
ZAKARIYYA, I. 2022. Towards a robust, effective and resource-efficient machine learning technique for IoT security
monitoring. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from:

https://doi.org/10.48526/rgu-wt-1987917

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only – re-use of any third-party content must still be cleared with the original copyright holder.

This document was downloaded from
https://openair.rgu.ac.uk

Towards a robust, effective and resource-
efficient machine learning technique for IoT

security monitoring.

ZAKARIYYA, I.

2022

https://doi.org/10.48526/rgu-wt-1987917

Towards a Robust, Effective and
Resource Efficient Machine Learning

Technique for IoT Security
Monitoring

Idris Zakariyya

A thesis submitted in partial fulfilment

of the requirements of

Robert Gordon University

for the degree of Doctor of Philosophy

December 2022

Abstract

Internet of Things (IoT) devices are becoming increasingly popular and an integral part
of our everyday lives, making them a lucrative target for attackers. These devices require
suitable security mechanisms that enable robust and effective detection of attacks. Ma-
chine learning (ML) and its subdivision Deep Learning (DL) methods offer a promise,
but they can be computationally expensive in providing better detection for resource-
constraint IoT devices. Therefore, this research proposes an optimization method to
train ML and DL methods for effective and efficient security monitoring of IoT devices.
It first investigates the feasibility of the Light Gradient Boosting Machine (LGBM) for
attack detection in IoT environments proposing an optimization procedure to obtain its
effective counterparts. The trained LGBM can successfully discern attacks and regular
traffic in various IoT benchmark datasets used in this research. As LGBM is a traditional
ML technique, it may be difficult to learn complex network traffic patterns presents in
IoT datasets. Therefore, we further examine Deep Neural Networks (DNNs), propos-
ing an effective and efficient DNN-based security solution for IoT security monitoring to
leverage more resource savings and accurate attack detection. Investigation results are
promising as the proposed optimization method exploits the mini-batch gradient descent
with simulated micro-batching in building effective and efficient DNN-based IoT security
solutions. Following the success of DNN for effective and efficient attack detection, we
further exploit it in the context of adversarial attack resistance. The resulting DNN is
more resistant to adversarial samples better than its benchmark counterparts and other
conventional ML methods. To evaluate the effectiveness of our proposal, we considered
on-device learning in federated learning settings using decentralized edge devices to aug-
ment data privacy in resource-constrained environments. To this end, the performance of
the method was evaluated against various realistic IoT datasets (e.g., NBaIoT, MNIST)
on virtual and realistic testbed set-up with GB-BXBT-2807 edge-computing-like devices.
The experimental results show that the proposed method can reduce memory and time
usage by 81% and 22% in the simulated environment of virtual workers compared to
its benchmark counterpart. In the realistic testbed scenario, it saves 6% of memory
footprints with a reduction of execution time by 15% while maintaining a better and
state-of-the-art accuracy.

Keywords: Internet of Things Security, Machine Learning, Deep Learning, Resource-
constraint, Attack Detection, Federated Learning, Testbed.

ii

Declaration of Authorship

I declare that I am the sole author of this thesis and that all verbatim extracts contained
in the thesis have been identified as such and all sources of information have been specif-
ically acknowledged in the bibliography. Parts of the work presented in this thesis have
appeared in the following publications.

1. Idris Zakariyya; Al-Kadri, M. Omar; Kalutarage, Harsha; Petrovski, An-
drei, Reducing Computational Cost in IoT Cyber Security: Case Study
of Artificial Immune System Algorithm. SECRYPT, 2019: 523-528.
https://dblp.org/rec/conf/icete/ZakariyyaAKP19 (chapter 3)

2. Idris Zakariyya; Al-Kadri, M. Omar; Kalutarage, Harsha, Resource Efficient Boost-
ing Method for IoT Security Monitoring, 2021 IEEE 18th Annual Consumer Com-
munications & Networking Conference (CCNC), 2021, pp. 1-6, doi: 10.1109/C-
CNC49032.2021.9369620. (chapter 3)

3. Idris Zakariyya; Harsha, Kalutarage; M. Omar, Al-Kadri, Robust, Effective and
Resource Efficient Deep Neural Network for Intrusion Detection in IoT Networks,
in CPSS’22, in 17th ACM ASIA Conference on Computer and Communications Se-
curity (ACM ASIACCS 2022), https://doi.org/10.1145/3494107.3522772 (chapter
4 and 5)

4. Idris Zakariyya; Harsha, Kalutarage; M. Omar, Al-Kadri, Memory Efficient Feder-
ated Deep Learning for Intrusion Detection in IoT Networks, in AI-CyberSec 2021:
Workshop on Artificial Intelligence and Cyber Security, http://ceur-ws.org/Vol-
3125/paper7.pdf (chapter 6)

5. Idris Zakariyya; Harsha, Kalutarage; M. Omar, Al-Kadri, Resource Efficient Fed-
erated Deep Learning for IoT Security Monitoring, Book Chapter in ADIoT, in
27th European Symposium on Research in Computer Security (ESORICS 2022),
pp 122–142, Lecture Notes in Computer Science, vol 13745. Springer, Cham.
https://link.springer.com/chapter/10.1007/978-3-031-21311-3_6. (chapter 6)

6. Idris Zakariyya; Harsha, Kalutarage; M. Omar, Al-Kadri, Towards a Robust, Effec-
tive and Resource Efficient Deep Learning Technique for IoT Security Monitoring,
Computers & Security, Under Review.

iii

Acknowledgements

I want to use this opportunity to offer my warmest gratitude and appreciation to my su-
pervisory team Dr Harsha Kalutarage and Dr Omar Al-kadri. Both of you have supported
me academically with the best advice instantly. In particular, Dr Harsha Kalutarage mo-
tivates me and inspires me to be a better researcher, particularly in the aspect of Artificial
Intelligence (AI) and Internet of Things (IoT) cybersecurity monitoring. Your support,
motivational advice and inspirations are always commendable.

I also thank the Petroleum Technology Development Fund (PTDF) for funding this
research work. Your financial support and commitment throughout my study are com-
mendable.

Finally, I must thank my parent, particularly my mother for the support and care she
gives me to achieve the best in my life. Your legacy of making me who I am today shall
always be remembered.

iv

Contents

Abstract ii

Declaration of Authorship iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objectives and Approaches . 3
1.3 Research Contributions . 5
1.4 Thesis Structure . 7

2 Study Background and Literature Review 9
2.1 IoT Environment . 9
2.2 Attacks on IoT Devices . 12
2.3 AI Techniques for IoT Security Monitoring 16

2.3.1 Decision Tree Ensemble Methods (DTEM) 17
2.3.2 Light Gradient Boosting Machine (LGBM) 21
2.3.3 Support Vector Machine (SVM) . 23
2.3.4 Artificial Immune System (AIS) . 24
2.3.5 Principal Component Analysis (PCA) 25
2.3.6 Neural Networks (NNs) . 25
2.3.7 Fully Connected Neural Network (FCNN) 26
2.3.8 Convolutional Neural Network (CNN) 29
2.3.9 Datasets . 31
2.3.10 Performance Metrics . 33

2.4 Detection Algorithms . 34
2.5 Adversarial Attacks against AI . 39
2.6 Federated Learning in IoT Environment 42
2.7 Chapter Summary . 44

3 Lightweight ML Method for IoT Cyber Security 46
3.1 Resource Reduction Method . 46

3.1.1 Experimental Procedure . 48

v

3.1.2 Experimental Results (Resource Reduction) 49
3.2 ML Training Optimization . 52

3.2.1 LGBM for IoT Security Monitoring 53
3.2.2 Evaluation . 56
3.2.3 Results . 57
3.2.4 Summary . 64

4 Effective and Efficient Deep Learning for IoT Security Monitoring 66
4.1 Deep Learning for IoT Security . 67
4.2 Evaluation . 70
4.3 Results (Effectiveness and Resource Efficiency) 72
4.4 Chapter Summary . 77

5 Robust Deep Learning for IoT Security Monitoring 79
5.1 Adversarial Robustness Implementation 79
5.2 Results and Discussion . 80
5.3 Summary . 90

6 Federated Deep Learning for IoT Network Security using REDNN 91
6.1 Baseline Federated Deep Learning (BFDL) 91
6.2 Resource Efficient Federated Procedure . 93
6.3 Evaluation . 95
6.4 Results and Discussion . 99

6.4.1 Experimental Results (Simulation) 99
6.4.2 Experimental Results (Testbed) . 105
6.4.3 Summary . 110

7 Conclusion 112
7.1 Future Work . 115

Bibliography 118

A Dissemination 130

vi

List of Tables

2.1 Attacks on IoT . 16
2.2 LGBM hyperparameters. 22
2.3 Benchmark Dataset . 33
2.4 Comparison of ML and DNN techniques developed for IoT security 38

3.1 Experiments and datasets. 50
3.2 Computational (per record) memory comparisons against the N-BaIoT

dataset. 51
3.3 Computational (per record) training time comparisons against the N-

BaIoT dataset. 52
3.4 Utilized IoT datasets. 56
3.5 Initial and optimum hyperparameters. 57
3.6 Grid and optimized LGBM methods performance evaluation (per record). 60
3.7 Models performance evaluation comparison on N-BaIoT Dataset (per

record). 61

4.1 Topology and distribution of normal and attack for each device data. . . . 71
4.2 Testing memory footprint (cumulative). 74
4.3 Training performance evaluation across frameworks with Provision PT-

737E dataset (per record). 75
4.4 Testing resource consumption across frameworks with Provision PT-737E

dataset (per record). 76
4.5 Performance evaluation comparison on Provision PT-737E dataset (per

record). 77

5.1 Models performance comparisons across datasets. 82
5.2 Effect of number of epoch against models performance with SH XCS-1003

dataset. 83
5.3 Effect of clipping samples against perturbations method. 84
5.4 Variational models perturbations evaluations across datasets. 84
5.5 Performance evaluation comparison with Provision PT-737E dataset. . . . 89
5.6 Model resilience evaluation with kitsune dataset. 89

6.1 Topology and distribution of normal and attack for each device data. . . . 96

vii

6.2 Federated model training memory consumption between REFDL and
BFDL (cumulative). 100

6.3 Performance comparisons for FL training procedure on SH XCS7-1003
dataset (cumulative). 101

6.4 Simulated federated training performance comparison between BFDL and
REFDL with MNIST dataset (cumulative). 103

6.5 Performance comparisons against training procedure (cumulative). 104
6.6 Testing performance comparisons across datasets. 105
6.7 Federated model training memory: REFDL vs BFDL using Ennio Door-

bell and Samsung SNH datasets on real testbed (cumulative). 107
6.8 Federated model accuracy: REFDL vs BFDL against CNN-MNIST train-

ing procedure. 110

viii

List of Figures

2.1 Four levels IoT architecture. 11
2.2 Four layers of an IoT architecture. 11
2.3 Constrained IoT classes memory requirements. 12
2.4 An illustration of a supervised ML. 17
2.5 Relationship between AI, ML and DNN. 18
2.6 An illustrative diagram of a random forest classifier. 19
2.7 Component of decision tree for binary classification. 23
2.8 An illustration of two class SVM. 24
2.9 An architecture of PCA. 26
2.10 Typical ANN architecture. 27
2.11 Fully connected (deep) neural network architecture. 29
2.12 Taxonomy of AI techniques utilised for IoT security monitoring. 30

3.1 PCA components for KDD-99 data . 49
3.2 PCA components for N-BaIoT data. 50
3.3 Gini Index feature importance for KDD-99 data. 51
3.4 Gini Index feature importance for N-BaIoT data. 52
3.5 Resource efficient LGBM process diagram 55
3.6 Sample testing time resource consumption of LGBM: Optimized vs Unop-

timized. 58
3.7 Sample testing memory resource consumption of LGBM: Optimized vs

Unoptimized. 58
3.8 LGBM testing accuracy comparison: Optimized vs Unoptimized. 59
3.9 Optimized testing accuracy comparison with grid search. 60
3.10 Effect of number of tree leaves on memory with N-BaIoT. 61
3.11 Effect of bagging frequency on memory with N-BaIoT. 62
3.12 Effect of bagging fraction on memory with N-BaIoT. 62
3.13 Effect of feature fraction on memory with N-BaIoT. 63
3.14 Effect of regularizer on memory with N-BaIoT. 63
3.15 Effect of learning rate on memory with N-BaIoT. 64

4.1 Effective IoT attack detection framework. 69
4.2 Model training execution time against utilized datasets (cumulative). . . . 73

ix

4.3 Model training CPU performance against utilized datasets (cumulative). . 73

5.1 PGD test accuracy changes with epsilon for four layers architecture against
the Danmini Doorbell dataset. 85

5.2 PGD test accuracy changes with epsilon for three hidden layers architec-
ture against the Danmini Doorbell dataset. 86

5.3 Accuracy changes with reduce hidden neuron by 50% against the Kitsune
dataset. 86

5.4 Accuracy changes with reduce hidden neuron by 25% against the Kitsune
dataset. 87

5.5 Accuracy changes with label flip against Kitsune dataset. 88
5.6 Accuracy changes with label flip against PT-737E dataset. 88

6.1 Baseline federated learning procedure. 93
6.2 BFDL and REFDL model training testbed captured with gigabyte devices. 98
6.3 BFDL and REFDL model training testbed with gigabyte devices. 98
6.4 REFDL federated model training memory resources save against datasets

(cumulative). 101
6.5 REFDL federated model training time resources save against datasets (cu-

mulative). 102
6.6 REFDL federated model training memory resources savings with XCS-

1003 dataset. 102
6.7 REFDL federated model training time resources savings with XCS-1003

dataset. 103
6.8 Federated model training time: REFDL vs BFDL using Ennio Doorbel

and Samsung SNH datasets on real testbed (cumulative). 106
6.9 Federated model training execution time: REFDL vs BFDL in simulation

and realistic testbed settings using Ennio Doorbell dataset. (cumulative) . 107
6.10 Federated model training time: REFDL vs BFDL using MNIST dataset

on real testbed (cumulative). 108
6.11 Federated model accuracy comparison between REFDL and BFDL with

MNIST dataset. 108
6.12 Federated model accuracy performance with epochs using 50 communica-

tion rounds: REFDL vs BFDL using FCNN-MNIST procedure. 109

x

List of Algorithms

1 Baseline FCNN . 30
2 FGSM perturbation procedure . 40
3 Federated averaging procedure . 43
4 Resource efficient LGBM . 54
5 Proposed algorithm to obtain effective and efficient LGBM 55
6 Baseline FCNN training . 67
7 Proposed algorithm to obtain REDNN . 69
8 Label modification perturbation procedure 80
9 Baseline BFDL training on each distributed node 92
10 Proposed REFDL training on each distributed node 94

xi

Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) consists of Internet-enabled devices that use embedded
systems such as processors, sensors and communication hardware to collect and exchange
data. The data collected by IoT devices worldwide can reach 73.1 zettabytes by 2025
[1]. With its potential to revolutionize the interaction between objects using the recent
advances in super-cheap computer chips and the ubiquity of wireless networks, it is
possible to make anything as small as a contact lens or as big as an aeroplane to be
part of the IoT. As IoT represent an ecosystem of devices used in smart homes, smart
cities, and many intelligent automation systems, IHS Markit estimates that 125 billion
devices will be connected to the IoT by 2030 [2]. Most of these devices combine Artificial
Intelligence (AI) with IoT infrastructure to enable more efficient IoT operations, improve
human-machine interaction, and enhance data management and analytic. Therefore they
can be considered as Artificial Intelligence of Things (AIoT) [3]. The gradual provision
of such devices is transforming the world into a sophisticated interconnected domain.
This is good as it offers modern user convenience and a source for generating profits by
prominent industries such as Google and Alexa [4]. But on the other hand, it can open
up a broader attack surface. Attackers can exploit vulnerabilities in software/hardware
or embedded AI of these devices, especially when they are connected to the external
world to launch a cyber disaster. In October 2016, for example, attackers launched a
wave of IoT botnet attacks called Mirai. They used various IoT devices to deny access
to high-profile websites like Twitter, Amazon, Github, and Netflix [5]. A study by Venafi

1

has revealed that 76% of IoT devices are vulnerable to cyber attacks, while only 24% of
these devices encrypt their data before transmission [6]. On the other hand, the hardware
of these constrained devices can accommodate 32KB - 128KB units of Random Access
Memory (RAM) with 256KB - 512KB of embedded flash memory [7]. For these reasons,
security challenges in IoT must be addressed with robust, effective and resource-efficient
detection techniques.

Recent research has shown the capabilities of AI technologies, particularly Machine
Learning (ML) based solutions for cyber security monitoring [8]. This is due to ML’s
capacity of developing a model that can learn the statistical distribution of various
datasets to make predictions without the need to explicitly write a set of rules. How-
ever, the procedure of building such ML methods is computationally expensive with
complex datasets [9], with intensive memory and time resources requirements [10]. Be-
cause of that, ML techniques require attentive optimization to scale through an IoT-like
resource-constrained environment. Therefore, this thesis starts with the investigation of
using feature reduction techniques to optimize ML algorithms. The assumption is that
feature reduction can reduce the cost of training ML algorithms with a given dataset.
Then, it proposed an optimization procedure that can produce a lightweight ML tech-
nique which utilizes relatively minimal memory and execution time while accurately
discerning attacks and regular traffic on IoT networks. The evaluation procedure used
a Light Gradient Boosting Method (LGBM) baseline model from the Decision Tree En-
semble Method (DTEM) conventional ML with our optimization procedure to obtain its
resource-efficient counterparts.

The success in optimizing the LGBM technique to be more resource efficient motivates
further investigation of other AI technologies, especially the Deep Neural Network (DNN)
based methods. Recent research has shown the capabilities of DNN in intrusion detection,
which can outperform most of the ML models in cyber security monitoring [11]. A
disadvantage of DNN-based methods, however, is that they require a lot of resources
to build a model that can provide better detection with a multi-dimensional feature set
[12]. This would be problematic in training scenarios such as edge machine learning, in
which smart devices can process data locally using machine and deep learning algorithms
(e.g. federated learning). Moreover, compared to mainstream IT devices, IoT devices are
equipped with limited computing resources (processing and storage) to enable maximum
data output with minimum energy requirements while remaining cost-effective. As a
result, DNN-based security solutions designed for mainstream IT devices cannot simply
be deployed for security monitoring in an environment with limited computing resources.

2

In addition, the detection capabilities of DNN-based methods can easily be exploited
by feeding the network with adversarial samples [13]. Considering these strengths and
limitations of ML and DNN methods in IoT security monitoring, this research aims
to address these challenges by exploiting AI techniques to consider their optimization to
reduce computational complexity, memory and time requirements at training and testing
and their resilience to adversarial attacks. This can be an appropriate security solution
in an environment with limited computational resources that requires efficient detection
of attacks. In that context, the thesis investigates the following research questions (RQs)
to develop an appropriate DNN-based method for the security monitoring of resource-
constrained IoT devices.

RQ1: What are the existing methods that can be used to train and build efficient and
effective ML and DNN methods in a resource-constrained environment? (see section
2.3)

RQ2: How to train existing ML and DNN methods to be resource efficient in security
monitoring of resource constrained environments like IoT? (see chapters 3, 4 6)

RQ3: How to train the DNN algorithms in RQ2 to be robust against adversarial machine
learning attacks while maintaining their resource constrained nature? (see chapter
5)

1.2 Research Objectives and Approaches

Following earlier research conducted in the field of IoT security, there is a demand for
effective, efficient and robust AI security methods in a resource-constrained environment.
This is due to IoT resource limitations (memory and processor) and existing AI-based
cyber security methods that can be resource-hungry to process complex multidimensional
data. As such, findings from this research can help security practitioners and industries
about deploying secure, robust and efficient AI solutions in a resource-constrained envi-
ronment. In addition, other cyber security researchers can utilize the methods proposed
in this thesis to improve existing AI security solutions in IoT network environments.
Therefore, this work identifies five key objectives as follows:

RO1: An in-depth literature survey of IoT security monitoring techniques and their
limitations. (RQ1)

3

RO2: Develop an optimization algorithm that can utilize less computational parameters
of DTEM to build a lightweight detection model for IoT security monitoring. (RQ2)

RO3: Develop an optimization algorithm while utilizing weight elimination, data paral-
lelism, micro-batching and regularization techniques, to train DNN in a robust,
effective and resource-efficient manner. (RQ2 and RQ3)

RO4: Evaluate the DNN-based method performance in a realistic environment using mul-
tiple decentralized IoT like devices. (RQ2)

For investigating the effectiveness of ML and DNN methods, this research adopts a deduc-
tive approach that involves experiments with realistic publicly available IoT benchmark
datasets for hypothesis validation. Reduction of computational resource consumption of
running ML algorithms for IoT security has contributed to other contributions of this
research, for example on-device learning. This served as proof of concepts to address the
carefully identified research questions listed in section 1.1. Experimental evaluations are
designed to build generic and appropriate AI-based security solutions for IoT. Therefore,
we evaluated the possibility of using feature reduction techniques to reduce the computa-
tional complexity (memory and time) of running ML, in particular the Artificial Immune
System (AIS) for IoT network traffic classification. AIS was selected as a traditional
ML algorithm for our experiments because it can be resource-hungry in processing mul-
tidimensional data [14]. For the proof of concept, the Gini Index (GI) and Principal
Component Analysis (PCA) are adopted and tested with the AIS resource-hungry al-
gorithm, and their resource-minimization capability in the IoT network environment is
compared. This served as an initial step toward answering RQ2.

In addition, to address RQ2 based on RO2, a further step to introduce a novel optimiza-
tion algorithm that can train ML models to save computational resources (execution time
and memory) in training and testing with better detection is considered. The rationale
is to explore the trade-off between balancing the accuracy of ML detection and resource
reduction. Because the algorithm evaluation considered all data features, it can be used
as a pipeline for optimizing ML schemes without reducing the features of their training
data. As such, a lightweight ML method using the LGBM approach can be proposed.
The advantage of this proposal is that LGBM is a promising ML model that can per-
form better for classification tasks [15]. Therefore, reducing its computational cost can
produce a more lightweight counterpart with minimal resource consumption that may
scale across IoT devices. As such, RO2 targets improving the efficiency and effectiveness
of traditional ML models to propose adaptable IoT security solutions.

4

The success of AI-based (DNN) security solutions in terms of accurate classification using
multi-sensory data seems promising [16]. This is due to their feature learning capability
that allows them to learn the raw traffic features captured from various cyber security
datasets. DNN can be further exploited to answer RQ2 and RQ3 while aiming to meet
RO3. For this purpose, we proposed an optimization algorithm that can train DNN in a
lightweight and robust scenario. To assess its performance, we compared our optimized
training procedure with the baseline DNN training method counterparts and other state-
of-the-art conventional ML training methods for benchmarking purposes. Regarding
robustness, the resulting training method can produce a well-resist DNN method that
can defeat state-of-the-art perturbations. This is good as it can enhance the security of
the proposed model to be a potential candidate for deployment in realistic IoT networks.

To further address AI based security solutions deployment, an RO4 is set up. The goal is
to examine the feasibility of using DNN in a realistic resource-constrained decentralized
environment. As a proof of concept, the evaluation outcomes aim to demonstrate that
the IoT security solutions proposed in this thesis can appropriately address resource
limitations and security challenges in an IoT network environment. In the evaluation,
four realistic GB-BXBT-2807 edge computing devices were used. In addition, both IoT
and non-IoT datasets are utilized and tested against various DNN architectures. The
experimental evaluation discussed in section 6.3 tests the generalization capability of
DNN in providing effective and accurate performance in real-time.

1.3 Research Contributions

In the quest of addressing IoT security challenges in resource-constrained environments,
this research made the following contributions.

In addressing the challenges of using ML in IoT security monitoring in terms of both re-
source limitations and accurate detection, an efficient boosting method for resource con-
strained IoT devices is developed. In order to demonstrate the concept, a LGBM model
was used, and its less computationally expensive parameters were factored out to create
its better counterpart. The optimized LGBM can accurately discern attacks and regular
traffic as tested on various IoT datasets that capture realistic attacks and benign instances
from the IoT network’s environment. In addition, the optimized method demonstrates its
performance in terms of better attack detection and resource minimization. To the best
of our knowledge this is the first attempt to optimize LGBM technique to save training
and testing computational resources using multiple IoT benchmark datasets.

5

In addressing the effectiveness of using DNN that outperforms ML technologies in an
IoT environment, an exploration of the Fully Connected Neural Network (FCNN’s)
optimization algorithm is examined to obtain the Resource Efficient DNN (REDNN)
version from the FCNN. The experimental results are promising, as the resulting
REDNN maintains better classification performance, low execution time and memory
consumption. The resource minimization at training and testing time against multiple
bencmark dataset is important. To the best of our knowledge this is the first work that
investigates the resource efficiency of FCNN model against its benchmark counterparts
using multiple device-centric IoT datasets.

In addressing the robustness of using DNN, REDNN is investigated in a robust scenario
using adversarial perturbations created from a large number of benchmark datasets gen-
erated by hostile attacks on commercial IoT devices. Experimental results showed that
the resulting REDNN is well resistant to adversarial attacks against each dataset used
in our experiments. To the best of our knowledge, this is the first attempt to exam-
ine FCNN’s capabilities for resource-efficient and robust detection in the IoT security
domain. In particular, the exploration of adversarial perturbations using low precision
floating point in the context of IoT security monitoring.

By addressing the challenges of using DNN methods in a federated environment to provide
effective security solutions on IoT networks, an effective training method for DNN for
IoT security monitoring is proposed. This training procedure can reduce the memory
footprint and execution time during the training process while maintaining the same or
higher level of accuracy than its benchmark counterpart. This work has been extended to
develop a suitable federated DNN-based method for the security monitoring of resource-
constrained environments such as IoT in real-time. To the best of our knowledge this is
the first work to investigate on-device learning in the context of security and resource
efficiency using simulation and a realistic testbed setting with IoT benchmark datasets.

Contributions listed in this thesis are therefore novel and contribute to the body of
knowledge in the field. Evaluation codes are publicly available for enhancement and
reproduction purposes.

6

1.4 Thesis Structure

The rest of the thesis is structured as follows:

Chapter 2 presents a research background on AI from the IoT security perspective. It
further presents a review of relevant AI-based IoT security solutions in the literature in
consideration of their strengths and weakness. In particular, the research investigates
the potentiality of using traditional ML and DNN for cyber security. Finally, the re-
search exploits model regularization, micro-batching and federated learning intending
to optimize the DNN method for effective and efficient IoT security monitoring in a
resource-constrained environment.

Chapter 3 presents the technical aspect of using ML for IoT security monitoring purposes.
It starts with the exploration of traditional ML techniques as well as their optimization
to reduce computational complexity. It examines the application of lightweights ML
techniques for IoT cyber security. The chapter first exploits the potentiality of feature
reduction techniques in reducing model computational costs. It carefully utilized GI and
PCA to train an AIS algorithm and record the resource-savings advantage. Experimental
results show that integrating AIS with PCA data transformation is less computationally
expensive than the conventional AIS counterparts. However, AIS is not a suitable ML
algorithm for IoT security monitoring using multidimensional data features. Motivated
by these, the research later investigates a more generic method of training an ML algo-
rithm in a resource-constrained environment. It examines a more promising ML method
(DTEM) against several IoT benchmark datasets to develop a suitable IoT security mon-
itoring method. In each case, details about the algorithm used and data pre-processing
steps applied to each model are explained.

Chapter 4 presents the application of DNN models and their performance capability
over traditional ML techniques for accurate classification with multi-sensory and large
dimensional datasets. It starts by examining an appropriate method to train a DNN
model in a resource-efficient manner. Based on this, regularization, micro-batching or
model parallelism are utilized in developing an optimized DNN training procedure. The
overall goal is to build a lightweight training method for DNN to improve accurate IoT
attack detection while saving significant memory resources.

7

Chapter 5 aims to develop a robust and effective security scheme for IoT devices. The
evaluation investigated various state-of-the-art perturbations techniques while utilizing
a large number of benchmark datasets generated by hostile attacks on commercial IoT
devices.

Chapter 6 explores the potentiality of our proposals in this thesis in a real-world sce-
nario. It first investigates training DNN in a resource-efficient federated manner using
decentralized edge devices. The experimental evaluation utilized a Federated Averaging
(FedAvg) DNN along with eight IoT benchmark datasets to build the proposed method.
The experimental results are encouraging as the resulting technique shows lower memory
consumption with better classification performance in simulated and real testbed feder-
ated settings against each dataset used in the experiments. In addition, the federated
integration of the model also helps to preserve the privacy of IoT device data during
on-device model training.

Chapter 7 summarizes the outcomes of each chapter while justifying the contributions
discussed in this thesis. It later presents an overall summary of the thesis. It further
highlights future research directions.

8

Chapter 2

Study Background and Literature
Review

This chapter explores the IoT in the context of cyber security monitoring and resource
constraints to identify recent security challenges. In particular, the various attacks on IoT
sensor networks and their implications. It later presents state-of-the-art AI techniques
utilised in this thesis to propose IoT security solutions. It further describes related
studies by exploring the recent ML and DNN detection algorithms used for IoT security
monitoring. Especially those used to address security and privacy issues while using
AI-based solutions in resource-constraint environments. Then, it presents a taxonomy
of these exploited techniques used in this thesis with a discussion of the state-of-the-art
adversarial perturbations techniques used against AI. The chapter finally explores recent
federated learning methods used in IoT environments intending to address data privacy,
security, and resource efficiency in realistic decentralized IoT network environments.

2.1 IoT Environment

The IoT environment refers to connected physical devices that interact through various
communication protocols such as Bluetooth, Zigbee, Z-Wave, and WiFi to carry
out specific operations. The functionality of IoT devices to ease our daily tasks is
diverse. This makes them acceptable technology with various applications in healthcare
and many industries. For instance, IoT wearable devices can enable remote patient
monitoring by physicians and allow people to monitor their health status intending to

9

IoT Environment 10

improve their well-being. IoT devices can support inventory management of patient
prescriptions and medical instruments in hospitals. IoT devices can be used to monitor
and analyse machinery in smart-based agriculture to observe their functionalities.
Business organizations can use IoT devices to monitor products in real-time and identify
defects and other related issues. Moreover, IoT devices can monitor and track trucks
in real-time to report faults in connected logistics. This spectrum of IoT applications
becomes possible due to the architectural support of the IoT network environment. A
typical IoT architecture can be described in four levels at which data flow within a
network. The first level contains the devices (sensors and actuators), the second level
consists of the gateway and the third and fourth level consist of the fog and the cloud,
respectively. Figure 2.1 shows these four levels of IoT architecture that devices used
to communicate with each other at a different points. At the device level, sensors can
generate data that emerge from actions within a process, such as motion detection,
environmental temperature condition, and air humidity. Actuators are responsible for
performing specific tasks depending on the data derived from sensors. In a scenario in
which the movement of an industrial robot needs adjustment, they need to be integrated
with resource-efficient responsive mechanisms. At the sensory level, it is possible to
perform certain computations at the edge of the network. This can be processing the
data from the various connected IoT edge devices in a decentralized manner [17]. This
is to address the concern of data privacy, while performing real-time data processing.
The internet gateway is known as the data acquisition system. It is responsible for
receiving raw generated data from the sensory devices that can be transmitted within a
network. This procedure is required to ensure the data is ready to be recorded before
sending it to the next level for immediate analysis. The fog level serve as a mediator
between the edge devices and the cloud for various data processing. In the cloud layer,
data flows from different fog nodes to the cloud servers [18]. These IoT systems of
connectivity can be further illustrated in a multi-layered architecture shown in Figure
2.2. These are the perception layer, transport layer, processing and application layer.
The layer containing smart devices is called the perception layer due to their sensing
capabilities. The processing layer is responsible for the management and accumulation
of the data gathered from sensory devices. The connectivity layer enables the movement
of data from the perception layer to the cloud via an internet gateway. At this layer,
the connectivity between devices can either be via the Transmission Control Protocol
(TCP) / Internet Protocol (IP) stack or the internet gateways. These are the common
method of transmitting data from the connectivity layer to the cloud. With the
employed mainstream IT devices, the cloud stage enables certain operations with the

IoT Environment 11

data, especially the data storage and analytics process.

