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Abstract 

Unbiased Multidimensional Analysis Reveals Novel Principles of Cortical  

Interneuron Synaptic Organization 

 

Patrick Daniel Dummer 

 

 Neurons display exquisite specificity in synaptic connectivity, but we lack a complete un-

derstanding of neuronal connectivity and the rules that govern it. A major impediment to address-

ing this question lies in the vast diversity of neurons, the small size and large number of synapses 

formed by any given neuron over a wide territory, and the need to study these connections in intact 

tissue. We therefore developed an image-based tool to assess synaptic specificity in tissue sections 

and dissociated culture. We focused on three interneuron subpopulations that target distinct sub-

cellular regions of the post-synaptic cell: soma-targeting basket cells (BCs), axon initial segment 

(AlS)-targeting chandelier cells (ChCs), and distal dendrite-targeting somatostatin cells (SstCs). 

Using mouse dissociated cortical culture as a starting point, we built a machine learning (ML) 

based image processing and analysis pipeline to classify individual presynaptic boutons at scale. 

Supervised ML classification revealed similar subcellular targeting profiles for these interneuron 

populations in slice and culture, indicating that targeting is primarily regulated by cell intrinsic 



 
 

programs. We also observed a remarkable target-dependent laminar organization in vivo. An un-

supervised ML analysis using the same input data not only identified the same three canonical 

targeting classes, but also revealed that these classes are comprised of multiple subpopulations. In 

slice, these synaptic subpopulations displayed distinct laminar organization. In dissociated culture, 

two soma-targeting synaptic subpopulations mapped to target cells with different cellular profiles. 

The six dendrite-targeting synaptic subpopulations were found at increasing distances from target 

soma, suggesting molecularly distinct proximal, medial, and distal dendritic compartments in cul-

ture. Tracking subtype targeting across axonal branches of individual neurons indicated that SstCs 

and BCs utilize distinct targeting strategies in culture that accord with established findings in vivo. 

In sum, our synaptic analysis pipeline revealed novel synaptic subpopulations in interneurons. 

Further analysis uncovered novel aspects of interneuron synaptic biology that, remarkably, are 

retained in culture. 
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Chapter 1: Introduction 

1.1. Synopsis 

1.1.1. Observation 

Neurons display exquisite specificity in synaptic connectivity, but how this specificity arises 

is largely unknown. A major impediment to addressing this question lies in the large number of 

synapses formed by any given cell, their small size, and the need to study these connections in 

intact tissue. In vivo, distinct GABAergic cortical interneuron populations preferentially target 

specific subcellular domains of the target cell (Figure 1.1, A). Somatostatin cells (Sst, blue) target 

distal dendrites, basket cells (BC, red) target soma and proximal dendrites, and chandelier cells 

(ChC, green) target the axon initial segment. 

1.1.2. Hypothesis 

We hypothesized that cortical interneuron subcellular targeting specificity is largely independ-

ent of the broader cortical environment (laminar and areal positioning, afferent connections, etc.), 

and as such would be recapitulated in a dissociated culture setting (Figure 1.1, B). Note that reca-

pitulation implies not only that targeting specificity is intrinsically determined by the presynaptic 

cell, but also that compartmentalization of the target molecules in the correct subcellular regions 

is intrinsically determined by the target cell. 
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1.1.3. Methods 

We developed an image-based tool to assess synaptic specificity in tissue sections and disso-

ciated culture. We focused on three interneuron subpopulations that target distinct subcellular re-

gions of the post-synaptic cell: soma-targeting basket cells (BCs), axon initial segment (AlS)-tar-

geting chandelier cells (ChCs), and distal dendrite-targeting somatostatin cells (SstCs). Using dis-

sociated mouse primary cortical culture as a starting point, we built an image processing and ma-

chine learning (ML) based analysis pipeline to classify individual presynaptic boutons at scale. 

We genetically labeled the presynaptic boutons of these interneuron populations using the same 

Figure 1.1 | GABAergic interneuron subcellular targeting specificity in vivo and model for 
interneuron specificty in culture.  
A) In vivo, distinct GABAergic cortical interneuron populations target specific subcellular do-
mains of the target cell. Somatostatin cells (Sst, blue) target distal dendrites, basket cells (BC, red) 
target soma and proximal dendrites, and chandelier cells (ChC, green) target the axon initial seg-
ment. 
B) We hypothesized that interneuron subcellular targeting specificity is largely independent of 
the broader cortical environment (laminar, positioning, afferent connections, etc.), and as such 
would be recapitulated in a dissociated culture setting. Note that recapitulation implies not only 
that targeting specificity is intrinsically determined by the presynaptic cell, but also that compart-
mentalization of the target molecules in the correct subcellular regions is intrinsically determined 
by the target cell. 
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fluorescent reporter, and visualized the distinct target compartments by antibody staining. Boutons 

can be classified using a supervised ML approach for hypothesis testing or an unsupervised ML 

approach for discovery. Adapting this pipeline to intact tissue allowed us to use the interneurons’ 

targeting in their native context as a standard for direct, quantitative comparison with their target-

ing in a dissociated culture. Thus we were able to quantitatively assess interneuron targeting reca-

pitulation within a spatially randomized environment. Spatial analysis of bouton identities from 

unsupervised classification provided insights into self organization and principles of interneuron 

axonal pathfinding. 

1.1.4. Results 

Supervised classification revealed similar subcellular targeting profiles for these interneuron 

populations in vivo and in vitro, indicating that interneuron subcellular targeting is primarily reg-

ulated by cell intrinsic programs. Unsupervised classification using the same input data not only 

identified the same three canonical targeting classes, but also revealed that these classes are com-

prised of multiple subpopulations. Bouton classes identified by both supervised and unsupervised 

classification displayed laminar and regional enrichment in intact tissue slices. In dissociated cul-

ture, two soma-targeting synaptic subpopulations mapped to target cells with different cellular 

profiles. The six dendrite-targeting synaptic subpopulations were found at increasing distances 

from target soma, suggesting molecularly distinct proximal, medial, and distal dendritic compart-

ments in culture. Tracking subtype targeting across axonal branches of individual neurons indi-

cated that SstCs and BCs utilize distinct targeting strategies in culture that accord with established 

findings in vivo. In sum, our synaptic analysis pipeline revealed novel synaptic subpopulations in 

interneurons. Further analysis uncovered novel aspects of interneuron synaptic biology that, re-

markably, are retained in culture. 
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1.2. Preface 

1.2.1. A connectivity-centric overview of neurodevelopment 

Neurons display exquisite specificity in synaptic connectivity, forming highly stereotyped 

connections between pre- and postsynaptic cells. There are multiple classes of synaptic specificity, 

which are generally defined by the target. A given presynaptic cell can target: 

• specific brain regions (regional specificity)[1-5], 

• specific laminae within these regions (laminar specificity)[6-11], 

• specific cells within these laminae (cellular specificity)[5, 6, 12-16], and even 

• specific subcellular regions of these target cells (subcellular specificity)[17-22]. 

In other words, synaptic specificity is generally classified by the interaction between a presynaptic 

cell and its postsynaptic target, a two-body problem. This ‘two-body’ formulation, however, 

glosses over another important actor in the developmental process: the microenvironment. These 

stereotyped connections do not arise fully formed, but develop over time, unfolding over a series 

of spatially and temporally coordinated developmental stages within a dynamic microenviron-

ment[15, 21-26]. 

Generally, neurodevelopment is split into the following stages (Figure 1.2): 

1. Neuronal Birth 5. Synaptic target recognition 
2. Migration 6. Synaptogenesis 
3. Axodendritic polarization 1 7. Synapse maintenance/elimination 
4. Neurite elaboration  

 
1 We are using the term ‘axodendritic polarization’ to refer to the developmental process wherein a neuron specifies 
dendrites and axon as separate compartments. This step is frequently referred to as ‘neuronal polarization’ or simply 
‘polarization,’ and generally occurs between migration and neurite elaboration. As will be discussed, however, differ-
ent polarization and compartmentalization events occur in all the above-mentioned developmental stages. Directed 
migration, for example, requires cellular polarization. For this reason, it is clearer to refer to this stage as ‘axodendritic 
polarization’ and reserve the terms ‘polarization’ and ‘compartmentalization’ for general cellular and molecular pro-
cesses wherein a chemical seeding event leads to localized molecular enrichment zones, and thus a polarized subcel-
lular region/compartment. 
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Figure 1.2 | Stages of neurodevelopment (standard order).  
The neuronal development is typically partitioned into seven sequential stages: 1) neurogenesis, 
2) migration, 3) axodendritic polarization, 4) neurite elaboration (which includes axonal and den-
dritic growth, branching, and guidance), 5) synaptic target recognition, 6) synaptogenesis, and 7) 
synapse maintenance and elimination (which includes activity-dependent synaptic plasticity and 
synaptic pruning). 

 

Although these stages are presented in a specific order, it is important to recognize that 1) this is 

not necessarily the developmental trajectory for every neuronal connection, 2) these stages are 

dynamic, and often overlap, and 3) distinct neuron types rely more heavily on certain stages than 

others as they form stereotyped connections. Cortical pyramidal neurons, for instance, tend to fol-

low the trajectory as presented, with a heavy bias on axon pathfinding for ‘proper’ regional con-

nectivity. Martinotti interneurons, on the other hand, leave a trailing process as they migrate 

through their target region to their final settling location[27]. In other words, Martinotti cells couple 
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synaptic targeting, axodendritic polarization, neurite elaboration, and migration into a single de-

velopmental process. For this reason, from a connectivity-centric perspective, the best means of 

organizing neurodevelopment is not through these standard developmental stages, but rather by 

focusing on the three principal actors (presynaptic cell, target cell, and the environment), and how 

they interact to form this stereotyped connectivity. From this perspective, synaptic target recogni-

tion is a critical event in the development of neuronal connectivity. During this stage, neurons 

select specific synaptic partners out of all possible partners2 (reviewed in [28-31]), a process that 

involves physical contact between putative partner cells. This physical interaction is significant: 

successful targeting establishes a prolonged conduit of transcellular communication, and therefore 

a central cell-cell interaction that did not exist previously. Since the operative cellular interactions 

prior to contact are so distinct from those where contact is established, it is conceptually helpful to 

distinguish stages prior to target selection from those after (Figure 1.3). 3  

Pre-contact, the presynaptic and postsynaptic cells develop independently along parallel paths 

(Figure 1.3, left). From a teleological standpoint, the problem can be reduced to 1) decreasing 

physical proximity between potential partners such that contact can occur within critical temporal 

windows, and 2) identifying the ‘appropriate’ partners for synapse formation. Thus, the problem 

at this stage is primarily spatiotemporal in nature: having the right molecules at the right place at 

the right time. This problem is solved by neuronal migration, neurite elaboration, and subcellular 

compartmentalization. Here, the primary interaction is between the cell and its microenvironment, 

 
2 Although partner selection is often presented as a presynaptic cell ‘choosing’ a postsynaptic partner, at a molecular 
level synaptic target recognition is a bidirectional process. Ascribing ‘choice’ to one partner or the other is therefore 
a narrative construct. We discuss current models for this process in greater detail below. 
3 If we were to provide a terminology to distinguish the stages before from those after contact, ‘pre-synaptic’ and 
‘post-synaptic’ would be an obvious choice. Alas, they’re taken. Antesynaptic, from Lt. ante-, ‘before,’ and metasyn-
aptic from Gk. meta-, ‘after’ would work, but is also a bit confusing. Antesynaptic is a bit too close to antiseptic, and 
meta- is now more commonly understood as above. Funnily enough, tango is latin for ‘contact,’ so presynaptango 
and postsynaptango would work. A fun little dance, but also a bit of a mouthful. For these reasons, we will refer to 
these as ‘pre-contact’ and ‘post-contact.’ 
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which functions as a framework, or molecular coordinate system, for these processes. This envi-

ronmental framework can act permissively, as a passive bystander within which pre-established 

cell intrinsic programs simply unfold, or instructively, inducing the cell (or subcellular compart-

ment) to take on a specific identity. Throughout this process, the neurons are sensing their envi-

ronment to identify ‘appropriate’ synaptic partners out of all possible partners. These distinct in-

teractions imply specific mechanisms for establishing and regulating specific synaptic connec-

tions, which we will discuss below.  

Post-contact, the interactions change (Figure 1.3, right). In addition to the previously men-

tioned cell-environment interactions, there is also direct, transsynaptic signaling between presyn-

aptic and postsynaptic cells. This change in interactions marks an important departure from the 

Figure 1.3 | Stages of neurodevelopment (connectivity-centric view).  
The stages of neuronal development can be partitioned into stages prior to contact and synapse 
formation between the presynaptic and postsynaptic cells (left) and those after this connection has 
been established (right). During both stages, the presynaptic and postsynaptic cells interact with 
their respective microenvironments, and each of these actors undergoes intrinsic signaling. Pre-
contact, the presynaptic and postsynaptic cells develop independently. From a teleological stand-
point, the primary goal at this stage is to decrease proximity between ‘proper’ synaptic partners. 
Post-contact there is a sustained interaction between the presynaptic and postsynaptic cells. The 
cells can now interact causally and develop synergistically. Teleologically, the primary question at 
this stage is synapse existence and identity. 
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prior state, introducing distinct mechanisms for regulating synaptic connectivity. Following con-

tact, the problem can be reduced to an existential question for the synapse itself: formation, stabi-

lization, growth, or elimination. The first step is identifying whether the contacted cell is an ‘ap-

propriate’ synaptic partner. Positive identification initiates synaptogenesis, a process of transsyn-

aptic communication and subcellular compartmentalization that will define the electrical, morpho-

logical, and molecular characteristics of the synapse itself. That is, post-contact the primary ques-

tion is concerned with synapse existence and identity.  

1.2.2. Organization of this introduction 

The primary question we ask in our research is the extent to which a precisely patterned envi-

ronmental framework is required for cortical interneuron subcellular connectivity. In order to cover 

this large and complex topic, we will first define the principle actors in our research by discussing 

the cerebral cortex and its development. This will allow us to introduce the cells of interest, their 

developmental trajectories, and their connectivity. It will also allow us to discuss the environmen-

tal framework within which these connections typically arise.  

Since our research focuses on subcellular targeting specificity, subcellular compartmentaliza-

tion is an important topic to expound upon. Moreover, a careful reading of the above discussion 

of synaptic connectivity will note that subcellular compartmentalization is a common feature of 

both the pre- and post-contact stages of neurodevelopment. Indeed, it is a common feature of cell 

biology. We will therefore discuss this subject in depth, specifically from the framework of the 

three acting parties: presynaptic cell, postsynaptic cell, and the cellular microenvironment. 

Having covered all the relevant components, we will then discuss current models for how 

specific connections between them arise. We will primarily focus on subcellular specificity, but 

include other forms of synaptic targeting specificity when relevant. We will discuss these models 
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by focusing on the three acting parties. As noted above, the cellular and molecular mechanisms 

underlying subcellular targeting specificity can be partitioned by pre-contact and post-contact pro-

cesses. First, we discuss pre-contact mechanisms, and principally axon guidance to specific sub-

cellular targets. Next discuss we discuss current models of synaptic target recognition, synapse 

structure, and synaptogenesis. Finally, we discuss post-contact models of synaptic specificity. It is 

important to note that the pre- and post-contact mechanisms are not mutually exclusive in deter-

mining the final, stereotyped connectivity. The developmental trajectory of a neural connection 

can harness both classes of mechanisms to arrive at a specific, stereotyped connectivity. Different 

model systems often display a bias toward one or the other. We will therefore order the models 

based on the relative emphasis on pre- and post-contact mechanisms in determining subcellular 

targeting specificity. 

We end with a discussion of relevant ex vivo experiments that help with background context 

for the experiments undertaken here. We tackle this from a conceptual standpoint, distinguishing 

the dissection and dissociation stages, and how they can be utilized to ask scientific questions. 

Finally, we will provide a brief summary of what was discussed and a formalized hypothesis 

for our intervention.   
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1.1 Cortical Development 

In the cerebral cortex, neurons are generally divided into two classes[32-40]: 1) glutamatergic 

excitatory neurons, which project their axons long distances and form synapses on target cells in 

other cortical regions, other parts of the brain, other parts of the central nervous system (CNS), 

and even outside of the CNS, and 2) GABAergic inhibitory neurons, which project locally and 

primarily form synapses on target cells within the same cortical region, often restricting their ax-

onal trees to specific subregions, targets within a specific layer of the subregion, and even specific 

subcellular regions of the target cell. 

Glutamatergic and GABA-ergic cells have distinct developmental origins and trajectories[23, 

39, 41-43] (Figure 1.4). Glutamatergic neurons are born locally, within the cortical region that they 

will inhabit[40]. They originate either directly or indirectly from asymmetric division of radial glial 

cells in the ventricular zone at the base of the nascent cortex. They then climb the radial glial fiber 

past their earlier born cousins until they reach the cortical surface, where they settle[40, 43, 44]. Since 

different types of glutamatergic neurons are born in a well-defined sequence, this “inside-out” 

birth/migration pattern leads to the characteristic layering pattern of the cortex (reviewed in [23, 41]). 

Once settled, the excitatory neurons send out their axonal projections, synapsing onto distant tar-

gets (reviewed in [45]).  

GABAergic cells have a very different origin. Whereas glutamatergic projection neurons are 

born locally within the cortex, cortical GABAergic neurons are born subcortically, in embryonic 

structures: the medial ganglionic eminence (MGE) or the caudal ganglionic eminence (CGE)[39, 41, 

46, 47]. They then undergo a long, tangential migration into the cortex along two streams until they 
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reach the cortical region they will inhabit[46-48] (Figure 1.4). Once in the appropriate region. they 

migrate radially into the layer where they will settle, send out their axonal projections, and synapse  

Figure 1.4 | Cortical develop-
ment stages prior to circuit in-
tegration.  
A) Neurogenesis occurs via 
asymmetric division of radial 
glial progenitors near the ven-
tricle. Glutamatergic (blue) and 
GABAergic (red) neurons are 
born in spatially distinct re-
gions of the embryonic telen-
cephalon. Glutamatergic neu-
rons are born within the cortex 
itself, whereas GABAergic 
neurons are born subcortically 
in the ganglionic eminences. 
Medial ganglionic eminence 
(MGE) derived cortical inter-
neurons from Nkx2.1-express-

ing progenitors. B) MGE-derived neurons fated for subcortical regions maintain Nkx2.1 expres-
sion, whereas those fated for the cortex do not. The latter migrate tangentially into the cortex 
along two streams. C) Glutamatergic neurons (blue) migrate radially along the radial glial fiber 
to the surface of the cortex. Later born cells migrate past earlier born ones before settling, yielding 
an ‘inside-out’ laminar organization. After migrating tangentially into the cortical region they 
will inhabit, GABAergic neurons (red) migrate radially before settling into specific layers. Figure 
adapted from Tyson & Anderson, 2014. 

 

onto appropriate target cells[47, 49]. These developmental trajectories occur at approximately the 

same time, with GABAergic interneuron entry into the cortex being slightly delayed[37, 40, 48, 50-55]. 

This delay is noteworthy, however, since it means that there is already a nascent structure and 

extended identity to the cortex when interneurons settle into place, send out projections, and syn-

apse with their targets. 

First, we discuss the diversity of cortical interneurons, including a brief summary of their 

molecular expression profiles and connectivity. Interneuron connectivity is covered in greater 
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depth later. Next, we examine cortical interneuron differentiation. We use this framework to define 

the context of our primary question: what role does a precisely patterned environment play in 

shaping cortical interneuron identity and connectivity? Given this framework, we next discuss the 

organization of the cortex. We begin by discussing its laminar organization, from both the cellular 

and synaptic standpoints. Next, we use glutamatergic neuron regional differentiation as a frame-

work to discuss the complex and dynamic molecular environment into which interneurons migrate 

and form connections. We then use cortical regional connectivity to discuss how activity shapes 

regional identity. Finally, we examine the relationship between cortical laminar and regional or-

ganization, specifically focusing on what occurs when lamination is disrupted. We conclude with 

a brief summary of this section. 

1.2.3. Cortical Interneuron development 

1.2.3.1. Diversity of cortical interneurons 

Cortical interneurons are an incredibly diverse population. Molecular expression data from 

single cell RNA sequencing (scRNAseq) experiments places estimates at roughly 60-120 distinct 

cell types depending on resolution, regions sampled, and dataset size[35, 56-59]. 4 Despite this incred-

ible diversity, these cell types can be organized hierarchically based on expression patterns, thus 

forming a cell type taxonomy that generally tracks with developmental trajectory. As noted above, 

the primary division in the cortex is between glutamatergic and GABAergic cells. The GABAergic 

population can be broken down into two distinct neighborhoods (or groups), which reflect their 

different developmental origin, namely the caudal and medial ganglionic eminences (CGE and 

 
4 For the sake of consistency, we use Yao et al., 2021 as a reference, which is the most the most comprehensive dataset 
to date and places the total number of cortical and hippocampal GABAergic interneurons at 119. 
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MGE, respectively). The majority of cortical interneurons derive from the MGE (~70% of all in-

Figure 1.5 | The MGE lineage of cortical interneurons.  
Top: A dendrogram of the MGE lineage of cortical interneurons based on scRNAseq expression 
profiles. Middle: Regional enrichment of specific subtypes. Bottom: gene expression levels of se-
lected markers. Sst and PV (Pvalb) are at the top of the expression data. The BC and ChC lineages 
from the PV class are denoted within the dendrogram. Sst are largely dendrite-tareting interneu-
rons and Sst-Chodl cells are GABAergic projection neurons. MGE-derived non-PV axo-axonic 
cells cluster with the CGE popula-tion and are not shown. Right: Overview of sampled brain re-
gions rendered in Allen CCFv3. Region abbreviations can be found at 
https://doi.org/10.1016/j.cell.2021.04.021. Adapted from Yao et al., 2021. 

https://doi.org/10.1016/j.cell.2021.04.021
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terneurons, 62 subtypes5)[60]. Since this population is the focus of our work, we will only discuss 

this branch of GABAergic neurons (Figure 1.5). MGE-derived neurons can be partitioned into PV-

expressing (~60%, 16 subtypes) and Sst-expressing (~40%, 45 subtypes) interneurons, though 

there is a small population (<10%, ~6 subtypes)6 that expresses both[33, 61] or neither (Unknown 

%, 5 subtypes)[15, 31, 35, 37, 59, 60].  

Subcellular and laminar targeting are often used as a classification method following this di-

vision because 1) it tracks with other classification methods such as marker expression, intrinsic 

physiology, and morphology[53], and 2) these well-studied characteristics are only now being 

mapped onto the more recently recognized taxonomic subtypes[30, 36, 62]. A summary of the major 

classes of PV and Sst neurons is shown in Figure 1.6. 

