change of error function with respect to net
input to a neuron) from output layers to previous layers step by step in the backward
direction (output-hidden-input). This study applied three local optimization algorithms,
the properties of which were studied in the Nome ore reserve estimation problem. The
basic mechanisms and mathematical foundation of these techniques can be found in
published literature (Haykins, 1998; Bishop, 1995; Hagan, 1995). For completeness a

brief overview of the optimization is presented below.

5.2.2.1.1 Standard back propagation with gradient descent (SBP)

The gradient-descent algorithm finds a locally optimal solution by iteratively
taking small steps in the gradient descent direction. The search procedure starts with a
random initial guess of parameters in the weight space. The weight is updated in each

iteration according to following equation:
w (nt+1) = w(n)-n Ve(w) (5.8)
Where, 1) is learning rate parameter.

Ve(w) is the gradient of error.

The learning rate parameter,n, plays a major role in convergence of the algorithm.
A small learning parameter causes a small change of the weight vector along the gradient
descent direction, which results in very slow progress along the search trajectory. On the

other hand, a large learning parameter may cause an overshoot of the minimum point,
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although it provides a faster convergence. Back-propagation is the generalization of this
gradient-descent algorithm, which employs the chain rule in calculating gradients at
hidden layers. A complete description of back propagation algorithm can be found in
Hagan (1995).

5.2.2.1.2 Back propagation with momentum (MBP)

Use of a large learning rate causes gradient descent algorithms to oscillate along
the search trajectory, and may even cause divergence. In order to get the full benefit of a
faster convergence with large learning rate, the oscillation along the search path must be
reduced. Use of a momentum algorithm facilitates the dampening of the oscillations and
renders fast convergence. Momentum algorithm introduces a momentum factor and

makes the new weight change as follows:
Aw (n) =y Aw(n-1)-(1-y).n Ve(w) (5.9
Where, Aw (n)=w(n)-w(n-1)
v =momentum co-efficient, 0<y<1

Ve(w) = the gradient of error

5.2.2.1.3 Levenberg-Marquardt algorithms (LMBP)

The Levenberg-Marquardt algorithm is a modification of the Newton’s method
for non-linear optimization. The Levenberg-Marquardt and Newton method use, in
addition to the gradient, other numerical quantities such as the Hessian matrix of the error
surface, which consists of the 2™ order derivative of the error function. These methods
are also based on the concept of quadratic approximation of the error function in a local
region. If the error function is truly quadratic in nature, the Newton’s method finds the
minimum solution in a single iteration. Therefore, the success of this technique depends

upon how closely the error function resembles the quadratic function. Even the
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Levenberg-Marquardt algorithm will diverge if the quadratic approximation is not
appropriate. Searching for an optimal solution using this method requires the calculation
of the inverse of the Hessian matrix, which should be positive definite. Newton’s method
does not always guarantee the positive definiteness of Hessian matrix. The Levenberg-
Marquardt introduces a regularization term into the Hessian matrix so that positive

definiteness of the Hessian matrix is guaranteed.

5.2.2.2 Model Generalization

5.2.2.2.1 Quick-Stop Training

A simple criterion for optimization of the neural network architecture is to choose
the network with minimal generalization error. The quality of the predictions made by the
network is measured in terms of the so-called generalization error. The main goal of
neural network modeling is not to exactly fit to the training data, but to generalize a
model which well-represents the underlying characteristic of a process. A simple model
may result in poor generalization, since it cannot take into account all the intricacies that
may be present in the data. On the other hand, too complex a model is flexible enough to
fit data with anomalies or noise. Therefore, complexity of a model should be well
matched to improve generalization properties of the data. Much research was devoted in
the past to improve the generalization of NN models, with results that included
techniques such as regularization, quick-stop training, smoothing and training with noise,
and combining several learning models using various ensemble techniques like Bragging
and Boosting. In this research a quick-stop training method is employed to improve the

NN model generalization.