Figure 2.1: Four levels IoT architecture.

Figure 2.2: Four layers of an IoT architecture.

Unlike mainstream IT devices, IoT devices have limited memory, processor and computa-
tional power. With the focus of memory, most of them can only accommodate traditional
flash and embedded flash memory [19]. The capacity of multiple-time programmable em-
bedded memory is less than 256 KB, and that of the Atmel SAM R21 device memory
can be up to 512 KB [20]. In addition, the Internet Engineering Task Force (IETF)
categorized most IoT devices as constrained in nature using the RFC 7228 standard [21].
As the scope of this thesis considers the memory limitations aspect of IoT, Figure 2.3
shows the RAM and flash memory of different constrained IoT classes. Class 0 contains
the most (ultra low) resource-constrained sensory devices with limited memory capacity

Attacks on IoT Devices 12

much lower than 10KB for RAM and 100KB of flash memory. In this class, direct com-
munication via the internet may not be possible, as the means of communication remain
proxies and gateways. Class 1 devices contain limited storage space and processor capac-
ity. Devices in this class are constrained in nature. In this class, communication between
devices is not feasible via the Hyper Text Transfer Protocol (HTTP). The devices in class
2 have more storage capacity than those in class 0 and class 1. However, they require
lightweight communication protocols and other resource-efficient schemes. For these rea-
sons, IoT devices might not be able to execute multiple requests compared to mainstream
IT devices without service disruptions. Therefore, they are becoming a potential target
for cyber attacks. Unfortunately, the traditional AI-based security solutions or most
antivirus software that require a certain amount of computational resources (memory
and power) may not scale through IoT devices. Because of that, security solutions for
IoT need to be resource-efficient and effective. In addition to the memory limitations of
IoT devices, they also have a limited processor and computational power requirements.
However, with the scope of this thesis, we focus on the memory limitations aspects of
IoT devices.

Figure 2.3: Constrained IoT classes memory requirements.

2.2 Attacks on IoT Devices

IoT technology is not yet mature and fully secured. Several security challenges occur,
and vulnerability issues are key to them. Vulnerability attacks on IoT depend on the
nature and actions of attackers. Some of these attacks are action-oriented. In that
scenario, attackers act to control communications, acquire information, alter data, deny
a service or damage network assets within devices. They take advantage of their resource-
constrained nature in launching severe attacks. The description that follows discusses

Attacks on IoT Devices 13

the commonly used such attacks. Most of them are present in the dataset utilised in this
thesis to evaluate our proposed methods.

Scanning

Scanning attacks appear to be the initial and most popular cyber attack techniques in the
IoT attack life cycle. In this attack, an attacker utilised scanner IPs from compromised
IoT devices to probe available open ports in the network. By executing this attack, other
limited resources of the compromised IoT devices can be exhausted. By using a specific
device, this attack can be launched using popular scanning tools such as Masscan, Zmap
and Nmap to prove a million packets in a network within a second [22].

Denial of Service (DoS)

DoS is determined to disrupt a device intending to alter its functionality within a network.
The procedure involves exploiting the device with a vulnerability or flooding the device
network traffic [23]. In each case, the intention is to slow down the device or destabilize its
operational capability. A DoS attack can be software or hardware-based and may involve
alteration and destruction of sensitive information. With the syn flooding procedure, a
DoS attack can exhaust resources from the targeting devices or remote servers. This
attack can be distributed in nature as in (DDoS) or denying permanent access (PDoS)
[24].

Reconnaissance

In this attack, the adversary aims to discover the knowledge of specific IoT networks by
sending internet information queries to various devices. Reconnaissance attacks include
traffic analysis, port scanning, and packet sniffing [25]. It consists of the set of tools that
the attacker utilised to gather legitimate information about a specific target. The attacker
can use social engineering methods to obtain information about a particular company
from social networking websites. In this case, the attacker can access a company business
model hosted over the internet. In most cases, the attacking method remains a digital
process without physical human intervention.

Spoofing

This attacking procedure allows the adversary to act as a legitimate source in a network.
In this case, a compromised device broadcasts the shortest route messages within the
network. As such, the attacker can send vulnerable messages to compromise IoT devices
[26]. A successful spoofing attack enables the cyber criminals to obtain access to sensitive

Attacks on IoT Devices 14

resources in a network intending to inject malicious content into the system. The most
common type of this attack is email spoofing which can be carried out using social
engineering techniques. Other target victims of spoofing attacks include websites, IP
addresses, Domain Name System (DNS), Address Resolution Protocol (ARP), and Global
Positioning System (GPS).

Sybil

In Sybil attack, an adversary can have multiple fake identities within a network. Sybil
attack is determined to breach the security of the data and reduce the resource capacity
of a device [27]. It can reduce the overall performance of IoT devices within a network by
allowing a single device to perform multiple tasks. Therefore, this type of attack requires
effective and efficient countermeasures.

Sinkhole

In this attack, the compromised device advertises a broadcast message claiming to have
the shortest path to the base station within the network. This is determined to attract
the traffic of the nearest sensory nodes into a single node. This attack degrades network
performance while collecting legitimate information. It can consequently harm other IoT
devices from the base station. It can utilise the selective forwarding attacking technique
to alter the sensory data collected by communicating IoT devices in a network [28].

Message Injection

Message injection involves capturing a message within a network and altering its contents.
In this attack, the attacker tends to send falsified information to perform malicious
activities, such as corrupting records, gaining unauthorized access or simply overloading
the network with compromised requests. This attack can overwhelmingly affect the
sensory devices and prevent them from delivering their intended messages while disclosing
their integrity in the communication process. In addition, cyber criminals used this type
of attack to inject a message into connected vehicles in a Controller Area Network (CAN)
to take active control [29].

Command Injection

This is the most common and dangerous attack launched by the cyber criminals to
compromise IoT devices. This attack target a specific communication interface used by
IoT devices to inject malicious commands into those devices. In this attack, an attacker
can execute commands to exploit, gain access to many IoT devices to upload malicious

Attacks on IoT Devices 15

content, change their network configuration settings and obtain passwords. With this
attack, a bot can be created and installed into an IoT device such as an IP camera,
webcam and many household smart appliances to compromise other devices in a network
[30]. This attack is severe and requires efficient and effective detection mechanisms.

Backdoor

In a backdoor attack, the attacker observes the weakest part of the embedded software of
connected IoT devices to infiltrate the system maliciously. This attack utilised malicious
programs such as Trojans to launch sophisticated attacks on IoT devices. It is determined
to gain access to and control the communication between various IoT devices remotely
in a network. In another scenario, it can be the connectivity point for ransomware,
Trojans, viruses and spyware that can penetrate to a network to cause cyber disaster
[31]. Attackers used it frequently to breach the security of IoT devices. Therefore,
backdoor attacks remain critical threats in the IoT security landscape.

Keylogging

In a keylogging attack, an attacker can install a malicious log file (keylogger) to read and
steal the encryption keys present in a device. It is the oldest form of stealing passwords,
reading logs and keystrokes and recognizing patterns within an existing system or devices
to install bugs and other malicious contents. With this attack, cyber criminals can mon-
itor your devices and gain unauthorized access to personal and legitimate information,
record activities and steal sensitive data [32].

Data Exfiltration

In this attack, an attacker intends to steal or cease the data transmission process within
devices without permission. Data exfiltration attacks target sensitive information from
organizations to cause data loss, destruction, and leakage while degrading the function-
ality of the victim’s organization. It first started by exploring the target organization to
gather necessary information, mostly weaknesses of an exiting system that can make the
attack feasible [33]. A successful data exfiltration attack can steal user credentials stored
on various IoT devices or make an existing network inactive for many hours. As reported
by the Identity Theft Resource Center (IETF) 2021, there are about 1603 data compro-
mised incidents reported with a 495 increase in incidence rate than 2020 [34]. With this
interpretation, this type of attack requires effective countermeasures mechanisms.

AI Techniques for IoT Security Monitoring 16

As ML techniques offer promise for various classification tasks, they can be the potential
scheme for detecting many cyber attacks. By exploring and improving the available AI-
based security mechanisms utilised for cyber security monitoring, effective and efficient
security solutions can be developed and deployed in resource-constrained environments.
Table 2.1 presents a summary of the procedure and impacts of various security attacks on
IoT devices discussed in this section. The illustrated attacks are captured in generating
the various publicly benchmarked IoT datasets described in section 2.3.9 and utilised in
this thesis.

Table 2.1: Attacks on IoT

Attack Procedure Impacts Target

Scan IoT device port
and IP scanning.

IoT device
resource exhaustion.

High profile
organizations.

DoS IoT device
traffic overloaded.

IoT device
service disruption.

High profile
organizations.

Reconnaissance Scanning / analyzing IoT
device network traffic.

Accessing sensitive IoT
device location information.

Online social
networking site.

Spoofing Sending vulnerable queries
to IoT devices.

Service disconnection
for IoT device.

High profile
business company.

Sybil Creation of vulnerable
IoT devices.

Breaching IoT device
data integrity.

Online social
networking site.

Sinkhole Creation of compromised
IoT devices.

Degrade IoT network
service performance.

High profile
organizations.

Message Injection Injecting malicious
content to IoT devices.

Disclose IoT device
data integrity

High profile
organizations database.

Command Injection Malicious commands
injection to IoT devices.

Threats to IoT device
gateways.

High profile
company websites.

Backdoor Infiltrate IoT
devices maliciously.

Breach IoT device
network interface.

High profile
organizations.

Keylogging Installing logs
and keystrokes IoT devices.

Accessing and monitoring
IoT devices.

High profile
organizations.

Data Exfiltration Exploiting IoT devices
for victimization purposes.

Degrade IoT device
data collection capability.

High profile
organizations.

2.3 AI Techniques for IoT Security Monitoring

As a subfield of AI, ML enable machines to learn without explicit programming. ML
learning algorithms require a set of input samples for training to learn the relationship
between training inputs and training targets (see Figure 2.4). ML can distinguish pat-
terns and predict labels for unseen data during classification. This is the supervised form
of learning which focuses on predicting the appropriate labels for an unseen feature vector
by learning how to map the input feature data to the desired target. By given a set of
training examples X = {(xi, yi) }, i = 1 . . . t containing feature vector (xi, yi) in discrete,
continuous or numeric forms, ML algorithms can outputs a classifier that can assign de-
sired labels to each feature vectors. In this case, ML improves in a programmable manner
by learning the pattern from the data. This form of learning is the most commonly used

AI Techniques for IoT Security Monitoring 17

in speech recognition, image classification, language translation, anomaly detection and
attack identification. In the unsupervised training scenario, ML can learn the semantic
distribution of a given vector to get an insight into its properties. This form of learning
is determined to find an interesting pattern present in the input data without using the
target. In addition, ML can be trained based on rewarding desires or undesired actions
from its environment in a reinforcement manner [35]. These AI-based (ML) concepts are
widely used to address various issues in different domains. However, this thesis considers
the supervised version of ML, as most of the IoT network traffic benchmark datasets
contain labels for benign and attack samples. Therefore, supervised learning can be an
appropriate mechanism that can identify attacks and benign traffic samples captured for
cyber security monitoring tasks. Within this context, ML techniques can be utilised and
improved to examine and detect attacks on an IoT network environment for security
monitoring purposes. Figure 2.5 shows the relationship between AI, ML and DL (DNN).
In this chapter, 112 research works are examined from ACM, Scopus, Google Scholar,
IEEE Xplore, as well as other online resources by using keywords such as IoT security,
effective IoT security, machine learning for IoT security, deep learning for IoT security,
intrusion detection in IoT networks, on-device learning, and adversarial attacks. Most of
these papers are review in section 2.4. In addition, most of the review papers in section
2.4 are from 2016 to 2022. The detail of the AI-based ML and DNN algorithms utilised
in this thesis are as follows:

Figure 2.4: An illustration of a supervised ML.

2.3.1 Decision Tree Ensemble Methods (DTEM)

With DTEM, multiple learners can be formulated to produce a better predictive-based
classification model by a procedure called an ensemble. DTEM ensemble procedures are
categorised into bagging and boosting. Bagging is an ensemble decision tree algorithm
that manipulates the training data instances to improve classification model performance

AI Techniques for IoT Security Monitoring 18

Figure 2.5: Relationship between AI, ML and DNN.

[36]. This involves a random selection of data samples with a replacement by which
specific data points can be chosen multiple times. This is useful in training the weaker
classifier models independently while applying voting of their predictions to find an
accurate output. Boosting is an ensemble method that involves the reduction of the
classification error generated from the previous classifier. It is a way of training a new
ML model to improve its performance so that it can be an appropriate candidate to
address the weakness of an existing (previous) model. This technique is more sensitive
to model over-fitting on noisy data with extensive training iteration [37], and it can also
be referred to as Gradient Boosting Decision Tree (GBDT). Because of these ensemble
procedures, DTEM has multiple variants. For clarity purposes, the following discusses
the various DTEMs utilised in this thesis. These DTEM variants are Random Forests
(RF), LogitBoost, Adaptive Boosting (AdaBoost), and LGBM.

AI Techniques for IoT Security Monitoring 19

(i) Random Forest (RF)

RF is a decision tree method that can train multiples tree to generate output that
can decide the classification outcome of a given data instance. At training, each
tree utilises a random subset of the training samples [38]. In classification, the
output of each tree is essential to determine the class label of an unseen feature
vector. Given a training set R = {(ri, ci) }, i = 1 . . . l with data instances ri and
class labels ci, RF applies bagging to the training data and uses voting to predicts
the classes of unseen data instances. An advantage of RF is the accurate or better
prediction of unseen data instances [39]. Figure 2.6 illustrates a simplified diagram
of a random forest classifier. It consists of input data instance and a forest of n
trees with their respective decision based on the given data instance. With this
procedure, these trees learned from the data instance and produce their output.
During the decision analysis, voting is applied based on the decision outcome in an
ensemble manner at which classifiers with better prediction scores are considered.

Figure 2.6: An illustrative diagram of a random forest classifier.

AI Techniques for IoT Security Monitoring 20

(ii) Adaptive Boosting (Adaboost)

Adaboost is an ensemble method that creates an initial classifier using a given
dataset. By manipulating the given training dataset, it can produce multiple copies
of that classifier. In each iteration n, weights wj , j = 1 . . . n are computed and
assigned to the classifiers based on their prediction performance. The weaker clas-
sifiers take the higher weights values [40]. An Adaboost algorithm is determined to
minimise the predictive error function from multiple classifiers by voting on their
performance. This can be defined using a predefined threshold t that serves as the
margin of a classifier upon predicting a particular label correctly or otherwise. The
score value associated with each classifier determines its weakness, where a higher
value means a large significant error and weak performance. With an assigned label
of 1 for benign instances and 0 for attack instances, then ti takes the value 1 for the
correct classification of benign instances and 0 otherwise. An Adaboost model that
tries to minimises the logistic regression loss function in 2.1 is called a Logitboost
[41]. Where D is the dataset containing the input samples X and the target Y ,
Ŷ is the predicted value, given the set of features vector X. An Adaboost classi-
fier is capable of performing accurate classifications better than other conventional
ML models [42]. We utilised this technique to benchmark our proposed optimised
models in chapter 3.

Logloss =
∑

(X,Y)∈(D)

−(Y log Ŷ + (1− Y)log (1− Ŷ) (2.1)

(iii) Gini Index (GI)

GI is an inductive decision tree algorithm based on an impurity function, called
gini index, for finding the best split. The impurity function can measure the fea-
ture importance of a given dataset. In particular, to indicate the likelihood of
misclassifying new data based on the random distribution of its classes [43]. GI
method explores the relative distribution of a feature among classes and is a useful
resource reduction method. This technique was developed by an Italian sociologist
and statistician called Corrado Gini in 1912. The main idea is to measure the sta-
tistical dispersion of income across various populations. The method has a wider
application in IoT research to purify important features [44]. The Gini, G impurity
of a dataset S having m subset S = {s1, s2, s3, ..., sm} with j different subclasses
C = {c1, c2, c3, ..., cj}, is defined in Equation 2.2.

AI Techniques for IoT Security Monitoring 21

G(S) = 1−
m∑
j=1

P 2
j (2.2)

Where, Pj is the rate of class cj in S ; S can be split into m subsets, mi is the sise
of subset Si as described in Equation 2.3. The split with the best value (smaller
impurity) among classes is chosen. This is because the smaller the impurity value,
the better the splitting node [45]. This process is referred to as the feature impurity
gain score. The range of the splits of Gsplit(S) is between [0, 1].

Gsplit(S) =
m∑
i=1

mi

m
Gini(Si) (2.3)

2.3.2 Light Gradient Boosting Machine (LGBM)

LGBM is a decision tree algorithm based on gradient sampling of data instances with
smaller gradients and exclusive feature bundling [46]. The gradient sampling method
suggests a specific search space rather than an entire search space [46]. LGBM uses the
information gain ranking in the gradient sampling process. A smaller gradient value in-
dicates a well-trained data instance which needs to be separated from those with larger
gradient values. As such, LGBM discards those data instances with the larger gradient
and performs one-sided sampling on data instances with a smaller gradient. As a result,
the technique can converge faster and stands more scalable than most decision tree coun-
terparts as it does not search through the whole searching space. A limitation of LGBM
is the requirement of various parameter tuning in the gradient selection procedure as
it uses the default boosting parameters of GBDT [47]. In addition, it requires a spe-
cific architecture for the task of regression, binary, and multiclass classification. These
are challenging tasks using multidimensional feature data. In particular, with the IoT
device-centric data collected from many commercial devices. Therefore, LGBM requires
effective optimisation for appropriate deployment in IoT resource-constrained environ-
ments. Following this discussion, a novel LGBM training algorithm is proposed in section
3.2.1 to resolve these limitations.

LGBM Hyperparameters

An LGBM learning model has various hyperparameters to consider for optimisation
phases and implementation, particularly for the task of binary classification. These in-
clude the number of leaves, feature fraction, bagging fraction, bagging frequency, learning

AI Techniques for IoT Security Monitoring 22

rate, and a regularisation term. Table 2.2 described the range of values of these hyper-
parameters that can be tuned to produce a better classifier. There is a recommendation
for varying each hyperparameter value as described in the LGBM module [48]. Feature
and bagging fractions values must be set within [0, 1] depending on the employed dataset
and the task to accomplish [48]. The feature fraction parameter value represents the size
of the selected feature vector subset from the training data at each iteration. Setting the
feature fraction to 0.2 at training means 20% of the data features will be used to train
the LGBM model. A smaller feature fraction value can speed up the training procedure.
In addition, enabling bagging with its frequency set to a non-zero value can facilitate
efficient model learning. The regularization alpha value as a constraint parameter can
be greater than 0.0 for better model fitting and faster learning. It works perfectly with
datasets with larger than 10000 samples [48]. A smaller number of leaves can avoid model
over-fitting while a larger value can increase the accuracy performance, especially with
large training data. This depends on the task to accomplish and the nature and com-
plexity of the training data. The learning rate chosen value depends on the number of
iterations and training data size. Tuning the learning rate parameter helps in balancing
the trade-off between training computational expensiveness, the chance of model over-
fitting, and performance accuracy [49]. These parameters are essential in exploiting the
LGBM to reduce its computational complexity and improve its performance for cyber
security monitoring because the default parameter values may hurt the model accuracy
[49]. Based on these hyperparameters, we trained LGBM using our proposed optimiza-
tion procedure to produce its resource-efficient counterparts for the security monitoring
of resource-constrained IoT devices (see section 3.2.3).

Following the discussion of the DTEM, Figure 2.7 depicted the root and branches for the
ensemble DT method. For the task of binary classification with two data instances (X1
and X2). For classifying XN data instances, several tree nodes can be used iteratively.

Table 2.2: LGBM hyperparameters.

Hyperparameter Minimum Maximum
Bagging Fraction 0.0 1
Feature Fraction 0.0 1
Number of Leaves 1 131072

Learning Rate 0.0 0.1
Regularization Term 0.0 0.1

AI Techniques for IoT Security Monitoring 23

Figure 2.7: Component of decision tree for binary classification.

2.3.3 Support Vector Machine (SVM)

SVM is a supervised ML algorithm that creates a hyperplane or decision boundary to
separate data instances into classes [50]. For the task of binary classification, SVM in-
tends to find the hyperplane with the maximum margins (see Figure 2.8). An ideal
hyperplane can differentiate the two classes. In Figure 2.8, it separates the red and blue
classes, respectively. A margin is the distance between the data points and the dividing
line. By considering the maximum distance between the data instance within the two
classes, an SVM classifier tries to maximized this margin to find an optimal hyperplane.
For 2-dimensional data, the hyperplane is 1 dimension while for n-dimensional data, the
hyperplane is n-1 dimension [50]. The support vectors in Figure 2.8 are the closest data
points to the hyperplane. SVM used kernel functions to project data into a higher dimen-
sional space to influence better learning. A kernel function can be a linear, polynomial,
radial basis or sigmoid [51]. The kernel function served as a trick to manipulate a given
training data. In the case of the linear version, it can find the linearly separated patterns
present in the data. For implementation purposes, different values can be specified using
the kernel parameter. Figure 2.8 illustrates a two-class SVM classifier. An SVM classifier

AI Techniques for IoT Security Monitoring 24

can be utilised to detect anomalies in the context of cyber security monitoring [52].

Figure 2.8: An illustration of two class SVM.

2.3.4 Artificial Immune System (AIS)

Computer scientists are motivated by the biological systems in developing techniques for
solving problems, based on the idea that an immune system can be used to classify data
instances. They utilised the Negative Selection Algorithm (NSA) from an AIS for classi-
fication [53] and cyber security monitoring tasks [54]. With its capability for recognizing
patterns, this algorithm trains a population of antibodies called detectors using a benign
sample from a given labelled dataset. The first step for training NSA algorithm involves
defining two different datasets, the original input data and the randomly generated arti-
ficial data based on the size of the original data. A Real Value NSA (RNSA) generates
random detectors and tests them against the instances of the self-class for affinity mea-
sure. Affinity is measured based on distances such as Euclidean, Manhattan, or Cosine.
If the affinity measured between the generated detectors and self class instances is above
certain threshold, then it is not considered [55]. At implementation, there is no perfect
shape for an antibody representation. However, RNSA utilised a hypersphere antibody.
In training, the RNSA algorithm uses a realistic dataset to view every feature vector
within the shape search space. This makes it easier to normalize the values in the data

AI Techniques for IoT Security Monitoring 25

within the range of [0, 1]. Each feature vector is now associated with a point in the shape
space. In the case of the RNSA algorithm that handles numerical data, the shape space
(as well as the feature vector values) are continuous. Equation 2.4 express the RNSA.

A = Rd (2.4)

The expression A = {a1, a2, a3, ..., ad} represents data instances, R is the real value
representation of data in the search space, d is the number of dimensions. This expression
can be utilised in a dataset with C = {c1, c2, c3, ..., cn} representative of the n class labels
of a given data samples. In chapter 3, we trained an RNSA algorithm to investigate
its resource consumption while integrating feature reduction techniques for IoT cyber
security monitoring.

2.3.5 Principal Component Analysis (PCA)

PCA, known as the Karhunen-Loeve, is a statistical ML procedure that transforms an
observed set of possibly correlated variables into a set of values of linearly uncorrelated
variables, called principal components. The number of decomposed principal components
is fewer than, or equal to, the original number of variables. The rationale for PCA
is to identify the search space for analyzing multi-dimensional data samples in a low-
dimensionality. For instance, an n dimensional data instance might be confined into an
n− 1 distinct principal components. Hoang et al. [56] utilised PCA using a substantial
data sample for IoT attacks detection. Figure 2.9 illustrated the dimensions of PCA with
two principal components, the PCA-1 and PCA-2, respectively.

2.3.6 Neural Networks (NNs)

Neural Networks (NNs) or Artificial Neural Networks (ANNs) mimic the notion of the
human brain to build computer programs that can recognize patterns and solve a plethora
of problems. ANNs are the core concept of DNN that simulate the functions and struc-
ture of the human brain. They can be classified into different variants depending on the
purpose. These are the perceptrons, feedforward neural network, convolutional neural
network (CNN) and recurrent neural network (RNN). These ANNs are widely used to
build AI-based solutions for various real-world problems [57]. The detection procedure
can be supervised [58] or unsupervised [59]. Figure 2.10 illustrated the architecture of
a shallow ANN, with one hidden layer. An approach that can compress DNN model
architectures for faster processing and inference acceleration is called Quantization. It is

AI Techniques for IoT Security Monitoring 26

Figure 2.9: An architecture of PCA.

the procedure of mapping complex DNN architecture into smaller architectural represen-
tations. Liang et al. [60] outlines the various schemes of quantizing a DNN model. With
quantization, specific operations in the network can be computed in different data types
such as float 16 bit, float 32 bit or different integer precision. This low precision scheme
is becoming the de facto training technique that can increase the energy efficiency of
DNN hardware. However, they can harm DNN models by reducing their classification
accuracy [61]. In section 4.3 of this thesis, we compared our training procedure for DNN
technique with TensorFlow Lite that utilised low precision in model training to assess
the effectiveness and resource efficiency of our optimised DNN training method.

2.3.7 Fully Connected Neural Network (FCNN)

FCNN is a neural network structured into several layers of neurons representing the
input data. A neuron is a fundamental computing unit capable of transmitting the
result of the operation computed by its activation function with the input. Each neuron
represents an individual node within the network. They can connect in a non-linear
pattern of layers containing activation functions to transmit data. A typical FCNN can
connect neurons sequentially by linking them with their corresponding weights and bias
parameters. These weights and biases function as information storage units. They are
the threshold that controls the flow of operation computed by each neuron within the
network. In this aspect, each node can utilise relevant features from the previous layers

AI Techniques for IoT Security Monitoring 27

Figure 2.10: Typical ANN architecture.

while transmitting their output values to the next layer.

Figure 2.11 illustrates an FCNN architecture with two hidden layers and their respective
neurons connection. From the illustration in Figure 2.11, the FCNN deep neural network
can take three input feature vectors {X1, X2, X3} representing the units in the input layer.
As indicated with the forward arrows, each feature unit of the input layer feeds into the
first four hidden neurons, subsequently to the next three hidden neurons up to the last
two output neurons. This unidirectional forward flow of the input features is derived by
an activation function in a pattern called forward propagation. The forward propagation
is responsible for organizing the collected intermediate neuron’s input features. With N

neurons in the hidden layers, An, n = 1, ..., N , activation functions are computed against
the input feature instances. The most commonly used activation function in the hidden
layers is the rectified linear unit (ReLU), while the sigmoid function is for the output layer.
The ReLU function in Equation 2.5 is determined to be more computationally efficient
in terms of computing and storing several activation functions within the network layers.
It can be an appropriate feature transformation function in a network. The sigmoidal
function expressed in Equation 2.6 can convert a linear function into probabilities between
zero and one. It accommodates those values of hidden activation functions that are closer

AI Techniques for IoT Security Monitoring 28

to one while neglecting those closer to zero. The learning procedure of DNN requires
input data to predict a class label. This is important in training DNNs for a specific
task. Especially, in classifying various data instances accordingly. To achieve this, DNN
used algorithms such as gradient descent and backpropagation. The backpropagation
algorithm is determined to compute the derivative of the objective function for the input
data in a backward pattern. As such, it can propagate the computed gradients from
the output node back to the input node within the network. This process is repeated
over time until the network reaches a convergence point. To get insight concerning the
DNN training procedure, see Algorithm 1. It is used to train and obtain an FCNN
model (Mb) as the core baseline utilised in chapters 4 and 5 in this thesis. The function
BASE in line 1 of Algorithm 6 corresponds to the Mb mini-batch training using the
gradient descent algorithm while computing the forward and backward derivatives [62].
The procedure is determined to minimize the objective function J(W, b) (of weight W

and bias b) in Equation 2.7, especially in minimizing the negative log-likelihood (cross-
entropy) to map unseen samples by using a procedure that learned from Str. The resulting
FCNN approach uses supervised neural networks as a classifier,Mb can accept an input
Str and outputs a probability class of vector Ŷ . The desired output Ŷ are rounded up
to the closest integer using a specified threshold value t as in Equation 2.8. This output
represents either the benign (1) or the attack (0) traffic instance.

relu(x) = (x)+ =

0 if x < 0

r if x ≥ 0
(2.5)

sigmoid(x) =
ex

1 + ex
=⇒ 1

1 + e−x
(2.6)

J(W, b) =
1

m

m∑
i=1

L− (Y log Ŷ + (1− Y)log (1− Ŷ) (2.7)

Detection =

0 if Ŷ ≤ t

1 if Ŷ > t
(2.8)

AI Techniques for IoT Security Monitoring 29

Figure 2.11: Fully connected (deep) neural network architecture.

2.3.8 Convolutional Neural Network (CNN)

CNN (ConvNet) is a special DNN that evolve to analyze and classify image data.
CNN has been widely utilised to address various image-related tasks [63]. A typical
CNN consists of neurons, convolutional layers, and fully connected layers. The fully
connected layers are trained based on weight and biases parameters. In addition,
CNN used various non-linear activation functions in the convolutional layers to process
high-resolution images. In this context, the network can identify low-level features
of the input image that are subsequently combined to form high-level features. The
pooling layers of CNN are responsible for selecting a subset from the input image data.
They can condense bigger images into a smaller version via max pooling. In CNN
architecture, each convolutional filter can produce a new-multidimensional feature map.
At training, convolution feature filtrations and max-pooling are repeated iteratively
until the network converges. In this aspect, the CNN can actively learn from the input
data for the task of accurate classifications. At this stage, the network can transform the
input x using the softmax function in Equation 2.9 to output a probability distribution
in the output layer that represents a class label C. In Figure 2.12, we illustrate the ML
and DNN techniques investigated in this thesis for the proposal of effective and efficient
IoT security solutions. Some of them are used to compare our proposed optimised
training method. These includes, RF, AdaBoost, logitBoost, GBDT, LGBM, SVM. The
PCA and GI utilization is to investigate the effectiveness of integrating feature reduction
with AIS algorithms for IoT cyber security.