The PV population accounts for the majority of MGE interneurons. All PV-expressing inter-

neurons are fast-spiking cells, though there are subtle differences in physiological profiles between 

different PV subtypes[63]. The PV+ population is generally divided into three distinct cell classes 

based on targeting profile[15, 59, 61, 64]. The largest of these classes is basket cells (BCs), which pri-

marily target soma and proximal dendrite targeting. BCs account for 70-80% of all MGE-derived 

interneurons (11 subtypes). The next best-studied group consists of chandelier cells (ChC), (10%, 

1-2 subtypes). ChCs target the axon initial segment (AIS) of the postsynaptic cell, forming char-

acteristic ‘cartridges’ that resemble candlesticks. These cells tend to inhabit L2/3, but can be found 

in deeper layers[62]. The remaining PV cells are translaminar (presumed dendrite-targeting) cells 

 
5 It is essential to note that these percentages can vary between different studies and may be influenced by factors such 
as brain region, age, and experimental techniques used for quantification. This applies not only to the percentage of 
MGE-derived neurons, but also to all that follow within this section. 
6 The percent of total MGE interneurons expressing both PV and Sst is from Lee et al., 2010. The number of subtypes 
that expressing both PV and Sst is based on data from the Sst-IRES-Cre;Pvalb-T2A-Dre mouse published in Yao et 
al., 2021. Additional data from this study show the Sst-IRES-Cre and Pvalb-T2A-Dre drivers are likely leaky. The 
total number of interneuron subtypes labeled by this mouse is 20, and includes subtypes not labeled by the Pvalb-
IRES-Cre mouse alone. We therefore only included cell types that accounted for at least 5% all labeled cells from this 
mouse and were witnessed in both the Pvalb-IRES-Cre and Sst-IRES-Cre mice. 
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(10%, unknown subtypes). These cells likely express both PV and Sst[9, 37], but are generally poorly 

studied, in part due to technical difficulties with combinatorial labeling strategies[65]. 

Figure 1.6 | Schematic sum-
marizing the major MGE-de-
rived cortical GABAergic in-
terneurons based on their con-
nectivity patterns.  
Left, the PV population is com-
prised of soma-targeting bas-
ket cells, AIS-targeting chande-
lier cells, and translaminar 
cells that (presumably) target 
dendrite. Right, the Sst popula-
tion is primarily dendrite tar-
geting. Martinotti cells (MCs) 
target pyramidal neuron distal 
dendrites in L1, whereas non-

Martinotti cells (NMCs) do not. The Sst-Chodl population are projection neurons that target ex-
tracortical regions. These cells comprise a small subset of the total Sst population. Figure adapted 
from Llorca & Deogracias, 2022. 

 

The Sst+ population comprises approximately 40% of MGE-derived cortical neurons. Despite 

being a minority population overall, it accounts for the majority of MGE interneuron diversity (45 

subtypes). Notwithstanding this heterogeneity, all Sst cells types primarily target dendrite. Sst cells 

are generally divided into three distinct cell classes based on their targeting profile: Martinotti 

Cells (MCs), Non-Martinotti Cells (NMCs), and long-range projection cells (Sst-Chodl)[12, 31, 63, 66-

68]. The best studied class is MCs (~60%, 11 subtypes), which reside in deeper layers and form 

translaminar connections onto pyramidal neuron distal dendritic tuft in L1[68]. Recent studies have 

delineated MCs into three distinct groups based on their morphology and settling position. These 

consist of L2/3 prototypic MCs (2 subtypes), L5 ‘fanning-out’ MCs (≥4 subtypes), and L5 ‘T-

shaped’ MCs (5 subtypes)[5, 9, 65]. NMCs are a diverse set (~35%, 15 subtypes) of locally-projecting 

cortical interneurons ,that do not target L1[12, 31, 65]. These cells often inhabit L4 and L5 and can 
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display region-specific targeting patterns. Sst-Chodl cells (4.5%, 2 subtypes) are long-range pro-

jecting neurons that target extracortical regions[31, 33, 53, 61]. Sst-Chodl cells are not technically in-

terneurons, but we include them here for completeness. The morphology and connectivity of the 

remaining Sst populations (17 subtypes) have not been mapped. Based on cell expression profile 

similarities, most will likely fit into the MC or NMC classes.  

As noted above, there is a minority population of MGE-derived neurons that express neither 

PV nor Sst. At least one subtype within this population resembles chandelier cells. These cells 

targets AIS and form characteristic cartridges, but tend to inhabit deeper cortical layers and do not 

have a fast-spiking pattern[12, 35, 37, 53]. Since canonical chandelier cells are fast-spiking PV cells 

that inhabit L2/3, we refer to all AIS-targeting cells as ‘axo-axonic,’ and reserve the term ‘chan-

delier cell’ PV-positive population.  

To summarize, MGE interneurons can be broadly divided into PV and Sst cells, with a small 

amount of overlap. PV consist of soma-targeting BCs, AIS-targeting ChCs, and (poorly-studied) 

translaminar cells that likely also express Sst. All cells within the Sst population preferentially 

target dendrite. They are distinguished as L1-targeting MCs, NMCs that do not target L1, and Sst-

Chodl that project outside of the cortex[31, 69, 70]. Thus, despite the incredible diversity of MGE 

interneurons, there are fundamental and consistent organizing principles. 

1.2.3.2. 1.1.1.2 Cortical interneuron specification and differentiation 

The dominant model of cortical interneuron differentiation was proposed by Fishell and 

Kepecks, 2020[71]. They propose that interneuron differentiation proceeds through a three-stage 

process. We have added an additional stage (0) to define the ground state prior to specification. 

Here is a summary of these stages: 
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0. Progenitor domain (unspecified): Interneurons are born from cycling progenitors within 

the MGE and CGE. Although a small number of regionally-expressed genes can be de-

tected within the proliferative zones at different times, cardinal class identities are gener-

ally not apparent at this stage. Each ganglionic eminence does, however, have a unique 

signature[72]. 

1. Cardinal Specification: Longitudinal genome analyses reveal that interneuron subtype 

identities emerge at a transcriptional level around the time interneurons become 

postmitotic. Four major cardinal classes are identified based on the expression of specific 

markers: PV, SST, VIP, and Reelin. Additionally, minor cardinal types are recognized, 

suggesting a complex diversity within interneurons. An interneuron’s cardinal class can be 

predicted based on where and when it was generated. This stage limits the potential sub-

types the cell can differentiate into based on a general class identity. 

2. Definitive Specification: This stage involves the migration and settling of interneurons, 

where extrinsic cues shape subtype identity. Migration pathways are hypothesized to be 

generic (MZ or SVZ), while cues within layers or areal territories refine interneurons to 

specific local environments. Local cues encountered during migration and settling influ-

ence interneuron morphology, connectivity, and cell fate. Identity is progressively speci-

fied during subsequent developmental stages based on an interplay between intrinsic ex-

pression profile and extrinsic cues. Ever finer limits are placed on its fate, until subtype 

identity is irreversibly determined at the end of this stage. 

3. State Specification: Interneurons adjust their function based on local circumstances. Tran-

scriptomic analyses reveal discrete transcriptional states within interneuron subclasses. 

Some interneurons undergo lasting but reversible changes in transcriptional states based 
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on local circuit demands. Interneurons incorporate into circuits, adapting morphology and 

intrinsic properties according to local circuit demands. Extrinsic cues, possibly activity-

coupled processes, influence synaptic properties and gene expression profiles, ensuring 

interneuron plasticity and functional integration within cortical networks.  

This model is based on two extreme paradigms for conceptualizing how the cellular environment 

influences cellular identity.  

• Progenitor specification: the environment simply potentiates an already intrinsically de-

termined fate. Fate is specified by cell intrinsic programs. 

• Progressive specification: the environment acts instructively on a more plastic identity to 

determine the cell’s ultimate fate. Fate is specified by the environment. 

To be reductionist, the above model places a dynamic bridge between these two extremes, leaving 

a bit of wiggle room at either end. By ‘wiggle room’ we just mean that the authors do not com-

pletely embrace either of these extreme positions. Cardinal classification is an intrinsically deter-

mined fate, but it is not rigidly determined. There is a fair amount of plasticity, as outlined by the 

Definitive Specification stage. But this plasticity operates within specific bounds: the ultimate fate 

is limited to a designated set of subtypes. Similarly, as outlined by the Definitive Specification 

stage, the authors propose that interneurons never acquire a rigid fate. Their ability to reversibly 

adjust to local circumstances proves that they are plastic. But again, this plasticity operates within 

bounds: once a specific subtype identity is assigned, it is unlikely to be abandoned. In other words, 

there is a gradual narrowing of potential states over the course of differentiation. This is the ‘dy-

namic bridge,’ namely, an attempt to incorporate Waddington’s epigenetic landscape into a real-

world model of cellular differentiation.  
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The epigenetic landscape is a conceptual framework used to describe the development and 

differentiation of cells during embryogenesis[71, 72] (Figure 1.7, A). It visualizes the process of 

cellular differentiation as a metaphorical landscape, where cells are represented as marbles rolling 

down hills and valleys. The landscape consists of ridges, valleys, and basins, with each represent-

ing different developmental pathways or cell fates. The hills and valleys represent the stability of 

cellular states, with valleys being stable and representing differentiated cell types, while hills rep-

resent unstable states. The concept highlights how cells can transition between different states or 

developmental pathways, influenced by various factors such as genetic regulation, environmental 

cues, and cellular interactions. Waddington proposed that during development, cells undergo a 

process called canalization, where they become increasingly constrained towards specific devel-

Figure 1.7 | The developmental landscape reflects attractor dynamics.  
A) Diagram showing the landscape of development as the energy function of an attractor gene 
regulatory network, with cells rolling down through bifurcating valleys. At the bottom, the basins 
of attraction provide robustness to external perturbations and confer distinct stability properties, 
depending on the height of the energy barrier between interneuron subtypes. B) Schematic show-
ing how distinct transcription factor manipulations generate distinct development landscapes, 
reducing barriers between attractor states and/or making them unstable. Abbreviations: NGF, 
neurogliaform; PV, parvalbumin; SST, somatostatin; VIP, vasoactive intestinal polypeptide. From 
Fishell & Kepecs, 2020. 

 



20 
 

opmental trajectories as they differentiate[55, 70]. The epigenetic landscape provides a visual meta-

phor for understanding how cells make decisions during development and how these decisions are 

influenced by both intrinsic and extrinsic factors. 

Given this framework, the question becomes, ‘what does the epigenetic landscape actually 

look like during this protracted developmental process?’ That is, which interneuron features are 

determined at which developmental stage? Based on comparative analysis of cellular expression 

profiles across development, it very likely resembles the dendrogram presented in Figure 1.5[25, 35, 

37, 56-58, 73, 74]. There are three major outstanding questions7, which, admittedly, the interneuron field 

is working very hard to address:  

• How does this dendrogram map onto the developmental timeline?  

• How are these molecular expression profiles related to interneuron features? 

• What shapes this landscape? (and by extension, the probability for an interneuron to adopt 

specific features?). There are two aspects to this question based on the intrinsic/extrinsic 

dichotomy: 

o How do intrinsically expressed molecules shape this landscape? 

o How does the cellular environment shape this landscape? 

The question addressed in this study fits best within the third camp, but really touches on all 

three. Currently, our toolbox for addressing these questions consists of (among others) single cell 

gene expression profiles, genetic manipulations, and transplantation studies. Examples of insights 

into the cell intrinsic component of this question using genetic manipulations are shown in Figure 

1.7, B. Our study is primarily interested in the role of the environment. 

 
7 This list is almost certainly incomplete. 
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Historically, transplantation has been the primary tool for addressing this question. Specifi-

cally, transplant experiments demonstrate the impact of local cues on interneuron migration and 

fate determination. The primary approach here is heterotopic transplantation, where cells or tissues 

are removed from their original location (donor site) and implanted into a different location (host 

site). We can therefore gain insights into what is known about this question from heterotopic trans-

plantation studies. For cortical interneurons, this typically consists of transplanting from cortex to 

hippocampus, and vice versa. When this is done using a driver line that labels the entire MGE 

lineage, the proportionate composition of donor cell identities tended to match that of the host 

region[75]. Thus, the final environment appears to play a major role in determining interneuron 

identity. Of note, this conclusion was based on staining for PV, Sst, or nNOS of genetically labeled 

donor tissue in an unlabeled host. nNOS is a marker of the Sst Chodl class, so this approach as-

sessed the proportionate composition of three cardinal classes within the MGE lineage. These 

findings were supported by electrophysiology profiles. Connectivity was not investigated, so we 

are blind to this feature. These data support a model wherein the cellular microenvironment is in 

part responsible for sculpting the final interneuron composition, diversity, maturation, and prop-

erties. But what does it tell us about interneuron differentiation? At face, these data appear to 

support that interneurons are very plastic: the cells intrinsically adjust their identity in response to 

the new environment. But we should proceed with caution. As noted by the authors, there are 

several mechanisms that could account for these findings. These data could be explained by a 

selective differentiation model, wherein multipotent progenitors give rise to specific cardinal clas-

ses, such that a generically-fated PV or Sst interneuron acquires its terminal fate through inductive 

environmental cues. According to this model, subtype specificity is determined after these cells 
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settle into their final location. Alternatively, these data could be due to selective survival of inter-

neurons subtypes based on input connectivity[37, 76]: different host regions may be capable of sup-

porting different loads of interneuron subtypes (discussed below). This possibility is made even 

more plausible by the observation that although the cortex and hippocampus display differences 

in GABAergic subtypes[37], they are not identifiable using these molecular markers. This alternate 

model implies that interneuron subtype identity is already determined by the time they reach the 

cortex (or hippocampus). The new environment does not change cellular identity, it simply selects 

different subpopulations for survival. 

Heterotopic transplantation experiments of chandelier cells by Ishino and colleagues partly 

address this question[77]. Here, the authors used different genetic approaches to selectively label 

cortical (cChCs) and hippocampal (hChCs) chandelier cells within their progenitor domains. They 

then transplanted labeled donor MGE (for cChCs) into host hippocampus or labeled donor hippo-

campus (for hChCs) in host cortex. In both cases, the transplanted cells retain AIS specificity but 

adopt different morphological, physiological, and molecular expression profiles that match ChCs 

native to the host region. The authors conclude that local cellular environment shapes phenotypic 

properties, in accordance with a progressive specification model. Like the previously-described 

experiment, the hChC hippocampus-to-cortex experiments suggests that terminal features are de-

termined by the terminal environment. The cChC MGE-to-hippocampus experiment provides 

much more insight. Here, the labeled cells are extracted from their progenitor region and trans-

planted into a host region that was never a migratory destination. This skips the intervening tan-

gential migration step entirely, excluding any effects this intermediate environment may have on 

cellular differentiation. What can we conclude from this experiment? It sheds light on which fea-
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tures are acquired during cardinal specification, which are impacted by the local cellular environ-

ment after settling, and the relative importance of the environment during tangential migration in 

acquiring these features. For chandelier cells, the preference to target AIS is determined at birth. 

It is a cardinal feature, and is not acquired during tangential migration. In contrast, features asso-

ciated with synaptic functioning, like electrophysiological profile, are determined by the terminal 

environment. Similarly, morphology (beyond targeting preference) is not a cardinal feature: spe-

cific morphologies are adopted to suit the terminal environment, based on the spatial organization 

of its targets. These studies suggest that regional positioning of interneurons is an important factor 

in specifying certain aspects of identity, as the environment in part sculpts cellular identity through 

a process of progressive specification. It will be interesting to see whether this is a general principle 

of interneurons. 

Although the cortex and hippocampus display region-specific GABAergic cell types[51], these 

cells are closely related. Both regions have evolved to support similar interneuron subtypes. These 

environments are populated by similar glutamatergic (pyramidal) cell types and have a similar 

structural organization. Moreover, interneurons tend to position themselves ‘appropriately’ near 

their synaptic targets[78, 79], even when the these targets are inappropriately positioned[73, 76] or the 

interneurons are transplanted[40, 43]. In other words, the local cues within the microenvironment of 

these different brain regions may not actually be so different. We may be witnessing subtle differ-

ences in cellular identity because there are only subtle differences between these environments. In 

the following subsections on cortical development we will discuss the cortex with an aim to further 

define this ‘environment,’ with a particular focus on its spatial organization. 
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1.2.4. Laminar distribution of cortical neuron types and their connections 

Our primary question concerns the impact of the local environment on cortical interneuron 

connectivity. At its core, this cortical environment is the cellular and molecular framework within 

which cortical interneurons differentiate and form their connections. It is therefore important to 

discuss how the cortex is organized and how cortical interneurons are distributed within it. In 

general, the cortex can be broken into two distinct axes of organization: laminar (or layered) or-

ganization and regional (or areal) organization. We discuss both in turn. 

1.2.4.1. 1.1.2.1 Corticogenesis and laminar identity 

The level of spatiotemporal organization within the cortical environment is exemplified by 

the developmental trajectory of glutamatergic neurons during corticogenesis (reviewed in [22, 23, 80-

85]) (Figure 1.8). Glutamatergic neurons are born through asymmetric division of radial glial pro-

genitor cells (RGCs) in the ventricular zone (VZ) of the nascent cortex. These RGCs send a radially 

oriented glial fiber to the cortical surface, thereby connecting the basal and superficial surfaces of 

the nascent cortex through a cellular scaffold (Figure 1.8, A). Newly born daughter neurons utilize 

this glial fiber to migrate up to the marginal zone (MZ) near the cortical surface. Cajal-Retzius 

neurons (CRNs) are among the earliest born neurons generated during this process [85-87]. They 

migrate to the surface and settle in the MZ in response to signals from the meninges[43], 8 then 

secrete specific molecules that chemically polarize the cortical sheet along the superficial-to-deep 

axis. These chemical gradients serve as spatial cues for the ordered migration and compartmental-

ization of subsequent neurons[83, 88-94]. We discuss the role of reelin, an ECM protein secreted by 

CRNs, in cortical spatial patterning in greater depth below. Suffice it to say, these gradients serve 

 
8 Non-cortical CRNs also migrate into the cortex, settling in the MZ beside cortical CRNs. 
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as critical cues for coordinating glutamatergic neuron migration. Newly-born neurons will migrate 

up the radial glial fiber past earlier-born neurons before they detach, and settle near the MZ. Since 

the identities of the neuronal daughter cells proceed in a largely predictable sequential order, this 

highly coordinated birth-and-migration process ultimately leads the inside-out organization of the 

cortex, where earlier born cells inhabit deeper layers and later born cells inhabit more superficial 

ones (Figure 1.8, B). These neurons, then, form a (largely) rigidly ordered column of cells, with 

neurons of distinct identities inhabiting distinct regions along the radial axis. According to the 

Figure 1.8| The evolution of corticogenesis: inside-out birth and migration patterns yield on-
togenicaly-related cortical columns.  
A) Three-dimensional reconstruction of postmitotic neurons migrating along radial glial fibers. 
Radial glial cells serve as both neural progenitors and scaffolds for migrating neurons during 
corticogenesis. Neuronal daughter cells migrate along radial glial fibers to reach their final posi-
tions in the cortex. As a result, neurons generated from the same radial glial cell tend to occupy 
the same radial column, contributing to the organization of cortical layers. B) Illustration of the 
dynamics of major developmental events and diversity of progenitors involved in the develop-
ment of cerebral neocortex. Neurons are generated in the ventricular zone at the base of the cortex 
and migrate outward towards the pial surface, forming distinct layers in an inside-out sequence. 
The earliest-born neurons form the deepest layers of the cortex, while later-born neurons migrate 
past them to occupy more superficial layers. This sequential migration results in an organized 
cortical architecture, with layers arranged according to the birthdate of neurons. C) Representa-
tion of the radial unit hypothesis, which proposes that this process of birth at the ventricular zone 
(VZ) and radial migration toward the marginal zone (MZ) yields ontogenically-related columns 
of glutamatergic neurons. Adapted from Kolk & Rakic, 2022. 
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radial unit hypothesis (Figure 1.8, C), since daughter neurons are most likely to utilize the glial 

fiber of their mother cell, all of the cells in any given cortical column tend to be ontogenically 

related[40, 43]. In addition, glutamatergic neurons within a column tend to form connections with 

other neurons in the column, forming a functional unit within the cortex. Thus, precisely-patterned 

spatial and temporal cues lead to a highly organized cortical environment. Tangentially migrating 

GABAergic interneurons enter into this environment as it is forming, taking up specific laminar 

positions after migrating radially into these locations. Thus, the cortical environment within which 

both GABAergic interneurons and glutamatergic projection neurons terminally differentiate and 

establish their connections is highly structured. 

1.2.4.2. 1.1.2.2 Laminar distribution of cortical neuron types and their connections 

A hallmark of cortical structure is its stratification into layers. The cortex is conventionally 

divided into six distinct layers (L1-L6) plus the white matter (WM). These layers are organized 

sequentially from superficial to deep. Due to its small size, L2 is often grouped with L3 as L2/3 in 

mouse. Thus, the standard order is: L1 > L2/3 > L4 > L5 > L6. 

As a result of their ‘inside-out’ development pattern, glutamatergic neurons are rigidly strati-

fied by cellular identity[22, 23, 33, 80-83, 95]. Thus, cortical layering is generally based on the stereotyped 

organization of these cells rather than their GABAergic counterparts. Historically, two methods 

have been used to define these layers: resident cellular identity and stereotyped connectivity. Re-

garding the first method, early studies based laminar distinctions on differences in soma densities 

and morphologies (Figure 1.9, left panel)[22]. This general schema has subsequently been supported 

by numerous studies showing distinct molecular expression patterns across these laminae[33, 37, 95, 

96]. Regarding connectivity, each of the different cortical layers displays distinct, stereotyped con-

nectivity patterns (Figure 1.9, right panel)[6, 97].  In addition to the long-range afferent and efferent 
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projections noted below, the glutamatergic 

cells within each of these layers also form ste-

reotyped local translaminar connections, 

which result in intracolumnar microcir-

cuits[60, 98-100]. As with cellular identity, the 

connectivity patterns tend to be rigidly strati-

fied based on the stereotyped positioning and 

morphologies of glutamatergic neurons. Neu-

rons have complex arbors that often extend 

beyond their layer of origin. As discussed be-

low, since these other layers comprise dis-

tinct molecular environments, this often re-

sults in these cells having molecularly dis-

tinct subcellular compartments at different 

layers. Thus, the presynaptic and postsynap-

tic cellular identities of synapses located at a 

specific layer do not necessarily correlate 

with the most prominent soma at that layer: a 

presynapse in L1 does not necessarily target or derive from an L1 resident cell. Similarly, a neuron 

in L5A does not necessarily target other cells (or even target compartments) in L5A. Thus, laminar 

connectivity patterns and laminar cellular identity should be viewed as orthogonal methods of 

defining the cortical landscape. 

Here is a simplified summary of the cortical layers: 

Figure 1.9 | Lamination of the cerebral cortex. 
The cortex is divided into six primary layers based 
on cellular identity (left) and connectivity (right) 
patterns. There is evidence of sublamination in al-
most every cortical layer, as demonstrated by the 
layer designations. These patterns ultimately re-
sult from the inside-out birth and migration pat-
tern of excitatory glutamatergic neurons, which 
comprise the majority of cortical cells. Figure from 
Vogt & Vogt, 1919. Reproduced with permission from 
Springer Nature. 
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• L1 is the most superficial layer of the cortex. It is referred to as an ‘acellular’ layer due to 

the relative sparseness of resident cell bodies. It is comprised almost entirely of a complex 

network of neuronal connectivity. These connections are between apical dendritic tufts 

from pyramidal cells in L2-6 and both glutamatergic excitatory and GABAergic inhibitory 

axons[6, 12, 22, 35, 100-102].. The few resident cells in L1 are CGE-derived GABAergic inter-

neurons[102, 103]. 