The quick stop-training works under the notion that generalization performance
varies over time as the network adapts during training (Hagan et al., 1995). Randomly
selected initial weights are likely to be completely inconsistent with the samples, so both

the training set and the generalization errors are likely to be high before learning begins.
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During training, the network adapts to decrease the error on the training patterns. In the
early stages of learning, the generalization error tends to decrease in step with the training
error as the network captures the major features of the underlying function. If the training
data is noisy or incomplete, there may still be a possibility that a trend may exist. In such
situation, in addition to representing the general properties of the target function, it is
likely to contain peculiarities unique to the particular data set and uncharacteristic of the
target function. As these idiosyncrasies are exploited in later stages of learning, the
improvement in generalization that comes from being right on the training examples is
offset by errors introduced elsewhere and the generalization error begins to increase again

even though the training error continues to decrease.

By using the quick stop training method, the data set is split into three subsets,
training, calibration and validation. The network actually undergoes training on the
training set. However, the decision to stop the training is made on the network’s
performance in the calibration set. The training error for the training set decreases
monotonically for an increasing number of epochs, in the usual manner. In contrast, the
error for the calibration set decreases monotonically to a minimum, and then starts to
increase as the training continues. A typical profile of training and calibration error of
neural network model looks like a pattern as presented in Figure 5.2. This observed
behavior is due to the fact that, unlike the training data, the calibration error is not used to
train the network. The calibration data is simply used as an independent measure of the
model performance. Therefore, it is possible to stop over-training by monitoring the
performance of the network on the calibration subset, and then stopping the training when

the calibration error starts increasing.
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Calibration Error

Mean Square Error

Training Error
——— /

Figure 5.2: A typical profile of training and calibration error of NN Model (Haykins, 1999)

5.2.2.3 Model Performance Measurement

A direct way to estimate the generalization ability of a system is to measure the
error on a separate data set that the network has not seen during training. The neural
network model performance can be improved in terms of generalization error, if a
suitable validation of the model is carried out. Since the model generalization error is
evaluated on a validation data set other than the training set, the entire data set might be
divided into two sets: the training set and the validation set (for simple validation of the
model). Since quick-stop training is also used to improve model generalization, the
training data set can again be divided to obtain a calibration data set. Therefore, the entire

data set is divided into three subsets: training, calibration and validation.

In order to make a valid model performance measurement, training, calibration
and validation subsets should, however, have similar statistical properties. Therefore, the
members of the data in the training, calibration and the validation subsets should be
selected in such a way that the three data subsets acquire similar statistical properties.
The traditional approach for the data division employs a random division of data into

training, calibration and validation subsets. Random selection of data may not be
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appropriate. Therefore, an integrated approach using data segmentation and genetic
algorithm as described in the previous chapter was applied for appropriate division of the

data.

5.2.3 NN Nome Ore Grade Estimation Results

Separate neural networks models were developed for each of the fish blocks. The
architecture selected for the NN modeling was a ward-net network. An advantage of
ward-net architecture is that this type of network employs different activation functions in
the hidden layers. As a result, complex non-linear input-output pattern is captured by a
combination of multiple hidden units with different activation functions. Although the
same network architecture was used for the entire datasets, the number of hidden units
was varied for each individual fish block. Mixture of Logistic, Tanh, Gaussian, and
Gaussian Complimentary activation functions were used in the network. A general
configuration of the ward-net architecture used in this study is presented in Figure 6.4.
The architecture has three layers: the input layer, the hidden layer, and the output layer.
The hidden layer consists of three hidden slabs of Gaussian, Tanh, and a second Gaussian
activation functions. The number of input and output nodes is dictated by the problem. In
this case, three nodes for the three input variables: X co-ordinate, Y co-ordinate, and
Water-table depth, and one node for a single output variable of gold attribute. The
number of nodes in the hidden slabs varies for different data sets. The number of hidden
neurons used for each of the fish blocks is presented in Table 5.4. The number of hidden
neurons was chosen based on the minimum generalization errors of the NN models while
experimenting with a different number of hidden nodes in the hidden slabs. MATLAB

code was developed for conducting all the studies associated with NN modeling.
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5.2.3.1 Performance of optimization algorithms

Prior to applying the neural network model, the output data values were
normalized. Therefore, the error presented is based on the normalized transformed data.
The neural network model was trained using the local learning algorithms. The behavior
of the local learning algorithms was examined for all the data sets mentioned earlier using
the three local learning algorithms. The starting point for all the learning algorithms, local
and global, was the same. As an example, the properties of the learning algorithms for the

king data set are presented in Figure 5.3.