AI Techniques for IoT Security Monitoring 30

Algorithm 1 Baseline FCNN
Input: Labelled data Str, Number of iteration K, Batch size H,
Output: Baseline modelMb

1: function Base(Str[]) ▷ Training baseline model
2: for i = 1 to K; do
3: Mini-batch B = {(x1, y1), ..., (xm, ym)} ⊂ Str ▷ Mini-batch size ← |Str|//H
4: Fi(B) ▷ Forward propagation
5: Ji ← L ▷ L = Base loss
6: Bi(B) ▷ Backward propagation
7: Compute gradients for parameters update
8: Mb = Trained model using mini-batch gradient
9: end for

10: return (Mb)
11: end function

Figure 2.12: Taxonomy of AI techniques utilised for IoT security monitoring.

AI Techniques for IoT Security Monitoring 31

softmax(x⃗)i =
exi∑C
j=1 e

xj
(2.9)

.

2.3.9 Datasets

Benchmark datasets are essential for assessing the performance of ML techniques. In
the context of cyber security of monitoring, several public network traffic datasets are
available for emprical model evaluation.

(i) KDD 99

The KDD 99 cyber security dataset [64] is generated based on the modification
of the Defence Advanced Research Project Agency (DARPA) [65] network traces
which results in 41 connection of features together with the class label. The dataset
consist of DoS, Probe, U2R, and R2L four category of attack records. After its
creation, the dataset can be used to build ML techniques to distinguish attack
and normal network traffic instances. The dataset is partitioned into training and
testing data and is publicly accessible in the ML repository [66].

(ii) Unsw

The Unsw dataset [67] was created using the IXIA tool testbed configuration that
generates attack and normal traffic behaviours. This dataset consists of nine sim-
ulated attack activities. These are the (i) Fuzzers, (ii) Analysis, (iii) Backdoors,
(iv) DoS, (v) Exploits, (vi) Generic, (vii) Reconnaissance, (viii) Shellcode, and (ix)
Worms [67]. The dataset consists of 48 features of these attack categories and 1
feature for a class label normal or attack. A partition of its training and testing
data sample is made publicly available [68]. Based on the characteristics of its
traffic features, the dataset was used to develop an IoT intrusion detection system
[69].

(iii) N-BaIoT

The N-BaIoT dataset contains various realistic data samples from nine commercial
IoT devices that collectively represent multitudes of botnet and benign network
traffic flow [70]. Each device is either infected by BASHLITE or Mirai severe
attacks, with some regular instances. The nine devices are a (i) Danmini Doorbell,

AI Techniques for IoT Security Monitoring 32

(ii) Ecoobee Thermostat, (iii) Ennio Doorbell, (iv) Philips B120N10, (v) Provision
PT-737E, (vi) Provision PT-838, (vii) Samsung SNH-1011-N, (viii) SimpleHome
XCS-1002-WHT, and (ix) SimpleHome XCS-1003-WHT. Each device consists of
sufficient records of attacks and regular instances with 115 features vector. This
dataset is publicly available for download from [71] ML repository.

(iv) BoT-IoT

The BoT-IoT dataset [72] is created by simulating various legitimate and simulated
IoT network traffic captured representing various attacks and normal behaviours.
The attack traffic activities include Scanning (OS and service scan), Keylogging,
Data exfiltration, DDoS, and DoS [73]. Features of this dataset are labelled based
on the different categorization of attacks. The dataset contains 72 million records
with 16.7 GB of CSV format file [72].

(v) Kitsune

Kitsune dataset consists of multiple traffic captured from nine commercially IP-
based surveillance and an IoT network setting [74]. The dataset contains attacks
that violate confidentiality, integrity and authenticity. These attacks are catego-
rized into (i) Reconnaissance attacks, (ii) DoS attacks, (iii) Mirai attacks, and (iV)
Man-in-the-middle attacks. In simulating the botnet attacks, nine Mirai Telnet
scanner was used to infect IoT devices with the Mirai attack by exploiting their
default credential and scanning new vulnerable victims’ network. Kitsune dataset
is made publicly available in the ML repository [75]. The dataset consists of 115
features that are categorized based on the captured attack traffic.

(vi) WUSTL

The WUSTL dataset consists of reconnaissance, command injection, DoS,
Backdoor attacks and legitimate traffic that emulates real-world industrial IoT
systems for cyber-physical systems security research [76]. This dataset is useful
in investigating the feasibility of ML algorithms for detecting various real-world
attacks. The raw data consists of 7,037,983 samples with seven (7) features. It
comprised 93.30% for benign records with 6.7% attacks data records. A description
of the statistics of attacks and normal traffic samples is available at [77].

AI Techniques for IoT Security Monitoring 33

(vii) IoT-DDoS

The IoT-DDoS [78] dataset is a DDoS botnet simulated dataset. It consists of
simulated traffic flows from various IoT chatbots that infect IoT devices with DDoS
attacks. The dataset contains various distributions of DDoS attack traffic to be
used to investigate the feasibility of the ML algorithm. This can be an initial stage
of exploring the capability of preventing DDoS botnet attacks in an IoT network
environment.

Table 2.3 presents a summary of the utilised benchmark datasets with their various
security attacks. Most of these datasets have captured the attack discussed in section
2.2.

Table 2.3: Benchmark Dataset

Literature Name Target Attacks Technique(s)
[64] KDD 99. Dos and Scanning. AIS, GI and PCA.
[67] Unsw. DoS, Reconnaissance and Backdoor. LGBM.
[70] NBa-IoT. Scanning (Bashlite and Mirai). AIS, LGBM, FCNN.
[72] BoT-IoT. DoS, Scanning, Keylogging and Data Exfiltration. LGBM.
[74] Kitsune. Reconnaissance and DoS. FCNN.
[76] WUSTL. DoS and Backdoor. FCNN.
[78] IoT DDoS. DDoS. FCNN.

2.3.10 Performance Metrics

As most of the available IoT benchmark datasets are often imbalanced, meaning the con-
tains more traffic from one class than the other, many performance metrics are widely
used for evaluations. Prominent of them includes the test accuracy, for evaluating an
optimised model performance while benchmarking with the baseline model. However,
other metrics are important to assess AI-based model performance in security applica-
tions. The F1 score corresponds to the harmonic mean of precision and recall is an
important metric to justify model feasibility. It considers accuracy for each class sample.
Employed metrics utilised the True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN). Accuracy, precision, recall and F1 score are defined in
Equations 2.10, 2.11, 2.12 and 2.13.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.10)

Precision =
TP

TP + FP
(2.11)

Detection Algorithms 34

Recall =
TP

TP + FN
(2.12)

F1score = 2× Recall × Precision

Recall + Precision
(2.13)

2.4 Detection Algorithms

AI techniques have been applied widely in the literature to address security challenges in
the IoT [79]. Elrawy et al. [80] present recommendations for developing ML and DNN
based IoT intrusion detection systems. These techniques remain promising in the field
of IoT security monitoring research.

Bhunia and Gurusamy [81] utilise SVM to propose a framework for IoT security monitor-
ing. The framework is determined to secure IoT devices at the network level by detecting
anomalous behaviour within the network. A Mininet emulator was employed to set up the
IoT networks and validate the proposed detection method. The proposed SVM method
can detect network anomalies within the emulated IoT network traffic captured with a
98.00% precision value. Nskh et al. [82] employed dimensional reduction technique with
an SVM classifier for network intrusion detection tasks. On empirical evaluation with
the KDD 99 dataset, with five PCA components, they achieved a 98.50% accuracy value
which is less than the accuracy without PCA utilization.

In the aspect of DTEM explorations, Lopez-Martin et al. [83] proposed an IoT network
traffic forecasting technique based on the Stochastic Gradient Boosting (GB) classifier.
The main idea is to use the ensemble models to improve the performance of various ML
algorithms while determining the future state of network traffic flow as active or inactive.
The proposed scheme can detect the active connection better than the inactive traffic
flow. Moustafa et al. [84] integrated statistical ensemble-based approach aims to detect
botnet attacks against the utilised protocols in IoT network traffic. They exploit IoT
network traffic flow at the protocols level and subsequently apply ensemble ML-based
to detect attacks within the captured traffics. They employed an Adaboost algorithm
to assess the features’ relevance in developing an appropriate model. Their proposal
performs better for detecting botnet attacks with 99.54% as tested with the UNSW-NB15
dataset. However, it takes more testing execution times than conventional decision trees
and Naive Bayes classification models. As such their method may not scale through
IoT resource-constrained devices. Tang et al. [85] enhanced the Adaboost algorithm to

Detection Algorithms 35

detect low-rate DDoS attacks in an IoT environment. They considered LDoS attacks
traffic captured dataset while evaluating their proposal. A Network Simulator Version 2
(NS2) was used for investigation purposes while assessing the model performance. Their
method can detect attacks at a 97.06% detection rate. Resende and Drummond [86]
outline RF employment opportunities in network security monitoring within the context
of attacks detection and network data analysis. Hasan et al. [87] used it for network
intrusion detection. Empirically validated the approach using an extended version of the
KDD 99 dataset. Farnaaz and Jabbar [88] investigation considered an extended version
of the KDD 99 dataset (NSL-KDD 99). The model can detect network traffic attacks
accurately by 99.67%.

In an attempt to propose an effective security technique, Ikram and Cherukuri [89] em-
ployed a dimensional reduction technique with a SVM classifier for network intrusion
detection tasks with a similar dataset employed by [88]. However, such implementations
with older KDD 99 and its extended version may not provide a generic performance of
the tested model. In addition, assessing the model using a single dataset may render
its usability as ML depends on the datasets. Haripriya and Anju [90] explore AIS to
identify attacks using a similar dataset. They utilised PCA to reduce features that were
normalized based on min-max normalization [91, 92]. They reported the performance of
AIS with large and smaller datasets. However, more details about which PCA features
provide better performance compared to the usage of overall features are missing. In
addition, they do not consider the computational cost of running their proposed method.
We address these issues in our AIS with feature reduction empirical evaluation. In our
work, we reported the memory and time consumption of using the overall data features
and PCA reduced in training and testing scenarios. On the other hand, [93] utilised
LGBM to detect DDoS attacks. Both LGBM and extreme gradient boosting (XGBoost)
are empirically validated and performance comparisons were reported. Experimental
results demonstrated that the LGBM predicts DDoS attacks without considering the
UDP lag attack with 94.88% accuracy and consumes a lower processing execution time
(30 seconds). However, sufficient details of the descriptions of the utilised LGBM pa-
rameters and hyperparameters and their selections and the experimental implementation
are missing. At preprocessing stage, object columns such as Flow Packets, Flow Bytes,
and Destination IP were removed from the utilised CIC-DDoS2019 dataset [94] to speed
up the training procedure. In addition, their implementation considered only the CIC-
DDoS2019 dataset [94]. These issues may restrict the feasibility of their proposal. Unlike
their presented work, Okey et al. [95], integrate XGB and LGBM to detect cyber security

Detection Algorithms 36

attacks captured from different network traffics using similar dataset [94]. The proposed
technique was compared with RF, DT, LGBM and XGB. They emphasized that their
proposed method is lightweight. However, an investigation of the execution time to train
and test their proposed model can assess the efficiency of their technique. As such, their
proposal focused on performance evaluation rather than model efficiency. None of these
implementations considered reducing the resources (memory and time) consumption of
running LGBM algorithms for cyber security or IoT security monitoring purposes. A
disadvantage of LGBM is that it can become overfitted before convergence. Such a pro-
cedure may restrict its capability to learn and interprets other important data features
[96].

This motivates the explorations of DNN techniques to gain the advantage of its accu-
rate classifications [97] while addressing the DNN model’s resource-hungry limitations.
Especially, the available DNN technologies in the literature used for IoT cyber security
monitoring. Zhang et al. [98] DNN-based framework can detect the attacks captured
from various Cyber-physical Systems (CPSs). They investigate such tasks for IoT data
analysis. In the process, they frequently monitored the considered CPSs operations to
trace any malicious activity. Fadlullah et al. [99] exploits state-of-the-art DNN ap-
proaches for IoT network traffic control and monitoring purposes. Chen et al. [100]
used DNN to predict IoT network traffics data captured from the urban road network
traffic dataset. Their scheme integrate Long Short Term Memory (LSTM) and Sparse
Auto Encoder (SAE) to improve the prediction accuracy of the traffic flow captured.
The SAE is utilised for dimensionality reduction, while the LSTM is for traffic identifi-
cations. Their method achieved 97.67% detection accuracy. Abdellah and Koucheryavy
[101] utilises a similar DNN model, the LSTM to predict IoT network traffic captured
from time series data. They empirically validated their model using Matlab implemen-
tation framework and reports their technique performance. However, no explanations
concerning the tuning and chosen parameters of the implemented LSTM model, nor a
report of its detection accuracy. Li et al. [102] explored DNN in the context of accurate
classification and analysis of IoT smart cities data. They present concise data analytic
capability of DNN along with open research directions. Their proposed approach can
predict the captured data by 97.80%. Jung et al. [103] proposal determined to detect
IoT botnets attacks. Their approach considered the sensory power consumption data,
intending to analyse their behaviours and secured them against botnet attacks. They
empirically evaluated their approach across selected IoT devices. Their method can ac-
curately detect botnet attacks at the rate of 90.00%. Pour et al. [104] investigations

Detection Algorithms 37

aim to detect similar attacks from telescope device sensory data. Because of that, they
utilised the Keras platform to evaluate their framework. As reported, their method can
identify and classify the compromised traffics behaviour captured from the tested IoT
devices with 90.85% precision value.

With regards to the device-level applications, Tang et al. [105] investigate the capa-
bility of using a compiler-based platform as an inference for bench-marking DNN on
mobile devices. They exploited the concept and feasibility of implementing cloud-based
DNN models. To this end, they utilised TensorFlow to run DNN on ARM-based plat-
forms. In the aspect of resource management, Iandola and Keutzer [106] described the
minimum speed requirements for deploying DNN in a resource-constrained environment.
They outline various procedures for creating a small DNN architecture. They discuss
the advantages of having such DNN architecture, especially in a resource-constrained
environment. However, they focus on explorations rather than empirical evaluations.
Shi et al. [107] utilised reinforcement-based DNN for resource management in an In-
dustrial Internet of Things (IIoT) environment. Their method performs better than the
benchmark counterparts in terms of limited spectrum utilization to meet the Quality of
Service (QoS) requirements. Shen et al. [108] compressed CNN for structure learning
in an IoT resource-constraint environment. The technique demonstrates its potentiality
on the CIFAR-10 and Imagenet benchmark datasets. Lawrence and Zhang [109] pro-
posed a similar compact architecture with low-precision floating-point computations in
the convolutional layer. The lack of model assessments with IoT benchmark datasets and
non-consideration of memory usage are the restrictions of their method’s potentiality for
deployment in a resource-constrained environment. Kodali et al. [110] utilised FCNN, for
classification tasks on resource-limited devices. They evaluated their approaches on seven
activity recognition datasets with 28nm mainstream CMOS technology. They utilised the
performance metrics described in section 2.3.10 to assess their model performance against
the utilised datasets. They described the utilised model size in the range of 0.104 MB for
the smallest and 0.8000 MB for the highest that cannot scale through the constrained
class illustrated in section 2.1. Moreover, the lack of consideration for model complexity
while selecting the FCNN architecture may restrict method feasibility. In addition, their
implementations that use non-IoT cyber security datasets focused on reducing energy
consumption rather than computational resources (memory and execution) time. In ad-
dition to these related studies discussed, Table 2.4 presents a comparative summary of
the existing ML and DNN methods used for IoT security monitoring and their limita-
tions. These limitations include using one dataset to validate a proposed model, and not

Detection Algorithms 38

reducing the computational resources in training and testing a proposed model. In some
scenarios such as [111], the memory and time usage was reported, however, it needs a
further reduction to be deployed on ultra-low power devices.

Table 2.4: Comparison of ML and DNN techniques developed for IoT security

Literature Technique Description Dataset Contribution Limitation

[112]
Using AIS
for benign samples
selection

NSL-KDD [113] Detection of
attacks

old dataset
No consideration
of resource consumption

[114]
Optimizing LGBM
parameters for
efficient training

DS2OS [115]
LGBM provides
better execution
time (1.49 seconds)

Consideration of
one dataset without
considering the
memory footprint

[111]
Optimizing LGBM
to save computational
resources

Self
generated

Execution time
and memory are
140.217 seconds and
347,530 bytes

Consideration of
one dataset
and higher
execution time

[116] Exploring DTEM
to find better model BoT-IoT [72]

LGBM requires
10 seconds in
detecting attacks

LGBM not
optimised and
no consideration
of memory usage

[117]
Reducing storage
requirements for
training RF and XGB

KDD 99 [66]
RF and XGB run
within 5.7 seconds
and 5.4 seconds

Non consideration
of IoT dataset,
non comparison with
the baseline DTEM

[118] utilised one class
and multi-class SVM Unsw [68]

Detection of IoT
network attacks
traffics captured

Consideration of
one dataset and
non consideration
of resource usage

[119]
Integrating logistic
regression model
with FCNN

N-BaIoT [70]

The integrated
logistic regression
influence better
attacks detection

Used few
devices data
of N-BaIoT and
non consideration
of resources
consumption

[120] Integrating PCA with
CNN for IoT security

Unsw [68] and
BoT-IoT [72]

Lightweight detection
model with size 190 KB
and 181 KB for Unsw
and BoT-IoT, respectively

No consideration
of training and
testing computational
resources

[121]
Pruning FCNN
weights for efficient
detection of attacks

KDD [66] Detection of
attacks in KDD

No consideration
for the model
computational
resources

[122] Enhancing FCNN for
IoT attacks detection DS2OS [115]

The model detects
IoT attacks within
34.51 milliseconds

Used of one dataset,
and non consideration
of training and testing
memory consumption

[123]
Integrating LSTM
and CNN for
IIOT security

Unsw [68] Better performance
of the integrated model

Using one dataset and
non consideration
of computational resources

With these limitations of ML models for IoT security monitoring, this thesis addresses
these issues by exploiting LGBM to reduce its computational resources (memory and
time) and utilised it for effective and efficient IoT attack detection. Then, it proposed an
efficient LGBM training procedure that can save memory and time in training to create
a lighter model with accurate IoT attack detection. In our implementation, we used four

Adversarial Attacks against AI 39

IoT benchmarked datasets and compared our proposed optimised LGBM with its baseline
counterparts and other conventional decision tree ML models. The resulting lightweight
LGBM model offers a promise, as it saves testing memory and time resources better than
each utilised technique. Furthermore, we address the resource consumption limitations
of DNN with FCNN investigations by optimizing its training procedure to produce its
resource-efficient counterparts with minimal memory and execution time. The optimised
model can efficiently detect IoT attacks without accuracy degradation. In addition, most
of these techniques compressed DNN by the quantization of weights and bias parame-
ters. However, the proposed approach in this thesis targets effective attack detection
with resource minimization to reduce FCNN (DNN-based) computational complexity.
The method exploits pruning, simulated micro-batching and parameters optimization to
regularize the resulting DNN model and reduce memory and time requirements while
increasing accuracy performance. Unlike previous works that considered few dataset (see
Table 2.4, in this thesis we considered multiple IoT device centric datasets with sufficient
records of attacks and normal captured traffic. Therefore, the work presented in this
thesis is novel and different from existing proposals in the literature.

2.5 Adversarial Attacks against AI

One of the limitations of using ML and DNN-based models in IoT security monitoring
is that an attacker can impede the Confidentiality, Integrity, and Availability (CIA) of
the deployed model using various attacks targeting the ML model itself. Despite the
widest utilization of DNN for cyber security monitoring, DNN detection capabilities can
be exploited easily by feeding the network with adversarial samples [124]. Looking at the
architecture of the IoT network environment, we are more concerned to build a robust
DNN-based security mechanism for IoT devices. This is useful for the proposal of robust,
effective and efficient IoT security solutions that can be utilised to detect various cyber
attacks. For this purpose, the perturbation methods used in crafting the adversarial
samples are the Fast Gradient Sign Method (FGSM), and Projected Gradient Descent
(PGD) [125], semantic [126], and random noise [127]. The FGSM attacking technique is
computationally efficient. It required a one-step gradient update towards the direction
of the gradient sign as in Equation 2.14. The notation Xo represents the original data,
ϵ represents adjustment step of the original data, Y is the label, θ represents the model
parameters, ∇Xo is the backward propagation steps for gradient update, J(l,Xo, Y)) is
the loss function used to train the network. The FGSM in Algorithm 2 can be used to
generate a new perturbed dataset Xfgsm based on the original data Xo. The epsilon ϵ

Adversarial Attacks against AI 40

Algorithm 2 FGSM perturbation procedure
Input: X ,Y,m,M, data, label, epsilon length, model
Output: Perturbed data X ′

1: for ϵ = 0 to m; do ▷ iterate over ϵ values, m = 1, for normalized data within [0, 1]
2: FM(X) ▷ ModelM Forward propagation
3: BM(X ,Y) ▷ ModelM Backward propagation for gradient update (∇XJ(X ,Y))
4: X ′ = X + sign(ϵ ∗ g)
5: X ′ = clip(X ′, [0, 1]) ▷ Clipping X ′ values within [0, 1]
6: end for
7: return (X ′)

parameter determines the proportion of generated Xfgsm samples. These features are
normalized using the clipping method to align with the corresponding Xo data features.
The success of FGSM motivates the proposal of PGD [125]. PGD is an extended version
of the FGSM method described in Equation 2.15. Both methods operate by computing
the forward and backward propagation while generating perturbed samples. In the PGD
attacking method, an initialized noise U(−ϵ, ϵ) based on uniform distribution of the ϵ is
added to the original data sample before generating and clipping the adversarial samples
repeatedly. Then, Equation 2.15 iterated t times to generate the perturbed samples.
Where ΠXo+S represents the projection of perturbation set Xo + S using the projection
operator Π, α is the gradient step size, J is the loss function.

Xfgsm = Xo + ϵ ∗ sign(∇XoJ(θ,Xo, Y)) (2.14)

Xpgd = Xt+1 = ΠXo+S(X
t + α ∗ sign((∇XoJ(θ,Xo, Y))) (2.15)

These adversarial perturbation methods can create craft samples to bypass the detection
capabilities of various models. As such, they are appropriate techniques for evaluat-
ing the robustness of DNN models to examine their security monitoring capabilities in
the IoT environment. For instance, an attacker can poison the training data before de-
ployment by modifying a certain proportion of the label instance [128]. Such attacks
consider feeding the model with poisonous training data. The intention is to reduce the
classification performance [129], including the DNN model [130]. With that, a bunch of
incorrect classifications are created by impacting the model used for security monitoring.
In addition, a new set of perturbed data can be generated during the testing phase.

Adversarial Attacks against AI 41

The Fast Gradient Sign Method (FGSM) proposed in [131] is a potential mechanism for
launching such perturbation. Kurakin et al. [131] enhance FGSM and introduce Pro-
jected Gradient Descent (PGD). This is a targeted attack method that maximizes the
probability of a specific target class. Hosseini et al. [126] proposed a semantic attack
method to alter the meaning of the original data samples. With a given normalized
data X = xi, i = 1, 2, ...n within [0,1], with n number of sample, by using the semantic
attack, X = 1 − xi, i = 1, 2, ..n. Athalye et al. [132] proposed a generic perturbation
method based on randomly generated noise samples. With this attack, random noise is
uniformly introduced into the data to compose the model. The noise is generated based
on the distribution of the data. For normalized data within [0,1], the introduced noise
will be in the form of U(0, 1). The Jacobian Saliency Map Attack (JSMA) based on the
feature saliency map and Jacobian derivative computation of the learned DNN model
can succeed in crafting adversarial samples [133].

These perturbation methods are white-box based, assuming the adversary has complete
knowledge about the model applied in cyber security monitoring. Thus, they are widely
applied in the context of IoT security monitoring [134]. Ibitoye et al. [135] utilised
FGSM, and PGD to evaluate the robustness of Feed Forward Neural Network (FNN)
and Self Normalizing Neural Network (SNN) by crafting the samples of the BoT-IoT
dataset. Their evaluation shows that SNN can resist adversarial attacks better than its
FNN counterparts. However, further explorations are needed. For instance, there was
no consideration of the label-flipping attack technique and the analysis of the impacts
of perturbation parameters ϵ on the success rate of the adversarially generated sam-
ples. A comparative study on the impact of adversarial attacks on network intrusion
detection dataset is presented [136]. Their exploration investigates the performance of
the ML-based model against the adversarial attacks generated using network security
datasets. However, they only considered the conventional ML model and the adversarial
attacks generated using IP-based datasets. We address these limitations by consider-
ing device centric dataset (N-BaIoT) in comparing the resilience of REDNN, FCNN and
other conventional ML models against perturbed data samples. Unlike the investigations
from [137] that considered testing the robustness of different DNN variants based on the
adversarial attacks generated from the network security datasets, our explorations inves-
tigate the impact of different DNN architectures on resistant perturbed data samples. In
addition, we investigate the influence of FP16 integration on the robustness of the DNN
model to explore the feasibility of using a lightweight and robust DNN model in an IoT
resource-constrained environment.

Federated Learning in IoT Environment 42

On the other hand, a robust and effective classification model can defeat various adver-
sarial perturbations. Such a procedure considers training the built model with perturbed
samples to augment regularization for resilience testing [138]. The approach used in this
thesis tries to address these attacks for IoT security without utilizing the perturbed sam-
ples in training. The reason is to exploit the capability of the optimised FCNN model in
defeating adversarial attacks effectively and efficiently. Therefore, we utilised eleven net-
work traffic feature data from various IoT devices. These IoT benchmarks data capture
relevant device-specific properties. Therefore, suitable for evaluating the performance of
the proposed method with more realistic data samples instead of using oversimplified
simulation methods. In chapter 5, we present details implementations of these various
adversarial perturbations used in this thesis to test the resilience of our proposed method.

2.6 Federated Learning in IoT Environment

Federated Learning (FL) is a mechanism that leverages on-device model learning in a
decentralized manner [139]. With FL, edge devices can learn and share a predictable
model collaboratively without exposing their data to the cloud or fog for computations.
This technique enables clients to retain their private data without exposing it to the
data centre for specific operations while carrying out on-device training. Considering the
IoT architecture discussed in section 2.1, FL can be a beneficial scheme for proposing
AI-based security solutions in resource-constrained environments. This can be a
strategy for developing feasible security solutions to detect attacks on IoT devices in
real-time while granting privacy to each device’s data. In FedAvg training, each client
obtains its local Stochastic Gradient Descent (SGD), and a server performs the model
averaging. At each communication round of training, a local gradient is computed
based on randomly selected clients. The convergence of a model may depend on the
number of communication rounds considered. As such, they can be an influential factor
in producing a better global model. The function SERVER WEIGHTS UPDATE in
Algorithm 3 describes the server aggregation procedure for K clients that return the
averaged updated weights. In line 2 an initial weight value is defined before starting
the local gradient training. Then, based on the number of predefined communication
rounds in line 4, synchronised on-device training iterations with clients are performed to
update their local weights in line 8. Depending on the sample size and clients associated
sample data size, weights are averaged on line 11.

Federated Learning in IoT Environment 43

Algorithm 3 Federated averaging procedure
Server Executes:

1: function Server Weights Update
2: initialize weight w0

3: initialized i = 1
4: while i ≤ m do ▷ m is the number of federated round
5: n← max(C.K, 1) ▷ C.K fraction of clients K
6: R ← random set of Si ▷ Si ← random set of n clients
7: for k ∈ R in parallel do ▷ k client index, a selected clients from R
8: Weight update for each client k
9: end for

10: Averaged weights update ▷ Average weights update based on client K weights
11: wi+1 ←

∑K
k=1

mk
m wk

i+1 ▷ mK = client k sample size, m total sample size
12: i = i+ 1
13: end while
14: return Averaged updated weights
15: end function

The success of AI-based techniques, especially the DNN recently, motivates researchers
from several disciplines to explore FL paradigms from different perspectives. In the field
of IoT security monitoring, FL is gaining popularity. Preuveneers et al. [140] explored
FL applications for intrusion detection in IoT networks. Lim et al. [141] and Imteaj et
al. [142] describe open research problems on FL for resource-constrained IoT devices.
Nguyen et al. [143] proposed a signature-based FL method to detect attacks on IoT
devices. In that context, benign activities are profiled to create the desired intrusion
detection framework. A deviation from the benign behaviour of the actual device indi-
cates malicious activity for that particular device. Liu et al. [144] exploit FL capability
to detects attacks on Industrial IoT (IIoT) devices. They utilised a labelled dataset for
training a DNN model in a federated manner to identify malicious attacks. In addition,
they integrate CNN and Long Short Term Memory (CNN-LSTM) for better model con-
vergence. However, the MNIST and CIFAR-10 datasets utilised for estimating the model
parameter gradients are non-IoT data. Jiang et al. [145] utilised model pruning for effi-
cient FL training on edge devices. Similar to Liu et al. [144] work, they considered image
dataset. Bonawitz et al. [146] proposed a TensorFlow-based FL framework for mobile
devices. For evaluation, they utilised Android mobile devices. Popoola et al. [147] used
FL to detect a zero-day attack in an IoT network environment. Their implementation
takes the advantage of FL data privacy without considering resource limitations. In their
investigations, they considered the N-BaIoT [70] device-centric dataset. However, none

Chapter Summary 44

of these proposals considers optimizing FL training to reduce memory consumption on
IoT networks using pruning, micro-batching, and parameter regularization. This thesis
address this challenge by optimizing the federated training procedure using raw net-
work traffic datasets from various IoT devices captured on N-BaIoT [70] dataset. Then,
it proposed a REDNN FL method with minimal resource consumption. This method
maintains state-of-the-art accuracy while reducing memory consumption. An edge de-
centralized network testbed was developed to address the deployment issue. Regarding
the generalizability, non-IoT datasets are considered.

2.7 Chapter Summary

After an introduction to the IoT environment in the context of applications, architecture
communications behaviour and security issues in a resource-constrained environment,
this chapter explores various AI techniques. It starts with the ML which is a broader
form of AI followed by the DNN which is the subset of ML. In each case, the discussion of
various AI-based detection techniques utilised for IoT security in this thesis is presented.
This includes recent state-of-the-art ML and DNN used for IoT cyber security with their
limitations. From the literature, the existing IoT cyber security ML methods used to
identify malicious activities are resource-hungry. Previous studies consider addressing
these issues while employing one dataset or reducing the execution time usage, especially
in model training or testing. However, they are not reducing the memory and time usage
in both the training and testing phases. In addition, most of the datasets utilised for eval-
uation are general-purpose network security data, not from designated IoT devices. None
of the existing works built a generic training procedure to reduce the resources (mem-
ory and time) consumption of running ML algorithms for cyber security or IoT security
monitoring purposes using multiple benchmark datasets from commercial IoT devices.
Even those that reduced the model computational expensiveness, further assessment can
be useful for a feasible deployment on IoT resource-constrained environments.