• ,L2/3 contains pyramidal neurons (PyNs) that project to intratelencephalic sites, mediating 

intracortical and cortico-striatal communication streams[104, 105]. 

• L4 is generally comprised of non-pyramidal glutamatergic neurons do not have dendrites 

that project into L1. These cells receive afferent connections from the thalamus and project 

intracortically. Cellular identity of L4 is known to differ between cortical areas[22, 35]. L4 is 

absent from the prefrontal cortex[95]. 

• L5 is a pyramidal layer with cells that generally have large cell bodies and project axons 

extracortically. L5 is routinely divided into L5A and L5B based on differences in cellular 

expression patterns and connectivity[22, 106, 107]. 

• L6 is highly diverse, with distinct pyramidal neurons defined by their dendritic arbors, 

inverted pyramidal cells, and oddly-shaped non-pyramidal cells[22, 106]. L6 is sometimes 

subdivided into L6A and L6B[108]. The excitatory neurons in L6 form both intra- and ex-

tracortical projections. It is generally associated with corticothalamic and colossal projec-

tions[109]. In addition to the long-range projections noted here, the glutamatergic cells 

within each of these layers also form local translaminar connections within the same corti-

cal column. 
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• WM is the deepest layer of the cortex, and is sometimes referred to as subcortical. It is 

largely acellular, consisting primarily of myelinated axons and sparse synaptic connec-

tions[101, 108]. These axons are either afferents from extracortical regions of the CNS, py-

ramidal cell intracortical axons between cortical regions, or extracortically-targeting effer-

ents[35]. The few resident cells in WM tend to be highly specialized glutamatergic and GA-

BAergic neurons[22, 101, 109-111]. 

It is important to note, however, that this L1-L6 laminar nomenclature represents the top level 

of a hierarchically organized distribution of glutamatergic cell bodies in the cortex (discussed in 

[95, 100]). Taking into account subtle differences in cellular identity and neuronal connectivity has 

led to the identification of sublaminar divisions in almost all cortical layers[100, 112]. Indeed, such 

sublaminar divisions were recognized over a century ago, as illustrated in Figure 1.9. This conclu-

sion is supported by both methodologies mentioned above. For example, a wide body of literature 

makes a strong argument for sublamination of L1 based on differential molecular expression[5, 95, 

100, 113-115] and connectivity[33, 53] patterns. 

Although the glutamatergic cells of the cortex are rigidly stratified, GABAergic inhibitory 

neurons are not. Instead, they tend to be interspersed in a salt and pepper fashion, with different 

interneuron types enriched in predictable manner across different layers[35, 37, 53, 77, 116, 117]. In gen-

eral, interneurons tend to position themselves in an inside-out manner like their glutamatergic 

counterparts: early-born cell types in deeper layers and later-born ones in more superficial layers. 

A minority population of very-late-born interneurons breaks this general rule, tending to be posi-

tioned in deeper layers[52]. Interneuron laminar positioning occurs after the corresponding glutama-

tergic cells have settled into their respective laminar position and begun to differentiate[52, 54, 117]. 

Remarkably, interneurons tend to position themselves near their synaptic partners[54, 78, 118]. This is 
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true not only in the wild-type cortex, but also in the ‘inverted’ reeler cortex, where interneurons 

will also be positioned in a generally inverted manner[22, 37, 40], suggesting signaling from target 

cells drives interneuron positioning. Given the difficulty of separating interneurons from their tar-

gets in vivo, it is unclear whether this proximal positioning is important in shaping interneuron 

identity and connectivity, as discussed below.  

Overall, this discussion of cortical laminar identity exemplifies the highly patterned molecular 

framework of the cortex in the radial dimension. In addition, these studies suggest a more refined 

scheme will likely have to be developed to take into account these more subtle sublaminar differ-

ences in cellular and synaptic identity[37]. As discussed above, the laminar connectivity patterns of 

glutamatergic neurons are well established. The spatial distribution of cortical interneuron synap-

ses and their identities, however, is not. Given the sparse cellular distribution of cortical interneu-

rons, a fine-mapping of interneuron synaptic identity within this laminar environment is of great 

interest. 

1.2.5. Regional distribution of cortical neuron types and their connections 

Based on the observation that distinct cortical regions are associated with distinct sensory, 

motor, and behavioral functions (Figure 1.10)[119], one might assume that distinct functional re-

gions have similarly distinct cellular compositions. In other words, that regional differences in 

function arise from regional differences in cell types. Large-scale single cell molecular expression 

profiling of adult mice tells a different story, however[120]. It is true that there are a few examples 

of highly region-specific glutamatergic cell types, particularly in the retrosplenial and anterior cin-

glulate areas. But this is more of an exception than a rule. Most glutamatergic cell types are shared 

across multiple cortical regions, following a continuous distribution in the anterior-posterior axis 
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and a more graded distribution in 

the medial-lateral axis[121]. Re-

markably, GABAergic interneu-

rons show even fewer regional 

differences (Figure 1.5). Interneu-

ron cell types tend to be evenly 

distributed throughout all cortical 

areas. Although there are a few 

cases of regional enrichment, 

there are no region-specific GA-

BAergic cell types9. As discussed 

below, however, the relatively mi-

nor differences in expression pat-

terns in adult mice belie the remarkably complex and dynamic regional diversity during develop-

ment[122]. Thus, although cell type distribution may be relatively similar across adult cortical re-

gions, minor and transient differences in expression patterns are responsible for the regional con-

nectivity patterns.  

1.2.5.1. Areal identity in the cortex and the establishment of a molecular coordinate system 

There are two hypotheses for how these regional difference arise (reviewed in [123]). The ‘Pro-

tomap’ hypothesis postulates that progenitors are spatially pre-patterned, thereby spawning region-

 
9 The few instances of region-specific GABAergic interneuron types witnessed by Yao et al. are accounted for by 
differences between hippocampus and isocortex, where cell types present in the hippocampus were not present in the 
isocortex. The authors did not identify any region-specific interneuron cell types when comparing between cortical 
regions, and all interneuron cell types present in the cortex were also found in the hippocampus. 

Figure 1.10 | Regional organization of the mouse cortex.  
Motor regions are in yellow and orange, somatosensory re-
gions are in green, auditory in red, and visual regions in blue. 
Figure from Kirkcaldie, The Mouse Nervous System, 2012.  
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specific neurons with distinct molecular, physiological, and connectivity profiles. In contrast, the 

‘Protocortex’ hypothesis postulates that the cortex is initially a blank slate of cellular identity that 

develops area-specific features in response to extrinsic signals, with a primary emphasis on tha-

lamic afferents. Reality is more nuanced, with data indicating that elements of both are at play. To 

simplify, the current model proposes that extrinsic factors pattern a ‘protomap’ onto an otherwise 

homogenous cortical sheet, which is then further refined by thalamic afferents. To understand this 

process, it is important to recognize that the properties that define regional identity emerge gradu-

ally over development, with different region-specific features emerging at different developmental 

stages. Early stages of cortical development function largely according to a ‘protocortex’ model, 

whereby extrinsic factors (mainly soluble patterning factors) induce an early ‘protomap’ onto oth-

erwise multipotent cells (Figure 1.11, A). Different morphogens gradients arise from different ex-

tracortical patterning centers[123-125]. These morphogens specify broad-brush regional identity by 

inducing graded expression patterns of transcription factors that drive regional identity pro-

grams[121, 123, 126, 127] (Figure 1.11, B). This induced regional identity in turn leads to the graded 

expression patterns across different regions. When expressed extracellularly, the graded pattern of 

cellular identity is mirrored within the extracellular space. In accordance with the chemoaffinity 

hypothesis[126], this yields a molecular coordinate system within the environment. As discussed 

below, this molecular framework is utilized for migration, axon guidance, and synaptic target-

ing[128, 129]. But it also reenforces and progresses differences in regional identity. Specifically, tran-

scription factors and morphogens have evolved to reciprocally induce and repress each other. Thus, 

the extrinsically patterned cortical cells themselves express morphogens, yielding cortex-intrinsic 

autocrine and paracrine signaling that furthers patterning[122, 130, 131]. These positive and negative 

feedback and feedforward loops maintain and evolve regional identity. It is important to note that 
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the expression axes that account for the regional framework operate largely in the anterior-poste-

rior (A-P) and lateral-medial (L-M) axes. In other words, they overlap with but are largely inde-

pendent from those that account for cortical lamination along the superficial-to-deep axis[122, 132] 

(discussed in greater detail below).  

The impact of morphogen signaling on cortical patterning is clearly shown by studies on 

FGF8. This morphogen is normally expressed from a region in the anterior telencephalon and is 

Figure 1.11 | Spatial patterning of the cortex.  
The initial regional differences in cortical identity emerge from patterning factors (morphogens) 
expressed at extracortical organizing centers (reviewed by O’Leary et al., 2007). A) Early in de-
velopment (E8.5-9.5), these morphogens includ BMPs and Wnts from the posteriomedial cortical 
the hem, FGFs from the anterior neural ridge, and Shh from a ventral domain. At E10.5-E12.5, 
FGFs continue to be expressed anteriorly in nested domains at the commissural plate (CoP) and 
septum (green). B) These morphogen gradients induce specific transcription factor programs in 
the cortical glutamatergic neuronal precursors, thereby leading to the distinct, graded expression 
patterns of identity-associated transcription factors along the anterior-posterior and lateral-me-
dial axes within the developing cortex. These graded expression patterns in turn lead to graded 
expression of molecules that underly regional connectivity patterns, including intracortical, af-
ferent and efferent targeting. The afferent and efferent connectivity in turn defines the infor-
mation inputs and outputs, and so also any functional association with a region. Of note, region-
specific gene expression in the cortex generally develops normally in the absence of thalamic af-
ferents (Miyashita-Lin et al., 1999), though there is a loss in the sharp borders between regions 
(Vue et al., 2013). The same is true of the olfactory sensory map in the olfactory bulb, which gen-
erally develops normally in the absence of afferent glutamatergic projection neurons or GABAer-
gic interneurons, suggesting this principle is more general than just the cortex. Thus, early em-
bryonic patterning factors define the regional differences in the gene expression landscape prior 
to thalamocortical innervation, thereby establishing regional connectivity patterns and functional 
associations. Diagram adapted from Borello and Pierani, 2010. 
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in part responsible for patterning the Emx2 and Coup-TF1 transcription factor gradients by re-

pressing their expression[121, 124, 132, 133]. Investigating the role of FGF8 in patterning of the soma-

tosensory cortex, Fukuchi-Shimogori & Grove showed that increasing the FGF8 signal shifts the 

area boundaries posteriorly, whereas decreasing it shifts it anteriorly. Remarkably, ectopic FGF8 

expression posterior to the original source leads to partial area duplication of the somatosensory 

cortex[134]. This experiment showcases the power of patterning centers and morphogen gradients 

to specify tissue identity.  

Given the self-reenforcing signaling cascades and extreme impact of morphogens, one might 

expect that once regional identity is specified, identity is set. This is not the case. Rather, the ‘pro-

tomap’ is quite plastic. This is demonstrated by now classic surgical experiments. Transplanting 

donor visual cortex into host somatosensory cortex yields tissue with all the hallmarks of native 

somatosensory cortex: barrel formation and thalamocortical connections expected for barrel cor-

tex[135]. That is, the tissue loses its original identity and takes on the identity of the host region. 

Similarly, surgically removing an entire cortical region before thalamic innervation will lead to a 

proportionally smaller, but complete and properly oriented thalamic innervation pattern of the re-

maining cortex[123].  

Here we describe how morphogens and transcription factors induce regional identities, lead-

ing to graded expression patterns across different cortical areas. These experiments showcase how 

cortical identity is initially specified, maintained, and restabilized. A critical aspect of this system 

is the extracellularly expressed molecules, which yield a patterned extracellular environment. Pre-

viously we focused on how interactions between morphogens and transcription factors determine 

regional identity. Now we will discuss how these graded expression patterns relate to areal con-

nectivity.  
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1.2.5.2. Topographic maps and activity-dependent refinement of regional identity 

In the last section we described a molecular coordinate system within the extracellular envi-

ronment that parallels the graded pattern of cellular identity. As discussed in greater detail below, 

these axes of molecular expression underly regional targeting specificity. The graded identity pat-

terns result in graded expression of axon guidance and synaptic adhesion molecules that underlie 

areal targeting specificty[1, 136]. Once these regional afferent connections are established, they be-

come the primary extrinsic factor shaping regional identity. This occurs through a process of ac-

tivity-associated cell survival and circuit refinement through anterograde transsynaptic signaling. 

We will discuss the mechanisms of synaptic specificity in great depth below. Here we focus on 

how these connections shape regional identity.  

In neuroscience, a topographic map refers to a spatial representation of sensory information 

or neural activity within a specific region of the brain. These maps reflect the organization of 

sensory inputs or neural responses according to their location in the external environment or on 

the body. For example, in the visual system, topographic maps might represent the visual field, 

with neighboring neurons processing information from adjacent areas of space. Topographic maps 

are found throughout the nervous system, including the visual[101], auditory, olfactory[101], and so-

matosensory systems[101]. The best characterized topographic map is the mouse somatosensory 

system, and specifically the barrel cortex associated with whiskers on the snout (Figure 1.12, re-

viewed in [130]). Somatosensory signals from whisker-associated mechanosensors in the skin trans-

mit sensory information indirectly from these peripheral sensors to the thalamus, which in turn 

forms excitatory, glutamatergic afferents onto the somatosensory cortex. These afferents are orga-

nized into spatially discrete, anatomic units called ‘barrels,’ with each barrel representing an indi-

vidual whisker, and the barrel field as a whole forming an anatomical map that largely matches 
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the spatial organization of the whiskers themselves. This anatomical map generally matches a 

functional map, in which every barrel preferentially (but not exclusively) processes the sensory 

Figure 1.12 | Examples of topographic maps: the pathways transmitting tactile information 
from the muzzle to the cortex.  
A) neurons from whisker follicles project to the brain stem, then branch into the lemniscal path-
way (yellow) that innervates the PrV, and the paralemniscal pathway (green) that innervates the 
SpV. The lemniscal pathway displays a precise somatotopic organization at every stage, whereas 
the paralemniscal pathway lacks this detail. The lemniscal pathway relays through the VPM to 
reach the wS1 barrel cortex. The paralemniscal pathway relays through the POm to layer 4 of 
wS2. A higher order region of POm receives cortical input and projects to L1 and L5a of wS1 and 
wS2 of the cortex. B) A pseudo-3D visual representation of the barrel cortex (wS1), focusing on 
arc 2 and highlighting column C2 in yellow. Yellow shading indicates the termination layers of 
the lemniscal pathway, while green shading represents those of the higher-order pathway from 
POm. Gray shading on the left (E2) shows the density of inputs from the whisker motor cortex, 
while on the right (A2) it approximates the density of cholinergic fibers from the basal forebrain. 
The morphologies of different claases of cortical neurons involved in processing this information 
are depicted in specific columns. Column D2 shows Sst interneurons in orange. Column C2 shows 
PV interneurons in red and pyamidal neurons in black. Column B2 shows VIP-expressing inter-
neurons in blue. Abbreviations: PrV, principal trigeminal nucleus; SpV, spinal trigeminal nu-
cleus; VPM, ventral posteromedial thalamic nucleus; POm, posterior thalamic nucleus; wS1, pri-
mary whisker somatosensory barrel cortex; wS2 secondary somatosensory cortex. From Staiger, 
2021. Reproduced with permission from the American Physiological Society. 
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information detected by its associated whisker[131]. The functional connectivity of this circuit is 

very easily mapped via whisker clipping experiments, where a mouse is allowed to explore a novel 

environment after clipping specific whiskers. Activated neurons in the cortex are then identified 

by c-fos staining, with the clipped whiskers leading to absence of c-fos in unactivated barrels[12, 

101]. 

There are two primary thalamocortical afferent pathways into the barrel cortex: the lemniscal 

pathway (yellow) from the VPM targets L4 and L6, and the paraleminiscal pathway (green) from 

the pOM, which targets L1 and L5A. The lemniscal pathway is the best studied, and specifically  

the afferents from VPN onto L4 spiny stellate neurons. Of note, cortical interneurons are also 

involved in these barrels. L4 PV+ basket cells (PVBCs) and L4/L5B Sst+ non-martinotti cells 

(NMCs) form synapses within barrels, whereas L5A PVBC and L5A NMC[137] axons are confined 

to regions outside of the barrel[138]. These interneuron connectivity patterns and their ultimate spa-

tial organization, in other words, are influenced by glutamatergic afferents from the lemniscal 

pathway. 

The ultimate cellular composition of this brain region is shaped by activity-dependent cell 

death[74]. During development, neurons undergo a period of overproduction, generating more cells 

than ultimately needed. In the cortex, both GABAergic interneurons and glutamatergic pyramidal 

cells undergo extensive cell death during a postnatal critical period[75]. These neurons are selec-

tively eliminated from the nervous system in response to activity levels. During a critical develop-

mental window, neurons that receive insufficient synaptic input or fail to establish proper connec-

tions will undergo apoptosis. Conversely, neurons that are highly active and successfully integrate 

into functional circuits are more likely to survive. For cortical interneurons in particular, pyramidal 

cell input onto individual interneurons predicts their survival[137]. The level of neuronal activity 
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defines a lode for cell survival: neuronal survival within any given region is matched precisely to 

the level of activity within the region during this critical period. In other words, activity-dependent 

cell death plays a crucial role in tuning the cellular composition of brain regions to match activity 

requirements[101]. This leads to activity-dependent differences in cellular composition of different 

regions, and shapes neuronal circuits. By selectively eliminating neurons that are not effectively 

integrated into functional networks, this process contributes to the establishment of precise and 

efficient neuronal circuits essential for proper brain function and behavior[139].  

In the barrel cortex, this has been shown experimentally by denervation or continuous trim-

ming of whiskers during development[140], or more directly via genetic manipulations that disrupt 

activity[141-143]. Under these conditions, the spatial distribution of the thalamocortical afferents 

(TCAs) is generally preserved, but borders are poorly defined, and barrels show considerable over-

lap[144]. Anterograde (presynaptic to postsynaptic) signaling is responsible for the well-defined 

borders of barrels[144-146]. Specifically, this is an activity-dependent process: blocking neurotrans-

mitter release or synaptic transmission leads to a loss of the sharp borders between barrels[146, 147]. 

Blocking activity specifically in the thalamus resulted in altered cortical lamination, specifically 

showing a contraction of L4 and expansion of L5[148], likely due to (in)activity-dependent cell 

death of L4 neurons, the primary target of the lemniscal pathway. Afferent connections and activity 

are important in shaping areal identity outside of the barrel cortex. For example, rerouting retinal 

inputs along auditory pathways leads to the development of orientation modules and long-range 

horizontal connectivity patterns that are reminiscent of the primary visual cortex[149]. Similarly, 

alternately increasing or decreasing the size of the dorsal lateral geniculate nucleus (dLGN), the 

major thalamic nucleus involved in the visual pathway, results in a corresponding change in the 

size of the primary visual cortex[150].  
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In this passage, we discussed how molecular expression patterns in the extracellular environ-

ment contribute to regional targeting specificity in the brain and, ultimately, regional identity. We 

discussed topographic maps, such as the barrel cortex in the somatosensory system, which repre-

sent spatial organization of sensory inputs, like whiskers in the case of the barrel cortex. The for-

mation of these maps involves intricate processes including axon guidance, synaptic adhesion mol-

ecules, and activity-associated cell survival. The cellular composition of brain regions is shaped 

by activity-dependent cell death during development: neurons that fail to integrate do not survive.  

1.2.5.3. Independence of Regional and Laminar identity in the cortex 

Above we discussed cortical identity along two axes: regional identity across the cortical sheet 

along the A-P and M-L axes, and laminar identity along the superficial-to-deep (S-D) axis. As 

discussed above, topographic maps exist primarily along the A-P and M-L axes, with distinct in-

puts and outputs into the cortical column existing radially along the S-D axis. How important is 

the spatial organization of the cortex to neuronal identity?  

These questions were tested using the reeler mouse, which have a spontaneous mutation in 

the reln gene required for proper glutamatergic ‘inside-out’ radial migration after birth. This in 

turn disrupts normal lamination, leading to region-dependent glutamatergic cell randomization 

and/or inversion, as shown by the staining for laminar fate markers (Figure 1.13)[89, 130, 131, 149, 150]. 

Within this context, glutamatergic cell identity is largely retained, with cellular identity markers 

having similar proportions in both the reeler and WT contexts. Thus, based on these markers, 

normal cortical organization in the radial dimension is not a prerequisite for normal glutamatergic 

cell differentiation. Of note, this contrasts sharply with the findings on cortical regional identity 
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discussed above, where neuronal fate is plastic and determined by relative positioning on the cor-

tical sheet.  

Figure 1.13| Independence of lami-
nar and regional iden-tity: evidence 
from the reeler cortex.  
A-D) Laminar fate markers show the 
dramatic disorganization of cortical 
layers in the reeler brain. Coronal 
hemisections through primary so-
matosensory (barrel) cortex of a wild 
type (A, C) and a reeler (B, D) mouse 
brain.  Laminar fate markers (la-
beled in A) have been stained by in 
situ-hybridization in serial sections, 
false color-coded and overlaid to ob-
tain a comprehensive impression. 
The overview (A, B) shows that the 
general anatomical layout of subcor-
tical nuclei and cortical areas is 
largely intact. A magnified view of 
the barrel field (C, D) shows how its 
normal laminar organization (C) is 
disrupted in the reeler mouse (D). 
Barrels are denoted by asterisks. 
(modified from Guy and Staiger, 
2017, by permission of Oxford Uni-
versity Press). E-F) Normal organi-
zation and functioning of cortical re-
gions in the reeler mouse. Neuronal 
activation in the barrel-related col-

umn of wild-type (E) and reeler (F) transgenic mice that label LIV targets of lemniscal afferents 
with tdTomato (red) after tactile exploration of a novel, enriched environment. The whiskers cor-
responding to the stimulated columns (D1-D3) were used during exploration, whereas those of 
the unstimulated columns (C1-3, d, E1-2) were clipped before exploration. Neuronal activity, vis-
ualized by c-fos staining (green), is higher in the stimulated columns than the unstimuated ones. 
(modified from Wagener et al., 2016). Abbreviations: HC, hippocampus; ic, internal capsule; LV, 
lateral ventricle; S1BF, barrel field; S2, secondary somatosensory cortex; S1Tr, primary soma-
tosensory cortex, trunk region; VPL, ventral posterolateral thalamic nucleus; VPM, ventral poster-
omedial thalamic nucleus; wm, white matter. Barrels are labeled according to standard nomen-
clature. Scale bars: A, B 1000 μm; C-F 250 μm. 
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How are these axes related? This question was tested in the barrel cortex of the reeler mouse 

using multiple orthogonal methods to determine topographic map layout[130, 131]. These studies 

found that topographic map formation does not require correct lamination, though maps formed in 

a disorganized cortex are also disorganized. In other words, laminar identity along the radial S-D 

axis is independent of regional identity along the A-P and M-L axes. To be sure, barrels in the 

reeler cortex are disorganized. Rather than tightly packed and relegated to a single cortical layer, 

the barrels are extended and diffuse, spanning much of the S-D axis of the cortex. But connectivity 

is largely unaffected: the lemniscal afferents still target (normally) L4 Rorb+ spiny stellate neurons 

despite their mislocalization. Remarkably, when viewed tangentially from the cortical surface 

these barrels are properly positioned[130, 131] (Figure 1.13). The general gridded organization of 

barrels is largely intact, with barrel spatial organization matching that of their associated whiskers. 