Figure 5.3(a) shows the learning curve of the three algorithms for the King data
set with learning rate (n = 0.4), and momentum (y = 0.4). The mean squared error for the
LMBP algorithm decreases rapidly with the increased learning epochs. Hence, the LMBP
algorithm provides a faster convergence than the other two algorithms. The SBP
algorithm learns very slowly since the learning rate parameter is small. The MBP
algorithm is even slower when compared to SBP. However, SBP and MBP algorithms
are faster when the learning rate was increased to 2. In spite of the increased leaming
rate the time to converge still lags the LMBP (Figure 5.3 (b)). After learning the pattern
of the local algorithms for first few epochs, the model was run for 20,000 epochs. The
best solution, in terms of minimum mean squared error, within 20,000 epochs was then
obtained for the three algorithms. Table 5.5 presents the best solutions for the three
algorithms. From the table, it can be observed that the LMBP algorithm provided
superior performance for all the data sets. The minimum mean squared errors were the

least for the LMBP algorithm.
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Table 5.4: Number of neurons for various data sets in NN modeling

Data Set No. of Input | No. of Hidden | No. of output
Coho 3 24 1
Halibut 3 30 1
Herring 3 30 1
Humpy 3 6 1
King 3 15 1
Pink 3 36 1
Red 3 12 1
Silver 3 9 1
Tomcod 3 15 1
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Figure 5.3 (a): Network learning with various learning algorithms (King data)
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Figure 5.3(b): Network learning with various learning algorithms (King data)
(=4, a=2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83



Table 5.5: Performance of various local learning algorithms

Data set Learning algorithm Minimum
MSE
Coho SBP 0176
MBP .0176
LMBP .0043
Halibut SBP .0281
MBP .0147
LMBP .0070
Herring SBP .0065
MBP .0087
LMBP .0028
Humpy SBP .0163
MBP 0166
LMBP .0083
King SBP .0099
MBP .0101
LMBP .0032
Pink SBP .0168
MBP .0168
LMBP .0030
Red SBP .0176
MBP 0176
LMBP .0043
Silver SBP .0193
MBP .0194
LMBP .0073
Tomcod SBP .0263
MBP .0263
LMBP .0100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84



85

The results presented above pertain to the neural network performance on the
training data. They indicate the comparative performance of various learning algorithms
while the neural network is on training. A minimum training error does not guarantee a
reliable estimate of the predictive ability of the model. Since, the model was run for large
number of epochs; it was not known a priori whether the network was over-trained. An
in-depth analysis indicated that the neural network model was over-trained. As an
example, overtraining could be seen from the performance of the neural network model
using LMBP algorithm on a training and associated validation data sets for the King
block (Figure 5.4 (a & b)). From the figures, it is seen that the neural network model gets
is excessively overfitted with the training data. The R* values for the training and the
validation data sets are 0.79 and 0.12 respectively. Hence, the trained model overstates

the model performance in the validation dataset.

Since the predictive quality can only be judged based on the generalization
performance of a model, an attempt was made to improve the generalization ability of the
neural network model using the quick-stop training method. In this method, the network
was trained using the training data, and its performance was observed on the calibration
data on an epoch by epoch basis. The model was selected when the minimum mean
squared error is reached on the calibration data. However, the training of the model was
continued for another 10,000 epochs after reaching the minimum error to ensure the
stability of the solution. It was also verified whether the solution is stable to 20,000

epochs.

Table 5.6 presents summary statistics of the generalization performance of the
neural network model for all the fish blocks. The number of data points in the validation
dataset for each block is presented in Table 5.2. Furthermore, the scatter plots of the
actual vs. the predicted values for the validation data are also presented in Figures 5.5

through 5.13. From these results, it can be seen that the neural network model
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performance is not adequate for the Nome gold data sets. Both the mean squared error

and R? values indicate poor model generalization.

7000 -

6000 b

MSE=1.16 x 10° ®
5000 R?=0.79 :

4000

Predicted

3000 ﬁ
2000 *

1000 | *ge -

0

0 * 2000 4000 8000 8000
Actual

Figure 5.4 (a): Actual vs. predicted for the training data on King
data set
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Figure 5.4 (b): Actual vs. predicted for the validation data on King
data set
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Table 5.6: Generalization performance of NN models in fish blocks

Data Set Bias Mean Absolute Mean Squared R’ (in
Error Error %)
Coho -33.44 704.01 1294300.00 12.20
Halibut -3.59 230.00 153650.00 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>