The limitation of recent DNN work on IoT resource-constrained environments is the con-
sideration of quantization or model pruning in reducing model complexity. As discussed
in the literature, some existing work focuses on reducing the model size without con-
sidering training and testing resource consumption. In addition, most of the previous
robustness evaluations of using DNN in IoT have not investigated the impacts of architec-
tures and low precision (fp16) integration on robustness. As such, none of these discussed
DNN works built an optimised training method using pruning, simulated micro-batching

Chapter Summary 45

and parameters optimization to train the FCNN model in a robust, effective and efficient
scenario. Such implementation is presented in this thesis using commercially tailored
IoT traffic datasets, suitable for on-device model evaluation. The success of the pro-
posed optimised DNN training procedure motivates further exploration of the on-device
FL concept to benefit resource minimization while addressing security, data privacy and
confidentiality in an IoT environment. This is to overcome the commonly used simulation
method of testing the deployment capability of the FL model in an IoT environment.

Chapter 3

Lightweight ML Method for IoT
Cyber Security

Following the discussion and explorations of conventional ML algorithms in chapter 2
in the context of IoT security monitoring, it is clear that existing ML works have limi-
tations. These limitations include computational resource consumption in training ML
methods and effective detection with fewer resources (see Table 2.4). Therefore, this
chapter proposed a lightweight ML algorithm for IoT security monitoring to overcome
the limitations of existing works. It starts with careful investigations of the feasibility
of feature reduction methods for IoT cyber security monitoring. It later explores the
potentiality of proposing an optimization method for training ML algorithms to create
an efficient and effective IoT security monitoring method. This can be an avenue for
further explorations on the capabilities of improving ML to assess their feasibility, po-
tentiality and performance as AI security-based solutions that can be deployed in IoT
resource-constrained environments.

3.1 Resource Reduction Method

Reducing computational complexity in the process of training resource-hungry ML algo-
rithms is essential for developing lightweight models. In particular for building effective
and efficient classification models. For instance, the ML algorithm utilized for IoT secu-
rity monitoring supposes to detect attacks efficiently using minimal resources. Because
of that, attentive feature investigation of the IoT network traffic data is a requirement

46

Resource Reduction Method 47

to reduce ML computational expensiveness. In this case, exploiting IoT feature extrac-
tion mechanisms can enable efficient network traffic classification for IoT cyber security
monitoring. For this purpose, we integrate PCA with the (RNSA)-AIS-based algorithm
aiming to reduce resource consumption in processing IoT data. The argument raised is
whether the computational cost of applying PCA data brings any advantage compared
with processing the original data. In addition, we integrate GI with the RNSA algorithm
as an approach to extract highly relevant features in the Danmini Doorbell (DD) device
data of N-BaIoT [70] and KDD-99 data [64]. Even though the KDD-99 dataset is an
old cyber security dataset, it contains the most dangerous DoS attacks, and previous
researchers used it to evaluate AIS model [90, 112]. Therefore, we utilized it to inves-
tigate and compare the resource consumption of the feature reduction methods applied
with the AIS algorithm. This served as a procedure to assess the performance of feature
reduction methods used to reduce the computational complexity of resource-hungry ML
algorithms on multiple datasets and provide further investigations than [90] existing work
that neglects the computational cost of running the AIS algorithm. Unlike [90] work, we
further considered the feasibility of integrating GI in savings computational resources of
training and testing AIS.

Lightweight RNSA Model Design

For building the lightweight RNSA model, we utilized the hypersphere space. This is
to integrate the resource reduction approach into the RNSA algorithm. At training, the
dimensions of employed datasets and each hypersphere present remain the same. As a
result, each hypersphere parameter represents a data instance in the search space. The
parameters are defined using a real-valued that represents a class label. The parameter
radius value of the hypersphere is within the ranges of [0,1]. These values can be used to
generate random samples using a distribution of benign instances. In our case, we tested
various values from [0.1, 1] incremented by 0.1 to cover the entire search space. Then, 0.3
was returned as the best choice for the parameter radius. We used this returned value
to generate uniformly distributed random samples between [0,1] based on benign class.
The euclidean distance in Equation 3.1, with x1 and x2 data points, can calculate the
distance between the randomly generated and real benign data samples in a search space.
This is useful to determine the actual class of a particular data feature represented in
the search space. For the PCA and GI implementation, we used the scikit-learn python
module documentations [148]. The PCA and GI are fitted into the N-BaIoT and KDD-99
datasets to reduce feature data.

Resource Reduction Method 48

edist(x1, x2) =

√
(x1 − x2)

2 (3.1)

3.1.1 Experimental Procedure

We used Python 3.76 on a desktop computer with Intel Xeon E5-2695(4 core) CPUs
running at 2.10 GHz with 16.0 GB for experimental settings. A memory profiler was used
to record the model’s memory usage [149]. Experimental records are investigated based
on the deterministic properties of the data features in terms of resource minimization, the
overall amount of N-BaIoT data, and the reductions achieved. For further explorations
and reproduction purposes, codes for these experiments are publicly accessible [150].

Datasets and Preprocessing

The device-centric dataset DD examined is a subset of the N-BaIoT dataset [70]. The
utilized dataset contains 1,018,298 data samples and 116 features, including the class label
- attacks as ’0’s and the normal as ’1’. The records are for both benign and malicious
traffic, and each record represents a numeric traffic flow from a real network. For the
task of cyber security monitoring, the KDD-99 dataset [64] was tested and examined.

The KDD-99 dataset contains some categorical features. The categorical features are
transformed into numeric using LabelEncoder technique [151]. With n number of target
classes, this technique can transform categorical features into numeric values between
[0, n− 1]. After checking for missing and identical feature values, each utilized dataset is
separated into 80% for training and 20% for testing samples. These benchmark datasets
investigated for the task of binary classification and resource reductions contains numeric
traffic flow. As such scaling the features can preserve the relationship among the data
samples as pre-procsing procedure. Thus, data features are normalized within the range
of [0,1] using Min-Max normalization formula presented in Equation 3.2. With n data
features x1, x2, ..., xn, within a dataset, normalization is performed using the formula in
Equation 3.2. The notation xi

′, represents the normalized value of the ith feature, xi the
original value, while minxi and maxxi represents the minimum and maximum value of
the ith feature over the entire dataset.

xi
′ =

xi −minxi

maxxi −minxi

(3.2)

Resource Reduction Method 49

3.1.2 Experimental Results (Resource Reduction)

Figure 3.1 and Figure 3.2 illustrate the PCA variance ratio of the KDD-99 and N-
BaIoT datasets, respectively. The PCA transformation has indicated that using the
extracted number from 10 to 20 principal components from the N-BaIoT data, about
99% of the variance ratio can be retained. This indicates that fewer traffic features
from the data can be sufficient for ML model training. We are more concerned about the
principal components of the data that capture most of the variance ratio to use them and
investigate the resource-saving and attack detection capability of the RNSA algorithm.
In addition, Figure 3.3 and Figure 3.4 illustrate the GI features of the KDD-99 and
N-BaIoT datasets, respectively. It is apparent that using only 26 GI features from the
entire N-BaIoT data can be sufficient to build our ML model.

Figure 3.1: PCA components for KDD-99 data

Table 3.1 illustrate the accuracy values of the attack detection with and without feature
reduction across each dataset. Interestingly, the feature reduction techniques used on the
N-BaIoT and KDD-99 datasets do not decrease the detection accuracy value without the
percentage points compared with the entire dataset. It increases the detection accuracy
slightly. This validates the illustration in Figure 3.2 and Figure 3.4 while supporting the
argument of reducing features in a dataset can reduce resource consumption with better
or without significant performance degradation. This is because in our implementation,
we consider the scenario which retained the 99.9% of the variance ratio during the feature
selection.

Resource Reduction Method 50

Figure 3.2: PCA components for N-BaIoT data.

Table 3.1: Experiments and datasets.

Datasets Features PCA Gini Accuracy (%)

N-BaIoT

115 N/A N/A 68.30
20 ✓ N/A 68.80
15 ✓ N/A 68.50
10 ✓ N/A 68.60
26 N/A ✓ 68.50

KDD-99 41 N/A N/A 80.00
11 N/A ✓ 80.10
5 ✓ N/A 80.25

Table 3.2 provides results of the samples training and testing memory consumption re-
ported in the unit of Byte (B), with and without using feature reduction against the
N-BaIoT dataset. In each case, the training and testing memory consumption for the
RNSA demonstrates significant reduction using the integrated feature reduction method.
In particular, with 10 PCA, more than 80% of the memory can be saved during the train-
ing and testing phase. This is because of using the lowest amount of features that capture
all the variance in the dataset, in our case 99.9%. Looking at the memory requirement of
constrained IoT devices illustrated in chapter 2, the feature reduction results demonstrate
that AIS integrated with PCA can be utilized in IoT resource-constrained environments.
For instance, it required 0.28626 Kilo Byte (KB) and 1.146 KB to train and test AIS
with 10 reduced PCA feature records of the N-BaIoT dataset. The memory consump-
tion results demonstrate the capability of running and deploying AIS with reduced PCA

Resource Reduction Method 51

Figure 3.3: Gini Index feature importance for KDD-99 data.

features on most constrained devices in Class 0 (see Figure 2.3). The more testing re-
source consumption is due to the nature of the AIS algorithm in classifying IoT traffics
based on the feature of the benign class that are generated in training. For more details
about the profiling of the memory usage in training and testing (see [150] repository)
with dedicated AIS prediction phase.

Table 3.2: Computational (per record) memory comparisons against the N-BaIoT
dataset.

Computation Full Features PCA 10 PCA 15 PCA 20 GI 26
Training Memory (B) 1435.5 286.26 350.83 389.13 483.53
Testing Memory (B) 5758.1 1146.0 1405.3 1558.9 1945.9
Training Saved (%) N/A 80.08 75.56 72.89 66.32
Testing Saved (%) N/A 80.10 75.59 72.93 66.21

The runtime in milliseconds (ms) of the RNSA algorithm, with and without feature
reduction against the N-BaIoT is presented in Table 3.3. The reported values are the
training and testing execution times consumed with each technique. Considering the 10,
15, and 20 PCA components and the 26 GI features, the runtime is lowest in the case of
using 10 PCA components compared with the remaining feature reduction approaches,
with a total saving of 52.94% and 48.35% for the training and testing phases, respectively.
As expected, the analyzed results reveal considerable reductions in memory consumption
and processing time when using reduced data features. These results demonstrate the
capability of the proposed approach in utilizing and managing ML resource consumption.

ML Training Optimization 52

Figure 3.4: Gini Index feature importance for N-BaIoT data.

Table 3.3: Computational (per record) training time comparisons against the N-BaIoT
dataset.

Computation Full Features PCA 10 PCA 15 PCA 20 GI 26
Training Time (ms) 300.52 141.41 154.69 172.35 223.92
Testing Time (ms) 547.97 283.00 300.56 336.00 427.36

Training Saved in % N/A 52.94 48.53 42.65 25.49
Testing Saved in % N/A 48.35 45.15 38.68 22.01

This can be a beneficial step in assessing the computational expensiveness of running
ML algorithms for cyber security monitoring. The result attempt to answer RQ2 in
terms of training ML method to be resource-efficient, however, the detection accuracy
reported against the N-BaIoT dataset in Table 3.1 may limit the utilization of feature
reduction techniques on IoT datasets for the proposal of efficient and effective IoT security
monitoring methods.

3.2 ML Training Optimization

Following the limitations of existing works for IoT security monitoring and the encour-
aging results of the previous section, it is clear that an optimized method of training ML
algorithms for effective and efficient attack detection is required. The feature reduction
method may have limitations in creating lightweight ML algorithms, as some of the IoT

ML Training Optimization 53

data may not contain irrelevant and redundant samples and noise [152]. Redundant in-
stances include repeated data samples, while irrelevant data are less useful features with
no contribution to the learning phase of the ML model. In some cases, it is not even
possible to know which traffic features are more relevant. In addition, resource utilization
through feature reduction may not increase the detection accuracy of some algorithms,
depending on the nature of ML models, as some require large data samples to perform
better. These issues may limit the feasibility of using feature reduction for effective IoT
security monitoring. To this end, we built an optimized ML boosting training procedure
based on supervised learning. We adopted a more promising ML (LGBM) algorithm
[153] from the DTEM method and obtained its less computationally expensive training
parameters to build an effective IoT security monitoring-based solution demonstrated in
section 3.2.1 and 3.2.2. For proof of concept, we used LGBM with the optimized training
procedure to create its efficient and effective counterparts that can accurately detect IoT
attacks.

3.2.1 LGBM for IoT Security Monitoring

The procedure to optimize the DTEM classification model can be considered a challenging
task. This is due to the need for intensive parameter tuning in achieving state-of-the-
art performance. For example, optimization of the gradient boosting method requires
attentive parameter tuning to build a base learner that is maximally correlated with the
negative gradient of a loss function [154]. In this aspect, careful investigation of LGBM
DTEM-based parameters described in section 2.3 is a requirement to build an effective
model. Regarding efficient resource utilization, the learning rate and the regularization
term are selected in the range of [0.0001, 0.1]. In addition, the constraint bagging and fea-
ture fraction are utilized within [0, 1]. The value of 2 assigned to the constraint number
of leaves can avoid model over-fitting while reducing the computational cost of training
the LGBM model. Proper configuration of these chosen hyperparameters can minimize
time and memory resource consumption. Traditionally, the grid search technique can
select the best parameter settings among various learning models. However, the grid
search aims to improve the prediction performance rather than the trade-off between
memory usage and accurate prediction. Because of that, an optimized LGBM training
procedure can be used to propose an approach for effective IoT security monitoring that
reduces memory and time resource consumption. The visualization in Figure 3.5 is the
process diagram of such a method (see Algorithm 4). It required a dataset and the
baseline LGBM model alongside their trainable parameters. This training procedure can

ML Training Optimization 54

Algorithm 4 Resource efficient LGBM
Input: Labelled dataset D, ModelM, Set of parameters and hyperparameters P
Output: Efficient modelMe

1: D = {(x1, y1), (x2, y2),..., (xn, yn)}
2: Normalized Dn = {Dj}, j = 1 . . . n
3: Train data X ⊆ Dn

4: Test data X ′ ⊆ Dn ▷ X ∪X ′ = Dn, X ∩X ′ = ø
5: P = {pj }, j = 1 . . . l ▷ P model parameters forM, l parameter length
6: mf , tf fitted memory and fitted run times ofM
7: function Efficient(P)
8: tfp1 ← tC(p1,T) ▷ Run time to fitM with initialized p1, and X
9: mfp1 ← mC(p1,T) ▷ Memory footprint to fitM with initialized p1, and X

10: min(t) ← tfp1
11: min(m) ← mfp1

12: for k ← 2, l do ▷ Iteration using P parameters value
13: tfpk ← tM(pk,T)

14: mfpk ← mM(pk,T)

15: while (mfpk ≤ min(m))) do
16: min(m) ← mfpk

17: if ((tfpk ≤ min(t)) then
18: min(t) ← tfpk
19: end if
20: Me = trained model that estimate (min(t) and min(m))
21: end while
22: end for
23: return (Me, min(m), min(t))
24: end function

accept data, normalize it, and output an efficient LGBM model Me with minimal mem-
roy footprint and execution time. Each utilized dataset is produced from the collection
of realistic benign and malicious traffics using simulated IoT devices. At training, the
optimized procedure in Algorithm 4 can select the optimum parameters of the LGBM
model defined in line 5 based on minimal fitted memory and running times constraint
defined in line 6. At implementation, combination of these parameter are stored in a
dictionary, and selection are based on each training iteration. The selection procedure
described in Algorithm 4, utilizes the function efficient from lines 7 - 24 which takes train-
able parameters from the parameters dictionary as arguments to initialize the memory
and time consumption of the baseline classifier modelM based on fitting the model with
the first parameters combination p1 from P. Then, iterate sequentially to the remaining
set of parameters in P from lines 12 based on the length of the available parameters store

ML Training Optimization 55

in a dictionary to return an efficient LGBM model. While line 15 remains true, in line
16, we update the estimated model memory footprint with the minimal value obtained
by the baseline classifier. The estimated execution time is compared with that of the
baseline in 17 and update the minimal requirements in line 18. This is to find the best
model parameter combinations with minimal training resource consumption. Depending
on the utilized dataset, this model is employed to predict a testing dataset with better
or state-of-the-art accuracy as described in Algorithm 5. The description of the testing
procedure is in Algorithm 4. It uses the efficient model Me returned by Algorithm 5
to predict a given testing data. The purpose of Algorithms 5 and 4, is to reduce the
computational cost of running LGBM for IoT security monitoring. In particular, to au-
tomatically iterate through a set of parameter dictionaries and select the most efficient
one with minimal memory and time consumption. The emprical evaluation of these al-
gorithms considered IoT datasets, and redcuced the computational memory footprint to
fit the requirements of IoT devices with better accuracy performance (see section 3.2.3).
The return parameters chosen by our training procedure are in Table 3.5. This can be
an initial step towards algorithm deployment in resource-constrained enivironment.

Figure 3.5: Resource efficient LGBM process diagram

Algorithm 5 Proposed algorithm to obtain effective and efficient LGBM
Input: ModelM, Dn, P
Output: Efficient validation modelMv

1: Test data X ′ ⊆ Dn ▷ X ∪X ′ = Dn, X ∩X ′ = ø
2: for i = 1 to m do ▷ m is the length of X ′

3: Efficient(P) ▷ Call to EFFICIENT in Alg. 4
4: Mv =Me ▷Me returned by function EFFICIENT in Alg. 4
5: Prediction E =Mv(X ′) ▷ Prediction using Mv and X ′

6: estimate prediction memory, prediction time ▷ based on efficient modelMv

7: end for
8: return (MV)

ML Training Optimization 56

3.2.2 Evaluation

In this section, we present the experimental evaluation of the proposed method with the
description of the benchmark datasets selected for IoT security monitoring. We started
with details description of each utilized datasets follows by preprocessing technique uti-
lized on each dataset.

Utilized Datasets and Preprocessing

The evaluation experiments used four accessible IoT datasets. These are the N-BaIoT
[70], the Bot-IoT [72], the Bot-10 [72], and the Unsw [67]. Each dataset consists of
various attacks along with normal traffic activities. Particularly, Bot-IoT with multiple
categorizations of different botnet attacks, 10% of the data is extracted from [72] to create
the BoT-10 dataset for model evaluation. The choice of these datasets allowed frequent
model training for a thorough investigation. Each tested dataset is categorized into 70%
training and 30% testing records. The datasets are described briefly in chapter 2, (see
Table 2.3) while their training, testing and feature dimensions are illustrated in Table
3.4. All data records are normalized using the employed min-max standard normalization
formula described in Equation 3.2.

Implementation

In practice, the utilization of the parameter grid [155] is due to the various series
of training sessions that occur for the discovery of optimum parameters with fewer
resources. The parameter grid [155] can store multiple parameters. Training and testing
were implemented on Spyder [156] version 3 stable python IDE.Memory footprints and
iteration time are profiled using the integrated psutil (process and system utilities) and
time python modules. Computation was conducted on a personal desktop computer
with the specifications described in section 3.1.1. For reproduction purposes, the
experimental codes for the approach implementation are made publicly accessible [157].

Table 3.4: Utilized IoT datasets.

Dataset Training Tests Feature dimensions
N-BaIoT 509,865 218,514 115

Unsw 115,264 49,400 43
Bot-IoT 467,965 200,557 34
Bot-10 1,247,596 534,684 10

ML Training Optimization 57

Optimized LGBM Hyperparameters

The most relevant hyperparameters discovered using the proposed training method are
described in Table 3.5. These include the initial values for the optimized LGBM model
and optimum values returned by the efficient boosted algorithm.

Table 3.5: Initial and optimum hyperparameters.

Hyperparameter Initial Optimum
Feature Fraction 0.1 0.4
Bagging Fraction 0.1 0.4

Bagging Frequency 2 2
Number of Leaves 31 2

Learning Rate 0.1 0.0001
Regularizer 0.0 0.0001

3.2.3 Results

This section presents the analysis and discussion of the experimental results of the pro-
posed LGBM method. It provides the memory and time usage comparison between the
optimization procedure used to train LGBM against the baseline method and each tested
technique.

Testing Time

The visualization in Figure 3.6 is the testing times needed to evaluate the proposed
optimized LGBM method against each dataset record. It is efficiently faster than the
baseline model. It demonstrates reduced classification time in processing each sample of
the tested data. As a result, the proposed method is capable of saving processing time
across datasets. As compared with the conventional model in Figure 3.6, it saved 53.79%,
57.89%, 61.11% and, 47.76% of times for validating a sample of Bot-10, Bot-IoT, Unsw
and, N-BaIoT, respectively. As expected the optimized LGBM method that utilized our
training procedure in Algorithm 4 and 5 demonstrate efficient performance and better
resource minimization.

Testing Memory

The memory unit consumption comparison in testing each data record using the proposed
approach is presented in Figure 3.7. The technique demonstrates minimal memory usage.
It saved 52.69%, 39.17%, 71.43% and 41.78% of test memory for each record of Bot-10,
Bot-IoT, Unsw, and N-BaIoT, datasets, respectively. These results indicate its robustness

ML Training Optimization 58

Figure 3.6: Sample testing time resource consumption of LGBM: Optimized vs Unopti-
mized.

Figure 3.7: Sample testing memory resource consumption of LGBM: Optimized vs Un-
optimized.

and lightweight security monitoring advantages for IoT devices with overall improvement
across benchmark datasets. It suggests that IoT security monitoring with the proposed
approach can be beneficial.

Testing Accuracy

The illustration in Figure 3.8 represents the testing accuracy that the proposed method

ML Training Optimization 59

Figure 3.8: LGBM testing accuracy comparison: Optimized vs Unoptimized.

provides for each dataset. Despite its resource reduction advantages, it also outper-
formed the unoptimized LGBM method in predicting the Bot-10 and Bot-IoT datasets
accurately. We notice a slighter accuracy degradation using the Unsw dataset. The rea-
son is due to the while loop in Algorithm 4 that iterates based on minimal memory. The
loss of accuracy by the unoptimized approach using the Bot-10 and Bot-IoT datasets was
due to the utilization of the default configuration training parameters. These results indi-
cate the capability of the optimized technique in discerning IoT attack traffic effectively.
The illustration in Figure 3.9 represents the testing accuracy comparison of the proposed
method and the grid search technique. Despite its less computationally expensive, the
prediction accuracy across each dataset is closer to that of the grid method.

Computational Performance Analysis

The reports in Table 3.6 is the performance comparison of the grid search and the pro-
posed optimized LGBM method against the tested datasets. Regarding the resource
consumption of each data record, the proposed optimized LGBM approach is better.
It required minimal memory and maintained reduced classification time reported in
Nanoseconds (ns). These results indicate its effectiveness and efficiency advantage. It
demonstrates the importance of utilizing our optimized training procedure over the con-
ventional parameters optimization technique (the grid search).

ML Training Optimization 60

Figure 3.9: Optimized testing accuracy comparison with grid search.

Table 3.6: Grid and optimized LGBM methods performance evaluation (per record).

Dataset Algorithm Test memory Test time
(B) (ns)

N-BaIoT Grid 15.88 2059.36
Optmized LGBM 11.75 1601.73

Unsw Grid 5.72 1619.43
Optmized LGBM 3.482 1417.00

Bot-IoT Grid 11.19 1495.83
Optmized LGBM 8.66 1196.67

Bot-10 Grid 1.52 1458.81
Optmized LGBM 1.08 1140.86

The description in Table 3.7 is the computational performance comparisons of the em-
ployed algorithms using the N-BaIoT dataset sample. The proposed optimized LGBM
method indicates better memory and time resource savings compared with each tested
technique. As the results are expressed based on how each model processes its data
record, optimized LGBM provides the lowest testing memory footprints. In addition,
it demonstrates a better classification of attacks and regular traffic with an accuracy of
99.90%. This suggests that optimizing ML model parameters in training can produce
a better predictive model. The reason may be due to the efficient function procedure
used in line 3 of Algorithm 5. In each iteration, the accuracy is computed using selected
parameters. This is useful in selecting a better model with low computational resources.

ML Training Optimization 61

Table 3.7: Models performance evaluation comparison on N-BaIoT Dataset (per record).

Algorithm Accuracy Test time Test memory
(%) (ns) (B)

Random Forest 89.35 12813.82 3873.01
LogitBoost 89.14 13042.64 3874.00

SGB 89.53 13454.52 3875.00
AdaBoost 89.31 11440.91 3866.00

Optmized LGBM 99.90 1601.73 11.75

The results demonstrate that optimizing the LGBM model to save its computational
resource may not reduce its accuracy performance. Therefore, it validates the argument
raised in RQ2 of training ML method to be resource-efficient for IoT security monitoring.

We investigate the relationship between hyperparameters tuning against memory con-
sumption for each data record of the N-BaIoT dataset. Figure 3.10 indicates the effects
of varying the constraint number of leaves on memory usage. As expected, the graph
suggests that smaller values for tree leaves can influence better memory savings. Also,
Figure 3.11 indicates the memory consumption while altering the bagging frequency pa-
rameter. An appropriate choice of bagging frequency combined with other parameters
can be considered during training, particularly during model tuning for better resource
savings. However, value selections depend on the dataset utilized and other tested param-
eters. The visualization in Figure 3.12 is the memory consumption against the constraint
bagging fraction using the N-BaIoT dataset.

Figure 3.10: Effect of number of tree leaves on memory with N-BaIoT.

ML Training Optimization 62

Figure 3.11: Effect of bagging frequency on memory with N-BaIoT.

Figure 3.12: Effect of bagging fraction on memory with N-BaIoT.

The results suggests the selection of accurate value where resources are limited and needs
to be utilized. Also, Figure 3.13, demonstrates how feature fraction facilitates memory
resource consumption. The illustration in Figure 3.14 is the memory consumption against
the regularization term. Also, Figure 3.15 shows the impacts of learning rate on memory.
It demonstrated that smaller values of these hyperparameters facilitate memory saving.
These results demonstrate the effects of varying turning parameters of LGBM on mem-
ory consumption as tested with the N-BaIoT dataset. The results suggest that setting
bagging fractions to 0.4 can provide almost similar memory savings as 0.9. In addition, a

ML Training Optimization 63

Figure 3.13: Effect of feature fraction on memory with N-BaIoT.

Figure 3.14: Effect of regularizer on memory with N-BaIoT.

lower value of the constraint number of tree leaves can reduce memory consumption. In
our case, we find out that settings the number of tree depths to 2, enables more resource
savings without degrading the prediction accuracy of the LGBM model. This is useful in
training resource-hungry boosting algorithms to be suitable for utilization in a resource
constraint environment.

ML Training Optimization 64

Figure 3.15: Effect of learning rate on memory with N-BaIoT.

3.2.4 Summary

In this chapter, we examined the feasibility of reducing the computational cost of train-
ing and testing ML algorithms for IoT cyber security monitoring. For this purpose,
we employed carefully selected feature reduction methods, particularly the PCA and GI
techniques. For proof of concept, we trained an AIS algorithm with a reduced data fea-
ture set of the KDD-99 and N-BaIoT cyber security datasets. The highest computational
resource savings of memory and time usage occurred while using 10 PCA components
of the N-BaIoT data. With this, it saved 80.08% and 80.10% of memory footprints in
training and testing compared with the full data features. Regarding the running time,
with 10 PCA components, the savings are 52.94% and 48.35%, respectively. However,
the number of PCAs to be selected can be varied according to the dataset. The re-
sults demonstrate the influence of PCA over GI in terms of computation cost savings
for running resource-hungry ML algorithms. These results motivate further explorations
of various techniques to optimize ML algorithms for efficient and effective IoT attacks
with better or state-of-the-art accuracy. The increasing number and complexity of IoT
devices motivate the development of an efficient, and effective security protection system.
We proposed such an approach that utilized LGBM with optimized hyperparameters to
lower computational costs for resource constrained IoT devices. This is a requirement to
reduce the computational expense of running traditional ML methods for IoT security
monitoring. The proposed technique is efficient and useable for IoT resource consump-
tion reduction. It outperforms the conventional LGBM model tested with the initialized

ML Training Optimization 65

hyperparameters and the grid search technique. It is better than the five employed boost-
ing algorithms tested for effective attack detection and minimal resource consumption.
In comparison with the SGB algorithm, it reduced the processing time and memory
consumed during testing by 88.09% and 99.70% for each sample.

Chapter 4

Effective and Efficient Deep
Learning for IoT Security
Monitoring

Based on the work from the previous chapter (chapter 3) and consideration of the het-
erogeneous, complex security patterns and multidimensional nature of cyber security
network traffic datasets [158] and DNN models can capture these complexities better
than traditional ML models [159]. In this chapter, we want to investigate how to opti-
mize DNN models for resource-efficient security monitoring in IoT networks. Looking at
the promising success of DNN in various fields, they can be used to build a model for cy-
ber security monitoring (see section 2.4). This is because proposing an accurate detection
model is of practical interest for IoT cyber security as IoT technology is not yet mature
and fully secured. However, building appropriate DNN-based IoT security solutions re-
quires a large amount of training data. Such a procedure is computationally intensive
and requires a lot of resources to provide effective attack detection. Because of that, DNN
security solutions designed to deploy on general-purpose computing devices(e.g. Laptop,
Desktop) may not be appropriate in a resource-constrained environment. Therefore, we
are more concerned to build an efficient and effective DNN security mechanism for IoT
devices. To this end, we present a framework in this chapter that can develop a suitable
DNN-based method for the security monitoring of resource-constrained environments
such as IoT. In our investigations, we use FCNN based on its performance in the context
of cyber security [110], along with the IoT benchmark datasets described in Table 4.1 and

66

Deep Learning for IoT Security 67

exploit FCNN’s optimization algorithm to obtain the REDNN version from the FCNN.
The resulting REDNN demonstrates better classification performance with savings in
execution time and memory footprint that can meet the minimum IoT resources require-
ments described in chapter 2 and address the limitations of previous study in chapter 2
(see Table 2.4). In addition, it can accurately detect attacks from each dataset used in
our experiments.

4.1 Deep Learning for IoT Security

Based on the typical FCCN training described in Algorithm 1 as the core in subsection
2.3.7 and Algorithm 6 with an estimation of memory and time consumption, we slightly
customize its training optimization to obtain REDNN. The memory and time are profiled
after the completion of model training. These are the model training computational
cost. We described this memory profiling tool in the implementation described in section
4.2. Algorithm 6 served as a baseline procedure for proposing its optimized counterparts
(REDNN).