Moreover, these now diffuse barrels still operate as functionally independent units[150-152]. These 

data indicate that normal, laminar organization of the cortex is not a prerequisite for target cell 

identity, proper afferent connectivity, or topographic map formation. Indeed, there is enough de-

velopmental plasticity and to compensate for the disorganized radial spatial organization of the 

reeler cortex.  

1.2.5.4. Summary of cortical development 

Cortical neurons exhibit remarkable diversity. These cells can be hierarchically organized 

based on expression patterns, reflecting developmental trajectories. The primary division is be-

tween glutamatergic and GABAergic cells, with the latter originating from the caudal and medial 

ganglionic eminences (CGE and MGE, respectively). The majority of cortical interneurons derive 



42 
 

from the MGE, which can be further classified into PV-expressing and Sst-expressing interneu-

rons, with some expressing both or neither. These are further subdivided into distinct subtypes 

based on molecular expression patterns, morphology, physiology, and targeting profiles within the 

cortex. Subcellular targeting is a defining feature of interneuron subtypes: SstCs target dendrites, 

BCs target soma and proximal dendrite, and ChCs target AIS.  

Interneuron differentiation has been hypothesized to follow a proposed three-stage process: 

Cardinal Specification, Definitive Specification, and State Specification. The metaphorical epige-

netic landscape serves as a framework for understanding how cells transition between states during 

development. Ultimately, interneuron fate is determined by an interplay between intrinsic expres-

sion profiles and extrinsic (environmental) cues. Our study is primarily focused on how the envi-

ronment shapes interneuron identity, and whether a precisely organized environment is required 

for proper subcellular targeting. 

The cortex displays a remarkable level of spatiotemporal organization. Spatially, the cortex 

can be distinguished along two axes: laminar (superficial-to-deep) and regional (anterior-posterior 

and medial-lateral). Laminar organization involves the stratification of the cortex into layers, with 

distinct cellular and connectivity patterns. Cortical laminar organization results from the inside-

out pattern of corticogenesis, where later born cells migrate past earlier born ones toward the cor-

tical surface. This yields rigid stratification of glutamatergic neurons. GABAergic interneurons 

migrate tangentially into the cortex, then establish their final resting position by radial migration. 

This leads to GABAergic neurons being interspersed throughout the layers. Each layer has unique 

cellular compositions and connectivity patterns.  

Regional identity is associated with different functional areas of the cortex. It is initially es-

tablished through complex interactions between intrinsic genetic programs and extrinsic signaling 
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cues (morphogens). These interactions result in graded expression patterns of transcription factors 

that drive regional identity programs. Later in development, afferent, efferent, an intracortical con-

nections further shape regional identity through activity-dependent death of unintegrated neurons. 

Thus, synaptic specificity and experience shape the cellular composition of cortical regions. This 

protracted developmental process results in topographic maps, which represent the spatial organi-

zation of sensory inputs as a spatially-organized map on the cortical sheet. 

Cortical laminar and regional identity are differentially susceptible to spatially-organized en-

vironmental cues. Genetic loss of function, overexpression, transplantation, and surgical experi-

ments reveal the remarkable plasticity of regional identity, and how it results from spatially-orga-

nized extracortical and intracortical cues. In contrast, studies on the reeler mouse reveal that glu-

tamatergic neuron laminar identity is rigidly determined at birth and unperturbed by disorganiza-

tion along the superficial to deep axis. The reeler mouse also demonstrates the independence of 

these two axes of identity.  
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1.3. Subcellular compartmentalization: cellular and molecular models 

The primary question of this study is focused on neuronal subcellular targeting. Based on 

Sperry’s chemoaffinity hypothesis, preferential subcellular targeting is associated with differential 

molecular compositions at different subcellular regions. Thus, to understand subcellular targeting, 

it is critical to understand subcellular compartmentalization.  

Compartmentalization is a fundamental principle of biology[151, 153-159]. It is utilized to regulate 

local molecular concentrations, increase the efficiency of reactions, and isolate biological pro-

cesses[159, 160]. Compartmentalization is initiated through chemical seeding events, wherein asym-

metric local concentrations of molecules lead to positive feedback and feedforward loops of mo-

lecular recruitment. These processes culminate in molecularly distinct and highly specialized sub-

regions of the cell. These subregions can be compartmentalized in the classical sense, with a three-

dimensional structure wherein a semipermeable barrier separates a volume of the cell[151, 157, 160]. 

This form of compartmentalization is the basis for distinct subcellular organelles, and even the cell 

itself. Alternately, the compartment can be two-dimensional, as occurs with membrane-bound 

components[151, 160, 161]. In both cases, a diffusion barrier restricts molecular flow into and out of 

the region, leading to localized concentrations. These concentration changes can exist as highly 

discrete and abrupt changes, or as more diffuse molecular gradients. Moreover, it is important to 

recognize that polarization and compartmentalization are intrinsically linked[162]. The concentra-

tion asymmetry that arises due to the nucleation event is, by definition, polarizing. Finally, these 

subcellular compartments can become self-sustaining, meaning that the initiation event (and mol-

ecules involved) may not be required for compartment persistence.  

Neurons are by far the most complex and compartmentalized cell type in the body[153, 157, 161, 

163, 164]. The large number of spatially and molecularly distinct subcellular compartments results in 
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just as many incompletely isolated systems that operate pseudo-independently while also being 

connected to the whole. In other words, compartmentalization strikes a balance between autonomy 

and connectedness of a heterogenous system[154, 165-167]. But what does this compartmentalization 

actually look like? The primary division is between axons and dendrite, which contain distinct 

organelles and fulfill distinct roles in synaptic communication. As a general rule, dendrites are 

regions of synaptic input, whereas axons are associated with output[155]. Although the soma is not 

strictly a dendritic compartment, it contains the same organelles as dendrites and is a major target 

of synaptic input. It is thus both functionally and molecularly more similar to dendrites than axons. 

Each of these compartments contains morphologically and molecularly distinct sub-compartments. 

A schematic depicting the generalized subcellular localization of voltage-gated ion channels illus-

trates this point (Figure 1.14). On the presynaptic side, distinct biophysical organizations and elec-

trochemical properties contribute to distinct functional roles in action potential initiation and prop-

agation[155, 168]. On the postsynaptic side, many of these subcompartments are preferentially tar-

geted by different presynaptic cell types. The relative spatial organization of these compartments 

synergizes with distinct electrochemical properties to yield functionally distinct responses to this 

differential input[97, 145, 163, 167, 169]. We will first discuss axonal and dendritic subcompartments, 
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then cover cellular and molecular models for how this compartmentalization arises, with a partic-

ular focus on compartmentalization of target compartments. Since the synapse is formed by a 

unique interaction, we will discuss it separately in its own section.  

Figure 1.14 | General localization of voltage-gated ion channels in a model neuron. 
In general, Nav channels are found in the axon initial segment (AIS), nodes of Ranvier and pre-
synaptic terminals. Voltage-gated potassium Kv1 channels are found at the juxtaparanodes 
(JXPs) in adult myelinated axons and presynaptic terminals. The Kv channel KCNQ is found at 
the AIS and nodes of Ranvier, and Kv3.1b channels are also found at the nodes of Ranvier. Ca-
nonically, excitatory and inhibitory inputs (EPSPs and IPSPs — excitatory and inhibitory 
postsynaptic potentials; yellow and blue presynaptic nerve terminals, respectively) from the so-
matodendritic region spread passively to the AIS where action potentials are generated by depo-
larization, and travel by saltatory conduction to the presynaptic nerve terminals to activate volt-
age-gated calcium (Cav) channels that increase intracellular calcium levels, thereby triggering 
neurotransmitter release. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels 
have a gradient distribution that increases in density from the soma to the distal dendrites (dark 
blue shading). Kv2.1 channels are found in clusters on the soma and proximal dendrites (light 
yellow ovals). Kv3 channels are found throughout the dendrite. Kv4.2 channels are located more 
prominently on distal dendrites (light blue shading). Kv channels in the dendrites contribute to 
controlling back propagation. Strong enough inputs in the dendritic region can generate den-
dritic action potentials. Dendritic Cav channels increase in density toward the proximal dendrites 
and the soma. Figure and legend from Lai & Jan, 2006. Reproduced with permission from 
Springer Nature. 
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1.3.1. Axonal subcompartments 

Axonal subcompartments include the axon initial segment (AIS), the axonal shaft, nodes of 

Ranvier (for myelinated axons), and presynapse[145]. Each of these subcompartments is molecu-

larly distinct and serves different functions. For our purposes we will focus on the AIS, since it is 

critical for establishing axodendritic polarity and is targeted by chandelier cells. We will not dis-

cuss the axonal shaft in depth, and instead note here that it can be viewed primarily as a conduit 

for signaling and molecular trafficking, and specifically conveyance of action potentials[162, 170]. 

We discuss the presynapse separately in a section on synaptogenesis. 

1.3.1.1. Axon initial segment 

The AIS is the site of action potential generation[162] and is critical for the establishment and 

maintenance of axodendritic polarization[171, 172]. The AIS is developmentally defined at the onset 

of axodendritic polarization by TRIM46 and AnkG clustering, which it retains throughout its ex-

istence[161, 172]. The axon initial segment is not only the initial spatial subcompartment of the axon, 

it is also developmentally primary: the clustering of AnkG and TRIM46 leads to formation of 

parallel microtubule arrays in the AIS and throughout the axon, a defining characteristic of the 

whole axonal compartment. Of note, without either AnkG or TRIM46 neurons do not undergo 

axodendritic polarization[171-173]. Other cytoskeletal components unique to or enriched in the AIS 

include βIV-Spectrin and TRIM46, which lead to a unique cytoskeletal actin filament formation 

and microtublue organization at this region[173]. These molecules directly and indirectly serve as a 

scaffolding for molecules localized to the AIS membrane, including ion channels, neurotransmitter 

receptors, and adhesion molecules[174]. Specific ion channels, including voltage-gated sodium 

(NaV) and potassium (KCNQ) family members, localize to the AIS and contribute to its distinct 

electrical properties as the site for action potential initiation. Specific adhesion molecules are also 
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enriched at this site, such as NF186 in cerebellar Purkinje cells, which has been shown both to 

define the local ECM[175] and to mediate specific synaptic targeting of this region[163, 176]. 

1.3.2. Dendritic subcompartments 

The dendrite consists of many sub-

compartments[168, 169]. Dendritic subcom-

partments include the soma, proximal 

dendrites, medial, and distal dendrites, as 

well as dendritic spines. In cortical and 

hippocampal pyramidal cells, dendrites 

are further classified by morphology and 

branching pattern (Figure 1.15). Pyrami-

dal neurons have multiple short basal 

dendrites, which project directly from the 

soma, and a singular apical dendrite, 

which extends from the cell body into the 

most superficial layer. The apical den-

drite can be further broken down into 

multiple molecularly and morphologically distinct subdendritic compartments, such as the primary 

apical dendrite, apical obliques (which can be ordered hierarchically secondary, tertiary, etc. 

obliques), and the distal dendritic tuft. Basal dendrites can also be ordered hierarchically. Alter-

nately, branches can be classified as primary, intermediate, or terminal, with distinct functional 

properties and synaptic inputs at each level[177, 178]. Finally, dendritic spines are morphologically 

distinct postsynaptic subcellular compartments that form in response to glutamatergic innervation. 

Figure 1.15 | Branch and sub-branch organization of 
morphologically defined pyramidal neuron den-
dritic domains.  
A cartoon (left) and AT-reconstructed example of a 
CA1 pyramidal cell (right) depicting the breakdown of 
the arbor into dendritic domains (gray regions) and 
branch types (black, blue, and red). Approximate hip-
pocampal laminar boundaries are indicated. From 
Bloss et al., 2016. 
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Although there is an extensive body of literature outlining the cellular and molecular mechanisms 

of dendritic spine formation, there is relatively little on these other subdendritic compartments. 

This is unfortunate for our purposes, since the majority of GABAergic subcellular targeting from 

the MGE lineage is onto these non-spine regions[155, 179]. For this reason, we discuss dendritic 

spines only in passing, and handle all of the other dendritic subcompartments as a group. 

1.3.2.1. 1.2.2.1 Molecular enrichment patterns of dendritic subdomains 

These dendritic compartments are not just morphologically distinct, they are also molecularly 

distinct[156, 180-183] (Figure 1.14). The pan-neuronal, canonical dendrite marker MAP2 is found in 

all dendritic compartment[184, 185], but not in axons. Dendritic spines, for instance, are enriched for 

F-actin[186, 187] as well as molecules rarely found outside these compartments, such as spinophilin 

and drebrin[156, 185-189]. Spine necks are also molecularly distinct from spine heads, with the former 

enriched for βIII-Spectrin[180] and the latter specific ion channels like Kv4.2, Kir3.1, and 

Kir3.2[190]. There are also specific markers for other dendritic subcompartments. Soma and proxi-

mal dendrite, for instance, are enriched for the ion channels TRPM4, Kv2.1, and Kv2.2[191-197], and 

the adhesion molecule AMIGO1[198]. In the cortex, L4 and L5 pyramidal cells show a polarized 

localization of a5 integrin, which is specifically localized to primary apical dendrites, but not other 

subdendritic regions[199]. Semaphorin 3F receptors are also exclusive to primary apical, but not 

apical oblique or tuft dendrites of hippocampal pyramidal cells[200]. NGL1 shows a similar primary 

apical dendritic localization pattern in L5 cortical pyramidal neurons[201], with specific enrichment 

of NGL1 in L4. Distal dendritic tuft is also enriched for specific molecules, such as HCN[202, 203] 

and Kv4 ion channels[200, 204] and their respective ancillary subunits[201, 205], cytoskeletal pro-

teins[206, 207], cell surface receptors[208], and adhesion molecules[207, 208]. 
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Importantly, apart from MAP2, the above molecules are generally not ubiquitously expressed 

in neurons. These enrichment patterns are not necessarily static, but can be dynamic, with enrich-

ment of specific molecules occurring at different subcellular locations during different develop-

ment stages. In the mouse visual cortex, for instance, the adhesion molecule Telencephalin is found 

predominantly in dendritic spines during early visual development and in dendritic shafts in mature 

mice[207]. There are also brain-region-specific expression patterns. L1CAM, for instance, is ex-

pressed in L1 (distal dendrites) of adult piriform and medial cortex, L5 of remaining neocortex[174, 

198]. Moreover, although these subdomains can have highly defined borders, as in spines or primary 

apical dendrite[200], they can also exist as subcellular gradients, as is evident with the NF186 at the 

soma and AIS[205] or HCN channels in distal dendritic tuft[93]. Finally, the compartment-specific 

differences are not necessarily concentration-based. Cofilin, a cytoskeletal protein that functions 

in actin depolymerization by promoting disassembly of actin filaments, is phosphorylated in a 

reelin-dependent manner in the developing marginal zone, which will in turn become the distal 

dendritic tuft. This cofilin phosphorylation thus leads to distinct cytoskeletal dynamics within the 

distal dendrite[183, 209], likely acting as an integral step in defining this dendritic subdomain and 

establishing the observed molecular gradients. Again, with the notable exception of dendritic 

spines, the molecular profiles of dendritic subcompartments are generally poorly characterized. 

This is especially true of synaptic adhesion molecules, the subdendritic localization patterns of 

which are generally unknown. It is, however, reasonable to assume that the same subcellular en-

richment patterns witnessed for ion channels or cell surface receptors are parallelled by adhesion 

molecules, as these proteins tend to form complexes and utilize overlapping mechanisms for sub-

cellular localization. 



51 
 

1.3.2.2. Dendritic subdomains and lamination 

These distinct apical and basal dendritic subcompartments align with specific laminae. In the 

hippocampus, which has a more simplified, less overlapping lamination pattern than the cortex, 

pyramidal cell basal dendrites populate the SO, the distal dendritic tuft corresponds to SLM, and 

each layer in between shows distinct dendritic branching patterns (Figure 1.15). This principle of 

subdendritic compartments of specific cells being enriched in specific laminae also holds true in 

the cortex, but is less clearly visible due to this lamination itself being layered (Figure 1.16). In the 

cortex, regions containing the medial or basal dendrite of one cell type are also populated by cell 

bodies from another cell type: basal dendrites often extend to the next-deepest layer, and apical 

compartments extend into more superficial layers until their termination as dendritic tuft in L1. 

Thus, layer-specific targeting in the cortex is often a reflection of combined cell-type- and sub-

compartment-specific targeting. 

1.3.3. Cellular and molecular mechanisms of compartmentalization 

These localization patterns can arise through cell intrinsic programs or inductive environmen-

tal interactions. The subcellular domain can also specify the extracellular environment. Afferent 

Figure 1.16| Glutamatergic cell in the cortex have layered subcellular compartments.  
Traces showing axonal (blue) and dendritic (red) arbors of individual glutamatergic neurons 
from different depths. Neurons a through f are from sequentially more superficial layers. Note 
the layering of basal and apical oblique dendrites across these cells. From Araya 2020, repro-
duced with permission from SNCSC.   
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connections can be functional actors in the specification of domains. The molecular composition 

of subcellular domains can also be impacted by activity. We discuss all these here. 

1.3.3.1. Cell intrinsic subcellular compartmentalization 

A standard method for assessing whether subcellular compartmentalization is driven by cell-

intrinsic programs or cell extrinsic ones is to plate isolated, dissociated cells in culture and assess 

whether or not the molecules compartmentalize in this context in the same way as in their native 

habitat. This approach has yielded considerable insights into cell intrinsic developmental pro-

grams, revealing that polarization and the initial stages of compartmentalization are intrinsically 

determined. Specifically, isolated pyramidal cells will polarize, specifying axon and dendrite as 

distinct compartments[203], as is apparent through the differential localization of the dendritic and 

axonal markers, MAP2 and TAU, respectively[210]. Moreover, given these conditions, neurons will 

cell intrinsically specify distinct axonal subcompartments, including the AIS, axonal shaft, and 

growth cones. Subdendritic compartments are also intrinsically determined, with isolated pyrami-

dal cells showing distinct molecular compositions of soma and proximal dendrites, which are pos-

itive for Kv2.1 and Kv2.2, compared to more distal dendritic compartments, which are not[211]. 

Pyramidal cells intrinsically specify the basal and apical dendrites as a distinct compartments[212], 

with further differences between the primary apical dendritic process and oblique ones. Im-

portantly, such intrinsic compartmentalization suggests that postsynaptic adhesion molecules that 

mediate subcellular targeting specificity can also be enriched at these subcellular locations via the 

same cell intrinsic programs.  

1.3.3.2. 1.2.3.2 Specification of the extracellular environment by subcellular domains 

Different subcellular domains can also differentially specify their extracellular environment. 

Perhaps the best characterized example of this phenomenon is the perineuronal nets (PNNs), a 
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specialized ECM that forms at the soma, proximal dendrites, AIS, and nodes of Ranvier[212], form-

ing a mesh-like structure that interdigitates synapses. PNNs are formed via cell intrinsic localiza-

tion of surface receptors, which in turn interact with and localize diffusely secreted extracellular 

matrix molecules[173], thereby forming an immobilized extracellular scaffold. Perineuronal nets are 

comprised of distinct molecules, including aggrecan, versican, neurocan, brevican, with distinct 

molecular compositions at distinct subcellular regions and cell types[212]. The PNN surrounding 

the AIS, for instance, is enriched for brevican[213], which is secreted by glial cells[151]. A similar 

mechanism occurs at the synapse, where pre- and postsynaptic receptors such as Nueruexins and 

GluDs, bind to diffuse extracellular molecules like cerebellins, thereby forming an extracellular 

scaffold that mediates transsynaptic signaling. We discuss this transsynaptic scaffold in greater 

depth in the section on synaptogenesis below.  

1.3.3.3. 1.2.3.3 Specification of subcellular domains by inductive environmental factors 

Despite this remarkable level of intrinsic programming, there are multiple instances where 

compartmentalization is driven by extrinsic factors. Environment-induced compartmentalization 

can occur via direct, adhesion molecule mediated cell-cell interactions, or via diffusible secreted 

molecules[200], cell-ECM[214, 215], and even in a ligand-independent manner via electrical field stim-

ulation[200, 201]. Given our division of acting parties into presynaptic, postsynaptic, and environ-

ment, it is fitting to distinguish non-synaptic compartmentalization from that which occurs due to 

transsynaptic cross-talk. The latter, where transsynaptic signaling leads to formation of pre- and 

postsynaptic compartments, is a specific case of subcellular compartmentalization generally con-

sidered in the context of synaptogenesis. We therefore discuss it separately. 

An example of subcellular compartment specification by non-synaptic communication occurs 

at the dendritic tuft. In vivo, this region shows a distinct enrichment of HCN[202, 203] and Kv4 ion 
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channels[200, 204] and their respective ancillary subunits[201, 205, 206], cytoskeletal proteins[207], cell 

surface receptors[208], and adhesion molecules[200]. Kupferman et al., showed that HCN molecules 

are not enriched in distal dendritic domains in isolated hippocampal neurons[216], indicating this 

localization pattern is driven by cell extrinsic mechanisms. Instead, proper HCN channel localiza-

tion to distal dendrites is mediated by reelin, a large ECM glycoprotein secreted by Cajal Retzius 

cells in the superficial layers of the cortex and hippocampus (SLM in Hpc, L1 in Ctx). Reelin 

interacts with the cell surface receptors VLDR and ApoER2, which in turn leads to phosphoryla-

tion of the intracellular protein Dab1 and downstream signaling. Knocking down Dab1 after the 

(reelin-dependent) spatial organization of the hippocampus had already been established led to the 

loss of the graded localization pattern of multiple dendritic tuft proteins, but had no effect on den-

dritic proteins with a uniform distribution or overall dendritic arbor morphology[40]. Thus, the lo-

calization of these distal dendritic components is specifically regulated by cell-ECM interactions, 

where the ECM is differentially defined in specific laminae via 3rd party cells. 

1.3.4. Summary of subcellular compartmentalization 

This study focuses on neuronal subcellular targeting. A critical aspect of this process is sub-

cellular compartmentalization. Compartmentalization, essential in biology, regulates localized 

molecular concentrations and enhances reaction efficiency. It involves chemical seeding events 

leading to molecularly distinct subregions within cells. Neurons exemplify complex compartmen-

talization. The primary division of neuronal compartments is between axons and dendrites. Axonal 

subcompartments include the axon initial segment (AIS) and presynapse, while dendritic subcom-

partments include soma, proximal and distal dendrites, dendritic spines, and postsynapses. Thus, 

compartmentalization of both the presynaptic and postsynaptic cells is critical in establishing ste-

reotyped connections. We revisit synaptic compartmentalization below, and focused above on 
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compartmentalization of target compartments. These subcompartments can be defined both mor-

phologically and molecularly, with different branching and molecular expression patterns charac-

terizing different subcellular domains. Developmentally, compartmentalization is driven by cell 

intrinsic programs or inductive environmental factors. For example, reelin-mediated signaling reg-

ulates the localization of HCN channels in dendritic tufts, showing the impact of cell-ECM inter-

actions. Overall, we highlights the dynamic interplay between intrinsic programs and extracellular 

factors in shaping neuronal compartments and the extracellular environment.  
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1.4. General principles of synaptic development 

1.4.1. Pre-contact: a question of spatial proximity 

Synaptic target selection requires a physical interaction between the presynaptic and postsyn-

aptic cells. Since most neurons are born in distinct regions of the nervous system, prior to target 

selection the problem can be simplified into decreasing the spatial proximity between the presyn-

aptic cell and its ‘appropriate’ target to the point of physical contact. As discussed in greater detail 

below, target selection is mediated by complementary adhesion molecules on the pre- and postsyn-

aptic cells. Since molecular expression profiles are dynamic, this contact event often must occur 

within a defined developmental window. Simply put: right place, right time, and right equipment 

equals right connection. Many of these complementary adhesion molecules are recycled in differ-

ent contexts, and so it is very common for cells in the ‘wrong’ place or at the ‘wrong’ time to have 

the ‘right’ equipment. Ectopic or ‘inappropriate’ localization of the growth cone among comple-

mentary but ‘inappropriate’ targets and ectopic localization of ‘inappropriate’ but complementary 

targets within the ‘proper’ path of the growth cone will lead to the formation ectopic connections. 

Such ectopic connections will change the flow of information, leading to altered information pro-

cessing, with potentially disastrous consequences for the organism. Thus decreasing proximity 

between ‘appropriate’ partners while avoiding ‘inappropriate’ ones is critical for establishing ste-

reotyped neuronal connectivity.   

The nervous system has evolved multiple means of solving this problem, namely migration, 

neurite elaboration with directed growth, and subcellular compartmentalization (reviewed in [151, 
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157, 163, 216, 217]). In all these develop-

mental processes, this spatial or-

ganization is a strategy for limiting 

potential partners and optimizing 

the efficiency and probability of 

forming stereotyped, ‘appropriate’ 

connections. A newly born neuron 

must migrate from its place of birth 

to its final location, whereupon it 

undergoes a process of polarization 

and neurite elaboration, specifying 

axon and dendrite as distinct sub-

cellular compartments. During this 

elaboration phase, the axons and 

dendrites arborize, orient them-

selves, and elongate, growing to-

wards ‘appropriate’ regions in a 

process called axonal and dendritic pathfinding. The specific orientation and growth target are 

highly stereotyped and distinct for the axonal and dendritic growth cones, leading to stereotyped 

coverage patterns of these processes. Neurite guidance is mediated by molecular interactions be-

tween receptors on the growth cone and extracellular signals (Figure 1.17)[218]. These signals can 

act in a discrete or graded fashion, and can take the form of attractive or repulsive cues[1, 219]. They 

can be due to contact-mediated interactions with adhesion molecules or the extracellular matrix 

Figure 1.17 | Mechanisms of axon and dendrite guidance. 
A schematic of an axonal growth cone responding to guid-
ance cues in its environment, resulting in a specified path of 
growth. Guideposts are discrete cells or cellular structures 
utilized by axons as spatial cues. The axon trajectory can be 
divided into multiple segments between guideposts. The 
guidance process between each guidepost is mediated by 
four types of forces, long-range chemoattraction or chemore-
pulsion, and short-range contact-mediated (haptotactic) at-
traction or contact-mediated repulsion. Note that although 
an axon is used as an example, the same mechanisms also 
apply to dendrites. Figure from Chen & Cheng, 2009. 
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that are stabilized in place (haptotactic interactions)[135, 220-222], or long-distance interactions via 

secreted molecules that diffuse through the environment (chemoattraction and chemorepulsion). 

Finally, non-target cells can act as scaffolds or guideposts for the growth cone during this guidance 

phase. Importantly, in an intact brain, these extrinsic molecular cues will often have highly stere-

otyped spatial organization and temporal expression windows, which facilitate neurite pathfinding 

and in turn decreases the probability for ectopic connections. 

To summarize, prior to target selection, the main problem to forming stereotyped connections 

is decreasing spatial proximity between presynaptic growth cone and postsynaptic target. This 

process is solved through a two distinct but highly coordinated interactions, namely 1) the presyn-

aptic cell interacting with its microenvironment, and 2) the postsynaptic target interacting with the 

target microenvironment. Here we are defining ‘microenvironment’ as anything other than the 

presynaptic cell and the postsynaptic target. Thus, although synaptic target selection and matura-

tion are ultimately responsible for the specificity in these connections, the environment creates a 

framework for the precise assembly of neural circuits by regulating migration, neurite guidance, 

and subcellular compartmentalization. Finally, although we present the following models specifi-

cally from an axon guidance perspective, these mechanisms can also apply to dendritic guidance. 

1.4.1.1. Axon guidance along diffusible molecular gradients in subcellular targeting 

Diffusible molecules act to guide neurites and limit their extension, thereby functioning as a 

framework for directed axonal and dendritic outgrowth. These diffusible cues can take many 

forms, including Netrins[223], semaphorins[224-226], and slits[175, 225]. They can be attractive[223] or 

repulsive[224]. Moreover, the same molecule can act as a chemorepellent in one context and a chem-

oattractant in another. For example, in the cortex, Sema3A acts as a chemorepellant to pyramidal 
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cell axons[175] but a chemoattractant for their dendrites[227]. The polarized Sema3A expression gra-

dient (it is more highly expressed in superficial layers) leads to the characteristic axodendritic 

orientation in the cortex, thereby limiting putative synaptic partners. The response is not compart-

ment-specific: whereas Sema3A is a repulsive signal for cortical pyramidal cell axons, for cere-

bellar basket cell axons it acts as an attractive signal[228]. The effective intercellular communication 

range of these diffusible molecules is not constant, but is instead determined by the secretion and 

diffusion rates for each molecule, as well as the molecule’s binding affinity to its receptor[229]. 

Assuming only entropic diffusion, Francis and Palsson calculated that the maximum effective dis-

tance for soluble chemotactic molecules, such as the neurotrophic factors BDNF and NGF or mor-

phogens Shh and FGF8, is 25 cell diameters. In other words, this distance changes depending on 

the size of the subcellular compartment: if secreted from the soma, the range is approximately 525 

um (range: 375-675 um)[175], but decreases significantly for thinner neurites. In many instances, 

the signaling molecule interacts with molecules in the extracellular matrix (ECM). If this interac-

tion is reversible, such binding curtails the diffusion rate and thus the effective signal range. If it 

is irreversible, the molecule will act like a substrate-bound haptotactic cue. Moreover, the same 

molecule can function as a soluble, chemotactic cue, or as a substrate-bound, haptotactic cue, de-

pending on the cellular microenvironment and posttranslational modifications[230]. 

The majority of the literature on axon guidance via diffusible molecules is associated with 

regional targeting of long range projection neurons. However, diffusible molecules are also im-

portant mediators of subcellular targeting[27, 198, 221]. The hippocampus has classically been used as 

a model system to study subcellular targeting due to its well-characterized connectivity and lami-

nar organization (Figure 1.18). Here, perforant path afferents from the entorhinal cortex (EC) tar-

get the stratum luconosum-molecalare (SLM), which consists primarily of the distal dendritic tuft 
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of pyramidal neurons. In contrast, CA3 pyramidal neurons project ipsilaterally onto CA1 stratum 

radiatum (SR) and stratum oriens (SO), which correspond to medial apical (SR) and basal (SO) 

dendrite of the pyramidal neurons[198, 221]. Both targeting patterns are netrin-1 dependent. In netrin-

1 deficient animals, the targeting region of EC afferents is expanded to include the SR, whereas 

CA3 axons targeting was expanded to include the SLM[217].  

Another example of diffusible molecules regulating subcellular targeting is semaphorin-3F 

(Sema3F) in the cortex and hippocampus. Deletion of Sema3F or its receptor Npn2 led to increased 

spines in the proximal regions of the primary apical dendrite in L5 cortical pyramidal neurons and 

DG granule cells[218]. This spine phenotype was not witnessed in basal, apical oblique (secondary), 

or distal apical (tuft) dendrites, indicating that the increased excitatory inputs were specific to a 

single subcellular region (the primary apical dendrite). Importantly, using isolated hippocampal 

cells in culture, Tran et al., showed that Sema3F specifically bound to primary apical dendrites, 

Figure 1.18 | Lamina-specific innervation of hippocampal neurons by distinct inputs.  
A) Apical dendrites of pyramidal cells in CA1 and CA3 and of granule cells in the dentate gyrus 
receive inputs from distinct sources on discrete dendritic segments. B) In CA3, axons from ento-
rhinal cortex, commisural/associational afferents (CA), and dentate gyrus [mossy fibers (MF)] in-
nervate distinct dendritic segments in the stratum lacunosum-moleculare (SLM), stratum radia-
tum (SR), stratum lucidum (SL), and stratum oriens (SO) as shown. Adapted from Sanes & Yam-
agata, 2009. 
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whereas Sema3A bound to basal as well as primary and secondary apical dendrites, indicating that 

the Sema3F cell surface receptors are cell intrinsically localized to primary apical dendrites, and 

that diffusible Sema3F negatively regulates synapse formation at this subcellular region. 

1.4.1.2. Axon guidance and targeting by adhesion molecule gradients 

Axon guidance can also be driven by adhesion molecules in the environment[219, 220, 231, 232]. 

Multiple families of adhesion molecules have been implicated in axon guidance, including mem-

brane-bound semaphorins/plexins [233-236], Netrin-G/NGL[220, 237], Ephrin/Eph[238], DIPs/Dprs10 [239-

241], and the L1 family of adhesion molecules[3, 216] (reviewed in [220, 242-244]). 

The best characterized of these is Ephrin/Eph signaling, which mediates regional targeting 

and topographic map formation (Figure 1.19). Classic examples occur in the visual system, where 

spatially patterned expression of different Ephs and Ephrins mediate key decision points for retinal 

ganglion cell (RGC) axons as they grow toward their targets in the thalamus and superior colliculus 

(SC; in non-mammalian vertebrates, optic tectum)[220, 245-249]. One of the major decision points 

along this route is whether or not to cross the midline (Figure 1.19, A). Axons that cross the midline 

(‘contralateral axons’) innervate the contralateral brain regions, whereas those that don’t (‘ipsilat-

eral axons’) innervate ipsilateral ones. This decision is mediated by repulsive interations between 

EphBs and eprhin-Bs at the optic chiasm (Figure 1.19, B). EphB-expressing RGC growth cones 

are repulsed by ephrin-B-expressing non-target cells at the optic chiasm. This diverts their trajec-

tory toward target cells in the ipsilateral SC, the non-default state. In contrast, axons from RGCs 

that do not express EphB are unaffected, and proceed to the contralateral SC. The number of ipsi-

lateral axons correlates with the extent of binocular vision, so a greater proportion of EphB expr- 

 
10 DIPs and Dprs are primarily studied in drosophila and do not have mammalian homologs. They are mentioned here 
because their role in axon guidance is particularly well-characterized. 
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Figure 1.19 | Differential use of ephrin/Eph adhesion molecules in axon guidance during vis-
ual system development.  
A-C) Ephrin and Eph adhesion molecules contribute to a spatial molecular framework that me-
diates axon guidance and regional connectivity in the visual system. A) Role of ephrin-B and 
EphB in determining whether a retinal axon crosses the midline. Retinal ganglion cell axons in-
nervat a number of regions, including the superior colliculus (SC) (optic tectum in non-mamma-
lian vertebrates). The decision to cross the midline is mediated by interactions between eprhin-
Bs and EphBs at the optic chiasm. Those that cross the  midline (so called ‘contralateral axons’, 
shown in grey) innervate the contralateral SC, whereas those that don’t (so called ‘ipsilateral ax-
ons’, shown in blue) innervate the ipsilateral SC. B) Ipsilateral axons express EphB receptors and 
are repulsed by ephrin-B-expressing cells at the midline, thus preventing their crossing and driv-
ing directional growth toward the ipsilater SC. C) Eph/Ephrin signalling specifies the positioning 
of retinal axon termini within the SC. In retinal neurons, EphA displays graded expression: neu-
rons in more temporal region of the retina (T) express high levels of EphAs (red), whearas those 
in the nasal region of the retina (N) express low levels (orange). Target cells in the SC express a 
compelemntary gradient of ephrin-As (orange): neurons in the anterior SC express low levels of 
ephrin-A whereas those in the posterior express high levels. There is also a countergradient of 
ephrin-As (red), which is formed by an inverse expression pattern: cells in the retina and SC that 
express high EphA levels express low ephrinA levels, and vice versa. Thus, more temporal axons 
(red) target more anterior regions of the SC, whereas more nasal axons (orange) target more pos-
terior more anterior regions. These expression patterns results in a topographic map in the SC 
that reflects the spatial organization of the associated visual receptors in the retina. From Kania 
and Klein, 2016. Reproduced with permission from Springer Nature. 
D, E) Role of ephrin-A and EphA in corticothalamic axon guidance. D) EphAs (blue) are ex-
pressed in a graded fashion in the thalamus, whereas ephrin-As (red) are expressed in a graded 
fashion in the ventral telencephalon (VTe), an intermediate area through which thalamocortical 
axons pass on their way to the cortex. These graded expression patterns in the thalamus and VTe 
guide thalamocortical axons in the tangential plane. Rostral-medial TC axons (dark blue) travel 
through the rostral part of the VTe and subsequently target the rostral part of the cortex (e.g., 
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motor cortex, M), whereas axons from more caudal-lateral thalamic regions (light blue and grey) 
travel more caudally through the VTe, therby targeting more caudal cortical areas like the soma-
tosensory (S) or visual (V) cortex. In the absence of proper Eph/Ephrin signaling, axons typically 
targeting medial regions like the motor cortex (M) regions shit to more caudal area like the soma-
tosensory cortex. E) Graded Ephrin-A expression in the cortex (red) and EphA expression of the 
thalamus (blue) mediate thalamocortical axon guidance in the coronal plane. Axons from medial-
ventral areas of the thalamus (green) express high levels of EphAs and therefore target more ven-
tral-lateral regions of the cortex. In contrast, axons from dorsal-lateral regions of the thalamus 
(red) have lower EphA expression and therefore target more dorsal-medial cortical regions. Fig-
ures modified from Dufour et al., 2003. 
 

essing RGCs will enlarge the field of visual overlap. 

Eph/Ephrin signaling is also responsible for topographic map formation in the SC (Figure 

1.19, C)[250-253]. In the retina, RGCs express EphAs and Ephrin-As along a medial-lateral gradient: 

more temporal neurons express higher EphAs levels and lower Ephrin-A levels, whereas more 

nasal neurons have the opposite expression pattern[250]. These expression patterns are mirrored in 

the SC target region along the anteroposterior axis: more anterior SC neurons express higher EphA 

and lower Ephrin-A levels, whereas more posterior neurons have the opposite expression pattern. 

Due to the mutually repulsive effects of the EphA/ephrin-A interaction, axons from more temporal 

regions of the retina are prevented from growing into more posterior regions of the SC, thus settling 

in more anterior regions. In contrast, axons from more nasal RGCs are repulsed from more anterior 

regions and therefore target more posterior areas of the SC. There is also an expression gradient 

of EphB and Ephrin-Bs in the orthogonal plane, thereby yielding a 3D coordinate system for axon 

guidance and regional targeting[1, 127, 252]. Such a molecular coordinate system was proposed by 

Sperry in his chemoaffinity hypothesis[1]. Of note, these patterns are controlled by relative, not 

absolute, levels of Eph and ephrin signaling[135]. These graded expression patterns result in a topo-

graphic map in the SC that matches the spatial organization of receptors in the retina. 
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Ephs and ephrins also play a role in axon guidance between the retina and thalamus, and again 

from the thalamus into the cortex. For the retinothalamic axons, graded expression of EphA in the 

retinal ganglion cell axonal growth cones is matched by similarly graded expression patterns of 

ephrin-A adhesion molecules in the target cells, which interact repulsively to guide retinothalamic 

afferents to the appropriate thalamic regions[135]. A similar mechanism is then again utilized by 

thalamocortical afferents to guide regional targeting in the cortex[1]. Here, thalamic neurons 

express EphAs in a graded fashion along the rostro-caudal (R-C) axis of the thalamus (Figure1.19, 

D). These afferents initially grow in a medio-lateral direction through the ventral telencephalon, 

which expresses a complementary but inverted R-C gradient of Ephrin-As, a repulsive adhesion 

molecule ligand of the EphA receptor, thereby guiding axonal growth into different rostral and 

caudal regions of the cortex by finely-tuned expression. Once these axons enter the cortex, they 

encounter another ephrin-A gradient, this time decreasing along the medio-lateral and dorso-

ventral axes, which guides axons toward specific cortical regions[135]. Altering the EphA or Ephrin-

A expression levels leads to mistargeting. For instance EphA overexpression in normally low-

expressing regions leads to targeting of low (rather than high) ephrin-A expressing target regions, 

whereas deletion of EphA leads normally high EphA regions to target high (rather than low) 

ephrin-A expressing regions. Similar results occur with manipulation of Ephrin-A levels[254, 255]. 

Thus, adhesion molecules on axonal growth cones act as sensors for their environment, guiding 

axonal growth through a molecular coordinate system to their ultimate destination. 

1.4.1.3. Axon guidance along cellular scaffolds 

In the cerebellar cortex, Purkinje neurons (PkCs) are the sole efferent and thus form a central 

node for information processing and transmission. GABAergic stellate cells (SCs) innervate PkC 



65 
 

distal dendrites. In contrast to the previously-discussed models of axon targeting over large, re-

gional gradients, SC axons are guided towards Purkinje cell distal dendrites by a local cellular 

scaffold from astroglial cells. Specifically, SCs utilize Bergman Glial (BG) fibers to direct axon 

growth to PkC distal dendrites (Figure 1.20). When the adhesion molecule Close Homolog of L1 

(CHL1) is conditionally deleted in BG fibers, SC targeting of Purkinje dendrites is also dis-

rupted[254], indicating that SC axons utilize the BG fiber scaffold as an intermediate structure to 

target Purkinje cell dendrites. This three-cell process is a good example of how subcellular target-

ing specificity can be based on the structure of the local tissue environment. Most guidepost cells 

Figure 1.20 | Schematic Representation of the Bergmann Glial Fiber Scaffold and CHL1 in 
Directing Stellate Axons to Innervate Purkinje Dendrites.  
A) In the cerebellar cortex, Purkinje dendrites (yellow) are restricted in the translobular plane. 
Each BG cell (red) gives rise to several ascending BG fibers, which extend in both the translobular 
and parlobular plane. These largely radial fibers from neighboring BG cells further aligned into 
thin walls, or palisades, in the parlobular plane, perpendicular to the Purkinje dendrites. As a 
consequence, several BG palisades cut across and impinge upon an individual Purkinje dendrite 
in a largely vertical orientation. B) A stellate axon (green) likely contacts segments of multiple 
intercalated Purkinje dendrites (parlobular view; neighboring Purkinje dendrites are represented 
in different shades of yellow). Stellate synapses (blue dots) are formed or stabilized at the inter-
ception of BG fibers and Purkinje dendrites. C) In the translobular plane in WT mice (left panel), 
stellate axons associate with and extend along BG fibers, and are thus organized into characteris-
tic orientations and trajectories towards Purkinje dendrites. In CHL1-deficient mice (right panel), 
stellate axons can no longer associate with BG fibers, show aberrant orientation and trajectory, 
and are deficient in synapse formation and/or stability. Figure and legend from Ango et al., 2008. 
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are involved in axon guidance of long-range projection neurons[256], but this is an example of the 

involvement of guidepost cells in a local circuit: the presynaptic stellate cells are interneurons that 

residing in the most superficial molecular layer (ML) of the cerebellar cortex, whereas both the 

postsynaptic target (the PkC) and source of the scaffold (the BG cells) reside in the Purkinje layer, 

one layer below the ML. This is also important from a subcellular targeting standpoint since the 

Bergmann Glial fibers are thought to direct stellate cell axons to Purkinje Cell distal dendrites[25]. 

1.4.1.4. Coupling neuronal migration and axonal targeting 

The prior examples of axon targeting all display how axon growth is used as a means of de-

creasing proximity between target and axonal growth cone. These models all accept that the pre-

synaptic cell soma is settled in place at the time of axonal targeting. Rakic, 1971, proposed an 

alternate model for neurons to solve the pre-contact proximity question based on the development 

of cerebellar granule cells, namely that axonal targeting of specific lamina is accomplished by 

neurons leaving a trailing nascent axon during migration through the target region[174]. A similar 

model was recently proposed by Lim et al., to explain translaminar targeting of cortical interneu-

rons like Sst+ Martinotti cells[254]. Since the latter is more relevant to this work, we will discuss it 

here. As mentioned above, cortical interneurons are born in subcortical regions and undergo a long 

tangential migration into the cortex to acquire regional positioning, then undergo a switch to radial 

migration that determines their laminar positioning. Cortical interneurons tend to migrate tangen-

tially along two highly stereotyped streams, a superficial one within the marginal zone near the 

cortical surface, and a deeper one in the subventricular zone near the ventricle (see diagram in 

Figure 2). Lim et al., showed that L1-targeting Martinotti cells preferentially migrate tangentially 

through the superficial route and leave a trailing nascent axon in the marginal zone upon switching 

to radial migration. Since the marginal zone develops into L1, the Martinotti cell’s axonal growth 
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cone is always within the target layer, even as the soma continues migrating into deeper layers. 

Subsequent axonal arborization and synaptic targeting within the nascent L1 then determines the 

ultimate connectivity of these cells within this layer. This model suggests that the primary guidance 

molecules dictating Martinotti cell targeting of distal dendritic tuft are actually those used during 

tangential migration, with those used during axon guidance itself providing finer specificity.  

1.4.1.5. Summary of pre-contact methods 

The process of synaptic development involves several key principles. Initially, it's about spa-

tial proximity between presynaptic and postsynaptic cells, ensuring their physical interaction. Neu-

rons undergo migration, polarization, and neurite elaboration, specifying axon and dendrite as dis-

tinct compartments. Axonal and dendritic pathfinding involves molecular interactions with extra-

cellular signals, guiding growth cones towards appropriate targets. Diffusible molecules like Ne-

trins and semaphorins play roles in regional and subcellular targeting, influencing neurite exten-

sion through attractive or repulsive cues. Adhesion molecules, such as Ephrins and Ephs, also 

guide axon targeting by mediating regional and topographic map formation. Cellular scaffolds, 

like Bergman Glial fibers, can direct axon growth towards specific targets. Neuronal migration can 

also contribute to axon targeting, with some neurons leaving a trailing axon during migration, 

ensuring their axon growth cone remains within the target layer. These interactions with the extra-

cellular environment collectively ensure the precise assembly of neural circuits by regulating mi-

gration, axon guidance, and subcellular compartmentalization.  

 

1.4.2. Contact and beyond 

Synaptic target recognition is the process of selecting a specific postsynaptic partner out of all 

possible partners. This specificity can take the form of stereotyped regional, laminar, cellular, or 
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subcellular connectivity. These forms of connectivity are not mutually exclusive: specific neurons 

can show preferential targeting not only of specific cell types, but also specific subcellular regions 

on those targeted cells[14, 27, 169, 257, 258]. As noted above, this process is initiated by a physical inter-

action between the presynaptic cell and its putative partner. Generally, the cellular components are 

the axonal growth cone on the presynaptic cell and the target compartment of the postsynaptic cell. 