Algorithm 6 Baseline FCNN training
Input: Labelled data Dtr, Number of iteration T , Batch size S
Output: Baseline modelMn

1: function Base(Dtr[]) ▷ Training baseline model
2: for i = 1 to T ; do
3: Mini-batch B = {(x1, y1), ..., (xm, ym)} ⊂ Dtr ▷ B ← |Dtr|//S
4: Fp(B) ▷ Forward propagation
5: Ei ← L ▷ L = Base loss
6: Bp(B) ▷ Backward propagation
7: Compute gradients for parameters update
8: Estimate mi ▷ Execution memory at epoch i
9: Estimate ti ▷ Execution time at epoch i

10: Mn = Trained model that estimate Ei,mi, ti
11: end for
12: return (Mn,mi, ti, Ei)
13: end function

E = λ
W∑
j=1

(w2
j/w

2
0)

(1 + w2
j/w

2
0)

(4.1)

Deep Learning for IoT Security 68

To protect IoT networks from malicious attacks we need an effective and efficient model.
This is the model with minimal training and testing computational cost and better or
state-of-the-art accuracy. However, the procedure of finding an effective and resource-
efficient DNN model can be a challenging task [160]. This is due to the various parameter
requirements in designing and building the desirable architecture, particularly with com-
plex and multidimensional datasets, especially the IoT traffic data produced from many
commercial devices consisting of resource constraints, lower memory and processor. We
propose such a framework that manipulates and optimizes an FCNN version of DNN
to yield a compact classification model (see Figure 4.1). In our procedure, we utilize
the baseline Mn model in Algorithm 6 to propose the optimized REDNN model. As
demonstrated in Algorithm 7 the optimized model adopts micro-batching [161, 162] for
efficient model building. The function procedure requires Dtr in mini-batch and micro-
batch forms and iterates T times repeatedly to return the efficient Me representing the
REDNN model. The optimization process utilizes penalty function (weight elimination)
[163] represented by E in Equation 4.1 with a weight threshold parameter w0. The ex-
pression in line 7 of Algorithm 7 is responsible for pruning the network model weights to
reduce its architectural complexity by incorporating weight elimination into the baseline
loss. This procedure is useful in distinguishing the sets of relevant weights that can en-
able efficient model learning from the irrelevant ones, particularly the insignificant large
weights of the baseline Mn model that is initialized within [0,1] at implementation. In
the process, weights values W greater than w0 can yield a complexity cost closer to 1 and
require regularization using the penalty parameter λ. This is important to reduce the
complexity of the model to enable faster training. As we are more concerned with a less
complex, efficient and effective model building that can retain its performance, therefore,
we consider the set of parameters that can give a training error Ej lower than the binary
cross entropy loss Et described in Equation 2.7 of section 2.3.7. The most important pa-
rameters are the w0 and λ which are the threshold that controls the learning of the model
while reducing its architecture. In line 10, we compared the regularization error Ej with
the initialized error Et before the regularization. This is to examine the convergence rate
of the model during each epoch iteration. Based on the outcomes of line 10, relaxation
of the λ value using the △λ occurred in line 11. The memory footprint and execution
time are estimated in lines 12 and 13 and compared with the initialized values in lines
14 and 15 from line 6. This process is determined to find a model architecture with a
faster convergence rate and minimal memory and time requirements in training. Due to
the regularization in lines 10 and 11 of Algorithm 7, the returned REDNN model is less
complex.

Deep Learning for IoT Security 69

Figure 4.1: Effective IoT attack detection framework.

Algorithm 7 Proposed algorithm to obtain REDNN
Input: Penalty term λ, (Dtr, T , B, in Alg. 6)
Output: Efficient modelMe

1: function Efficient(Dtr[])
2: for j = 1 to T ; do
3: Micro-batch M = {(x1, y1), ..., (xm, ym)} ⊂ B ▷ B ⊂ Dtr

4: Fp(M) ▷ Forward propagation
5: Et = L ▷ L = Initial loss
6: mt, tt ▷ mt, tt estimated memory and time using Et
7: Ej ← Et + λ

∑W
j=1

(w2
j /w

2
0)

(1+w2
j /w

2
0)

8: Bp(M) ▷ Backward propagation
9: Compute gradients for parameters update

10: if (Ej ≤ Et) then
11: λ = λ+△λ
12: Estimate mj ▷ Execution memory at epoch j
13: Estimate tj ▷ Execution time at epoch j
14: if mj ≤ mt then
15: if tj ≤ tt then ▷ mt = Efficient memory
16: mt = mj

17: tt = tj ▷ tt = Efficient time
18: Me = Trained model that estimate Ej ,mt, tt
19: end if
20: end if
21: end if
22: end for
23: return (Me, Ej ,mt, tt)
24: end function

Evaluation 70

4.2 Evaluation

This section describes the evaluation criteria of the baseline FCNN and REDNN models.
It also presents the datasets used in building the models. The N-BaIoT [70], Kitsune [74],
WUSTL [76] datasets described in section 2.3.9 were employed in our experiments in this
chapter. As we are interested of using device centric datasets which are simulated from
IoT devices, other than IP based datasets (unsw), so we employed few of them. This
is to assess our algorithm performance in device centric settings. A brief description of
each dataset is as follows.

Data Preprocessing

The choice of these datasets allows frequent model training and rigorous evaluation.
These datasets represented by numeric traffics flow are highly in-balanced suitable for IoT
security investigations. Each utilized dataset is separated into 80% for training and 20%
testing samples. Data input vectors are normalized using the unity-based normalization
feature scaling.

Experimental Setup

We used Python 3.76 on a desktop computer with the specifications described in sub-
section 3.1.1 to build each model. For profiling model memory consumption, we utilized
the integrated memory usage [149]. At training, parameters remain constant to enable
a fair comparison. This applied to the baseline FCNN model, optimized REDNN and
adversarial process.

Implementation Details

FCNN and REDNN Models Design. For building the generic sequential (dense)
FCNN and REDNN models with each dataset, we utilized the scientific NumPy python
module [164]. This enables the building of an in-depth DNN model without any library.
This is good to understand underlying concepts and explore the internal operations
within the network. Each model consists of an input layer, four hidden layers and an
output layer as illustrated in Table 4.1. Regarding the topology selection against each
dataset, we utilized the best-run Hyperas modules [165]. With that, we can select the
best topology configurations against each dataset. The topology selection can minimize
operations while maximizing the performance metrics. These are the requirements for the
task of binary classification. The architectural settings remain identical for evaluating
the baseline FCNN and the proposed REDNN model. Table 4.1 describes the models

Evaluation 71

Table 4.1: Topology and distribution of normal and attack for each device data.

Device Normal Attack Inputs Output Topology
Danmini Doorbell 49,548 968,750 115 1 128-128-128-128

Ecobee Thermostat 13,113 822,763 115 1 32-64-64-16
Ennio Doorbell 39,100 316,400 115 1 64-128-128-64
Philips B120N10 175,240 923,437 115 1 128-128-128-128

Provision PT-737E 62,154 766,106 115 1 128-128-128-128
Provision PT-838 98,514 729,862 115 1 128-128-128-128

Samsung SNH-1011-N 52,150 323,072 115 1 128-128-128-128
SH XCS-1002-WHT 46,585 816,471 115 1 128-128-128-128
SH XCS-1003-WHT 19,528 831,298 115 1 128-128-128-128

Kitsune 121,621 642,516 115 1 128-128-128-128
Wustl 6,566,438 471,545 6 1 128-128-128-128

topology against each tested data.

For training, a mini-batch gradient descent optimizer with momentum was used. Ran-
dom initialization of weight and bias parameters are within [0,1]. The baseline and
optimized training procedure utilized lr = 0.001 across each dataset except the Ecobee
and Ennio devices data with a different topology that used lr = 0.0001. Both FCNN
and REDNN utilized a momentum value of 0.001. We used 0.01 values for λ, △λ and
threshold w0 [166] with 4 micro-batches to build the REDNN model. Models are trained
in 128 batches within the 100 epochs for accuracy to converge. Binary cross entropy
was used for calculating loss function. The activation function used in the input layer
is ReLu [167] and Sigmoid for the output layer. For efficient hyperparameter selection,
we utilized an automatic optimizer search module [168]. This technique required a range
of values for each hyperparameter to be tuned to return an efficient combination. We
used Numpy.float16 modules to implement the float 16 precision for the baseline and
optimized model. A TensorFlow Core version (v2.8.0) is used for building the Keras and
TensorFlow deep learning models. The TensorFlow Lite (TFLite) converter module is
used to build the TFLite deep learning model. The implementation used a fair compari-
son with Numpy (FCNN and REDNN) as both the Keras and TFLite models are trained
in 128 mini-batches using a Stochastic Gradient Descent (SGD), at 100 epochs iterations.
For the linear SVM, Adaboost and GB models, we utilized the Scikit-learn [148] machine
learning python framework. For exploration and reproduction purposes, the codes used
for this study is accessible at [169]. Regarding the TFLite experimentation, we include
both the Jupyter notebook file and the python script in the GitHub repository [169].

Results (Effectiveness and Resource Efficiency) 72

4.3 Results (Effectiveness and Resource Efficiency)

This section discusses the experimental results. It details the evaluation comparison of
the REDNN and optimized FCNN models across datasets.

REDNN Model Resource Usage

Figure 4.2 presents the execution time in seconds for training each model. Since we
are considering various datasets, we reported the cumulative memory usage by each
model against each tested dataset. As demonstrated, the REDNN model is more efficient
with minimal cumulative execution time against each dataset. This suggests its less
computational expensive nature.

Figure 4.3 illustrates the CPU performance (1/execution time) for training each model.
The values in the y-axis of Figure 4.3 represent the clock rate (frequency) which indicates
how fast the CPU can run each model against each tested dataset. The performance
comparison is over one CPU with specific architecture. In each case, a higher value
means the CPU can performs certain operations faster. As expected, the REDNN model
is more efficient with a better CPU performance frequency value against each dataset.
These resources saving capabilities make it an appropriate model for intrusion detection in
IoT network environments. The results agree with the RQ2 of this thesis while indicating
that an existing DNN model can be trained to be resource-efficient better than its baseline
counterparts.

To further investigate RQ2 based on the motivational results of the resource savings,
we present measured testing results of the eleven IoT datasets runs with the FCNN
and REDNN models in Table 4.2. In each case, the testing memory consumption of
each algorithm is profiled in MB against each tested dataset. The reported memory
results are for the cumulative records of each dataset. As demonstrated, the REDNN
model can operate with a lower memory footprint. It can process the Wustl and Ennio
Doorbell datasets with 98.84% and 77.63% of memory savings than the baseline FCNN.
These resource minimizations make it a better choice for IoT security monitoring. It
indicates its less complexity and faster detection capability. The results indicate that it
is possible to reduce the computational resources of the FCNN model without degrading
the testing accuracy. This is the case of the nine device subsets of the N-BaIoT dataset,
and the FCCN network architecture utilized to build the REDNN model. As such, the
regularized REDNN model can provide similar or better detection accuracy with its
FCNN counterparts based on the regularization threshold in line 10 of Algorithm 7. We

Results (Effectiveness and Resource Efficiency) 73

Figure 4.2: Model training execution time against utilized datasets (cumulative).

Figure 4.3: Model training CPU performance against utilized datasets (cumulative).

demonstrated an instance which the REDNN provides better detection accuracy than its
counterparts in chapter 5 and 6. These results answered the RQ2 of this thesis and agree
with our argument that FCNN models can be optimized to reduce the computational
complexity without degrading their detection capability.

Results (Effectiveness and Resource Efficiency) 74

Table 4.2: Testing memory footprint (cumulative).

Dataset Model Mem Mem Test
(MB) save (%) acc (%)

Danmini Doorbell FCNN 3.742 N/A 95.11
REDNN 1.555 58.44 95.11

Ecobee Thermostat FCNN 2.804 N/A 93.36
REDNN 1.277 54.46 93.36

Ennio Doorbell FCNN 2.410 N/A 88.94
REDNN 0.539 77.63 88.94

Philips B120N10 FCNN 3.738 N/A 84.08
REDNN 1.731 53.71 84.08

Provision PT-838 FCNN 3.031 N/A 88.07
REDNN 1.266 58.23 88.07

Provision PT-737E FCNN 3.008 N/A 92.52
REDNN 1.285 57.28 92.52

Samsung SNH-1011-N FCNN 2.598 N/A 86.07
REDNN 0.582 77.60 86.07

SH XCS-1002 FCNN 3.004 N/A 94.65
REDNN 1.320 56.06 94.65

SH XCS-1003 FCNN 3.145 N/A 97.72
REDNN 1.305 58.51 97.72

Kitsune FCNN 2.726 N/A 84.09
REDNN 1.168 57.15 84.09

Wustl FCNN 491.6 N/A 94.26
REDNN 5.711 98.84 94.26

REDNN Model Performance Comparison

The descriptions in Table 4.3 compare the performance evaluation of REDNN as imple-
mented against various state-of-the-art technology frameworks (libraries). This demon-
strates the potentiality of the optimized REDNN of savings resources in different ex-
perimental platforms. At training, REDNN demonstrates better memory footprint and
time savings against each data record. It saves 99.86% and 99.99% of training time
and memory footprint than the baseline model trained with Keras as computed based
on the reported values in column Train time ((0.0196/13.189 ∗ 100) − 100) and Train
mem ((0.1388/3127.5 ∗ 100) − 100) from Table 4.3, respectively. As compared with the
converted FCNN TFLite model, the REDNN demonstrates better memory usage. The
reason can be the TFLite model inherits the default Keras parameters during the model
conversion. As a result, the conversion produces a lighter version of the Keras model.

Results (Effectiveness and Resource Efficiency) 75

Table 4.3: Training performance evaluation across frameworks with Provision PT-737E
dataset (per record).

Procedure Train time Train mem Test set
(ms) (B) acc (%)

FCNN-Keras 13.189 3127.5 92.52
FCNN-TFLite 0.1605 372.29 92.52
FCNN-Numpy 0.0571 16.933 92.52

REDNN-Numpy 0.0196 0.1388 92.52

However, the quantized optimized TFLite model consumes fewer resources. It required
0.010 ms of training execution times and 0.0060 B of training memory footprint. This
is due to the computations with tf.float16 low precision [170] at training while optimiz-
ing the converted TFLite model [171]. However, in some cases, low precision can cause
numerical issues [170]. This can leads to accuracy performance degradation with some
datasets [172]. Because of that we implement each framework in 32 bits and compare
their performance in Table 4.3. This is useful to investigate the resource savings without
the low precision integration. As presented, the significant training resource-saving of
the optimized REDNN model can be useful for on-device learning. These motivational
results serve as an avenue for the utilization of the optimized REDNN model to evaluate
the hypothesis stated in RQ3.

In Table 4.4, we show the testing resources (memory and time) consumption by each
model against utilized frameworks. Regarding the processing times of each framework
against each data record, the NumPy implementation is faster. REDNN can process
IoT data efficiently at a slightly higher rate than the baseline FCNN model runs on the
same framework. The TFLite model is more efficient than the Keras model but slower
than Numpy (FCNN and REDNN) models. Overall, REDNN saves 4.309 %, 69.81%
and 80.55% of processing times than FCNN, TFLite and Keras models, respectively.
This interesting result demonstrates the resource-efficient nature of our training pro-
cedure with Numpy better than other state-of-the-art training optimization methods.
Therefore, compared to the currently available state-of-the-art methods, it can be an ap-
propriate procedure for training and building an effective model in a resource-constrained
environment.

For the memory consumption in column (Test mem), REDNN demonstrates better sav-
ings with each data record. The reduction is by 78.91%, 80.12% and 98.51% of memory
footprint than FCNN-Numpy, FCNN-TFLite and FCNN-Keras models, respectively. The

Results (Effectiveness and Resource Efficiency) 76

Table 4.4: Testing resource consumption across frameworks with Provision PT-737E
dataset (per record).

Procedure Test time Test mem Test set
((ms) (B) acc (%)

FCNN-Keras 2.3522 512.64 92.52
FCNN-TFLite 1.5155 38.533 92.52
FCNN-Numpy 0.4781 36.317 92.52

REDNN-Numpy 0.4575 7.6606 92.52

TFLite more resources consumption is due to the data type conversion during prediction
[171]. The conversion can increase the execution time and memory [173] as demonstrated
in Table 4.4. The higher resources (memory and time) consumption of the TFLite at the
testing stage is a limitation for effective IoT attack detection. As REDNN demonstrate
minimal testing resource consumption, it can be utilized as an effective mechanism for
IoT security monitoring.

Table 4.5 presents measured results that compare the performance of the REDNN model
against state-of-the-art techniques using the PT-737E dataset. The reported results
are the computational resources required by each model to process each record of the
PT-737E dataset. In each case, the REDNN model demonstrates better memory and
time resource savings. At training, it saves more than 99.99% and 99.80% of execution
time and memory footprint than the SVM model based on the memory and time usage
reported in Table 4.5. The reason is that SVM can be a more computationally expensive
ML algorithm with complexity in training large datasets [174]. This makes it to be more
resource hungry than the Adaboost and GB decision tree models. As DNN outperforms
conventional ML models, the FCNN and REDNN results are as expected. The results
suggest that DNN model optimization can create an efficient method with more resource
savings than traditional ML methods. This is good in building a model in an environment
with a multi-dimensional and large training dataset that requires significant resource
savings.

For testing, the reduction is 99.91% and 99.17% of execution time and memory footprint
against the SVM model as computed based on SVM and REDDN resource usages in
Table 4.5. The reason can be SVM requires much processing time to classify the various
traffic flows present in the PT-737E dataset [175]. The testing memory reduction remains
promising across all tested models. For instance, as compared with the AdaBoost model,
REDNN saves 82.49% and 44.66% of testing time and memory usage, respectively. This is

Chapter Summary 77

Table 4.5: Performance evaluation comparison on Provision PT-737E dataset (per
record).

Model Train time Test time Train mem Test mem Test set
(ms) (ms) (B) (B) acc (%)

SVM 909.64 500.87 378.96 923.48 92.52
GB 32.621 0.2242 22.230 20.018 92.58

AdaBoost 31.212 2.6126 4.1910 13.842 92.47
FCNN 0.0571 0.4781 4.2333 7.9685 92.52

REDNN 0.0196 0.4575 0.0347 7.6606 92.52

good as the proposed REDNN can provide effective and efficient detection using minimal
memory consumption.

4.4 Chapter Summary

This chapter served to evaluate the feasibility of using AI techniques in IoT security
monitoring in a resource-efficient manner. In this context, we introduced a procedure to
obtain an efficient and effective method (REDNN) by exploiting the training algorithm of
the model. In building the REDNN, we utilized FCNN and proposed a model that main-
tains better performance for intrusion detection of features of the IoT network traffic. We
demonstrated its performance through empirical evaluation using eleven datasets. The
technique can accurately detect attacks from each IoT device’s dataset. It demonstrates
more efficient performance than its counterpart in terms of effectiveness and resource
consumption. In addition, it outperforms all the conventional ML algorithms tested in
terms of resource savings. At training, REDNN can save more than 99.99% and 99.80%
of execution time and memory footprint as compared with the SVM model. With this
trend of resource savings, it outperforms other state-of-the-art methods investigated in
this thesis. In addition, it is better than a quantized TFLite model using a similar ar-
chitecture and a model developed using the Keras framework. In each case, our training
procedure is better, with the advantage of reducing computational resources while re-
taining the detection accuracy. The training and testing resource-saving results for each
device model and accurate detection of attack samples depend on the topology settings
and effective parameters optimization. The results suggest the potentiality of the DNN
algorithm in providing an effective and efficient solution for IoT network intrusion de-
tection tasks. This is useful in finding an optimal model for different datasets in IoT

Chapter Summary 78

security monitoring or any other classification problem using DNN in general. An essen-
tial approach to this would be to enhance this study’s results to investigate the impact
of adversarial perturbations in the supervised and unsupervised scenarios for robustness
and resilience testing.

Chapter 5

Robust Deep Learning for IoT
Security Monitoring

Based on the success of training DNN for effective and resource-efficient IoT attacks
detection discussed in chapter 4, this chapter presents a technical background to address
the adversarial robustness of DNN utilized for IoT security monitoring. It then exploits
each technique in detail to better understand their adversarial potential to attack the
proposed REDNN, especially for the task of robustness testing in resource constrained
environments of IoT. This is to further investigate the research hypothesis stated in RQ3.

5.1 Adversarial Robustness Implementation

The utilized documentation enables the development of generic adversarial attack meth-
ods using NumPy python modules. As the utilized datasets features are normalized
within [0,1], each employed attacking technique except the semantic utilized an epsilon
value scale within [0,1] incremented by 0.1. These scaling values can determine the pro-
portion of perturbation data generated and their success rate in fooling various DNN
models. For the PGD, an infinity norm value was used with 40 iterations to further
examine the attack success rate. This method enables the production of a new set of
testing data that can be evaluated against the baseline FCNN and REDNN models.

For crafting the FGSM and PGD adversarial samples, we utilized Algorithm 2 and Equa-
tion 2.15 described in section 2.5 of chapter 2 along with the cleverhans documentation
[176].

79

Results and Discussion 80

Another perturbation procedure considered in this chapter is the data poisoning attacks
with description in Algorithm 8. In this scenario, the data is poisoned by randomly
flipping the labels (based on a random split of data features). The flipping procedure
considers label modification for the attacks (0s) and benign (1s) samples. This is the
all-labels modification technique that changes 1s to 0s and 0s to 1s, respectively. It is
a non-targeted form of adversarial attack method that concentrates on both the benign
and attack traffic classes. The rationale is to mislead the model by lowering its accuracy
value to make it a weaker model. It achieved this by supplying the modified labels to
each data feature while training the model. The trained model used testing data with
correctly assigned labels for validation. We generate this form of attack by considering
the training dataset. During implementation, the data samples are randomized before
splitting to have a fair proportion of the attack and benign samples. All labels of the
randomized samples are flipped based on the specified poisoning proportion, and to
increase the chance of the success rate, we consider the rate to be from 0% - 50% by 5%
increment. Each tested perturbation method used the preprocessed datasets described
in section 4.2. These datasets are used to examine the success rate of each perturbation
method to investigate REDNN resilience.

Algorithm 8 Label modification perturbation procedure
Input: X ,Y, n, p, data, label, data length, percent
Output: Poisoned data {X ′,Y ′}

1: for t = 1 to n; do
2: if t ∈ (1, p ∗ n) then ▷ Random samples selection as the dataset was randomized
3: yt = 1− yt ▷ Labels 0 and 1 modification
4: Y ′ = {(xt, yt)}, t = 1 . . . n ▷ Integrating label
5: end if
6: end for
7: return {X ′,Y ′}

5.2 Results and Discussion

This section discusses the experimental results of the perturbation techniques used to
examine the adversarial robustness of REDNN and FCNN. It details the robustness
evaluation comparison of the REDNN and optimized FCNN models across crafted
samples generated from various datasets. The investigation results in this section can
be used to validate the hypothesis stated in RQ3.

Results and Discussion 81

REDNN Model Robustness

In Table 5.1, comparison results between the performance of the REDNN and FCNN
models against tested adversarial instances are presented. To ensure the convergence of
the model and to have a fair comparison between the FCNN and REDNN models, the
results are for 100 number of epochs iterations. In most cases, the REDNN provides
higher test accuracy in detecting various adversarial perturbations based on regular-
ization while optimizing the model. The regularization is to increase the robustness
of the model. Using the SimpleHome XCS-1002-WHT device data, PGD reduces the
accuracy performance of the FCNN and REDNN by 2.6% and 1.94%, respectively. With
the Kitsune dataset, PGD affects the accuracy of the FCNN by 13.64%, while that
of the REDNN by only 3.91%. These results demonstrate the capability of REDNN
in resisting the most successful PGD perturbation technique with a significant attack
success rate. The semantic attack is the weakest which shows no reduction in accuracy
with each model. The reason can be altering the original samples by negation may not
affect the accuracy with network traffic data rather than image format data [177]. For
the noise attack, the REDNN provides better accuracy in many instances. The reason
for not significant changes of accuracy with the tested data is the repeated iterative
rounds that make the model to converges effectively. The regularized REDNN model
can accurately detect several adversarial attacks in IoT network environments better
than its counterparts. These results suggest that parameter optimization of an in-depth
DNN model flowed by regularization can influence a robust detection of adversarial
attacks in the context of IoT networks. This is demonstrated in Algorithm 7. After
initialization of weights and bias parameters, the algorithm automatically adjusts the
weight penalty parameter λ in line 11 of algorithm 1 to update the new loss define in line
7. As demonstrated, training with perturbed samples is not a requirement for effective
and efficient detection in an IoT network environment. The results further indicate that
REDNN can be robust against state-of-the-art perturbations. This result is good for
answering RQ3 while proving the arguments that an optimized, regularized REDNN
model can resist state-of-the-art adversarial attacks generated using IoT datasets better
than its FCNN baseline counterparts. The results suggest further investigations of the
REDNN adversarial robustness comparisons with other state-of-the-art conventional
ML models for better performance assessment.

Results and Discussion 82

Table 5.1: Models performance comparisons across datasets.

Dataset Model Clean FGSM PGD Noise Sem.
acc (%) acc (%) acc (%) acc (%) acc (%)

Danmini Doorbell FCNN 95.11 95.05 93.99 95.11 95.11
REDNN 95.11 95.10 94.57 95.11 95.11

Ecobee Thermostat FCNN 93.36 93.36 92.97 93.36 93.36
REDNN 93.36 93.36 93.36 93.36 93.36

Ennio Doorbell FCNN 88.94 88.90 88.90 88.94 88.94
REDNN 88.94 88.89 88.89 88.94 88.94

Philips B120N10 FCNN 84.08 83.27 80.81 84.05 84.08
REDNN 84.08 84.07 83.54 84.08 84.08

Provision PT-838 FCNN 88.07 87.19 84.75 88.06 88.07
REDNN 88.07 87.83 86.70 88.07 88.07

Provsision PT-737E FCNN 92.52 92.49 91.10 91.57 92.52
REDNN 92.52 92.51 91.47 91.87 92.52

Samsung SNH-1011-N FCNN 86.07 85.33 83.12 86.05 86.07
REDNN 86.07 85.94 85.32 86.06 86.07

SH XCS-1002-WHT FCNN 94.65 94.65 92.05 94.65 94.65
REDNN 94.65 94.65 92.71 94.65 94.65

SH XCS-1003-WHT FCNN 97.73 97.69 97.24 97.73 97.73
REDNN 97.73 97.70 97.28 97.73 97.73

Kitsune FCNN 84.09 78.27 70.45 81.00 84.09
REDNN 84.09 83.52 80.18 84.02 84.09

Wustl FCNN 94.26 94.26 94.26 94.26 94.26
REDNN 94.26 94.26 94.26 94.26 94.26

Robustness against number of epoch. Table 5.2 shows the effect of epoch variation
on model robustness against the SH XCS-1003 dataset. At ten epochs, the adversarial
accuracy of both models reduces, especially the baseline FCNN, which showed a
significant accuracy degradation, particularly with the PGD attacks that reduce the
accuracy of the FCNN and REDNN to 69.65% and 77.43%. The reason may be due
to the regualarization behaviour of the REDNN model, that makes it robust against
attacks even at lower epoch. At 100 epoch iterations, the resilience of each model
against perturbation attacks is better. The accuracy values for both the REDNN and
FCNN are more than 97%, while the REDNN demonstrates better detection of the
PGD attacks. This is useful as the optimized model can save more resources while
thwarting adversarial attacks with higher epoch iterations. The results indicate that
the REDNN robustness against adversarially crafted samples is better than that of the
FCNN counterparts. Therefore, REDDNN can be a well robust IoT security method.

Results and Discussion 83

Table 5.2: Effect of number of epoch against models performance with SH XCS-1003
dataset.

Epoch Model Clean FGSM PGD Noise
acc (%) acc (%) acc (%) acc (%)

10 FCNN 97.73 79.51 69.65 89.52
REDNN 97.73 86.70 77.43 89.79

20 FCNN 97.73 86.35 77.07 93.86
REDNN 97.73 86.70 77.43 94.08

40 FCNN 97.73 93.74 86.66 97.08
REDNN 97.73 94.19 87.10 97.17

60 FCNN 97.73 96.48 90.72 97.63
REDNN 97.73 96.84 92.09 97.69

80 FCNN 97.73 97.48 94.82 97.72
REDNN 97.73 97.53 95.34 97.73

100 FCNN 97.73 97.69 97.24 97.73
REDNN 97.73 97.70 97.29 97.73

The results address the hypothesis stated in RQ3.

Robustness with clipped perturbation samples. Table 5.3 compares models’ per-
formance with clipped and non-clipped adversarial samples against randomly chosen
datasets. In each case, the performance of detecting FGSM and random noise is better
with the clipped procedure compared with non-clip settings. The REDNN outperforms
its baseline counterpart in detecting the PGD and FGSM, especially with the kitsune
dataset. For thwarting the non-clipped FGSM adversarial samples of XCS-1003 de-
vice data, REDNN and FCNN accuracy decreased by 0.41% and 0.45%, respectively.
With the same procedure to detect the random noise attacks against the Kitsune data,
the accuracy of the FCNN and REDNN decreased by 4.86% and 0.93%. These results
demonstrate the resilience nature of the REDNN with clipped and non-clipped adver-
sarial samples. With these results, we can suggest REDNN as the model that can craft
adversarial attacks that are generated using various implementations.

Robustness against model variation. Table 5.4 presents the performance of REDNN
and FCNN using three hidden layer model variational architectures. Across each tested
dataset, REDNN resists adversarial attacks better than its counterparts. As tested
against the Danmini Doorbell dataset, PGD attacks lower the accuracy of the FCNN
and REDNN by 9.18% and 7.23%, respectively. With the optimized four hidden layer

Results and Discussion 84

Table 5.3: Effect of clipping samples against perturbations method.

Dataset Procedure Model Clean FGSM PGD Noise
acc (%) acc (%) acc (%) acc (%)

SH XCS-1003-WHT
Clipped FCNN 97.73 97.69 97.24 97.73

REDNN 97.73 97.70 97.29 97.73

Non-clip FCNN 97.73 97.24 97.24 97.56
REDNN 97.73 97.29 97.29 97.58

Danmini Doorbell
Clipped FCNN 95.11 95.05 93.99 95.11

REDNN 95.11 95.10 94.57 95.10

Non-clip FCNN 95.11 93.99 93.99 94.79
REDNN 95.11 94.57 94.57 94.98

Kitsune
Clip FCNN 84.09 78.27 70.45 80.67

REDNN 84.09 83.52 80.18 83.84

Non clip FCNN 84.09 70.45 70.45 75.81
REDNN 84.09 80.18 80.18 82.91

model architecture, accuracy reduction is by 1.12% and 0.54% for the FCNN and REDNN
model (see Table 5.1). As expected, these results demonstrate that the four hidden layer
networks can enable better attack detection. As a result, a neural network model with
few hidden layers may not stand robust against adversarial attacks. As demonstrated,
REDNN can detect adversarial perturbations regardless of the hidden layers utilized in
building the network architecture. The results suggests the advantages of REDNN in
an IoT network environment that can be dynamic in terms of architectural settings and
security mechanism requirements.