There are instances, however, where contact is initiated by a dendritic growth cone interacting with 

a presynaptic cell axon (reviewed in [163]). Although most synapses are axo-dendritic, there are 

many instances of axo-somatic and axo-axonic synapses. These classes can be broken down into 

even finer subclasses. Different cells will preferentially form axo-dendritic synapses onto different 

subdendritic regions, such as dendritic shafts, spines or sub-spine regions; onto different branches, 

such as basal vs apical dendrites; and at different distances from the target cell soma, such as 

proximal, medial, or distal dendrites, and primary vs oblique, and tuft[6, 259]. There are also distinct 

targeting patterns among cells that form axo-somatic synapses, with distinct enrichment patterns 

by PV basket cells[260, 261], CCK basket cells[174, 262], or mossy fibers targeting of the pyramidal cell 

soma, leading to giant synapses[16]. Axo-axonic connections include synapses onto the axon initial 

segment[263, 264], nodes of ranvier[265-267], and even synapses onto other presynaptic boutons[268]. 

Finally, although rare, there are also instances of dendro-dendritic synapses[269]. These connections 

are all mediated by adhesion molecules expressed by the presynaptic cell and postsynaptic cells. 

In this section, we will first discuss the synapse and its components: the presynapse and 

postsynapse. We will discuss how these highly specialized subcompartments exhibit diversity, fo-

cusing primarily on GABAergic synapses. We then cover general principles of synaptic develop-

ment, after the presynaptic and postsynaptic cells come into contact. Next, we discuss synaptic 

recognition and synaptogenesis, the de novo formation of synapses. We also cover current models 
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for how cell-cell contact initiates distinct synaptic identities. This background will set us up for 

the next section, wherein we discuss models for how subcellular targeting specificity can arise at 

the point of contact and beyond. 

1.4.2.1. The Synapse 

The chemical synapse is comprised of two asymmetric subcellular compartments from distinct 

cells tethered by intercellular adhesion molecules and separated by a 15-20 nm space (Figure 1.21). 

The presynaptic compartment is specialized for the release of neurotransmitter-containing vesicles, 

whereas the postsynaptic compartment is specialized for reception of this signal via membrane-

bound, neurotransmitter-activated ion channels. As a general rule, presynaptic specializations are 

composed of canonical presynaptic components with minimal variation, whereas postsynaptic spe-

cializations are highly diverse, with components determined by the neurotransmitter receptor and 

little overlapping between different types[152, 268]. In order for synaptic transmission to be efficient, 

Figure 1.21 | Schematic of the chemical synapse.  
A simplified schematic of the chemical synapse, showing important structural components. See 
text for details. 
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reliable, and rapid, neurotransmitter release sites on the presynaptic membrane must be precisely 

aligned with ionotropic receptors on the postsynaptic membrane. This has led to the hypothesis 

that synaptic adhesion molecules act as synaptic organizing molecules, whereby the trans-synaptic 

interaction initiates anterograde and retrograde localized signal transduction within the cytoplasm, 

thereby recruiting synaptic molecules to the contact sites[26]. Despite this appealing model, little is 

known about the cytoplasmic signals transduced by transsynaptic adhesion molecule interactions.  

1.4.2.2. The Presynapse 

The presynapse is the functional unit for anterograde transmission of synaptic signaling[270, 

271]. Presynapses in the central nervous system are typically small, hemi-spherical shaped objects 

resembling buttons, hence the name ‘bouton.’ The presynapse is enriched for synaptic vesicles, 

which contain neurotransmitter, vesicle transport and release machinery, presynaptic scaffolding 

proteins, calcium buffering molecules, ion channels, neurotransmitter reuptake receptors, and syn-

aptic adhesion molecules. Also enriched are ancillary support organelles such as mitochondria, 

endoplasmic reticulum, proteasomes, and lysosomes. Together, these molecules form a microen-

vironment that specializes in activity-dependent release of neurotransmitter-containing vesicles. 

As outlined below, presynaptic sites are specified by successful synaptic targeting and initiation 

of synaptogenesis. Cell-cell contact with a post-synaptic partner initiates retrograde signaling to 

induce recruitment of these specialized presynaptic molecules, leading to morphological and mo-

lecular profiles of presynaptic boutons, as outlined below. Although many of the developmental 

processes underlying presynapse formation have been characterized, how transsynaptic commu-

nication translates to cytoplasmic signaling that leads to recruitment of these components is not 

known.  
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Presynaptic diversity is evident in distinct morphological, molecular, and physiological pro-

files[268, 272-274]. As a general rule, all presynapses utilize the same basic cellular pathways, with 

slight variation in molecular components. All presynapses tend to use the same generalized release 

machinery to secrete neurotransmitter, regardless of which neurotransmitter is used[275]. The syn-

aptic vesicle protein synaptophysin and the scaffolding molecules bassoon and piccolo, for in-

stance, are expressed in most if not all presynapses of the CNS[276, 277]. Within the vesicle release 

machinery, the major source of variation is in the genetic isoforms utilized, which, as discussed 

below, will have functional consequences. Molecularly, the major source of presynaptic diversity 

derives from the neurotransmitter and its associated enzymes and transporters, which are expressed 

as a package deal. Specific neurotransmitter enzymes will be accompanied by associated trans-

porters and reuptake receptors. For instance, GABAergic cells will express the GABA synthetic 

enzymes GAD65 and GAD67, as well as the vesicular GABA transporter VGAT for release, and 

the GABA transporter GAT1 responsible for reuptake. In contrast, glutamatergic cells express 

vesicular glutamate transporters (VGLUTs) for release and excitatory amino acid transporters 

(EAATs) for reuptake. Even when individual neurons are able to synthesize multiple neurotrans-

mitters, these neurotransmitters are sorted into distinct presynaptic vesicles[278, 279] and presynaptic 

compartments[268, 277, 280] that are associated with distinct postsynaptic targets[262] (reviewed in [14]). 

Morphologically, presynapses can vary widely in size and shape. In the CNS, presynaptic 

boutons are typically small and round. There are notable exceptions, however, such as mossy fiber 

synapses that connect dentate gyrus and CA3 neurons, which are 50-100 times larger than a typical 

asymmetric synapse, have a convoluted shape more reminiscent of the NMJ, and can contain over 

30 separate vesicle release sites[281]. There is also size and shape diversity within the population of 

‘typical’ CNS synapses, with distinct cell types displaying distinct synapse sizes[282]. Furthermore, 
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such diversity is evident even within the same cell, with differences in bouton size reflecting their 

vesicle number, physiological strength, and reliability[283-286]. Indeed, convincing arguments have 

been made that each individual synapse is unique, with its specific molecular composition and 

shape being a function of the presynaptic and postsynaptic cell types, its local environment, devel-

opmental stage, and history of activity[272]. 

Moreover, there is a wide body of literature on how specific molecular profiles lead to distinct 

functional properties[287, 288]. For example, presynapses of fast-spiking cells, such as PV basket 

cells, utilize synaptotagmins to mediate binding of synaptic vesicle to the active zone membrane, 

thereby enabling neurotransmitter release into the synaptic cleft. This binding is calcium-mediated: 

calcium binding leads to a conformation change in synaptotagmin that initiates vesicle binding to 

the membrane. Unlike other vesicle release proteins, synaptotagmins have particularly fast calcium 

binding and release kinetics, which enables rapid cycling between vesicle binding and release[272, 

287, 289-294]. Fast-spiking basket cells also express the calcium buffering protein parvalbumin (PV) 

in their presynapses. Like synaptotagmins, PV has calcium release kinetics that enable rapid 

changes in calcium concentrations, thereby allowing for the fast-spiking profile characteristic of 

these cells[33, 295]. Combined, these evolutionarily conserved molecular mechanisms and expres-

sion patterns enable these cells to communicate rapidly with their postsynaptic partners. Other 

neuron types have evolved to express different molecular expression modules that result in distinct 

functional properties. 

1.4.2.3. The Postsynapse 

Postsynaptic specializations are highly diverse and specialized, with the utilized molecules 

closely coupled to the presynaptic neurotransmitter and their postsynaptic receptors. Very few 

components are shared between postsynaptic specializations for different neurotransmitters. 
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Postsynaptic specializations consist of elaborate, multimolecular complexes. Proximity ligation 

assays targeting inhibitory postsynaptic proteins revealed 181 proteins specifically enriched at in-

hibitory PSDs, greatly expanding the known proteins at the inhibitory PSD (Figure 1.22)[35]. These 

included trafficking proteins, cytoskeletal regulatory proteins, integral membrane proteins, and 

protein kinases/phosphatases. Many of these gene products have been implicated in neurological 

disorders. Of note, this network represents a combined average of all inhibitory synapses in the 

sample, and thus masks any diversity between these synapses.  

The defining characteristic of postsynapses is the neurotransmitter receptor, which are modu-

larly associated with other postsynaptic components such as scaffolding molecules, cytoskeletal 

Figure 1.22 | Scale-free graph of the iPSD proteome.  
A) InSyn1 (blue), gephyrin (green), and arhgef9 (yellow) BirA-dependent iBioID identify a rich net-
work of known and previously unknown proteins enriched at the iPSD. Node titles correspond 
to gene name; size represents fold-enrichment over negative control. Edges are shaded according 
to the types of interactions (gray, iBioID; black, protein-protein interactions previously reported). 
B) Clustergram topology of iPSD proteins (red) in selected functional categories. Figure and leg-
end from Uezu et al., 2017 . Reprinted with permission from AAAS. 
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adaptor proteins, kinases/phosphatases, and trafficking molecules. GABA has two receptor clas-

ses: GABAA receptors, the fast, synaptic receptors driven by neurotransmitter, and GABAB recep-

tors, slow, metabotropic receptors where activation can persist for seconds and important for neu-

romodulation. We will only discuss GABAA receptors, which are hetero-pentamers consisting of 

distinct combinations of α, β, and γ subunits. The most common conformation is two αs, two βs, 

and one γ subunits. There are many subunits of each type, α1–6, β1–3, γ1–3. GABAARs can be 

synaptic or extrasynaptic, with those containing α1–3 and γ2 subunits tending to be synaptic. Dif-

ferent cell types express distinct profiles of GABAAR subunits[37, 296-298] and expression patterns 

can differ by disease[298-300]. Different subunits confer distinct pharmacological profiles[301, 302], and 

tend to be enriched at different synapses and at different subcellular locations, though these local-

ization patterns tend to differ by brain region[299]. α1-3 are all found at perisomatic synapses, but 

α1 mediates transmission from PV basket cells, whereas α2 and α3 mediate inputs from CCK 

basket cells[301]. α2 and α3 are also localized to the AIS and mediate chandelier synapses[303, 304], 

whereas pharmacological data suggests that α5 mediates synapses from Martinotti cell, which tar-

get distal dendritic tuft[232, 234]. α4 and α6 on the other hand, tend to be localized to extrasynaptic 

GABAA receptors. This diversity in GABAA receptor composition is contrasted with the observa-

tion that most if not all GABAergic postsynapses contain the scaffolding protein gephyrin. 

1.4.2.4. Synaptic targeting recognition: selecting your partner from the crowd 

Synaptic target recognition11 is the process of selecting a specific synaptic partner out of all 

possible partners. It is thus primarily a process of cellular recognition. Strictly speaking, synaptic 

 
11 We use the term ‘synaptic target recognition’ or ‘target recognition’ here rather than the standard term ‘synaptic 
targeting’ to distinguish the molecular process of synaptic partner recognition/selection from ‘targeting specificity,’ 
the specific connections that arise through any of the pre- and/ or post-contact mechanisms discussed in section 1.4.  
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target recognition is mediated by cell adhesion molecules (CAMs) that are a priori localized at the 

cellular contact sites and interacting in trans. In other words, this stage of neuronal development 

involves a physical interaction between CAMs on the presynaptic cell and those of its putative 

partner.  

Since partner selection is primarily a process of cellular recognition, the first step in this pro-

cess can be boiled down to a question of molecular complementarity: these molecules can interact 

in an attractive or repulsive manner, thereby initiating downstream molecular cascades that in-

crease or decrease the probability of synapse formation[305, 306]. It is important to note that molec-

ular affinity is distinct from the interaction being attractive or repulsive[307]. Attractive and repul-

sive interactions both arise from high affinity binding; it is the cellular and molecular response that 

determines whether the interaction is attractive or repulsive. For repulsive interactions, molecular 

contact initiates downstream mechanisms that destabilize the interaction and lead to its collapse, 

thereby hindering synapse formation[29], whereas in attractive interactions the affinity either re-

mains constant or is further increased, leading to a stable interaction that is conducive to synapse 

formation. 

The simplest transsynaptic interaction involves an interaction between two molecules, one at 

the presynaptic membrane and the other on the postsynaptic membrane, interacting in trans (op-

posite cell surface). These interactions can be homophilic (same protein)[305, 308, 309], or heterophilic 

(different proteins) [238, 310-312]. Many transsynaptic interactions are mediated by multi-protein com-

plexes, however, utilizing cis (same cell surface) interactions with other membrane-bound pro-

teins[175, 313-315] and/or interacting with secreted adaptor protein intermediates[16, 175, 230, 305, 316] that 

stabilize the transsynaptic interaction. Finally, evolutionarily, most cell adhesion molecules 

evolved from two related protein folds, namely cadherin and immunoglobulin (Ig)-like domains, 
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and thus belong to one of these superfamilies[317]. Different neuron types express distinct combi-

nations of synaptic adhesion molecules and form highly specific connections[34, 35, 37, 318, 319]. This 

observation has led to the proposition that there is a synaptic adhesion molecule code that underlies 

synaptic specificity12 (Figure 1.23)[29, 305, 320]. Many families of adhesion molecules have been lo-

calized to the synapse (Figure 1.23, upper panel)[239], each of which comprise multiple members 

with distinct binding affinities. We show here the affinities for (mammalian) clustered protocad-

herins (Pcdh), (drosophila) DIPs & DPRs,  and (mammalian) Type II cadherin families (Figure 

1.23, lower panel)[237], all of which are strongly implicated in synaptic target recognition[238, 262, 

307, 310, 319]. Indeed, that a synaptic adhesion molecule code underlies synaptic specificity has been 

partly validated by studies showing that interactions between specific synaptic adhesion molecules 

mediate specific instances of stereotyped cellular[16, 321] and subcellular[322-325] targeting. That said, 

data suggests that most of these adhesion molecules are not involved in target recognition. Com-

plete deletion of presynaptic adhesion molecule families that form interaction hubs, like Neu-

rexins[326] and PTPRs[239, 327] led to diverse, circuit-specific phenotypes that generally did not ac-

cord with these proteins (and by extension, their postsynaptic partners) playing an essential role in 

target recognition, or even a canonical role in synapse function. Relatively few of these protein 

 
12 The synaptic adhesion molecule code is a reformulation of Sperry’s Chemoaffinity hypothesis that specifically 
focuses on the role of synaptic adhesion molecules in synaptic target recognition. Sperry’s chemoaffinity hypothesis 
is more general, proposing that neurons form specific connections with their targets based on interactions with specific, 
genetically-encoded molecular cues. It does not make any claims as to the form of these molecular cues, i.e., whether 
they are adhesion molecules or diffusely secreted molecules, or the developmental stage within which they operate, 
i.e., it includes both target recognition and axon pathfinding. The latter has historically been the primary focus of 
research associated with the chemoaffinity hypothesis, and thus many erroneously equate it with axon pathfinding. 
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families have a canonical role in synaptic target recognition: the (drosophila) DIPs-DPRs[328], cad-

herins[310], Sidekicks[321, 329], L1CAMs[322], Latrophilin-Teneurin-FLRTs[232, 233, 323, 330-333], and 

(membrane-bound) Semaphorins-Plexins[234, 235, 334, 335]. Of these, only the Sidekicks, Latrophilins,  

 

Figure 1.23 | Visual representation of the synaptic adhesion molecule code.  
Upper: schematic diagram of candidate trans-synaptic synaptic adhesion molecule (SAM) com-
plexes governing synapse assembly. Note that two families of presynaptic SAMs, neurexins and 
LAR-PTPRs, are hub molecules that interact with a series of postsynaptic SAM families and also 
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bind to each other in cis. Most candidate SAMs perform additional functions outside of synapses. 
Lines and arrows indicate interactions, with cis-interactions shown as dotted lines and less vali-
dated trans-interactions shown as dashed lines. Lower: Differential binding affinities of different 
adhesion molecule families. The clustered protocadherin (Pcdh) family displays highly specific 
homophilic interations. In contrast, two other SAM families display degenerate binding proper-
ties. DIP/Dpr interactions are largely heterophilic and often promiscuous. Type II cadherins are 
homophilic, but also exhibit heterophilic binding specificity. Abbreviations: LAR-PTPRs, LAR-
type receptor phosphotyrosine phosphatases; DCC, deleted in colorectal cancer; EphB, Ephrin B; 
FLRT, fibronectin leucine-rich transmembrane; LRRTM, leucine-rich repeat transmembrane; Rec., 
receptor; RTN, reticulon; SALMs, synaptic adhesion-like molecules; SliTrks, Slit- and Trklike pro-
teins; SynCAM, synaptic cell adhesion molecule; TrkC, tropomyosin receptor kinase C. Figures 
and legends adapted from Sudhof 2021 (upper) and Sanes and Zipursky, 2020 (lower). 

 

and Semaphorins/Plexins are enriched in specific subcellular target compartments. This is not to 

say that none of the other families are involved in target recognition. Rather, although many of 

their members have been implicated in synaptic target recognition, accumulating evidence sug-

gests that their utilization in this process is context dependent. Instead, most synaptic adhesion 

molecules are involved in shaping synaptic properties. We discuss specific roles for many of these 

proteins below. One thing to keep in mind, however, is that our methods for assessing functional 

changes are incredibly sensitive and nuanced, allowing us to easily detect changes. On the other 

hand, our methods to assess specific connections are comparatively immature, primarily consisting 

of counting synapse numbers using labeling techniques that often do not distinguish distinct con-

nections. Thus, the lack of evidence of these gene families having a role in target recognition could 

arise from sensitivity issues in our detection methods, and generally unnuanced schema for cate-

gorizing synapses. A complete mapping of these interactions will require not only in vitro bio-

chemical experiments using isolated proteins, but also in vivo validation through imaging and 

functional analysis. 

In addition to these interactions being attractive or repulsive, synaptic target recognition im-

plies that the intercellular interaction is synaptogenic, i.e., that the cell-cell contact is accompanied 
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by cellular cascades that promote synapse formation and/or stabilize the synapse. Indeed, this 

property distinguishes synaptic partner selection from other CAM-mediated cell recognition inter-

actions like cellular migration and axon guidance. Generally speaking, it is still unclear which of 

the candidate synaptic adhesion molecules are primarily involved in cellular recognition, synapse 

assembly, shaping synaptic properties, or some combination of these functions. Although target 

recognition and synaptogenic signaling can be tackled by the same molecule(s), it is important to 

note that this is not necessarily the case. As discussed below, cell recognition and sustained contact 

can be established by one set of molecules, whereas the morphological and molecular changes 

associated with synapse formation can be driven by an entirely different set of molecules along a 

parallel path[26, 336]. Thus, although these processes can be linked, it is conceptually better not to 

conflate them. Synaptic target recognition occurs through transcellular intermolecular interactions 

between adhesion molecules expressed on the cell surface. It is thus primarily an extracellular 

process. In contrast, the assembly of synapses is mediated by cis interactions on the membrane or 

cytoplasmic signaling inside the membrane. Synaptic target recognition is a necessary precursor 

that potentiates synaptogenesis. Next, we will discuss synaptogenesis. 

1.4.2.5. Synaptogenesis: building something together 

Synaptogenesis – the stage of synapse assembly and plasticity – is initiated after the cell-cell 

contact of successful partner recognition (reviewed by [320, 337-339]). During synaptogenesis, synap-

ses can follow a trajectory of growth, maintenance, or elimination. As long as the cell-cell contact 

is maintained, the pre- and post-synaptic cells engage in considerable transsynaptic cross-talk. This 

transsynaptic signaling occurs in both the anterograde and retrograde directions, and leads to reor-

ganization of the pre- and post-synaptic machinery[318]. These changes can be activity-dependent 

(synaptic plasticity) or activity-independent (synaptic assembly). And in all cases, these changes 
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can lead to specific molecular and functional properties that define and distinguish one synapse 

from another. Importantly, this transsynaptic cross-talk can impact synaptic connectivity. 

The initial stage of synaptogenesis is synapse assembly, whereupon a number of molecular 

programs are initiated via transsynaptic signaling in both the pre- and postsynaptic sides to stabi-

lize (or destabilize) the synapse (reviewed in [268, 340]). Initial stages include recruitment of mole-

cules, complexes, and organelles that will define the characteristics of the synapse. The specific 

molecules that are recruited are determined not only by the identities of the pre- and postsynaptic 

cells, but also by the cross-talk between them. On the presynaptic side this includes additional 

adhesion molecules, scaffolding molecules, ion channels, the presynaptic neurotransmitter release 

machinery, and organelles such as mitochondria, endoplasmic reticulum, proteasomes, and com-

ponents for local translation13[181, 268, 318, 320, 341-343]. These molecular changes are accompanied by 

morphological changes and subcellular compartmentalization in the form of presynaptic bouton 

formation. On the postsynaptic side, the transsynaptic cross-talk leads to the recruitment of neuro-

transmitter receptors, scaffolding proteins, organelles, and signal transduction complexes[344]. Of 

note, the postsynaptically recruited molecules are specifically matched to the presynaptic neuro-

transmitter, such as GABAergic receptors and the GABA/glycinergic scaffolding molecule 

gephyrin, to the postsynaptic site across from GABAergic presynapses. Moreover, these molecules 

are recruited even in the absence of synaptic transmission[318, 320], suggesting it can be mediated by 

synaptic adhesion molecules. 

In order for synaptic transmission to function efficiently, reliably, and rapidly, neurotransmit-

ter release sites on the presynaptic membrane must be precisely aligned with postsynaptic iono-

 
13  Local translation in axons is controversial. The evidence for this process is reviewed by [157]. 
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tropic receptors on the postsynaptic membrane. This has led to the hypothesis that synaptic adhe-

sion molecules act as synaptic organizing molecules, whereby the trans-synaptic interaction initi-

ates anterograde and retrograde localized signal transduction within the cytoplasm, thereby recruit-

ing synaptic molecules to the contact site[339]. This hypothesis extends the synaptic adhesion mol-

ecule code model beyond simply cellular recognition, proposing in addition that specific transsyn-

aptic interactions also assemble synapses and define specific synaptic properties[320]. Of note, 

transsynaptic interactions that mediate synaptic target recognition need not be involved in synaptic 

assembly or shaping synaptic properties, and vice versa. The intracellular signal transduction cas-

cades that mediate synaptic assembly and shape synaptic properties not well understood. 

1.4.2.5.1. Speci�ication of presynaptic domains by retrograde transsynaptic signaling 

Retrograde transsynaptic signaling is from the postsynaptic cell to the presynaptic cell. Ret-

rograde signaling can be mediated by postsynaptic adhesion molecules or secreted molecules. The 

secreted factors, in turn, can be divided into molecules that diffuse freely within the synaptic cleft, 

and those that constitute the synaptic extracellular matrix and serve as extracellular scaffolding 

molecules. Retrograde signaling can be activity dependent, i.e., in response to presynaptic neuro-

transmitter release, or activity independent. During synapse assembly, this signaling leads to mor-

phological and molecular changes at the presynaptic site. Here, the critical event in presynapse 

assembly is signaling across the presynaptic membrane, which in turn recruits neurotransmitter 

release machinery, presynaptic adhesion molecules, calcium channels, and receptors, and anchors 

the presynaptic scaffolding molecules to the membrane at the active zone.  

On the presynaptic side, active zone scaffolding molecules mediate the vesicle release process, 

are required for functional synapses, and are a key indicator for the assembly of presynapses[341]. 

Interestingly, none of the principle active zone scaffolding molecules are transmembrane proteins, 
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indicating that recruitment of these molecules to the membrane opposite postsynaptic sites must 

be mediated by other molecules. No protein interaction or protein family has been found to be 

essential for membrane anchoring of principle active zone scaffolding proteins. Rather, heterolo-

gous expression assays have demonstrated that many synaptic adhesion molecules are sufficient 

to induce presynaptic assembly[345]. The most parsimonious model to explain these data is that 

recruitment and tethering of active zone scaffolding molecules is mediated by many redundant 

interactions[158]. These interactions could include direct interactions of scaffolding machinery with 

not only synaptic adhesion molecules, but also Ca2+ channels or membrane lipids. One intriguing 

model is liquid-liquid phase separation[341, 346, 347]: at sufficient concentrations, presynaptic active 

zone proteins RIM and RIM-BP undergo liquid-liquid phase separation, spontaneously forming 

membraneless subcellular compartments through low affinity interactions[348]. A similar conden-

sate of synapsin and synaptophysin has been implicated in synaptic vesicle formation, packing, 

and motility[151, 213, 349], thereby allowing for the mesoscale domains of synaptic vesicles at synap-

ses in vivo. We discuss condensates in greater depth below.  

1.4.2.5.2. Speci�ication of postsynaptic domains by anterograde transsynaptic signaling 
Anterograde signaling is from the presynaptic cell to the postsynaptic cell. Anterograde syn-

aptic signaling is mediated by presynaptic adhesion molecules and secreted molecules. The se-

creted factors, in turn, can be divided into molecules that diffuse freely within the synaptic cleft, 

and those that constitute the synaptic extracellular matrix and serve as scaffolding molecules at the 

synaptic cleft. Anterograde signaling can be activity dependent, via neurotransmitter release, or 

activity independent. During synapse assembly, this signaling leads to morphological and molec-

ular changes at the postsynaptic site. Here, the critical event in postsynapse assembly is signaling 

across the postsynaptic membrane, which in turn recruits neurotransmitter receptors and anchors 

postsynaptic scaffolding molecules to the membrane at the signaling site. There are several models 
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for how this is achieved, including secreted molecules that diffuse across the synaptic cleft, and 

adhesion molecules that form transsynaptic bridges.  

Presynaptically-secreted molecules can induce postsynaptic nucleation and compartmentali-

zation. Perhaps the best characterized example of this model is Agrin-induced acetylcholine re-

ceptor (AChR) clustering at the neuromuscular junction (NMJ). Agrin is normally secreted by the 

presynaptic cell and interacts with its postsynaptic receptor Lrp4 and MuSK, leading to nucleation 

and AChR clustering at the postsynapse[350]. Importantly, this compartmentalization is independent 

of transsynaptic adhesion molecules: local, pipette-based application of Agrin to muscles induces 

nucleation and AChR recruitment. A similar role was proposed for pentraxins in the CNS, which 

cluster postsynaptic glutamate receptors and act as a transsynaptic bridge to presynaptic pentraxin 

receptor (reviewed in [350]). Similarly, growth factors[351, 352] and neurotransmitters[353, 354] have 

been shown to induce nucleation and receptor clustering independent of presynaptic specializa-

tions, indicating that these secreted molecules are sufficient for postsynapse assembly. It is im-

portant to note that, in a physiological context, these secreted molecules are typically found at 

concentrations high enough to induce such nucleation events only when secreted by presynaptic 

specializations or growth cones. Thus, although the physiological importance of these mechanisms 

outside of transsynaptic communication is unclear, these examples illustrate important adhesion 

molecule independent mechanisms of compartmentalization during synaptogenesis. Neurotrans-

mitter receptors are also prime candidates in postsynapse assembly since these molecules interact 

directly with both scaffolding molecules and synaptic adhesion molecules. The cytoplasmic loop 

of several GABAA receptor subunits, for instance, binds to gephyrin, thus providing a molecular 

bridge between the cytoplasmic scaffolding molecule and the membrane-bound receptors[354]. This 

interaction is incredibly weak, however, and therefore has been discounted as a mechanism that 
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accounts for scaffold recruitment. Another role for neurotransmitter receptors in organizing syn-

apses is via activity-dependent lipidation of postsynaptic components. Specifically, pal-

mitoylation, a posttranslational addition of lipid, which is known to occur for gephyrin[355, 356] 

PSD95[356], and GABAA receptors[357, 358], has been shown to be an important mechanism for 

plasma membrane targeting and clustering. Lipid modification of gephyrin controls whether it is 

membrane-bound or soluble, and thus also its localization and clustering. Palmitoylation/depal-

mitoylation cycles are regulated by synaptic activity. Although interfering with palmitoylation de-

creased clustering, it did not abolish the process, suggesting redundant and independent mecha-

nisms for membrane association and clustering, and that palmitoylation is associated with synaptic 

plasticity rather than assembly. In addition, synaptic connectivity appears to develop normally in 

the absence of neurotransmission, indicating that these mechanisms are not required for postsyn-

apse assembly. 

Synaptic adhesion molecules have also been proposed as central players in postsynapse as-

sembly. The postsynaptic neuroligins are a prime candidate for mediating synaptic specific, espe-

cially given that their presynaptic counterparts, the neurexins, exhibit hundreds of isoforms due to 

alternative splicing[357], which in turn have cell-specific and circuit-specific expression profiles[273, 

318, 359, 360]. Neuroligin-1 is exclusively found in glutamatergic synapses, whereas neuroligin-2 is 

exclusive to GABAergic synapses, and neuroligins -3 and -4 are found in both[358, 361-364]. Neu-

roligin-2 is the only transmembrane cell adhesion molecule identified that interacts with 

gephyrin[364]. It also interacts with collybistin[302, 365], another GABA-specific postsynaptic scaf-

folding molecule, and in cis with GABAA receptor subunits[324, 359]. These data all point to Neu-

roligin-2 as a principle actor in assembly of inhibitory synapses, but deletion studies show that it 

is not required for inhibitory synapse assembly, instead playing diverse roles in shaping synapses 
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across different inhibitory synapses[324]. The same is true for other neuroligins, namely that they 

are involved in shaping synapse properties, rather than orchestrating synapse assembly[268, 316, 318, 

320]. Postsynaptic Adhesion GPCRs, namely the Latrophilin and BAI family members, are the only 

synaptic adhesion molecules consistently shown to be required for establishing synapses[332], as 

deletion of specific isoforms leads to severe decreases in specific subsets of subcellularly-targeted 

synapses. The BAI family consists of three poorly-characterized members, Bai1-3, with only Bai3 

thus far having clear involvement in assembly of specific synapses. In the cerebellum, Bai3 is 

expressed postsynaptically by Purkinje cells and binds to C1ql1 expressed by climbing fiber cells. 

Bai3 deletion selectively blocks climbing fiber (but not parallel fiber) synapse formation[322]. 

Latrophilins also consist of three members, latrophilin1-3, and are better characterized. Latro-

philin-1 is expressed postsynaptically in hippocampal neurons at both excitatory and inhibitory 

synapses throughout the cell, but deletion specifically decreased somatic inhibitory synapses[323], 

suggesting a role in the establishment of soma-targeting GABAergic synapses. Latrophilin-2 de-

letion in CA1 PyNs selectively decreases EC synapses on the distal dendritic tuft[331], whereas 

Latrophilin-3 deletion selectively decreases schaffer collateral inputs onto CA1 stratum oriens and 

stratum radiatum, corresponding to pyramidal cell basal and medial dendrites, respectively[345]. 

Latrophilin-mediated excitatory synapse assembly was initiated by forming a complex with pre-

synaptic teneurin and FLRT counterparts. Of note, functional GPCR activity of latrophilin was 

required to rescue synapse formation in knockout animals[158], indicating that latrophilins activate 

synapse assembly through classic GPCR signaling. It is unclear whether the Bai family operates 

in a similar manner. 

One attractive model that could encompass all the above findings is that subcompartmentali-

zation of postsynaptic scaffold molecules may be driven by liquid-liquid phase separation[353, 366, 
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367]. Such compartmentalization has been shown for both glutamatergic[333, 368] and GABAergic[369] 

postsynaptic scaffolding components. Of note, GABAergic and glutamatergic phase-transitioned 

scaffold condensates are mutually exclusive, form spontaneously past threshold concentrations, 

rely on multifarious weak interactions, and can have heterogenous molecular compositions. In-

deed, a very recent study has linked postsynaptic latrophilins to recruitment of phase-transitioned 

postsynaptic scaffold condensates[144]. This mechanism would also explain the seemingly fluidic 

distribution of multiple separate irregular organizations of 2-dimensional GABAA receptor net-

works within a single synapse[343], as a rigid scaffold would lead to rigidly-organized receptors, 

which is not observed. As noted above, a similar mechanism has been proposed for presynaptic 

compartmentalization. Thus, rather than synaptic nucleation relying on one or a few strong inter-

actions, this model proposes that the process could arise through many weak interactions. Im-

portantly, this model suggests that multifarious transmembrane proteins all interacting with the 

same luminal scaffolds would only have to reach a specific localized threshold concentration be-

fore spontaneous condensate formation drives further clustering and stabilization. Parallelism in 

fluidic organization of the presynaptic active zone and the postsynaptic density would enable re-

ciprocal interactions between stable condensates at the cytoplasmic face of both synaptic mem-

branes, further stabilizing synaptic compartmentalization. Moreover, this configuration would en-

able rapid adjustments in alignment of vesicle release sites and postsynaptic receptors, thereby 

making neurotransmission more efficient. Such an organization strikes a balance between stability 

and flexibility, thereby enabling organizational and functional plasticity. 

1.4.3. Post-contact models of synaptic specificity 

The previously-discussed models of subcellular targeting specificity were all pre-contact 

methods for axon guidance, and thus deal with the axon navigating the environmental framework 
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to minimize the distance between itself and the target. But what happens when the axon reaches a 

potential target? The remaining models are all post-contact, and thus deal with target recognition, 

synaptogenesis, and synapse refinement. We begin with the domain model of subcellular targeting, 

which constitutes the most fundamental model for subcellular targeting specificity.  We will then 

discuss regional regulation of synaptogenesis, followed by synapse elimination as a means for 

subcellular specificity. Again, we will be focusing on the three acting parties: the presynaptic cell, 

the target cell, and the environment. All of these models begin either at the point of contact between 

putative synaptic partners, or after contact has already been established. It is important to note that 

pre- and post-contact mechanisms are not mutually exclusive in determining the final, stereotyped 

connectivity. The developmental trajectory of a neural connection can harness both pre- and post-

contact mechanisms to arrive at a specific, stereotyped connectivity. Moreover, the post-contact 

mechanisms detailed below are not mutually exclusive. Rather, different model connections will 

rely more or less heavily on different mechanisms for their ultimate specificity, thus providing 

fertile ground for the study of these different processes. 

First, on the question of synaptic activity. The role of synaptic activity at different stages of 

neurodevelopment has been a topic of research for decades. Studies using knockout (KO) mice in 

which synaptic vesicle release is perturbed, and thus synaptic transmission in general is blocked, 

showed that the majority of synapses are formed and maintained even in the absence of neuro-

transmitter signaling[145, 320, 344, 351]. These studies indicate that axon guidance, synaptic targeting, 

and the initial stages of synaptogenesis are activity-independent. In other words, the initial form 

of synaptic connectivity appears to arise from ‘hard wired’ biological processes that are independ-

ent of individual experience[352]. This conclusion contrasts with studies showing that local appli-
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cation of neurotransmitter can induce postsynaptic receptor clustering[214, 215], indicating that syn-

aptic transmission is sufficient to induce the initial stages of synaptogenesis. Finally, electrical 

activity alone is sufficient to induce postsynaptic differentiation, as shown by DC electrical field 

stimulation[206, 370], indicating that clustering can occur through non-molecular stimuli. The phys-

iological importance of the last two mechanisms is unclear, as neurotransmitter levels and sus-

tained, focal electrical stimulation rarely reach sufficient levels to induce clustering outside of the 

synapse. Nevertheless, these studies reveal mechanisms whereby synaptic activity can play a role 

in synapse assembly, and thus may be important in shaping this initial connectivity. Regardless of 

its role in the initial connectivity, synaptic activity is important in refining connectivity after it is 

initially established, as discussed below. 

Second, many of these molecules are recycled and reused in different developmental contexts. 

For instance, netrin-1, which we discussed as a diffusible mediator of axon guidance, also mediates 

neuronal migration[371], arborization[370, 372], and synaptogenesis[175, 223, 371]. The reuse of these mol-

ecules during distinct, often sequential, developmental stages confounds the effects of an interven-

tion, often making it difficult to deconvolve the molecule’s role at different developmental stages. 

Clever experimental designs have, in certain instances, sidestepped these issues and elucidated 

nuanced roles for molecules during different developmental stages. But most studies do not go to 

such lengths. 

Third, even within the same developmental context, many molecules will perform distinct 

roles in different cellular contexts. As discussed above, Sema3A functions as a chemorepellent for 

pyramidal cell axons in the cerebral cortex[243], whereas in the cerebellum it acts as a chemoat-

tractant for basket cell axons[174]. Thus, a molecule’s function in a cellular process is often context-
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dependent, relying not only on intrinsic properties, but also on its interacting partners and down-

stream signaling cascades. 

We revisit the second and third points in the discussion. 

1.4.3.1. Domain targeting of molecularly-enriched subcellular compartments 

In the Cerebellum, cerebellar 

basket cells (CBCs) innervate 

Purkinje neurons (PkCs) soma and 

axon initial segment (AIS), forming 

a brush-like collection of synapses 

called a pinceau. This AIS targeting 

in particular is an example of synap-

ses forming upon a subcellular gradi-

ent of locally-enriched adhesion mol-

ecules[373]  (Figure 1.24). CBC target-

ing to the Purkinje cell AIS closely 

correlates with a subcellular gradient 

of the L1CAM family member neu-

rofascin186 (NF186) adhesion molecule[174]. Notably, NF186 cytoplasmic domain contains 

Ankyrin-binding domains[374], and deletion of the AIS-localized scaffolding molecule Ankyrin G 

(AnkG) leads to NF186 diffusion into more apical regions of the PkC soma and more distal regions 

of the axon, with CBC boutons precisely following this more diffuse NF186 gradient. Further data 

showing that expression of a dominant-negative NF186 in PkCs decreased levels of the GABAer-

gic presynaptic marker GAD65 at the AIS, suggesting that NF186 mediates CBC targeting of PkC 

Figure 1.24 | Subcellular specificity of cerebellar basket 
cell inhibitory connections to Purkinje cells (PkCs). 
Schematics showing the inhibitory synaptic connectivity 
patterns of the wild type (left) and ankyrin-G deficient 
(right) mice. In wild type mice, a sharp gradient of neuro-
fascin is present from AIS toward the soma. In ankyrin-G 
deficient mice, this gradient is no longer restricted to the 
AIS, which causes mistargeting of basket cell axons and re-
duced synapse formation. SC, stellate cell; BC, basket cell; 
PC, Purkinje cell; BG, Bergman glia. Figure and legend 
adapted from Williams and Ghosh, 2010. 
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AIS[374], though more recent data has challenged this conclusion[174, 175, 375]. These data led to a 

model whereby enrichment of attractive adhesion molecules within prespecified subcellular com-

partments of the target cell define the subcellular target region a priori, with the growth cone 

simply requiring guidance-mediated proximity to this region to initiate synapse formation[161, 172]. 

Given this model, the subcellular compartmentalization of postsynaptic adhesion molecules can 

occur cell intrinsically, as is the case with the AIS[16, 171, 200], or via inductive environmental influ-

ences, such as distal dendritic tuft in the cortex or SLM in the hippocampus[322]. This domain model 

has been shown in multiple settings, including the cortex[262], hippocampus[233, 266], retina[376], and 

spinal cord[232, 377].  

Although the above model specifically proposes that attractive interactions drive domain-spe-

cific targeting, a more generalized model would include subcellularly-enriched repulsive cues that 

direct targeting away from specific domains, leading to synapse formation on domains that lack 

these cues. Indeed, this is precisely what occurs in the hippocampal circuit between dentate gyrus 

(DG) mossy fiber axons targeting CA3 pyramidal neurons (Figure 1.25). DG mossy fibers target 

CA3 pyramidal neurons (PyN) at proximal regions of the apical dendrite within the stratum lu-

cosum (SL). Studies have shown that this targeting is based on interactions between semaphorins 

and their receptors, plexins. Unlike the previously-discussed semaphorins, Sema6A is a transmem-

brane protein expressed by the postsynaptic pyramidal neuron. PlexinA4, a Sema6A/Sema6B re-

ceptor, is expressed on the growth cone of mossy fiber afferents[232, 233, 235]. The PlexinA4-Sema6A 

interaction leads repulsion via collapse of the growth cone. Although Sema6A subcellular locali-

zation throughout the target CA3 pyramidal neuron, and therefore is present in all layers, its con-

centrations are highest within basal and apical dendrites, leaving a gradient expression pattern with 

increasing distance from the PyN soma. Given the expression pattern of this repulsive signal, one 
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might expect mossy fibers to target CA3 soma in the stratum pyramidalis (SP), but this is not the 

case. Instead, the postsynaptic CA3 PyNs express PlexinA2, which localizes to the PyN proximal 

apical dendrite within the SL and binds Sema6A in cis, thereby inhibiting its contact-mediated 

repulsive effects. This interaction decreases the effective Sema6A concentration within the SL to 

levels lower than the SP, thereby opening a window for mossy fibers to form connections at the 

stereotypical subcellular region, resulting in the characteristic innervation pattern of MFs on the 

SL. Deletion of PlexinA2 leads to the expected result, with mossy fibers targeting according to the 

Sema6A gradient and directing their axons to the SP. Of note, the PlexinA2 phenotype is rescued 

by Sema6A deletion, with the dual loss leading to a phenotype that is nearly indistinguishable from 

wild type[232, 233]. In contrast, deletion of presynaptic PlexinA4 leads to mossy fibers forming con-

nections within all layers of CA3, as would be expected in the absence of a repulsive signal. This 

Figure 1.25 | Lamina-specific innervation of hippocampal CA3 neurons by mossy fibers (MF) 
is mediated by domain-restricted repulsive adhesion molecule interactions. 
In CA3 axons from entorhinal cortex, commisural/associational afferents (CA), and dentate gyrus 
innervate distinct dendritic segments in the stratum lacunosum-moleculare (SLM), stratum radi-
atum (SR), stratum lucidum (SL), and stratum oriens (SO) as shown. Genetic studies suggest that 
it sends a repellent signal to MF axons that express its receptor, plexin-A4. Expression of another 
receptor, plexin-A2, in the SL attenuates this signal, however, allowing MFs to synapse on prox-
imal dendrites. Figure and legend adapted from Sanes, 2009. 
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is an example whereby contact-mediated repulsion is coupled with domain-specific cis inhibition 

to drive subcellular targeting specificity on the target cell. 

Multiple subcellular gradients can operate in tandem to yield the stereotyped subcellular tar-

geting patterns. Indeed, this is illustrated by follow-up studies on the same DG-CA3 circuit. Given 

the above model, one might expect Sema6A deletion would lead to mossy fibers targeting all CA3 

layers. This, however, is not the case. The persistence of ‘appropriate’ targeting in the Sema6A 

mutant suggested that an additional Plexin4A-mediated signal may still be present in these ani-

mals[233]. Indeed, in a follow-up study, Sema6B was found to have a similar repulsive effect as 

Sema6A, with these molecules functioning additively to repel MFs, thereby revealing functional 

redundancy[335]. These data illustrate how the organism can utilize molecular redundancy within 

the same system, thereby ensuring proper connectivity by bolstering the probability for correctly-

operating molecular pathways. Unlike with Sema6A, Sema6B is not inhibited in cis by PlexinA2. 

Instead, the authors found that in addition to its cis inhibitory activity, PlexinA2 also acts an at-

tractive signal, instructing MF innervation of the SL according to the original attractive domain 

model[334]. Thus, multiple subcellular gradients can operate in tandem, even utilizing overlapping 

molecules, to yield the stereotyped subcellular targeting patterns. In all of these instances, how-

ever, the important unifying principle of this model is that subcellular gradients of synaptic adhe-

sion molecules on the target cell are directing domain-specific synaptic targeting. 

1.4.3.2. Regional regulation of synaptogenesis: guidance- and targeting-independent regulation of sub-

cellular specificity 

The aforementioned models of subcellular specificity had to do with secreted factors or adhe-

sion molecules acting as guidance cues to direct axons to specific subcellular regions on the post-

synaptic cell, followed by synapse formation at the stereotyped location. These models suggest 
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Figure 1.26| Regional regulation of synapto-
genesis yields subcellular specificity.  
A, B) In Caenorhabditis elegans, the dorsoven-
trally-positioned DA9 motor neuron (blue cir-
cle) elaborates its dendrite (green) anteriorly, 
and its posteriorly-oriented axon (blue) along 
the dorsal nerve cord, where it then grows an-
teriorly, forming en passant synapses (red dots) 
onto dorsal muscles. C) The stereotyped local-
ization of these synapses within the axon is 
regulated by Netrin (brown) and Wnt (blue) gra-
dients , which suppress synapse formation via 

DCC and frizzled receptors, respectively. Synapses (green) are only formed in low concentration 
regions far from these organizing centers. Removal of these gradients or their receptors in the 
DA9 neuron leads to ectopic synapse formation within otherwise asynaptic domains. Figures 
from Klassen & Shen, 2007 (A, B) and Poon et al., 2008 (C). 

 

that proximity alone is sufficient to initiate synaptic targeting. There is evidence, however, that 

this is not always the case: sometimes synapse formation is a highly regulated process. In Caeno-

rhabditis elegans, the dorsoventrally positioned DA9 motor neuron extends its axon posteriorly 

along the dorsal nerve cord, then anteriorly, where it forms en passant synapses onto dorsal mus-

cles (Figure 1.26, A, B). The stereotypical location of these synapses is regulated by gradients of 

morphogens secreted from precisely patterned organizing centers (Figure 1.26, C)[320, 378]. Specif-

ically, Netrin and Wnt suppress synapse formation via DCC and frizzled receptors on the axon, 

thereby restricting synapse formation to low concentration regions. Removal of these gradients or 

their receptors in the DA9 neuron leads to ectopic synapse formation within otherwise asynaptic 
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domains . Moreover, in DCC and frizzled knock-out animals, selective re-expression of these re-

ceptors in DA9 neurons rescues the phenotype. This mechanism, then, is distinct from the pre-

contact axon pathfinding models discussed previously: axons are able to pass freely through those 

areas and are in contact with their target cells, but they are unable to initiate synapse formation. 