Table 5.4: Variational models perturbations evaluations across datasets.

Dataset Model Clean FGSM PGD Noise
acc (%) acc (%) acc (%) acc (%)

Danmini Doorbell FCNN 95.11 91.43 85.93 93.78
REDNN 95.11 92.93 87.88 94.45

Provsision PT-737E FCNN 92.52 90.31 86.31 91.61
REDNN 92.52 90.81 87.20 91.91

SH XCS-1002-WHT FCNN 94.65 92.48 87.87 93.54
REDNN 94.65 93.21 89.02 93.99

SH XCS-1003-WHT FCNN 97.73 96.51 92.20 96.98
REDNN 97.73 96.62 92.33 97.03

Kitsune FCNN 84.09 75.73 70.02 81.72
REDNN 84.09 81.56 77.65 83.88

Results and Discussion 85

Figures 5.1 and 5.2 show the impact of epsilon value against variational architecture in
detecting PGD adversarial attack. In Figure 5.1, the FCNN and REDNN used three
hidden layers. In Figure 5.2, both REDNN and FCNN models utilized four hidden layers
to detect PGD perturbations. This is to assess the impact of epsilon parameters on the
success of PGD adversarial attacks. In both scenarios, test set accuracy decrease with
the epsilon value of 1.0. The REDNN model can provide an incremental accuracy value
of 0.6 and 2.0 with three and four hidden layers while detecting the PGD attacks. The
reason may be removing a hidden layer of a model may affect performance accuracy. In
our case, each hidden layer has 128 neuron values.

Figure 5.1: PGD test accuracy changes with epsilon for four layers architecture against
the Danmini Doorbell dataset.

Figures 5.3 and 5.4 present the impacts of reducing the second hidden layer neuron of
each model by the rate of 50% and 25% against resilience using the Kitsune dataset. In
each setting, REDNN provides better detection accuracy against adversarial samples.
As depicted in Figure 5.3, lowering hidden neuron values can affect the accuracy values
of a model. It reduces FCNN and REDNN accuracy by 14.66% and 0.42%, respectively.
For detecting PGD attacks using the 25% reduced neurons shown in Figure 5.4, FCNN
and REDNN accuracy reduces by 24.52% and 5.26%, respectively. These results suggest
that a significant reduction of hidden neurons affects the model’s resilience against
adversarial samples. In each scenario, REDNN stands to be more robust with topology
variation than its counterparts. As a result, proper architecture selection can influence
an efficient and effective identification of adversarial samples. This is due to the

Results and Discussion 86

Figure 5.2: PGD test accuracy changes with epsilon for three hidden layers architecture
against the Danmini Doorbell dataset.

Figure 5.3: Accuracy changes with reduce hidden neuron by 50% against the Kitsune
dataset.

architectural settings of the IoT network environment and the requirement of a robust
mechanism that can detect attacks in respective of the topology utilized.

Results and Discussion 87

Figure 5.4: Accuracy changes with reduce hidden neuron by 25% against the Kitsune
dataset.

We measured the results generated by poisoning the training data samples. A label
flipping attack was integrated on each model using the kitsune and PT-737E device-
centred dataset. The percentage of flipping rate considered is in the x-axis of Figure 5.5.
Each model performs better with the modified data of the kitsune data (see Figure 5.5).
They can thwart label poisoning attacks with 10% - 30% mislabelled training data as
supported by the architecture of each model. Unlike Dunn et al. [178] that utilized 5%
- 30% poisoned IoT data, we investigated further. With a 40% poisoning rate, REDNN
significantly outperforms the FCNN model. For the PT-737E dataset result in Figure
5.6, the accuracy of the FCNN reduces significantly with 50% poisoning data. This
behaviour may be due to the regularized property of the REDNN model [179]. Because
of this, slighter changes in the training data may not affect the REDNN model. As
demonstrated, the FCNN model is more sensitive to the 40% and 50% poisoning of the
Kitsune and PT-737E datasets.

In addition to REDNN significant savings capability, it is more resilient against ran-
dom noise attacks than each compared model (see Table 5.5). We later examined the
effects of poisoning 50% of the training data with label modification (see Poisoned label
column). The poisoning affects the robustness of the FCNN, SVM, GB and Adaboost
model by lowering their accuracy to 9.55%, 7.48%, 10.01% and 11.05%, respectively. As
demonstrated, REDNN indicates better resistance against labelled poisoned attacks. The
results suggest that a stable and less complex model can defeat label poisoning attacks.

Results and Discussion 88

Figure 5.5: Accuracy changes with label flip against Kitsune dataset.

Figure 5.6: Accuracy changes with label flip against PT-737E dataset.

It further demonstrates the effectiveness and lightweight nature of the REDNN model.
As a result, it stands appropriate for the task of IoT security monitoring.

Table 5.6 presents the model performance evaluated by test set accuracy, precision, recall
and harmonic score (F1) while investigating the effects of FP16 integration on model
resilience. Since the IoT datasets we considered are often imbalanced, we considered
the test accuracy and other performance metrics. For further investigations, we used
precision which considers the proportion of samples that are relevant within a predicted

Results and Discussion 89

Table 5.5: Performance evaluation comparison with Provision PT-737E dataset.

Model Clean Noise Poisoned label
acc (%) acc (%) acc (%)

SVM 92.52 70.89 7.48
GB 92.58 61.91 10.01

Adaboost 92.47 53.31 11.05
FCNN 92.52 91.57 9.55

REDNN 92.52 91.87 92.52

Table 5.6: Model resilience evaluation with kitsune dataset.

Attacks Model Accuracy (%) Precision Recall F1 score

FGSM FCNN 83.60 0.8408 0.9744 0.9027
REDNN 84.09 0.8409 1.0000 0.9136

PGD FCNN 82.34 0.8408 0.9744 0.9027
REDNN 84.09 0.8409 1.0000 0.9136

Noise FCNN 76.67 0.8412 0.8906 0.8652
REDNN 83.73 0.8411 0.9944 0.9113

class and the F1 score that corresponds to the harmonic mean of precision and recall
as other metrics to assess model performance. The utilized metrics used True Positive
(TP), False Positive (FP), True Negative (TN), and False Negative (FN). The accuracy,
precision, recall and F1 score are defined in Equation 2.10, 2.11, 2.12 and 2.13 (see section
2.3.10). This is to demonstrate the performance of the optimized model across different
performance metrics.

The 16-bit floating-point low precision (FP16) implementation affects the robustness of
the FCNN model, especially in defeating random noise attacks. As mentioned earlier in
this thesis, low precision implementations are often chosen by machine learning engineers
to make it run faster and use less memory during model training and testing, but at the
cost of sacrificing overall accuracy. As demonstrated, REDNN indicates better resilience
in thwarting each adversarial attack. The results suggest that FP16 integration had a
minor influence on the robustness of the REDNN model. Because of this, REDDN is
a more effective and robust IoT security monitoring technique than its baseline FCNN
counterparts. With these results, we can conclude that REDNN is a robust, effective
and efficient method, as tested against different procedures. The results demonstrate
REDNN attack resilience capability even with integrated FP16 that can degrade model
performance. The results discussed in this section are sufficient enough to prove the

Summary 90

validity of the hypothesis stated in RQ3. Therefore, we address this hypothesis while ex-
ploring REDNN robustness against state-of-the-art perturbations methods and compare
its performance over conventional ML methods.

5.3 Summary

This chapter discussed the investigation of exploring PGD, FGSM, Semantic, Noise and
label-flipping adversarial attacks against FCNN and REDNN models for IoT security
monitoring. It described the evaluation procedure of implementing each method while
testing the adversarial robustness of various detection models intending to explore their
resilience in detecting adversarial samples generated in an IoT environment. It presents
the fundamentals of examining the FCNN and REDNN with other state-of-the-art ML
methods in a robust scenario. As investigated, the REDNN demonstrates better resis-
tance in thwarting adversarial samples than the FCNN counterparts. It can easily craft
adversarial attacks that are generated in the clipped and non-clipped procedures bet-
ter than the baseline counterparts, especially with the kitsune dataset at which REDN
detects PGD attack with 83.53% and 80.18% in the clipped and non-clip training pro-
cedure. In addition, it can detect perturbed samples even with fewer epochs iterations,
and the detection gets better at 100 epochs iterations. REDNN detection performance
can scale through multiple model variations and DNN model network architectures. By
comparing with the baseline FCNN and the SVM, GB and Adaboost conventional ML
models, it demonstrates better resistance to label poisoned attacks. For instance, the
label poisoned attack successfully degrades the accuracy of SVM, GB, Adaboost, and
FCNN while REDNN accuracy remains unchanged. In addition, even with the FP16 in-
tegration, REDNN is better than FCNN, as it can be resilient to FGSM, PGD and Noise
attacks in low-precision settings with better accuracy, precision, recall, and F1-score. In
that case, it can detect the FGSM, PGD and Noise attack with more than 91% F1-score.
The results demonstrate the performance advantage of REDNN even with low precision
integration against adversarial attacks.

Chapter 6

Federated Deep Learning for IoT
Network Security using REDNN

Following the feasibility of training FCNN to produce REDNN which is an effective and
resource-efficient model in chapter 4, and its success for better resistance to various ad-
versarial samples as discussed in chapter 5, this chapter considers further exploration of
the proposed REDNN for on-device learning in FL settings using simulated virtual dis-
tributed nodes and realistic edge like decentralized devices. This exploration is due to the
significant resource savings demonstrated by our optimized DNN training procedure and
considerations of the distributed and resource-constrained nature of realistic IoT networks
in practice. Unlike [147] FL scheme for detecting zero-day attacks in a simulated environ-
ment, our investigated FL training procedures considered virtually simulated distributed
and an IoT-like network set-up with GB-BXBT-2807 edge-computing-like devices. Then,
we propose a REFDL method that maintains state-of-the-art accuracy while reducing
memory consumption in simulated and network testbed with GB-BXBT-2807 embedded
devices experimental settings. This is useful to assess the feasibility of deploying a secure
and efficient model in resource-constrained environments.

6.1 Baseline Federated Deep Learning (BFDL)

Following the explanation of FL in section 2.6, and considering its various usage in various
areas, particularly in cyber security monitoring [180], its exploration in the aspect of IoT
security monitoring can be beneficial [181]. This is due to the resource-constrained nature

91

Baseline Federated Deep Learning (BFDL) 92

of IoT devices and FL’s capability of preserving the on-device training data in proposing
AI-based security mechanisms. This can be a core strategy for developing feasible security
solutions that can detect attacks on IoT devices in real-time while granting privacy of
each device’s data. To this end, we illustrate the BFDL training procedure in Figure 6.1.
It starts with creating a batch samples from the training data to train a local model. It
later updates each weights of each local clients model before sending to the coordinating
server for aggregation. Details of this procedure is described in in Algorithm 9.It uses
the function BASE to train a baseline model using a SGD in FL settings. At each
communication round, the function Device UPDATE in line 7 of Algorithm 9 is capable
of distributing a master model to each client’s subsets. Each client performs iterative
rounds of gradient descent weights update with their local data and returns to the server
in Algorithm 3. At this stage, the execution time and memory footprints are estimated
based on lines 11 and 12 of Algorithm 9. These are the records of training resource usage
at the device level after the local weights update. As expressed in line 17, computed
model weights are returned to the coordinating server in Algorithm 3. The server is
responsible for averaging the return weight for model aggregation.

Algorithm 9 Baseline BFDL training on each distributed node
Input: Labelled data Dtr, Iteration number T , Batch size S
Output: Baseline modelMn

1: function Base(Dtr[]) ▷ Training baseline model
2: for i = 1 to T do ▷ for each local epoch iterations
3: Mini-batch B = {(x1, y1), ..., (xm, ym)} ⊂ Dtr ▷ Mini-batch size ← |Str|//S
4: Fp(B) ▷ Forward propagation with B
5: Ei ← L ▷ L = Base loss
6: Bp(B) ▷ Backward propagation
7: function Device Update((d,w)) ▷ Run on device d
8: Bs ← (Split data Pd into batches of size S) ▷ S is a local Mini-batch size
9: for batch b ∈ Bs do

10: w ← local weights update ▷ device local weights update computation
11: Estimate mi ▷ Execution memory at epoch i
12: Estimate ti ▷ Execution time at epoch i
13: Mn = Trained model that estimate Ei,mi, ti
14: end for
15: end function
16: end for
17: return w to server in Alg. 3 ▷ Calls to coordinating server in Alg. 3 for weights

averaging
18: return (Mn, Ei,mi, ti)
19: end function

Resource Efficient Federated Procedure 93

Figure 6.1: Baseline federated learning procedure.

6.2 Resource Efficient Federated Procedure

Training a resource-efficient DNN model for FL tasks can be a challenging task, especially
in an IoT network environment. This is due to the FL communication rounds and
DNN model parameters requirements in designing and building the desirable architecture
[182]. The complexity of such an approach increases with multidimensional datasets. To
demonstrate the proof of concept, we will use FedAvg as the core model (BFDL) with
FCNN and CNN model variation against some IoT and non-IoT benchmark datasets and
exploit its optimization algorithm to obtain the REFDL. To build REFDL, we used an
optimized training procedure in Algorithm 10 in FL settings. For better performance,
we utilized the set of model parameters that can produce a lower error based on line 7 of
Algorithm 10. The function procedure in Algorithm 10 is responsible for computing and
updating client device weights at each local epoch iteration before sending them to the

Resource Efficient Federated Procedure 94

Algorithm 10 Proposed REFDL training on each distributed node
Input: Penalty term λ, (Dtr, T , B, L, in Alg. 9)
Output: Efficient modelMe

1: function Efficient(Dtr[])
2: for j = 1 to T ; do
3: Micro-batch M = {(x1, y1), ..., (xm, ym)} ⊂ B ▷ B ⊂ Dtr

4: Fp(M) ▷ Forward propagation with M
5: Et = L ▷ Initialized loss
6: Estimate mt, tt Initialized memory and time based on Et
7: Ej ← Et + λ

∑W
j=1

(w2
j /w

2
0)

(1+w2
j /w

2
0)

8: Bp(M) ▷ Backward propagation with M
9: function Device Update((d)) ▷ Run on device d

10: Ms ← (data Pd in batches of size M)
11: for batch b ∈Ms do
12: w ← local weights update ▷ device local weights update computation
13: if (Ej ≤ Et) then
14: λ = λ+△λ
15: Estimate mj ▷ Execution memory at epoch j
16: Estimate tj ▷ Execution time at epoch j
17: if ((mj < mt) ∧ (tj < tt)) then
18: mt = mj ▷ mt = Efficient memory
19: tt = tj ▷ tt = Efficient time
20: Me = Trained model that estimate Ej ,mtr, ttr
21: end if
22: end if
23: end for
24: end function
25: end for
26: return w to server in Alg. 3 ▷ Calls to Alg. 3 for model weights averaging
27: return (Me, Ej ,mtr, ttr)
28: end function

coordinating server. In line 13 of Algorithm 10, the device model error is compared with
the initialized error before model regularization in line 14. After this stage, in lines 15 and
16, the estimated computational memory footprints and execution time are compared
with that of the initialized values in line 6 to return the minimal memory constraint
produced by the client device model. Devices models with minimal resource consumption
are returned to the coordinating server in Algorithm 3 together with their weights for
model averaging. Then, the coordinating server can update the client model weights in
a federated setting and performs weight averaging while returning the updated averaged

Evaluation 95

weights for model aggregation. This process can reduce the client’s communication time
and computational complexity while building the resource-efficient aggregate model of
REFDL. The memory and processor savings for each client device at each federated
round and accumulating all these savings can lead to significant savings when the model
is converged.

6.3 Evaluation

This section describes the evaluation procedure of the BFDL and REFDL methods.
In addition to the utilization of the datasets and preprocessing procedure described in
section 4.2 for techniques implementations, we further utilized the IoT-DDoS and MNIST
datasets. IoT-DDoS consists of various captured traffics representing the DDoS botnet
attacks and some portion of regular traffic [78]. The IoT-DDoS are distributed in nature,
so ideal for the FL scenario. We consider 79,035 benign data and 398,391 attack data
samples for empirical model evaluation. The MNIST handwritten digits dataset is a
subset of the dataset from the National Institute of Standards and Technology [183].
The dataset consists of 60,000 training digits sample and 10,000 testing digits that are
size-normalized, and each size contains 28*28 of 256 grey levels images. The MNIST
dataset is suitable for model evaluations to assess its learning capability over the non-
IoT cyber security dataset. This is useful to investigate whether the proposed model
can learn complex patterns in other datasets. For this purpose, we utilized the MNIST
dataset to assess REFDL performance against the image dataset.

Experimental Settings (Simulation)

To examine the behaviour of REFDL in FL settings, we start an initial investigation in
a simulated network environment with virtual distributed nodes. This is to empirically
test the capability of REFDL performance in different experimental settings and ana-
lyze its resource savings capability in non-realistic settings. We used a personal desktop
computer with the experimental setup described in section 4.2. We utilized PyTorch
version 1.4.0 [184] and PySyft version 0.2.9 [185] frameworks for the virtual on-device
training. Pysyft framework simplifies the creation of virtual workers. We utilized these
virtual workers to simulate the FL scenario for the BFDL and REFDL. These workers
emulate real virtual machines and can run as a separate process within the same python
program with their dataset. We further utilized a simulated testbed with WebSocket
(WS) virtual and server workers that run on the same machine. In each case, our federa-
tion training procedure considered four clients virtual workers and a coordinating server

Evaluation 96

worker receiving the computational updates from each virtual client worker model. Each
federated client model consists of an input layer, four hidden layers and an output layer.
Topology is selected against each dataset to minimize operations and improve the per-
formance metrics [165]. The experimental settings considered are for the task of binary
classification. For a fair comparison, the overall architectural settings remain identical
for evaluating the BFDL and proposed REFDL technique. Table 6.1 presents the utilized
model topology of each FL technique against each dataset. In addition to the implemen-
tation details described in section 4.2, both BFDL and REFDL use an SGD optimizer
that is conventional for running FedAvg. Each federated model that utilized the PySyft
virtual workers was trained in 128 batches within 4 local epochs iterations in 30 worker’s
communications rounds. Regarding the network simulated testbed, each model that used
the WS workers was trained in 64 batches within 2 local epochs iterations in 50 work-
ers’ communications rounds. For fair experimental settings, the chosen values for local
epochs and communication rounds remain identical in the realistic testbed experimental
settings. After completing the client’s model training, average weight values are sent to
the coordinating worker acting as the execution server in the FedAvg algorithm. This
worker aggregates the weights to update the global model. Codes for this implementation
are made publicly accessible for exploration and reproduction purposes [186].

Table 6.1: Topology and distribution of normal and attack for each device data.

Device Normal Attack Inputs Output Topology
Danmini Doorbell 49,548 968,750 115 1 83-128-128-83

Ecobee Thermostat 13,113 822,763 115 1 83-128-128-83
Ennio Doorbell 39,100 316,400 115 1 83-128-128-83

Provision PT-737E 62,154 766,106 115 1 83-128-128-83
Provision PT-838 98,514 729,862 115 1 83-128-128-83

Samsung SNH-1011-N 52,150 323,072 115 1 83-128-128-83
SH XCS-1002-WHT 46,585 816,471 115 1 83-128-128-83
SH XCS-1003-WHT 19,528 831,298 115 1 83-128-128-83

Wustl 6,566,438 471,545 6 1 26-128-128-26
IoT-DDoS 79,035 398,391 12 1 20-128-128-20

Experimental Settings (Testbed using GB-BXBT-2807 devices)

To test the efficient federated communication of the REFDL against BFDL in a testbed
setting, we utilized the PySyft version 0.2.9 [185] python framework over a network
with a client and server-class connected via a WS. Since PyTorch is a potential library

Evaluation 97

for PySyft, we utilize it to build an edge computing FL training scenario for resource-
constrained devices. The environmental settings are based on the client’s server commu-
nication scenario in a distributed manner. It can support the building of simulated and
realistic testbed settings. Figure 6.2 shows a high-level diagram of the testbed together
with the utilized edge devices. In setting up the network realistic testbed settings, we
considered 4 Gigabyte Brix (GB-BXBT-2807) ultra mini compact PC with a laptop (see
Figure 6.3). Its processor is the 22nm Intel® Celeron N2807 while the memory capacity
of the GB-BXBT-2807 (Ultra mini PC design – 0.69L(56.1x 107.6 x 114.4mm)) is pretty
similar to that of Raspberry Pi version 4 model B and is SO-DIMM DDR3L at 1333MHz.
However, the memory capacity can be extended up to 8 GB maximum size since we are
implementing an on-device learning with this mini computer, we used its default mem-
ory to demonstrate the resource of our optimised method. We utilized these devices to
represent the client in our decentralized wireless network testbed. This is to test the
feasibility of creating a secure and lightweight FL model in realistic wireless network
settings. The personal laptop represents the coordinating server in a wireless network
to emulate low-frequency connections. The server is responsible for model weights ag-
gregation and distribution to clients. Therefore, the communication workload is higher
on the client side containing the edge devices than on the server machine. The installed
Operating System (OS) in GB-BXBT-2807 clients is Ubuntu version 20.04.4 LTS. Each
client contains an installation for the PySyft framework and its dependencies required for
running the on-device federated learning. Federated network testbed implementations
codes are publicly accessible [187].

For evaluating the simulated runtime and real execution time of BFDL and REFDL,
experiments with four workers (Alice, Bob, Charlie and Jane as shown in Figure 6.3)
were performed. A federated communication round of 50 is used, with two local epoch
iterations, within a 64 mini-batch size. At each epoch iteration and federated rounds, a
batch of samples is distributed to the client devices for local training and model pruning.
The test batch sample size selection is 1000. A chosen lr = 0.01 was used for effective
FedAvg SGD training. The utilized real-time models for each federated client contain
an input layer and four identical hidden layers (128-128-128-128) with an output layer
or layers as the case may be. The chosen architecture can support effective and efficient
model convergence. To test the REFDL effectiveness and generalizability, we considered
the CNN (DNN) variant in realistic settings with clients utilizing the MNIST image
dataset. The CNN architecture utilized contains two convolutional layers (Conv-2). The
first 2D convolutional layer requires one input to output 20 convolutional features using

Evaluation 98

Figure 6.2: BFDL and REFDL model training testbed captured with gigabyte devices.

Figure 6.3: BFDL and REFDL model training testbed with gigabyte devices.

a 5 square kernel (1, 20, 5, 1). The second 2D convolutional layer requires 20 input
layers to output 50 convolutional features using a 3 square kernel (20, 50, 5, 1). The
architecture in the first real-time layer is (800 (4*4*50), 128) with (128, 10) in the
second real-time layer. Max-Pool in 2d was run over the input image without a dropout
utilization. These architectural settings remain identical for the BFDL and REFDL,
however, in the FL training procedure, REFDL is optimized and regularized to reduce
computational complexity and benefits from the resource-savings advantage. The fully
connected hidden layers in the convolutional are similar to those described in Table 6.1.

Results and Discussion 99

6.4 Results and Discussion

This section discusses the experimental results for both the simulation using virtual work-
ers and testbed settings with real edge-computing-like devices. It details the evaluation
comparison of the optimized REFDL and baseline BFDL FedAvg models in simulation
and testbed settings across datasets. Results from this section can be used to answer the
hypothesis stated in RQ2. This is to support the argument that an existing DNN can
be optimized to efficiently and effectively detect attacks on IoT networks in a federated
scenario without accuracy degradation.

6.4.1 Experimental Results (Simulation)

We investigated the resource consumption for training BFDL and REFDL federated
methods with nine utilized IoT datasets. As we considered various datasets in our ex-
periments, Table 6.2 presents the cumulative averaged memory and time usage across
each dataset for all virtual clients and server workers. As expected, the REFDL training
procedure produces lower runtime and memory footprints against each tested dataset.
This demonstrates the effectiveness and the capability of our proposed training method
of saving resources across multiple federated client devices in a typical simulated fed-
erated setting. However, the accuracy for both REFDL and BFDL remained the same
across each benchmark dataset. The reason can be the tested datasets are highly im-
balanced with large number of testing records and considering the automatic pruning
applied in lines 13 and 14 of Algorithm 10 based on the penalty function λ for the server
execute. This is essential to regularized the loss function in line 7 of Algorithm 10 while
maintaining its convergence behaviour. Refer to Table 6.4, Figure 6.12 and Table 6.8 for
comparison with balanced dataset with minimal number of testing records.

Figures 6.4 and 6.5 show the percentage of memory and execution time saved by REFDL
as reflected in Table 6.2. Across each dataset, REFDL saved more than 70% of memory
units compared with the baseline counterparts. The results demonstrate a significant
percentage of memory saving against each dataset and indicate the resource-savings ad-
vantage of REFDL. Regarding client processing runtime, REFDL is more efficient. It
indicates less complexity, faster learning capability and effective performance behaviour
over BFDL. These resources minimization make it a better choice for IoT security mon-
itoring, especially for the task of on-device learning across various distributed resource-
constrained edge devices.

Results and Discussion 100

Table 6.2: Federated model training memory consumption between REFDL and BFDL
(cumulative).

Dataset Model Memory Time Test
MB minutes acc %

Danmini Doorbell BFDL 3.783 0.099 95.11
REFDL 0.857 0.081 95.11

Ecobee Thermostat BFDL 3.732 0.091 93.36
REFDL 0.815 0.071 93.36

Ennio Doorbell BFDL 4.147 0.090 88.94
REFDL 0.805 0.074 88.94

Provision PT-737E BFDL 3.463 0.092 92.52
REFDL 0.853 0.077 92.52

Provision PT-838 BFDL 3.423 0.085 88.07
REFDL 0.814 0.074 88.07

Samsung SNH-1011-N BFDL 3.783 0.099 86.06
REFDL 0.858 0.081 86.06

SH XCS7-1002 BFDL 3.494 0.090 94.65
REFDL 0.816 0.072 94.65

SH XCS7-1003 BFDL 3.914 0.085 97.73
REFDL 0.801 0.071 97.73

Wustl BFDL 3.002 0.095 94.26
REFDL 0.816 0.076 94.26

The results in Table 6.3 are for the implemented BFDL method and its optimized coun-
terpart REFDL against training procedures. It compared the training runtime, memory
requirements and accuracy against model hidden layers (L) and virtual workers (VW)
construct variations. As presented, the REFDL requires lower memory and time as tested
with the SH XCST-1003 dataset. In addition, BFDL and REFDL federated models pro-
duce slightly better accuracy with four hidden layers (4L). As a result, the increment of
hidden layers can influences effective federated learning in distributed settings. In each
case, REFDL performs better than the BFDL across model architecture variations in
terms of resource efficiency and faster on-device learning. This increase the chance of
utilizing REFDL over BFDL in resource-constrained environments.

The illustration in Figures 6.6 and 6.7 present the memory and time savings of REFDL
based on the reported results in Table 6.3. The results illustrate a better resource
(memory and time) savings capability of REFDL against each training procedure.
It demonstrates the significant memory savings of REFDL with 2VW-4L model
architecture. With that, it can save 98.07% and 21.74% of training memory and

Results and Discussion 101

Figure 6.4: REFDL federated model training memory resources save against datasets
(cumulative).

Table 6.3: Performance comparisons for FL training procedure on SH XCS7-1003 dataset
(cumulative).

Procedure Model Memory Time Test
MB minutes acc %

2VW-3L BFDL 1.906 0.038 97.72
REFDL 0.550 0.027 97.72

2VW-4L BFDL 2.698 0.046 97.73
REFDL 0.052 0.036 97.73

4VW-3L BFDL 2.971 0.067 97.72
REFDL 0.294 0.060 97.72

4VW-4L BFDL 3.914 0.085 97.73
REFDL 0.801 0.071 97.73

runtime using the 2VW-4L procedure without accuracy degradation. The results
suggest that increments of virtual workers can facilitate better memory savings with
three hidden layer network architecture. REFDL demonstrates more resource savings
advantage even with a more complex model network architecture. This is important
in a scenario in which a conventional shallow model cannot provide a better perfor-
mance, in that scenario, a deeper model with more hidden layers can be used with
our training procedure to benefit the resource efficiency and effective attack identification.

Results and Discussion 102

Figure 6.5: REFDL federated model training time resources save against datasets (cu-
mulative).

Figure 6.6: REFDL federated model training memory resources savings with XCS-1003
dataset.

To test the generalization and effectiveness of REFDL, In Table 6.4 we examined its
performance over the MNIST image dataset with integrated CNN and FCNN using
Algorithm 6 as the core model to train REFDL in the FL scenario. This is good to

Results and Discussion 103

Figure 6.7: REFDL federated model training time resources savings with XCS-1003
dataset.

assess the method’s performance over non-IoT datasets and examine its potential for
on-device learning across different areas of research. In addition, this can enable us to
exploit the resource-saving capability of CNN that offers a promise in image classification.
We utilized the Pysyft WS simulated workers and examined the performance of the
BFDL and REFDL techniques in federated training with the MNIST dataset. The
REFDL demonstrates better detection accuracy than its BFDL counterparts with the
CNN and FCNN model variation. As expected, it produces lower training execution
time. The results show the benefit of regularization [188] and [179] on accuracy against
DNN variation in FL setting with virtual client device workers. This attracts further
investigation of REDFL in realistic settings with multiple edge-like-computing devices to
further investigated its resource savings and effective detection capabilities.

Table 6.4: Simulated federated training performance comparison between BFDL and
REFDL with MNIST dataset (cumulative).

Procedure FL Time Time Test set
minutes save (%) acc %

FCNN-MNIST BFDL 1.393 N/A 34.64
REFDL 1.346 3.374 91.03

CNN-MNIST BFDL 1.583 N/A 90.59
REFDL 1.457 7.960 98.28

Results and Discussion 104

Low Precision Training

We investigated the effect of the proposed optimized training method in distributed
FL, centralized and low precision schemes against the SH XCS-71003-WHT device. We
present such results to examine the memory reduction with the utilized resource-efficient
deep learning (REDL) model over its baseline deep learning (BDL) counterpart as tested
in centralized and low precision settings (see Table 6.5). In each case, REDL demon-
strates better memory savings. It can save 97.43%, 98.64% and 99.46% in centralized,
low precision (FP16) and decentralized (FedAvg) settings. In addition to the significant
memory reduction by the REDL model, across each training procedure, it outperforms
the BDL model with reduced low precision 16-bit implementation that has become the
de facto technique for increasing the energy efficiency of deep learning hardware [189].
As shown in Table 6.5, FP16 integration reduces the accuracy of the BDL model by
0.05 percentage points while reducing that of the REDL model by only 0.02 percentage
points, respectively. This may be due to the automatic weight penalization of the REDL
and regularization to ensure better convergence. In centralized and federated training
procedures, both models demonstrate equal accuracy performance. The results show
the significance of our optimized model compared with its benchmark counterpart. It
further suggests that the proposed method is efficient and effective for on-device training
in a distributed manner. Therefore, integrating FP16 with REDL can influence more
memory reduction using the optimized training method. It demonstrated that FP16
integration does not influence REDL accuracy reduction in most cases. It can reduce
the BDL classification accuracy across some datasets. Therefore, the regularized REDL
can maintain a better accuracy with FP16 computations. Because of that, its federated
method REFDL can be used in resource-constrained IoT environments for effective
security monitoring.

Table 6.5: Performance comparisons against training procedure (cumulative).

Procedure Model Memory (MB) Accuracy (%)

Centralized BDL 3.969 97.72
REDL 0.102 97.72

Low precision (FP16) BDL 1.988 97.67
REDL 0.027 97.70

Decentralized (FedAvg) BFDL 10.15 97.72
REFDL 0.055 97.72

Results and Discussion 105

Federated Model Performance Evaluation

Table 6.6 describes the federated model performance evaluated by test set accuracy,
precision, recall and harmonic mean on randomly chosen datasets. As the chosen IoT
DDoS and Wustl datasets are often imbalanced, the test accuracy alone cannot be used to
assess model performance between the optimized and its baseline counterparts. For this
reason, we utilized other metrics to assess the method’s performance in proposing security
solutions. These metrics are expressed in Equations 2.10, 2.11, 2.12 and 2.13, respectively.
The optimized REFDL federated model maintains similar detection performance with
the baseline across all metrics. The performance metrics result presented in Table 6.6
remained identical for models trained in centralized settings (BDL and REDL) against
each dataset. In each case, accuracy, precision, recall and F1 score remained similar. The
results indicate that the utilized number of virtual workers nodes in the federated settings
had a minor influence on degrading model performance. This behaviour indicates the
lightweight advantage and effectiveness of REFDL in detecting IoT attacks with similar
F1-score performance as BFDL while saving significant resources.

Table 6.6: Testing performance comparisons across datasets.

Dataset Model Accuracy (%) Precision Recall F1 score

IoT-DDoS BFDL 83.34 0.8334 1.0000 0.9091
REFDL 83.34 0.8334 1.0000 0.9091

Wustl BFDL 94.26 0.9426 1.0000 0.9705
REFDL 94.26 0.9426 1.0000 0.9705

6.4.2 Experimental Results (Testbed)

With Ennio Doorbell and Samsung SNH randomly selected IoT datasets, we investigated
the memory consumption of training REFDL and BFDL across four GB-BXBT-2807
edge devices over wireless network testbed settings. The reported memory values in
Table 6.7 are averaged based on the four devices. Since, we consider two different
datasets, then we report the cumulative memory usage in MB. The demonstration
results are based on the training performed based on 50 federated communication rounds
and two local epochs iterations. The results show that the REFDL can detect IoT
attacks with minimal memory than BFDL in real-time. The results prove the hypothesis
stated in RQ2 by claiming that DNN can be trained to be resource efficient in realistic
network settings for efficient IoT security monitoring without accuracy degradation.

Results and Discussion 106

We present averaged estimated real-time (cumulative) for training BFDL and REFDL
based on the four GB-BXBT-2807 devices used in our testbed against the Ennio Doorbell
and Samsung SNH IoT datasets in Figure 6.8. As our investigations considered realistic
edge devices in FL settings, the execution time in the y-axis was reported in minutes.
The REFDL requires less real-time than BFDL in training with each utilized dataset.
The results demonstrate the effectiveness of REFDL in saving computational resources
in resource-constrained environments over wireless network testbed settings.

Figure 6.8: Federated model training time: REFDL vs BFDL using Ennio Doorbel and
Samsung SNH datasets on real testbed (cumulative).

The illustration in Figure 6.9 shows the savings advantage in realistic settings over sim-
ulated counterparts. Even though they are two different procedures, this comparison is
presented to assess the usability of our testbed and demonstrates its resource savings
capability over a federated model developed using a personal desktop computer in a sim-
ulated setting. As expected, with realistic devices, the runtimes increase and even in
that settings, REFDL demonstrates better savings than its baseline counterpart.

We examined the real-time savings of the REFDL over BFDL against the MNIST
dataset. With the two local epoch iterations and 50 communication rounds, the times
in Figure 6.10 show that REFDL is more efficient than BFDL across each training
procedure. As expected, the MNIST-CNN federated training procedure is more compu-
tationally expensive than the MNIST-FCNN. In that context, the FCNN DNN variant
of REFDL can be an appropriate choice for on-device learning if savings resources are
the target objectives. In addition, the MNSIT-CNN that utilized our optimized training

Results and Discussion 107

Figure 6.9: Federated model training execution time: REFDL vs BFDL in simulation
and realistic testbed settings using Ennio Doorbell dataset. (cumulative)

Table 6.7: Federated model training memory: REFDL vs BFDL using Ennio Doorbell
and Samsung SNH datasets on real testbed (cumulative).

Dataset Model Memory Memory Test
MB save % acc %

Ennio Doorbell BFDL 33.965 N/A 89.00
REFDL 31.981 5.84 89.00

Samsung SNH BFDL 32.519 N/A 86.10
REFDL 30.550 6.05 86.10

procedure can save resources better than its baseline counterparts. As such, REFDL
stands more suitable method for deployment in an IoT resource environment.

The illustration in Figure 6.11 shows the convergence accuracy using 2 local epoch it-
erations and 50 federated communication rounds of REFDL and BFDL against DNN
variants with the MNIST dataset. In each training procedure with the two DNN vari-
ants, REFDL stands to be a better model than BFDL. It can classify image samples
accurately with integrated CNN and FCNN (DNN) model variants. The result suggests
the advantage of optimization mechanisms in producing a global deep federated model.
It further demonstrates the effectiveness of integrating CNN in the FL method to im-
prove accuracy performance. This is good as it leverages the tradeoff between each DNN

Results and Discussion 108

Figure 6.10: Federated model training time: REFDL vs BFDL using MNIST dataset on
real testbed (cumulative).

Figure 6.11: Federated model accuracy comparison between REFDL and BFDL with
MNIST dataset.

model during on-device learning.

To test the effectiveness and faster learning of REFDL on GB-BXBT-2807 testbed fed-
erated settings, we vary the epoch iterations from (1 - 5, see Figure 6.12) using the
FCNN-MNIST procedure. For a fair comparison, in each training procedure, the fed-
erated communication round is 50. In that aspect, we can assess the performance of

Results and Discussion 109

Figure 6.12: Federated model accuracy performance with epochs using 50 communication
rounds: REFDL vs BFDL using FCNN-MNIST procedure.

each federated method in real time. As shown in Figure 6.12, the optimized REFDL
can achieve a better accuracy even with one local epoch iteration and 50 federated com-
munication rounds. This trends of providing higher accuracy remain stable across each
local epoch iterations and the stated communication rounds. The result demonstrates
REFDL appropriateness and faster learning capability across edge devices, especially
with the integrated FCNN model. REFDL minimum number of epoch requirements is
advantageous, especially in an environmental setting such as IoT with inherited limited
memory resources.

In Table 6.8, we present the performance comparison between REFDL and BFDL
using the federated training procedure CNN-MNIST over different communication
rounds. The reported results are for using one local epoch iteration. In each commu-
nication round, REFDL demonstrated better accuracy than its baseline counterparts.
Using the same experimental setting but with two local epoch iterations, REFDL
and BFDL can accurately classify the MNIST dataset with 99% and 93%, respec-
tively, in which REFDL provides better accuracy. The results suggest the capability
of REFDL in classifying both IoT and non-IoT datasets in real time with better accuracy.

Results and Discussion 110

Table 6.8: Federated model accuracy: REFDL vs BFDL against CNN-MNIST training
procedure.

Federated rounds Model Test
acc %

50 BFDL 89.00
REFDL 97.00

100 BFDL 89.00
REFDL 97.00

6.4.3 Summary

FL is a distributed ML with support for on-device learning in decentralized edge de-
vices over a network. This scheme enables data privacy across multiple clients. In this
chapter, we investigated the feasibility of running FL training in decentralized resource-
constrained environments with IoT datasets. This can be an essential step in providing
security solutions for IoT devices. For this purpose, we utilized FedAvg (BFDL algo-
rithm) with model optimization techniques proposed in chapter 4 to produce REFDL
that is more resource-efficient with accurate attack detection. This is to investigate the
possibility of reducing memory consumption during federated model training with DNN,
intending to use it as a security solution in resource-constrained environments. By utiliz-
ing the FCNN and CNN models, we proposed a resource-efficient REFDL for the effective
detection of cyber attacks on IoT devices. The effectiveness of REFDL was tested using
various IoT and non-IoT benchmark datasets in simulated FL settings with various vir-
tual client workers. Experimental results showed that the proposed REFDL outperform
its benchmark counterparts for memory efficiency and accuracy performance. This is
due to the utilization of the optimized training procedure of the clients model in the
federated training, thus the cumulative savings are higher with the optimized REFDL
than its baseline counterparts. In addition, the aggregation of models in federated train-
ing to build REFDL can influence faster learning capability compared with the baseline
training. However, these initial experimental results are encouraging and warrant further
investigation of the resource savings capability of the utilized computational nodes in a
realistic federated environment. Therefore, we investigate the deployment capability of
the REFDL in a real wireless network setting with physically connected devices and ex-
amine its capabilities to detect IoT attacks in near real-time in an FL setting. Extensive
experiments with eight IoT datasets and one image dataset in simulated environments
demonstrate the resource savings capability of REFDL over BFDL. While examining the

Results and Discussion 111

resource efficiency of REFDL using GB-BXBT-2807-edge computing-like devices in re-
alistic testbed settings, it demonstrates effectiveness, low complexity and efficiency than
its counterparts. It can detect IoT attacks accurately using minimal resources better
than its counterparts in real-time. In addition, REFDL requires fewer epochs to produce
a more accurate FL model than its counterparts. For instance, using one local epoch
iteration and 50 communication rounds, it can attain an accuracy of 91%, which is 80%
better than that produced by its counterparts under the same federated settings.

Chapter 7

Conclusion

The IoT is an advanced technology serving as an ecosystem used in smart homes, smart
cities and many automation systems. It uses multiple standard protocols in the forms of
Bluetooth and WiFi to connect various devices in a network. IoT devices are task-specific
and AI technologies can be integrated to collect and exchange data. The collected data
are essential in conducting many applications in various domains, particularly hospitals
and manufacturing industries. In addition, prominent industries utilized IoT devices
conveniently to ease their daily activities. However, with the rise of the cyber attacks
and botnet threats, IoT devices are the potential targets for various cyber attacks in the
security landscape. In addition, the resource-constrained nature of IoT devices limits
the direct deployment of AI techniques that can be used to monitor, assess and detects
IoT cyber attacks. Therefore, this thesis investigated the feasibility of using effective,
efficient and robust AI techniques to address IoT security challenging issues. For proof
of concept, we investigated the research questions listed in chapter 1.

Based on those research questions, this thesis systematically focused on developing effi-
cient, robust and effective IoT security solutions as described in chapters 3, 4, 5 and 6.
This enables us to investigate the procedure of proofing the stated hypothesis. As such,
we present the following contributions:

1. In chapter 3, we investigate several training strategies for reducing the computa-
tional complexity of using ML methods for IoT cyber security monitoring. Initial
experimentation investigated the feasibility of using the GI and PCA feature reduc-
tion techniques to investigate their capabilities of saving computational resources

112

113

for IoT cyber security monitoring. To this end, we examined the integration of fea-
ture reduction techniques to compare how GI and PCA reduce the computational
expense of running the AIS algorithm. Our findings suggest that the PCA integra-
tion can reduce memory and time consumption better than the GI counterparts.
A disadvantage of the PCA integration is the inability to increase the detection
accuracy of the AIS algorithm across the few tested IoT cyber security datasets.
Following the motivational results of the feature reduction techniques and the lim-
itations of their detection capabilities, we introduced an optimized training pro-
cedure for LGBM (DTEM) to reduce its computational complexity and resource
consumption nature in IoT security monitoring. This served as a novel training
procedure for LGBM (DTEM) that leverages previous researches in cyber security
monitoring and IoT intrusion detection. This training procedure was capable of
incorporating memory and time constraints while optimizing the LGBM model.
Experiments on publicly available benchmark IoT datasets demonstrate that the
proposed procedure reduces required computational resources for training and test-
ing of the LGBM method without significantly degrading the detection capabilities.
This is due to the factoring out of the less computational expensive parameters of
the LGBM using the optimized training method. Overall, it outperforms each em-
ployed DTEM counterpart in our experiments. Our findings suggest that LGBM
can be optimized using the proposed training procedure. These motivational results
demonstrate the feasibility of improving the training strategies of conventional ML
techniques to reduce their computational complexity in the context of IoT security
monitoring.

2. In chapter 4, we explore the resource efficiency and effective training strategies for
the FCNN DNN-based method to develop appropriate IoT security solutions. We
are more concerned with developing more promising AI security solutions that can
outperform conventional ML algorithms in terms of significant resource savings,
better learning capabilities and effective attack detection. For this purpose, we
introduced a novel training procedure for the DNN method that outperforms most
conventional ML algorithms in cyber security monitoring. In our proposed DNN
optimization training procedure, we in-cooperated memory and time constraints
as a threshold to find the best trade-off between reducing model complexity and
maintaining an appropriate performance. To this end, an FCNN model is used
to assess our optimized training procedure aiming to create effective and efficient

114

DNN security solutions suitable for resource constrained IoT environments. We uti-
lized an appropriate regularization method with simulated micro-batching to reduce
the computational complexity of the training procedure of FCNN model to build
resource-efficient REDNN-based IoT security solutions. Results are promising as
the resulting REDNN remains efficient and effective compared with its benchmark
counterparts in various evaluation frameworks across many commercially tailored
IoT device datasets. Our finding suggests that FCNN can offer better and more
efficient security solutions in IoT environments than its counterparts and other
ML methods. This is due to the capability of DNN to learn the complex patterns
present in a dataset.

3. In chapter 5, we further explore our optimized training method for DNN in a robust
scenario to investigate its potentiality to resist various adversarial attacks generated
in IoT network environments. We are more concerned with developing a robust
DNN technique for IoT security monitoring in the presence of adversarially gener-
ated attacks. To this end, we investigated the resilience of REDNN against various
perturbation methods. This is to leverage our proposed REDNN method to de-
tect adversarial samples created using IoT commercial and device-centric datasets.
Experimental results suggest that REDNN can resist to adversarial perturbations
better than the employed AI methods.

4. Finally, in chapter 6, we investigate our proposed REDNN in the FL scenario using
simulated and realistic network settings. We start by exploring on-device learning
with virtual edge devices and illustrate the development of a network testbed for
training DNN in a decentralized edge computing environment using the FL scheme
to build appropriate IoT security solutions. The main goal is to design a novel and
realistic testbed to evaluate the effectiveness of REDNN. This is good to leverage
REDNN feasibility as a method that can efficiently detect attacks within various
IoT devices and preserve their data against third parties. We utilized a Federated
Averaging (FedAvg) to assess the REDNN performance in realistic IoT network
settings rather than in a simulation environment. The federated integration can
preserve the training data while creating a better global model in the security
context. Results from simulation and network testbed demonstrate the effectiveness
of REDNN in creating a resource-efficient federated model. The results suggest
that the DNN can be optimized and trained in a federated scenario to grant data
privacy, saves computational resources and detect attacks. This is good, especially
in an environment with limited computational resources (IoT) containing various

Future Work 115

connected decentralized edge devices. The REDNN can be feasibly deployed as a
framework in a resource-constrained environment to serve as a security solution.

From the findings demonstrated in this thesis, there is a benefit for an effective, efficient,
and robust security mechanism to detect attacks in IoT resource-constrained network
environments. In particular, for DNN, we have demonstrated that exploration of regular-
ization, and simulated micro-batching techniques can enable the development of training
procedures that can outperform the baseline methods. Investigation results suggest that
the resulting model can serve as a novel security scheme in an IoT network environment.
As a result, we have demonstrated the deployment capability of DNN trained using our
proposed training method in a realistic network with decentralized edge devices. In this
scenario, DNN can use a federated strategy to preserve the utilized training data while
developing a global and efficient security mechanism. This is good for on-device learn-
ing, especially in a resource-constrained environment that focuses on the security of the
connected devices. Therefore, the descriptions of findings from this thesis support our
hypothesis.

7.1 Future Work

In this thesis, we leveraged ML and DNN to develop IoT security monitoring solutions.
With the DNN, we proposed a technique that can detect IoT attacks in an efficient,
effective and robust scenario. Our proposed DNN technique achieved promising results
in terms of resource efficiency, accurate attack detection and resistance to adversarial
perturbations. However, we have identified certain limitations regarding our study and
outlined possible future research directions.

Looking at the training strategy described in chapter 3, we adhere that the results we
obtained regarding the feature reduction on fewer publicly benchmark cyber security
datasets demonstrate that PCA is a better candidate to reduce the computational com-
plexity of using the AIS algorithm for IoT cyber security. However, only one device of
the N-BaIoT dataset are considered in our experiments, it would be interesting to test
various device centric datasets and compare how feature reduction can performs in terms
of resource efficiency. Regarding the LGBM exploitation, the results we obtained using
the optimized training procedure for LGBM are good evidence that a lightweight ML
method can be promising for IoT security monitoring. An essential investigation from
chapter 3, is the balance-off between efficient detection and memory and time consump-
tion reduction at the training and testing stage. However, it would be interesting to

Future Work 116

investigate our algorithm performance against multiple benchmark datasets from various
domains with other conventional ML techniques and examine the resource consumption
and effective attack detection capabilities.

In chapter 4, we leveraged DNN for IoT security monitoring in the context of resource
efficiency and effective attack detection in IoT network environments. With the explo-
ration of regularization and simulated micro-batching imposed by memory and execution
time constraints, we demonstrated that DNN can be trained in an optimized way in a
resource-constrained environment to save more resources and demonstrate an efficient
attack detection better than conventional ML algorithms. However, further research can
be considered to exploit REDNN learning capabilities with non-IoT datasets to benefit
from the training and testing resource-saving advantage of the optimized algorithm. This
can be useful for testing the generalization ability of REDNN in saving computational
resources in running DNN models across various fields.

In chapter 5, we explore the potentiality of our DNN training method in providing robust
IoT security solutions. In this aspect, we realized the capability of REDNN in detecting
adversarial attacks crafted from device-centric IoT datasets is better than the baseline
and other state-of-the-art ML techniques. However, in our experiments we consider the
most commonly perturbations methods used in crafting the adversarial samples. As IoT
device are dynamic in nature, in future, we plan to extend the DNN capability to resist
other perturbations techniques that are not utilized in this thesis and captured from
complex IoT and non-IoT datasets. REDNN’s resilience to privacy leakage and model
inference attacks would also be interesting to study.

Finally, we are passionate about further exploring DNN detection capabilities in realistic
network settings using multiple devices. In chapter 6, we have seen DNN’s potential-
ity in reducing computational resources while detecting attacks in virtual and realistic
like IoT network environments. In particular, in a federated environment that supports
on-device learning. These results are encouraging and attract further investigation for
utilizing more client devices in the network, particularly, over wired and wireless settings.
Since the aim of this study is to investigate the ability to reduce resource consumption
while maintaining the same (higher) accuracy as REDNN’s counterparts, we did not di-
rectly attack client devices using offensive tools (e.g. Kali Linux) in our experiments.
Instead, we replayed benchmark datasets on client devices and fed them into our algo-
rithms to assess their real-time detection capabilities. However, in the future, it would
be interesting to attack client devices using offensive tools to investigate the detection

Future Work 117

capabilities of such attacks by our algorithm. In addition, investigating the resilient
capability of the REFDL to enhance its security robustness against adversarial attacks
in a realistic network setting with various connected edge devices other than the ones
considered in this thesis would be interesting. This will enable examining the resource
efficiency and security monitoring performance of our proposed method across multiple
decentralized edge devices.

Bibliography

[1] Bojan J. Internet of Things statistics for 2022 - Taking Things Apart; 2022. Available from:
https://dataprot.net/statistics/iot-statistics/.

[2] Jenalea H. Number of Connected IoT Devices Will Surge to 125 Billion by 2030, IHS Markit
Says; 2017. Available from: https://news.ihsmarkit.com/prviewer/release_only/slug/
number-connected-iot-devices-will-surge-125-billion-2030-ihs-markit-says.

[3] Dong B, Shi Q, Yang Y, Wen F, Zhang Z, Lee C. Technology evolution from self-powered sensors
to AIoT enabled smart homes. Nano Energy. 2021;79:105414.

[4] Liu S. Iot market size worldwide 2017-2025. URL: https://www statista
com/statistics/976313/global-iot-market-size. 2020.

[5] Antonakakis M, April T, Bailey M, Bernhard M, Bursztein E, Cochran J, et al. Understanding
the mirai botnet. In: 26th {USENIX} security symposium ({USENIX} Security 17); 2017. p.
1093-110.

[6] Alexa H. Cyber Attacks on IoT Devices Are Growing at Alarming Rates [En-
cryption Digest 64]; 2021. Available from: https://www.venafi.com/blog/
cyber-attacks-iot-devices-are-growing-alarming-rates-encryption-digest-64.

[7] Zandberg K, Schleiser K, Acosta F, Tschofenig H, Baccelli E. Secure firmware updates for con-
strained iot devices using open standards: A reality check. IEEE Access. 2019;7:71907-20.

[8] Merenda M, Porcaro C, Iero D. Edge machine learning for ai-enabled iot devices: A review.
Sensors. 2020;20(9):2533.

[9] Zhang H, Li JL, Liu XM, Dong C. Multi-dimensional feature fusion and stacking ensemble mech-
anism for network intrusion detection. Future Generation Computer Systems. 2021;122:130-43.

[10] Moustafa N, Hu J, Slay J. A holistic review of Network Anomaly Detection Systems: A compre-
hensive survey. Journal of Network and Computer Applications. 2019;128:33-55.

[11] HB BG, Poornachandran P, KP S, et al. Deep-Net: Deep neural network for cyber security use
cases. arXiv preprint arXiv:181203519. 2018.

[12] Aggarwal CC, et al. Neural networks and deep learning. Springer. 2018;10:978-3.

[13] Tuna OF, Catak FO, Eskil MT. Exploiting epistemic uncertainty of the deep learning models to
generate adversarial samples. Multimedia Tools and Applications. 2022:1-22.

[14] Lasisi A, Ghazali R, Herawan T. Application of real-valued negative selection algorithm to improve
medical diagnosis. In: Applied Computing in Medicine and Health. Elsevier; 2016. p. 231-43.

118

https://dataprot.net/statistics/iot-statistics/
https://news.ihsmarkit.com/prviewer/release_only/slug/number-connected-iot-devices-will-surge-125-billion-2030-ihs-markit-says
https://news.ihsmarkit.com/prviewer/release_only/slug/number-connected-iot-devices-will-surge-125-billion-2030-ihs-markit-says
https://www.venafi.com/blog/cyber-attacks-iot-devices-are-growing-alarming-rates-encryption-digest-64
https://www.venafi.com/blog/cyber-attacks-iot-devices-are-growing-alarming-rates-encryption-digest-64

BIBLIOGRAPHY 119

[15] Csizmadia G, Liszkai-Peres K, Ferdinandy B, Miklósi Á, Konok V. Human activity recognition of
children with wearable devices using LightGBM machine learning. Scientific Reports. 2022;12(1):1-
10.

[16] Holbrook L, Alamaniotis M. A good defense is a strong DNN: defending the IoT with deep neural
networks. In: Machine Learning Paradigms. Springer; 2020. p. 125-45.

[17] Mahmud R, Kotagiri R, Buyya R. Fog computing: A taxonomy, survey and future directions. In:
Internet of everything. Springer; 2018. p. 103-30.

[18] Arivazhagan C, Natarajan V. A Survey on Fog computing paradigms, Challenges and Opportuni-
ties in IoT. In: 2020 International Conference on Communication and Signal Processing (ICCSP).
IEEE; 2020. p. 0385-9.

[19] Zevala C. IoT Memory: An Overview of the Options. Accessed: Sep; 2018.

[20] Atmel. SMART ARM-Based Wireless Microcontroller; 2016. Available from: http://ww1.
microchip.com/downloads/en/devicedoc/sam-r21_datasheet.pdf.

[21] Bormann C, Ersue M, Keranen A. Terminology for constrained-node networks; 2014.

[22] Paloalto I. Impacts of Cyberattacks on IoT Devices. Accessed: Jan; 2020.

[23] Baig ZA, Sanguanpong S, Firdous SN, Nguyen TG, So-In C, et al. Averaged dependence estimators
for DoS attack detection in IoT networks. Future Generation Computer Systems. 2020;102:198-209.

[24] Goodin D. BrickerBot, the permanent denial-of-service botnet, is back with a vengeance. Ars
Technica. 2017.

[25] Abomhara M, Køien GM. Cyber security and the internet of things: vulnerabilities, threats,
intruders and attacks. Journal of Cyber Security and Mobility. 2015:65-88.

[26] Mohammadnia H, Slimane SB. IoT-NETZ: Practical spoofing attack mitigation approach in
SDWN network. In: 2020 Seventh International Conference on Software Defined Systems (SDS).
IEEE; 2020. p. 5-13.

[27] Rajan A, Jithish J, Sankaran S. Sybil attack in IOT: Modelling and defenses. In: 2017 international
conference on advances in computing, communications and informatics (ICACCI). IEEE; 2017. p.
2323-7.

[28] Hachemi FE, Mana M, Bensaber BA. Study of the impact of sinkhole attack in iot using shewhart
control charts. In: GLOBECOM 2020-2020 IEEE Global Communications Conference. IEEE;
2020. p. 1-5.

[29] Jedh M, Othmane LB, Ahmed N, Bhargava B. Detection of message injection attacks onto the can
bus using similarities of successive messages-sequence graphs. IEEE Transactions on Information
Forensics and Security. 2021;16:4133-46.

[30] Stasinopoulos A, Ntantogian C, Xenakis C. Commix: Automating evaluation and exploitation
of command injection vulnerabilities in web applications. International Journal of Information
Security. 2019;18(1):49-72.

[31] Torres-Arias S, Afzali H, Kuppusamy TK, Curtmola R, Cappos J. in-toto: Providing farm-to-table
guarantees for bits and bytes. In: 28th USENIX Security Symposium (USENIX Security 19); 2019.
p. 1393-410.

http://ww1.microchip.com/downloads/en/devicedoc/sam-r21_datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/sam-r21_datasheet.pdf

BIBLIOGRAPHY 120

[32] Rahim R, Nurdiyanto H, Abdullah D, Hartama D, Napitupulu D, et al. Keylogger application to
monitoring users activity with exact string matching algorithm. In: Journal of Physics: Conference
Series. vol. 954. IOP Publishing; 2018. p. 012008.

[33] D’Orazio CJ, Choo KKR, Yang LT. Data exfiltration from Internet of Things devices: iOS devices
as case studies. IEEE Internet of Things Journal. 2016;4(2):524-35.

[34] Sontiq I. Identity Theft Resource Cener’s 2021 Annual Data Breach Report Sets New Record for
Number of Compromises. Accessed: Jan; 2022.

[35] Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level control
through deep reinforcement learning. nature. 2015;518(7540):529-33.

[36] Altman N, Krzywinski M. Ensemble methods: bagging and random forests. Nature Methods.
2017;14(10):933-5.

[37] Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased boosting
with categorical features. Advances in neural information processing systems. 2018;31.

[38] Cutler A, Cutler DR, Stevens JR. Random forests. In: Ensemble machine learning. Springer;
2012. p. 157-75.

[39] Wager S, Athey S. Estimation and inference of heterogeneous treatment effects using random
forests. Journal of the American Statistical Association. 2018;113(523):1228-42.

[40] Schapire RE. Explaining adaboost. In: Empirical inference. Springer; 2013. p. 37-52.

[41] Li P. Robust logitboost and adaptive base class (abc) logitboost. arXiv preprint arXiv:12033491.
2012.

[42] Pandey P, Prabhakar R. An analysis of machine learning techniques (J48 & AdaBoost)-for clas-
sification. In: 2016 1st India International Conference on Information Processing (IICIP). IEEE;
2016. p. 1-6.

[43] Farris FA. The Gini index and measures of inequality. The American Mathematical Monthly.
2010;117(10):851-64.

[44] Liu H, Zhou M, Lu XS, Yao C. Weighted Gini index feature selection method for imbalanced data.
In: IEEE ICNSC; 2018. p. 1-6.

[45] D’Ambrosio A, Tutore VA. Conditional classification trees by weighting the Gini impurity measure.
In: New perspectives in statistical modeling and data analysis. Springer; 2011. p. 273-80.

[46] Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. Lightgbm: A highly efficient gradient
boosting decision tree. In: Advances in neural information processing systems; 2017. p. 3146-54.

[47] Jiang J, Cui B, Zhang C, Fu F. Dimboost: Boosting gradient boosting decision tree to higher
dimensions. In: Proceedings of the 2018 International Conference on Management of Data; 2018.
p. 1363-76.

[48] Corporation M. LGBM Tuning Parameters; 2022. Available from: https://lightgbm.
readthedocs.io/en/latest/Parameters-Tuning.html.

[49] Nematzadeh S, Kiani F, Torkamanian-Afshar M, Aydin N. Tuning hyperparameters of machine
learning algorithms and deep neural networks using metaheuristics: A bioinformatics study on
biomedical and biological cases. Computational Biology and Chemistry. 2022;97:107619.

https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html
https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html

BIBLIOGRAPHY 121

[50] Suthaharan S. Support vector machine. In: Machine learning models and algorithms for big data
classification. Springer; 2016. p. 207-35.

[51] Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural networks: analysis,
applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems. 2021.

[52] Hosseinzadeh M, Rahmani AM, Vo B, Bidaki M, Masdari M, Zangakani M. Improving security
using SVM-based anomaly detection: issues and challenges. Soft Computing. 2021;25(4):3195-223.

[53] Zhu F, Chen W, Yang H, Li T, Yang T, Zhang F. A quick negative selection algorithm for one-class
classification in big data era. Mathematical Problems in Engineering. 2017;2017.

[54] Pamukov ME, Poulkov VK. Multiple negative selection algorithm: Improving detection error rates
in IoT intrusion detection systems. In: IEEE IDAACS. vol. 1; 2017. p. 543-7.

[55] Rashid N, Iqbal J, Mahmood F, Abid A, Khan US, Tiwana MI. Artificial immune system–negative
selection classification algorithm (NSCA) for four class electroencephalogram (EEG) signals. Fron-
tiers in human neuroscience. 2018;12:439.

[56] Hoang DH, Nguyen HD. A PCA-based method for IoT network traffic anomaly detection. In:
IEEE 20th ICACT; 2018. p. 381-6.

[57] Nielsen MA. Neural networks and deep learning. vol. 25. Determination press San Francisco, CA,
USA; 2015.

[58] Li CL, Sohn K, Yoon J, Pfister T. Cutpaste: Self-supervised learning for anomaly detection and
localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition; 2021. p. 9664-74.

[59] Goh J, Adepu S, Tan M, Lee ZS. Anomaly detection in cyber physical systems using recurrent
neural networks. In: 2017 IEEE 18th International Symposium on High Assurance Systems Engi-
neering (HASE). IEEE; 2017. p. 140-5.

[60] Liang T, Glossner J, Wang L, Shi S, Zhang X. Pruning and quantization for deep neural network
acceleration: A survey. Neurocomputing. 2021;461:370-403.

[61] Mellempudi N, Kundu A, Mudigere D, Das D, Kaul B, Dubey P. Ternary neural networks with
fine-grained quantization. arXiv preprint arXiv:170501462. 2017.

[62] Chauvin Y, Rumelhart DE. Backpropagation: theory, architectures, and applications. Psychology
press; 2013.

[63] Shakya A, Biswas M, Pal M. Parametric study of convolutional neural network based remote
sensing image classification. International Journal of Remote Sensing. 2021;42(7):2663-85.

[64] Al Tobi AM, Duncan I. KDD 1999 generation faults: A review and analysis. Journal of Cyber
Security Technology. 2018;2(3-4):164-200.

[65] DARPA Intrusion Detection Dataset;. Available from: https://www.ll.mit.edu/r-d/datasets/
1998-darpa-intrusion-detection-evaluation-data-set.

[66] KDD Cup 1999;. Available from: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html.

[67] Moustafa N, Slay J. UNSW-NB15: a comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set). In: 2015 military communications and information
systems conference (MilCIS). IEEE; 2015. p. 1-6.

https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-data-set
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-data-set
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

BIBLIOGRAPHY 122

[68] The UNSW-NB15 Dataset;. Available from: https://research.unsw.edu.au/projects/
unsw-nb15-dataset.

[69] Ahmad M, Riaz Q, Zeeshan M, Tahir H, Haider SA, Khan MS. Intrusion detection in internet
of things using supervised machine learning based on application and transport layer features
using UNSW-NB15 data-set. EURASIP Journal on Wireless Communications and Networking.
2021;2021(1):1-23.

[70] Meidan Y, Bohadana M, Mathov Y, Mirsky Y, Shabtai A, Breitenbacher D, et al. N-
BaIoT—Network-based detection of IoT botnet attacks using deep autoencoders. IEEE Pervasive
Computing. 2018;17(3):12-22.

[71] N-BaIoT;. Available from: https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_
botnet_attacks_N_BaIoT.

[72] Koroniotis N, Moustafa N, Sitnikova E, Turnbull B. Towards the development of realistic botnet
dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Generation
Computer Systems. 2019;100:779-96.

[73] The BoT-IoT Dataset;. Available from: https://research.unsw.edu.au/projects/
bot-iot-dataset.

[74] Mirsky Y, Doitshman T, Elovici Y, Shabtai A. Kitsune: An Ensemble of Autoencoders for Online
Network Intrusion Detection; 2018.

[75] Ktsune Network Attack Dataset;. Available from: https://archive.ics.uci.edu/ml/datasets/
Kitsune+Network+Attack+Dataset.

[76] Teixeira MA, Salman T, Zolanvari M, Jain R, Meskin N, Samaka M. SCADA system testbed for
cybersecurity research using machine learning approach. Future Internet. 2018;10(8):76.

[77] WUSTL-IIOT-2021 Dataset for IIoT Cybersecurity Research;. Available from:
WUSTL-IIOT-2021DatasetforIIoTCybersecurityResearch.

[78] Siddharth M. IoT-DDoS dataset; 2020. Available from: https://www.kaggle.com/
siddharthm1698/ddos-botnet-attack-on-iot-devices.

[79] Sánchez PMS, Valero JMJ, Celdrán AH, Bovet G, Pérez MG, Pérez GM. A Survey on Device
Behavior Fingerprinting: Data Sources, Techniques, Application Scenarios, and Datasets. IEEE
Communications Surveys Tutorials. 2021;23(2):1048-77.

[80] Elrawy MF, Awad AI, Hamed HF. Intrusion detection systems for IoT-based smart environments:
a survey. Journal of Cloud Computing. 2018;7(1):1-20.

[81] Bhunia SS, Gurusamy M. Dynamic attack detection and mitigation in IoT using SDN. In: 2017
27th International telecommunication networks and applications conference (ITNAC). IEEE; 2017.
p. 1-6.

[82] Nskh P, Varma MN, Naik RR. Principle component analysis based intrusion detection system
using support vector machine. In: IEEE RTEICT; 2016. p. 1344-50.

[83] Lopez-Martin M, Carro B, Sanchez-Esguevillas A. IoT type-of-traffic forecasting method based
on gradient boosting neural networks. Future Generation Computer Systems. 2020;105:331-45.

[84] Moustafa N, Turnbull B, Choo KKR. An ensemble intrusion detection technique based on proposed
statistical flow features for protecting network traffic of internet of things. IEEE Internet of Things
Journal. 2018;6(3):4815-30.

https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
https://research.unsw.edu.au/projects/bot-iot-dataset
https://research.unsw.edu.au/projects/bot-iot-dataset
https://archive.ics.uci.edu/ml/datasets/Kitsune+Network+Attack+Dataset
https://archive.ics.uci.edu/ml/datasets/Kitsune+Network+Attack+Dataset
WUSTL-IIOT-2021 Dataset for IIoT Cybersecurity Research
https://www.kaggle.com/siddharthm1698/ddos-botnet-attack-on-iot-devices
https://www.kaggle.com/siddharthm1698/ddos-botnet-attack-on-iot-devices

BIBLIOGRAPHY 123

[85] Tang D, Tang L, Dai R, Chen J, Li X, Rodrigues JJ. MF-Adaboost: LDoS attack detection based
on multi-features and improved Adaboost. Future Generation Computer Systems. 2020;106:347-59.

[86] Resende PAA, Drummond AC. A survey of random forest based methods for intrusion detection
systems. ACM Computing Surveys (CSUR). 2018;51(3):1-36.

[87] Hasan MAM, Nasser M, Pal B, Ahmad S. Support vector machine and random forest modeling
for intrusion detection system (IDS). Journal of Intelligent Learning Systems and Applications.
2014;2014.

[88] Farnaaz N, Jabbar M. Random forest modeling for network intrusion detection system. Procedia
Computer Science. 2016;89:213-7.

[89] Ikram ST, Cherukuri AK. Improving accuracy of intrusion detection model using PCA and opti-
mized SVM. Journal of computing and information technology. 2016;24(2):133-48.

[90] Haripriya P, Anju J. An AIS based anomaly detection system. In: 2017 International Conference
on Computing Methodologies and Communication (ICCMC). IEEE; 2017. p. 708-11.

[91] Latif S, Idrees Z, Zou Z, Ahmad J. DRaNN: A deep random neural network model for intrusion
detection in industrial IoT. In: 2020 International Conference on UK-China Emerging Technologies
(UCET). IEEE; 2020. p. 1-4.

[92] Shareena J, Ramdas A, AP H, et al. Intrusion detection system for iot botnet attacks using deep
learning. SN Computer Science. 2021;2(3):1-8.

[93] Kumar V, Kumar A, Garg S, Payyavula S. Boosting Algorithms to Identify Distributed Denial-
of-Service Attacks. In: Journal of Physics: Conference Series. vol. 2312. IOP Publishing; 2022. p.
012082.

[94] Sharafaldin I, Lashkari AH, Hakak S, Ghorbani AA. Developing realistic distributed denial of
service (DDoS) attack dataset and taxonomy. In: 2019 International Carnahan Conference on
Security Technology (ICCST). IEEE; 2019. p. 1-8.

[95] Okey OD, Maidin SS, Adasme P, Lopes Rosa R, Saadi M, Carrillo Melgarejo D, et al. Booste-
dEnML: Efficient Technique for Detecting Cyberattacks in IoT Systems Using Boosted Ensemble
Machine Learning. Sensors. 2022;22(19):7409.

[96] Cai W, Wei R, Xu L, Ding X. A method for modelling greenhouse temperature using gradient
boost decision tree. Information Processing In Agriculture. 2021.

[97] Bileschi ML, Belanger D, Bryant DH, Sanderson T, Carter B, Sculley D, et al. Using deep learning
to annotate the protein universe. Nature Biotechnology. 2022:1-6.

[98] Zhang Y, Krishnan V, Pi J, Kaur K, Srivastava A, Hahn A, et al. Cyber physical security analytics
for transactive energy systems. IEEE Transactions on Smart Grid. 2019;11(2):931-41.

[99] Fadlullah ZM, Tang F, Mao B, Kato N, Akashi O, Inoue T, et al. State-of-the-art deep learning:
Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE
Communications Surveys & Tutorials. 2017;19(4):2432-55.

[100] Chen C, Liu Z, Wan S, Luan J, Pei Q. Traffic flow prediction based on deep learning in internet
of vehicles. IEEE transactions on intelligent transportation systems. 2020;22(6):3776-89.

[101] Abdellah AR, Koucheryavy A. Deep learning with long short-term memory for iot traffic prediction.
In: Internet of Things, Smart Spaces, and Next Generation Networks and Systems. Springer; 2020.
p. 267-80.

BIBLIOGRAPHY 124

[102] Li X, Liu H, Wang W, Zheng Y, Lv H, Lv Z. Big data analysis of the internet of things in
the digital twins of smart city based on deep learning. Future Generation Computer Systems.
2022;128:167-77.

[103] Jung W, Zhao H, Sun M, Zhou G. IoT botnet detection via power consumption modeling. Smart
Health. 2020;15:100103.

[104] Pour MS, Mangino A, Friday K, Rathbun M, Bou-Harb E, Iqbal F, et al. On data-driven cu-
ration, learning, and analysis for inferring evolving internet-of-Things (IoT) botnets in the wild.
Computers & Security. 2020;91:101707.

[105] Tang J, Sun D, Liu S, Gaudiot JL. Enabling deep learning on IoT devices. Computer.
2017;50(10):92-6.

[106] Iandola F, Keutzer K. Keynote: small neural nets are beautiful: enabling embedded systems with
small deep-neural-network architectures. In: 2017 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ ISSS). IEEE; 2017. p. 1-10.

[107] Shi Z, Xie X, Lu H, Yang H, Kadoch M, Cheriet M. Deep-Reinforcement-Learning-Based Spec-
trum Resource Management for Industrial Internet of Things. IEEE Internet of Things Journal.
2020;8(5):3476-89.

[108] Shen S, Li R, Zhao Z, Liu Q, Liang J, Zhang H. Efficient Deep Structure Learning for Resource-
Limited IoT Devices. In: GLOBECOM 2020-2020 IEEE Global Communications Conference.
IEEE; 2020. p. 1-6.

[109] Lawrence T, Zhang L. IoTNet: An efficient and accurate convolutional neural network for IoT
devices. Sensors. 2019;19(24):5541.

[110] Kodali S, Hansen P, Mulholland N, Whatmough P, Brooks D, Wei GY. Applications of deep neural
networks for ultra low power IoT. In: 2017 IEEE International Conference on Computer Design
(ICCD). IEEE; 2017. p. 589-92.

[111] Osman M, He J, Mokbal FMM, Zhu N, Qureshi S. Ml-lgbm: A machine learning model based on
light gradient boosting machine for the detection of version number attacks in rpl-based networks.
IEEE Access. 2021;9:83654-65.

[112] Pamukov ME, Poulkov VK, Shterev VA. Negative selection and neural network based algorithm
for intrusion detection in IoT. In: 2018 41st International Conference on Telecommunications and
Signal Processing (TSP). IEEE; 2018. p. 1-5.

[113] Dhanabal L, Shantharajah S. A study on NSL-KDD dataset for intrusion detection system based
on classification algorithms. International journal of advanced research in computer and commu-
nication engineering. 2015;4(6):446-52.

[114] Mishra D, Naik B, Nayak J, Souri A, Dash PB, Vimal S. Light gradient boosting machine with
optimized hyperparameters for identification of malicious access in IoT network. Digital Commu-
nications and Networks. 2022.

[115] Aubet F. IoT Traffic Traces Gathered in the DS2OS Environment; 2018. Available from: https:
//www.kaggle.com/datasets/francoisxa/ds2ostraffictraces/discussion.

[116] Chauhan P, Atulkar M. Selection of Tree Based Ensemble Classifier for Detecting Network Attacks
in IoT. In: 2021 International Conference on Emerging Smart Computing and Informatics (ESCI).
IEEE; 2021. p. 770-5.

https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces/discussion
https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces/discussion

BIBLIOGRAPHY 125

[117] Vargaftik S, Keslassy I, Orda A, Ben-Itzhak Y. Rade: Resource-efficient supervised anomaly
detection using decision tree-based ensemble methods. Machine Learning. 2021;110(10):2835-66.

[118] Jing D, Chen HB. SVM based network intrusion detection for the UNSW-NB15 dataset. In: 2019
IEEE 13th international conference on ASIC (ASICON). IEEE; 2019. p. 1-4.

[119] Abbasi F, Naderan M, Alavi SE. Anomaly detection in Internet of Things using feature selection
and classification based on Logistic Regression and Artificial Neural Network on N-BaIoT dataset.
In: 2021 5th International Conference on Internet of Things and Applications (IoT). IEEE; 2021.
p. 1-7.

[120] Zhao R, Gui G, Xue Z, Yin J, Ohtsuki T, Adebisi B, et al. A novel intrusion detection method
based on lightweight neural network for internet of things. IEEE Internet of Things Journal. 2021.

[121] Lei M, Li X, Cai B, Li Y, Liu L, Kong W. P-DNN: an effective intrusion detection method based
on pruning deep neural network. In: 2020 International Joint Conference on Neural Networks
(IJCNN). IEEE; 2020. p. 1-9.

[122] Latif S, Zou Z, Idrees Z, Ahmad J. A novel attack detection scheme for the industrial internet of
things using a lightweight random neural network. IEEE Access. 2020;8:89337-50.

[123] Rani S, Singh A, Elkamchouchi DH, Noya ID. Lightweight Hybrid Deep Learning Architecture
and Model for Security in IIOT. Applied Sciences. 2022;12(13):6442.

[124] Goodfellow IJ, Shlens J, Szegedy C. Explaining and Harnessing Adversarial Examples; 2015.

[125] Kurakin A, Goodfellow I, Bengio S. Adversarial Machine Learning at Scale; 2017.

[126] Hosseini H, Xiao B, Jaiswal M, Poovendran R. On the limitation of convolutional neural networks
in recognizing negative images. In: 2017 16th IEEE International Conference on Machine Learning
and Applications (ICMLA). IEEE; 2017. p. 352-8.

[127] Athalye A, Carlini N, Wagner D. Obfuscated Gradients Give a False Sense of Security: Circum-
venting Defenses to Adversarial Examples. In: Dy J, Krause A, editors. Proceedings of the 35th In-
ternational Conference on Machine Learning. vol. 80 of Proceedings of Machine Learning Research.
PMLR; 2018. p. 274-83. Available from: https://proceedings.mlr.press/v80/athalye18a.html.

[128] Shafahi A, Huang WR, Najibi M, Suciu O, Studer C, Dumitras T, et al. Poison frogs! tar-
geted clean-label poisoning attacks on neural networks. Advances in neural information processing
systems. 2018;31.

[129] Pitropakis N, Panaousis E, Giannetsos T, Anastasiadis E, Loukas G. A taxonomy and survey of
attacks against machine learning. Computer Science Review. 2019;34:100199.

[130] Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. Understanding deep learning (still) requires
rethinking generalization. Communications of the ACM. 2021;64(3):107-15.

[131] Kurakin A, Goodfellow I, Bengio S. Adversarial machine learning at scale. arXiv preprint
arXiv:161101236. 2016.

[132] Athalye A, Carlini N, Wagner D. Obfuscated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In: International conference on machine learning. PMLR; 2018.
p. 274-83.

[133] Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, Swami A. The limitations of deep
learning in adversarial settings. In: 2016 IEEE European symposium on security and privacy
(EuroS&P). IEEE; 2016. p. 372-87.

https://proceedings.mlr.press/v80/athalye18a.html

BIBLIOGRAPHY 126

[134] Aloraini F, Javed A, Rana O, Burnap P. Adversarial machine learning in IoT from an insider
point of view. Journal of Information Security and Applications. 2022;70:103341.

[135] Ibitoye O, Shafiq O, Matrawy A. Analyzing adversarial attacks against deep learning for intrusion
detection in IoT networks. In: 2019 IEEE global communications conference (GLOBECOM).
IEEE; 2019. p. 1-6.

[136] Pujari M, Pacheco Y, Cherukuri B, Sun W. A Comparative Study on the Impact of Adversarial
Machine Learning Attacks on Contemporary Intrusion Detection Datasets. SN Computer Science.
2022;3(5):1-12.

[137] Abou Khamis R, Matrawy A. Evaluation of adversarial training on different types of neural
networks in deep learning-based idss. In: 2020 international symposium on networks, computers
and communications (ISNCC). IEEE; 2020. p. 1-6.

[138] Tramèr F, Kurakin A, Papernot N, Goodfellow I, Boneh D, McDaniel P. Ensemble adversarial
training: Attacks and defenses. arXiv preprint arXiv:170507204. 2017.

[139] Yang Q, Liu Y, Cheng Y, Kang Y, Chen T, Yu H. Federated learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. 2019;13(3):1-207.

[140] Preuveneers D, Rimmer V, Tsingenopoulos I, Spooren J, Joosen W, Ilie-Zudor E. Chained anomaly
detection models for federated learning: An intrusion detection case study. Applied Sciences.
2018;8(12):2663.

[141] Lim WYB, Luong NC, Hoang DT, Jiao Y, Liang YC, Yang Q, et al. Federated learning in
mobile edge networks: A comprehensive survey. IEEE Communications Surveys & Tutorials.
2020;22(3):2031-63.

[142] Imteaj A, Thakker U, Wang S, Li J, Amini MH. A Survey on Federated Learning for Resource-
Constrained IoT Devices. IEEE Internet of Things Journal. 2021.

[143] Nguyen TD, Marchal S, Miettinen M, Fereidooni H, Asokan N, Sadeghi AR. DÏoT: A federated
self-learning anomaly detection system for IoT. In: 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). IEEE; 2019. p. 756-67.

[144] Liu Y, Kumar N, Xiong Z, Lim WYB, Kang J, Niyato D. Communication-efficient federated
learning for anomaly detection in industrial internet of things. In: GLOBECOM 2020-2020 IEEE
Global Communications Conference. IEEE; 2020. p. 1-6.

[145] Jiang Y, Wang S, Valls V, Ko BJ, Lee WH, Leung KK, et al. Model pruning enables efficient
federated learning on edge devices. arXiv preprint arXiv:190912326. 2019.

[146] Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, et al. Towards federated
learning at scale: System design. arXiv preprint arXiv:190201046. 2019.

[147] Popoola SI, Ande R, Adebisi B, Gui G, Hammoudeh M, Jogunola O. Federated deep learning for
zero-day botnet attack detection in IoT edge devices. IEEE Internet of Things Journal. 2021.

[148] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine
learning in Python. the Journal of machine Learning research. 2011;12:2825-30.

[149] Pedregosa F. Memory-profiler: a module for monitoring memory usage of a Python program; 2019.
Available from: https://github.com/pythonprofilers/memory_profiler.

https://github. com/pythonprofilers/memory_profiler

BIBLIOGRAPHY 127

[150] Zakariyya I. Reducing computational cost of running AIS for IoT cybersecurity.; 2019. Available
from: https://github.com/izakariyya/ais.

[151] Bisong E. Introduction to Scikit-learn. In: Building machine learning and deep learning models
on Google cloud platform. Springer; 2019. p. 215-29.

[152] Zebari R, Abdulazeez A, Zeebaree D, Zebari D, Saeed J. A comprehensive review of dimensionality
reduction techniques for feature selection and feature extraction. Journal of Applied Science and
Technology Trends. 2020;1(2):56-70.

[153] Lam LHT, Chu NT, Tran TO, Do DT, Le NQK. A radiomics-based machine learning model for
prediction of tumor mutational burden in lower-grade gliomas. Cancers. 2022;14(14):3492.

[154] Natekin A, Knoll A. Gradient boosting machines, a tutorial. Frontiers in neurorobotics. 2013;7:21.

[155] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research. 2011;12:2825-30.

[156] Raybaut P. Spyder: Scientific python development environment, 2009–. URL" https://github
com/spyder-ide/spyder"[Online. 2017.

[157] Zakariyya I. Resource Efficient IoT LGBM Algorithm.; 2020. Available from: https://github.
com/izakariyya/Resource_Constraint_Algorithm.

[158] Sarker IH, Kayes A, Badsha S, Alqahtani H, Watters P, Ng A. Cybersecurity data science: an
overview from machine learning perspective. Journal of Big data. 2020;7(1):1-29.

[159] Larriva-Novo XA, Vega-Barbas M, Villagrá VA, Rodrigo MS. Evaluation of cybersecurity data
set characteristics for their applicability to neural networks algorithms detecting cybersecurity
anomalies. IEEE Access. 2020;8:9005-14.

[160] Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H. State-of-the-art in
artificial neural network applications: A survey. Heliyon. 2018;4(11):e00938.

[161] Oyama Y, Ben-Nun T, Hoefler T, Matsuoka S. Accelerating deep learning frameworks with micro-
batches. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER). IEEE; 2018.
p. 402-12.

[162] Huang Y, Cheng Y, Bapna A, Firat O, Chen D, Chen M, et al. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. Advances in neural information processing systems.
2019;32:103-12.

[163] Han S, Pool J, Tran J, Dally WJ. Learning both Weights and Connections for Efficient Neural
Networks; 2015.

[164] Johansson R. Numerical Python: Scientific Computing and Data Science Applications with
Numpy, SciPy and Matplotlib. Apress; 2018.

[165] Komer B, Bergstra J, Eliasmith C. Hyperopt-sklearn. In: Automated Machine Learning. Springer,
Cham; 2019. p. 97-111.

[166] Bosman A, Engelbrecht A, Helbig M. Fitness landscape analysis of weight-elimination neural
networks. Neural Processing Letters. 2018;48(1):353-73.

[167] Ide H, Kurita T. Improvement of learning for CNN with ReLU activation by sparse regularization.
In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE; 2017. p. 2684-91.

https://github.com/izakariyya/ais
https://github.com/izakariyya/Resource_Constraint_Algorithm
https://github.com/izakariyya/Resource_Constraint_Algorithm

BIBLIOGRAPHY 128

[168] Pumperla M. Hyperas: Hyperopt: A very simple and convenient wrapper for hyperparameter
optimization; 2018. Available from: https://github.com/maxpumperla/hyperas.

[169] Zakariyya I. Resource Efficient IoT DNNs Algorithm.; 2021. Available from: https://github.
com/izakariyya/R_DNN_IoT.

[170] Micikevicius P, Narang S, Alben J, Diamos G, Elsen E, Garcia D, et al. Mixed Precision Training.
In: International Conference on Learning Representations; 2018. .

[171] TensorFlow. float16 Quantization.. TensorFlow; 2022. Available from: https://www.tensorflow.
org/lite/performance/post_training_float16_quant.

[172] Zhao J, Dai S, Venkatesan R, Liu M, Khailany B, Dally B, et al. Low-Precision Training in
Logarithmic Number System using Multiplicative Weight Update. CoRR. 2021;abs/2106.13914.
Available from: https://arxiv.org/abs/2106.13914.

[173] intel. Choose Precision.. Intel Corporation; 2020. Available from:
https://software.intel.com/content/www/us/en/develop/articles/
should-i-choose-fp16-or-fp32-for-my-deep-learning-model.html.

[174] Catak FO, Balaban ME. CloudSVM: training an SVM classifier in cloud computing systems. In:
Joint International Conference on Pervasive Computing and the Networked World. Springer; 2012.
p. 57-68.

[175] Jose C, Goyal P, Aggrwal P, Varma M. Local deep kernel learning for efficient non-linear svm
prediction. In: International conference on machine learning. PMLR; 2013. p. 486-94.

[176] Papernot N, Faghri F, Carlini N, Goodfellow I, Feinman R, Kurakin A, et al.. Technical Report
on the CleverHans v2.1.0 Adversarial Examples Library; 2018.

[177] Suciu O, Coull SE, Johns J. Exploring adversarial examples in malware detection. In: 2019 IEEE
Security and Privacy Workshops (SPW). IEEE; 2019. p. 8-14.

[178] Dunn C, Moustafa N, Turnbull B. Robustness evaluations of sustainable machine learning models
against data poisoning attacks in the internet of things. Sustainability. 2020;12(16):6434.

[179] Lever J, Krzywinski M, Altman N. Points of significance: Regularization. Nature methods.
2016;13(10):803-5.

[180] Alazab M, RM SP, Parimala M, Maddikunta PKR, Gadekallu TR, Pham QV. Federated Learning
for Cybersecurity: Concepts, Challenges, and Future Directions. IEEE Transactions on Industrial
Informatics. 2021;18(5):3501-9.

[181] Yin B, Yin H, Wu Y, Jiang Z. FDC: A secure federated deep learning mechanism for data
collaborations in the Internet of Things. IEEE Internet of Things Journal. 2020;7(7):6348-59.

[182] He C, Mushtaq E, Ding J, Avestimehr S. FedNAS: Federated Deep Learning via Neural Architec-
ture Search; 2022. Available from: https://openreview.net/forum?id=1OHZX4YDqhT.

[183] Baldominos A, Saez Y, Isasi P. A survey of handwritten character recognition with mnist and
emnist. Applied Sciences. 2019;9(15):3169.

[184] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing systems.
2019;32:8026-37.

https://github.com/maxpumperla/hyperas
https://github.com/izakariyya/R_DNN_IoT
https://github.com/izakariyya/R_DNN_IoT
https://www.tensorflow.org/lite/performance/post_training_float16_quant
https://www.tensorflow.org/lite/performance/post_training_float16_quant
https://arxiv.org/abs/2106.13914
https://software.intel.com/content/www/us/en/develop/articles/should-i-choose-fp16-or-fp32-for-my-deep-learning-model.html
https://software.intel.com/content/www/us/en/develop/articles/should-i-choose-fp16-or-fp32-for-my-deep-learning-model.html
https://openreview.net/forum?id=1OHZX4YDqhT

BIBLIOGRAPHY 129

[185] Ryffel T, Trask A, Dahl M, Wagner B, Mancuso J, Rueckert D, et al. A generic framework for
privacy preserving deep learning. arXiv preprint arXiv:181104017. 2018.

[186] Zakariyya. Resource Efficient Federated Algorithm with Virtual Workers.; 2022. Available from:
https://github.com/izakariyya/sim-virtual-fed-dnn.

[187] Zakariyya I. Resource Efficient Federated Algorithm with realistic Workers.; 2022. Available from:
https://github.com/izakariyya/testbd-fl-iot.

[188] Krueger D, Memisevic R. Regularizing rnns by stabilizing activations. arXiv preprint
arXiv:151108400. 2015.

[189] Sun X, Wang N, Chen CY, Ni J, Agrawal A, Cui X, et al. Ultra-low precision 4-bit training of
deep neural networks. Advances in Neural Information Processing Systems. 2020;33.

https://github.com/izakariyya/sim-virtual-fed-dnn
https://github.com/izakariyya/testbd-fl-iot

Appendix A

Dissemination

1. Idris Zakariyya; Al-Kadri, M. Omar; Kalutarage, Harsha; Petrovski, An-
drei, Reducing Computational Cost in IoT Cyber Security: Case Study
of Artificial Immune System Algorithm. SECRYPT, 2019: 523-528.
https://dblp.org/rec/conf/icete/ZakariyyaAKP19 (chapter 3)

2. Idris Zakariyya; Al-Kadri, M. Omar; Kalutarage, Harsha, Resource Efficient Boost-
ing Method for IoT Security Monitoring, 2021 IEEE 18th Annual Consumer Com-
munications & Networking Conference (CCNC), 2021, pp. 1-6, doi: 10.1109/C-
CNC49032.2021.9369620. (chapter 3)

3. Idris Zakariyya; Harsha, Kalutarage; M. Omar, Al-Kadri, Robust, Effective and
Resource Efficient Deep Neural Network for Intrusion Detection in IoT Networks, In
Proceedings of the 8th ACM Cyber-Physical System Security Workshop (CPSS’22),
2022, https://doi.org/10.1145/3494107.3522772 (chapter 4 and 5)

4. Idris Zakariyya; Harsha, Kalutarage; M. Omar, Al-Kadri, Memory Efficient Fed-
erated Deep Learning for Intrusion Detection in IoT Networks, AI-CyberSec 2021:
Workshop on Artificial Intelligence and Cyber Security, http://ceur-ws.org/Vol-
3125/paper7.pdf (chapter 6)

5. Idris Zakariyya; Harsha, Kalutarage; M. Omar, Al-Kadri, Resource Efficient Fed-
erated Deep Learning for IoT Security Monitoring, Book Chapter in ADIoT, in
27th European Symposium on Research in Computer Security (ESORICS 2022),
pp 122–142, Lecture Notes in Computer Science, vol 13745. Springer, Cham.

130

131

https://link.springer.com/chapter/10.1007/978-3-031-21311-3_6. (chapter 6)

6. Idris Zakariyya; Harsha, Kalutarage; M. Omar, Al-Kadri, Towards a Robust, Effec-
tive and Resource Efficient Deep Learning Technique for IoT Security Monitoring,
Computers & Security, Under Review.

	coversheet_template_THESIS
	ZAKARIYYA 2022 Towards a robust effective
	Abstract
	Declaration of Authorship
	Acknowledgements
	Introduction
	Motivation
	Research Objectives and Approaches
	Research Contributions
	Thesis Structure

	Study Background and Literature Review
	IoT Environment
	Attacks on IoT Devices
	AI Techniques for IoT Security Monitoring
	Decision Tree Ensemble Methods (DTEM)
	Light Gradient Boosting Machine (LGBM)
	Support Vector Machine (SVM)
	Artificial Immune System (AIS)
	Principal Component Analysis (PCA)
	Neural Networks (NNs)
	Fully Connected Neural Network (FCNN)
	Convolutional Neural Network (CNN)
	Datasets
	Performance Metrics

	Detection Algorithms
	Adversarial Attacks against AI
	Federated Learning in IoT Environment
	Chapter Summary

	Lightweight ML Method for IoT Cyber Security
	Resource Reduction Method
	Experimental Procedure
	Experimental Results (Resource Reduction)

	ML Training Optimization
	LGBM for IoT Security Monitoring
	Evaluation
	Results
	Summary

	Effective and Efficient Deep Learning for IoT Security Monitoring
	Deep Learning for IoT Security
	Evaluation
	Results (Effectiveness and Resource Efficiency)
	Chapter Summary

	Robust Deep Learning for IoT Security Monitoring
	Adversarial Robustness Implementation
	Results and Discussion
	Summary

	Federated Deep Learning for IoT Network Security using REDNN
	Baseline Federated Deep Learning (BFDL)
	Resource Efficient Federated Procedure
	Evaluation
	Results and Discussion
	Experimental Results (Simulation)
	Experimental Results (Testbed)
	Summary

	Conclusion
	Future Work

	Bibliography
	Dissemination