Here the environment is acting in an instructive manner to limit connections to specific regions by 

regulating synaptic assembly. 

1.4.3.3. Synaptic plasticity: Activity-dependent changes to synapses 

Synaptic plasticity is considered a distinct stage of synaptogenesis insofar as it encompasses 

activity-dependent changes to synapses, encompassing both synapse refinement and elimination. 

Synapses are not static entities in mature animals. Rather, they are incredibly dynamic, displaying 

activity-based expansion and diminution, with remarkably high rates of turnover. Such activity-

dependent synapse refinement is a well-established model for how synaptic specificity can arise. 

Synaptic transmission can induce translocation of synapses to different subcellular regions, and 

competition between synapses can lead to specific elimination of promiscuous connections, and 

even in the establishment of distinct subcellular innervation domains[320], all of which result in 

stereotyped subcellular connectivity. We discuss the role of synaptic activity in shaping subcellular 

targeting below. 

Synaptic plasticity is also primarily focused on mechanisms that shape synaptic properties. 

These properties can be established during synapse assembly, independent of activity, or evolve 

in response to synaptic transmission. This area of synaptic plasticity includes well-studied fields 

such as long-term potentiation and depression (LTP and LTD) and Hebbian learning, which are 

beyond the scope of this work. It is important to note, however, that most of the synaptic adhesion 



95 
 

molecules diagrammed above are involved in shaping synaptic properties rather than target recog-

nition or synapse assembly[379]. We have already discussed the Neurexin/Neuroligin interaction 

above, and mention the Netrin-G/NGL interaction below, but offer these primarily as counter-

points to models of synaptic targeting and assembly. If the reader is so inclined, we recommend 

excellent reviews that discuss these molecules and their roles in shaping synaptic properties in 

greater depth[337, 380]. 

1.4.3.4. Activity-dependent refinement of promiscuous connections 

In the cerebellar cortex, Purkinje neurons (PkCs) are the sole efferent and thus form a central 

node for information processing and transmission. Two glutamatergic afferents onto Purkinje neu-

rons, namely granule cell parallel fibers (PFs) and climbing fibers (CFs) from CF cells in the infe-

rior olive of the Medulla oblongata, illustrate how subcellular specificity can be defined during 

synaptogenesis via transsynaptic communication and competition (Figure 1.27)[338, 380-382]. Granule 

Figure 1.27 | Remodelling of CF and PF synaptic connections onto PCs during postnatal cere-
bellar development.  
(Upper panel) Schematics depicting developmental changes in CF and PF synaptic connections to 
PCs at ~P3, ~P7, ~P15, and ~P30. (Lower panel) Key events related to postnatal development of CF-
to-PC and PF-to-PC synapses from birth to ~P30. BC, basket cell; CF, climbing fiber; GrC, granule 
cell; PC, Purkinje cell; PF, parallel fiber; SC, stellate cell. Figure and legend from Kano & 
Watanabe, 2019. 
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cells form functionally weak but numerous (~100,000 PF synapses/PkC) synapses onto spines of 

distal dendrites from many PkCs. In contrast, in adult cerebellum, most PkCs are innervated by a 

single CF, forming functionally very strong but also very scarce excitatory input onto stubby spines 

of proximal dendrites. Notably, the stereotyped territory segregation of PF and CF innervation is 

activity-regulated and arise via synaptic competition. Since crosstalk between PF and CF afferents 

affect the final localization pattern of each, it is therefore prudent to provide a cursory discussion 

of the developmental trajectories of each individually, then to discuss both in tandem. In addition, 

the developmental trajectory of CF synapses introduces an additional model of subcellular target-

ing specificity, namely activity-dependent translocation.  

CF innervation of PkCs is one of the best characterized models of activity-dependent refine-

ment of synaptic circuitry in the mammalian brain. It is generally broken down into a series of 

partially overlapping developmental stages (Figure 1.27)[383]. During the Synapse formation stage 

(P0-P3), PkCs are initially innervated by multiple CF afferents. Immature PkCs do not have large 

primary dendrites, so CFs first terminate on perisomatic protrusions and thorns emerging from the 

PkCs somata. CFs continue to target soma even as PkC dendrite grows into the molecular layer at 

P6.  During the Functional differentiation stage, (P3-P7), a single CF is selectively strengthened 

on the soma of each PkC. Next follow the overlapping processes of CF elimination (P7-P17), 

during which ‘loser’ CFs are selectively eliminated, and CF translocation (P9-P30), during which 

the winner CF translocates from PkC soma to the proximal (stem) dendrite. The final maintenance 

stage leads to the stereotypical CF mono-innervation and complete translocation of all CF synapses 

from the soma to the proximal region of the PkC stem dendrite.  
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CF elimination and translocation are both activity-mediated processes, with ‘winner’ and 

‘loser’ being determined by synaptic competition. CF translocation appears to be mediated by ho-

mosynaptic competition between CFs. This was elegantly demonstrated using in vivo imaging, 

where selective elimination of the ‘winner’ CF by photoablation led to promotion and translocation 

of one of the ‘loser’ synapses into the ‘winner’ position[384]. This competition is mediated by CF 

induced calcium transients: disruption of postsynaptic calcium transients via Cav2.1 Ca2+ channel 

knockout led to strengthening and translocation of multiple CF inputs onto apical dendrites[385]. 

Whereas the translocation process is mediated by homosynaptic competition, the elimination 

process is mediated by heterosynaptic crosstalk. The early phase of CF elimination corresponds to 

the initial stages of CBC innervation at the PkC AIS and soma. As CBC innervation of the soma 

increases, the ‘winner’ CF translocates to more apical somatic regions and eventually the proximal 

region of the stem dendrite. Meanwhile, ‘loser’ CF, which do not translocate, are eliminated. This 

synchronicity raised the question of whether CBC inhibition and CF elimination are linked. Indeed, 

the bridge appears to be calcium signaling, which is positively regulated by CF activity and nega-

tively regulated by CBC GABAergic inhibition. Genetic and pharmacological changes in GA-

BAergic signaling altered elimination of ‘loser’ synapses from PkC soma, with decreased GA-

BAergic activity leading to impaired CF elimination[386]. Of note, PkC calcium transients are sig-

nificantly larger in mice with genetically decreased GABA transmission, which is reversed by 

increasing GABA sensitivity with diazepam. These studies indicate that heterosynaptic cross-talk 

between CBCs and CFs can lead to specific elimination of CF synapses. Moreover, this is an ex-

ample of synaptic specificity arising from an initial wave of promiscuous targeting followed by 

selective elimination. 
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As noted above, in the adult cerebellum, parallel fiber (PF) afferents from granule cells inner-

vate PkC distal dendrites. PF synapse formation occurs during the second postnatal week after CF 

innervation (P7-P14) (Figure 1.27). During this time PFs innervate the growing PkC dendritic stalk 

and to a much lesser extent apical regions of the PkC soma. Beginning at P15, PF synapses at PkC 

soma and proximal dendrites are selectively eliminated, contracting the PF innervation territory 

until it is confined to PkC distal dendrites.  

The PF-PkC interaction is mediated by a transsynaptic interaction between the presynaptic 

adhesion molecule Neurexin 1, the presynaptically-expressed transsynaptic extracellular scaffold-

ing protein Cbln1, and postsynaptic glutamate receptor GluRd2 (Figure 1.28, A)[338, 380, 387-389]. 

Figure 1.28 | Molecular basis of PF-PC synapse formation and impact of targeted disruptions 
on PF and CF innervation domains.  
A) Molecular mechanism mediating PF-PC synapse formation. Cbln1 secreted from nascent PFs 
acts as a transsynaptic bridge between Nrxn at the PF presynapse and GlurD2 at the PC dendrite. 
When the contact between the PF terminal and PC spine takes place, GluRδ2 triggers Nrxn te-
tramerization and synapse formation. Note that Cbln1-induced dimerization of Nrxn is not suf-
ficient to drive synapse formation. (Figure adapted from Mishina et al., 2012). B) Contrasting 
alterations in PC’s excitatory synaptic wiring between GluD2/Cbln1 knockout and P/Q-type 
VDCC knockout mice. (Middle) In wild-type mice, CF and PF territories are sharply segregated, 
and CF mono-innervation is established. (Left) In GluD2/Cbln1 knockout mice, CF innervation 
territory expands, and multiple CF innervation occurs frequently by additional wiring at distal 
dendrites. (Right) In P/Q-type VDCC knockout mice, PF innervation territory expands, and mul-
tiple CF innervation occurs at basal dendrites and somata. Figure and legend from Kano & 
Watanabe, 2022. Reproduced with permission from Springer Nature. 
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Ablation of Cbln1 from Granule cell PFs or GluD2 from the PkCs disrupts PF targeting, leading 

to decreased PF synapses on PkCs and an overall contraction of the PF innervation territory to 

more distal regions of the PkC dendrite (Figure 1.28, B)[258, 386]. Of note, these disruptions also 

lead to expansion of the CF territory to more distal dendritic regions. Since the Nrx1-Cbln1-GluD2 

complex is required for GluD2 channel opening[383], both interventions lead to decreased PF-based 

PkC activation at distal dendrites. Similarly, blocking PF-based PkC activation via mGluR1-PKCg 

leads persistence of PF synapses on proximal dendrites, persistent CF somatic innervation, and 

multiple innervation of CFs due to issues with elimination of ‘loser’ CFs – disruption of ho-

mosynaptic competition required to identify ‘loser’ CFs for slated for elimination[336]. In contrast, 

PF innervation territory is defined by CF activity. PF innervation territory expands to proximal 

dendrites when CF projections were surgically lesioned, when cerebellar cortical activity was 

blocked by Na-channel blocker tetrodotoxin or AMPAR antagonist NBQX, or in the P/Q-type 

VDCC KO mouse[390]. The latter also leads to multiple CF innervation , and ectopic hyperspiny 

transformation at basal dendrites and somata. This is attributed to the lack of activity-dependent 

elimination of ‘loser’ CFs. In summary, then, both PF and CF afferents follow a process of pro-

miscuous targeting followed by selective elimination, a model first proposed by Haydon and Dra-

peau[391]. 

Activity is also important for cortical interneuron subcellular targeting. Soma-targeting PV 

basket cells display an increasing number of boutons per soma in late prenatal development (P18-

28). This innervation is based on a critical window of activity: intraocular injection of the neuronal 

activity blocker TTX during the third, but not fifth, postnatal week led to a decrease in the number 
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of perisomatic boutons in the contralateral (activity deprived) visual cortex[199]. Of note, the re-

searchers did not assess whether non-somatic boutons were affected, indicating that this effect 

could apply to PVBC boutons generally, rather than their subcellular specificity. 

1.4.3.5. Induction of a subcellular domain by afferents 

The prior examples required subcellular region enrichment of specific molecules as a prereq-

uisite for subcellular targeting, suggesting that the molecular gradients are always present prior to 

targeting. This is not always the case, however. Indeed, afferents can transsynaptically specify 

subcellular molecular gradients and domains. Perhaps the best characterized example of this pro-

cess is synaptic spine formation. Since we are primarily interested in cortical GABAergic synap-

ses, which do not induce spine formation, we instead focus on an example of domain induction 

that is more applicable to interneurons. Since a synaptic connection is already established by the 

time these mechanisms come into play, the following is, strictly speaking, not a model of subcel-

lular targeting specificity. Instead, it falls within the domain of synaptogenesis and subcellular 

compartmentalization. We include it here, however, as a contrast with the prior domain model. 

In the hippocampus and cortex, membrane-bound Netrin-G1 and -G2 are expressed on axons 

from different afferent pathways that terminate onto distinct laminae, where they interact with their 

postsynaptic receptors NGL-1 and -2, respectively (Figure 1.29)[199, 392]. Netrin-G1 and NGL1 lo-

calize to the SLM/OLM in hippocampus and L1 and L4 in cortex, whereas Netrin-G2 and NGL-2 

localize to SR and SO in hippocampus. Deletion of presynaptic Netrin-G1 or -G2 does not affect 

axon pathfinding or laminar targeting, but does lead to selective disruption of the laminar locali-

zation of postsynaptic NGL-1 and -2, respectively[393]. Specifically, Netrin-G1 deletion leads to 
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NGL-1 diffusion along dendrites 

with no effect on NGL-2, and vice 

versa upon Netrin-G2 deletion. 

These results indicate that these 

transsynaptic interactions are not 

involved in synaptic targeting or 

synapse assembly, but rather that 

anterograde signaling from Netrin-

Gs on the axon leads to recruitment 

of the corresponding NGLs to the 

innervated subregion of the den-

drite[393, 394]. Subsequent studies 

showed that deletion of Netrin-Gs leads to distinct functional synaptic deficits[395] and fear- and 

anxiety-associated behavioral changes[236, 396], indicating that the Netrin-G/NGL interactions are 

important for shaping synaptic properties in these circuits.  

1.4.3.6. Reduce, Reuse, Recycle: Repurposing molecules leads to context-dependent functions 

Although we have attributed many different biological functions to different biomolecules, 

these molecules do not have any intrinsic function per se. Many biomolecules are recycled and 

reused in different cellular contexts, where they can perform distinct roles. We discussed above 

how hippocampal neurons utilize presynaptic Netrin-G2 to induce NGL-2 clustering at the 

postsynapse. The Netrin-G2/NGL-2 interaction is also utilized in the retina by horizontal cells to 

drive lamina-specific targeting of rods. Here, however, the localizations are reversed: NGL-2 is 

Figure 1.29 | Model for transneuronal regulation of re-
ceptor localization by axonal netrin-G proteins.  
Distinct axon populations, each expressing netrin-G1 or 
-G2, make contact with distinct segments of dendrites of 
target neurons. NGL-1 and -2, which are expressed in 
the target neurons, are anchored by axon-derived ne-
trin-G1 and -G2, and are thereby precisely arranged onto 
the selected subdendritic segments. Without netrin-Gs 
as extrinsic cues, NGLs would be dispersed across mul-
tiple segments of dendrites. Figure and legend from 
Nishimura-Akiyoshi et al., 2007. 
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pre-synaptic and Netrin-G2 is postsynaptic. Generally such a change in localization would be un-

remarkable, but here it is accompanied by a profound functional shift. In this context, NGL-2 per-

forms a more classic role in axon pathfinding and attractive domain targeting[4]. Deletion of NGL-

2 from horizontal cells led to overgrowth of their axons and decreased synapse formation. This 

was rescued by NGL2 re-expression even after phenotype development. In contrast, overexpres-

sion of NGL2 in wild-type horizontal cells elevated synapse numbers above normal levels. Thus, 

NGL2 promotes the formation, maintenance, and restoration of synapses in the developing and 

mature retina by restricting axon growth and promoting synapse formation[5]. These data show 

how the same molecules can play different roles in different contexts. Indeed, this repurposing and 

context-dependent function is a general theme in biology. Many molecules are recycled and reused 

in different cellular and developmental contexts. We revisit this topic in the discussion. 

 

1.5. Targeting specificity ex vivo  

Dissociated culture of neurons is an invaluable tool for investigating general neuronal prop-

erties, but it is often assumed that specificity is lost following the dissociation and plating process. 

It is thus worthwhile to discuss what is known about synaptic specificity both in vivo and ex vivo. 

We will first define our expectations by discussing cortical interneuron specificity in vivo. We will 

then review literature findings for neuronal targeting ex vivo. This discussion will include findings 

from both glutamatergic and GABAergic cells of the cortex and hippocampus. Generally speaking, 

there are two different approaches for primary tissue culture, namely 1) organotypic slice cultures, 

where tissue is sliced and plated largely intact, and 2) dissociated culture, where the tissue is dis-

sociated into a single cell suspension before plating. There are similarities and differences for both 

approaches, with the similarities largely associated with the dissection and isolation of tissue, 
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whereas the differences are due to the dissociation (or not) of the tissue prior to plating, and thus 

randomization of spatial organization and alteration of cellular density.  

1.5.1. Specificity and exclusivity of cortical interneuron connectivity in vivo 

Cortical interneurons form lamina-specific[6-9, 14], cell-type-specific[15, 16], and subcellular-

compartment-specific[14, 17-20, 397] connections. It is important to note that in almost all these cases, 

the specificity observed in interneuron connectivity is expressed as preferential targeting rather 

than strict selectivity[398]. One model for interneuron cellular targeting proposed that these cells 

formed promiscuous synapses onto all proximal target cells, with little cell type specificity[10, 11]. 

Although individual case studies in the literature[5, 6, 12, 13] and a large-scale multi-patch paired 

recording study14 suggest otherwise[6, 14], this non-selectivity model was only conclusively dis-

proven recently via systematic assessment of cellular connectivity from painstaking reconstruc-

tions of electron microscopy data across an entire cortical column (a truly herculean effort!)[14]. 

This study clearly shows that morphologically-defined interneuron subtypes display preferential 

cellular targeting, including translaminar targeting that skips intermediate cellular layers. Despite 

the clarity of this conclusion, the actual circuit diagram is not nearly as clean as one might naively 

expect from existing models of cellular selectivity[17, 18]. Thus, data suggests interneuron cellular 

connectivity is primarily expressed as a preference rather than strict exclusivity. 

In general, interneurons also display preferential (not exclusive) subcellular targeting[12, 19, 20]. 

For instance, somatostatin cells are generally considered dendrite-targeting, but careful quantita-

tive assessment of these cells by immuno-EM showed that a small percent of Sst+ presynaptic 

boutons are found at the soma (5.5%) and AIS (1.2%)[55]. One model to explain these data is that 

 
14 For Jiang et al., 2015, see also the comment by Barth et al., 2016, also cited here, for important contributions and 
limitations of this study. 
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the Sst population is heterogeneous, with minor subpopulations displaying exclusivity in subcel-

lular targeting. That is, assuming all Sst cells form the same number of connections (which they 

don’t), 5.5% of Sst+ cells are a subpopulation(s) that exclusively targets soma and 1.2% by an-

other(s) that exclusively target AIS. This is not the case. Although the Sst population itself is het-

erogeneous[14, 35, 37, 56-58, 399], individual Sst cells also display heterogeneous targeting[20, 177, 399]. 

Moreover, the relatively low percent of AIS-targeting synapses in the Sst population underrepre-

sents the extent of non-chandelier cell synapses on AIS as a fraction of total AIS-targeting synap-

ses. In fact, 41% of all AIS-targeting inhibitory synapses are from non-chandelier cells[177]. These 

data indicate that interneuron subcellular targeting specificity generally is preferential rather than 

exclusive. Among cortical interneurons, the one exception to this rule is chandelier cells, which 

target the axon initial segment at nearly 100%[399, 400], even displaying a preference for more distal 

regions of the AIS compared to non-ChCs[390]. 

1.5.2. Dissection: isolation and control  

We will now discuss dissection and dissociation. Ex vivo plating and growth of intact (non-

dissociated) tissue is called organotypic culture, whereas that of dissociated tissue is called disso-

ciated culture. There are important similarities and differences between both techniques. Regard-

ing the similarities, both are reductionist methods of assessing the tissue sample in isolation, that 

is, separated from other organ systems. This isolation derives from the dissection process, and 

therefore is a common aspect to both organotypic and dissociated culture systems. Tissue isolation 

is a powerful experimental method as it allows researchers to separate organ systems that may 

confound interpretations and/or results, thus yielding considerable power to define intrinsic pro-

cesses from extrinsic ones. One example of tissue isolation was discussed above for compartmen-
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talization, where plating of isolated neurons enables researchers to test whether subcellular com-

partments arise due to cell intrinsic or extrinsic programs. The same is true on a larger scale for 

organotypic slices, for instance, where culturing intact tissue explants enables investigation of 

whether a process is intrinsic to the tissue itself, or requires external signaling. A good example of 

this is interneuron subcellular targeting[401]. Using organotypic slices from the G42 mouse and 

GIN mouse lines, which preferentially label PV+ basket cells and L2/3 Martinotti cells, Di Cristo 

et al. found that subcellular targeting is recapitulated in organotypic slices ex vivo, indicating that 

subcellular targeting of these GABAergic neurons is independent of sensory or thalamic input. 

Remarkably, not only was PV BC soma targeting recapitulated in organotypic slices ex vivo, it 

also proceeds at the same maturation rate as in vivo[402]. In both contexts, this maturation is regu-

lated by neuronal activity, as TTX treatment led to decreased number and size of perisomatic bou-

tons both in vivo and in vitro. Thus, isolation from other neuronal tissue enables researchers to test 

whether the biological process under consideration is affected by afferent and/or efferent connec-

tions, the circulatory and immune systems, and the general milieu of secreted molecules signaling 

into the tissue itself from outside sources. 

Perhaps most importantly, this isolated system provides researchers with incomparable power 

to manipulate the tissue environment by adding, removing, or changing individual components to 

test hypotheses. The breadth of manipulations varies widely, ranging from ions and small mole-

cules to expressed genes and even addition/removal of organ systems. Using organotypic slice 

cultures from the G42 mouse and single cell transfection, Chattopadhyaya et al., showed that con-

ditional knockdown of the GABA synthetic enzyme GAD67  in PV+ basket cells resulted in cell 
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autonomous defects in axon branching, perisomatic synapse formation, and complexity of the in-

nervation field[403]. The same group showed in a later study that presynaptic expression of the 

synaptic adhesion molecule NCAM is involved in perisomatic innervation by PVBCs via Fyn[404].  

The addition of different organ systems, tissues, or cell types is called co-culturing, and is an 

important means of distinguishing intrinsic and extrinsic programs. For instance, coculturing thal-

amus and cortex allowed researchers to assess whether thalamocortical targeting specificity is in-

trinsic to this system. These researchers found that although laminar specificity is preserved[135, 

405], regional specificity is not[406]. Instead, thalamocortical afferents are rerouted by ephA/ephrinA 

gradients in the ventral telencephalon, an intermediate brain structure[223], a discovery made by co-

culture of these three brain regions in their native orientations. Thus, the presynaptic and postsyn-

aptic mechanisms underpinning laminar targeting specificity and laminar cell identity are largely 

intrinsic to the cortex, whereas those driving regional targeting and identity are generally extra-

cortical and/or extrathalamic. A similar recapitulation of laminar specificity was witnessed in the 

hippocampus when investigating the laminar termination of entorhinal cortex afferents and com-

missural fibers[224], which, as discussed above, is an example of subcellular targeting specificity. 

Thus co-culture is a powerful tool to assess whether a process is intrinsically driven by the tissue 

(or cell) or induced by extrinsic environmental cues. Coculture systems can also be used to identify 

intrinsic signaling, as was elegantly shown for axodendritic polarization and neurite orientation in 

the cortex. Using cortical slices co-cultured with sparse, labeled dissociated cortical neurons, 

Polleux et al., found that a semaphorin gradient originating near the cortical surface acts attrac-

tively for dendrites and repulsively for axons, thereby orienting these cellular compartments radi-

ally[227, 407] (reviewed in [408]).  Of note, the researchers identified the origin of the polarizing signal 

by positioning cortical slices at different orientations to one another (e.g. WM of one slice apposed 
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to MZ of another, or MZ of one slice oriented along the layers of another) and investigating the 

effect on axodendritic orientation of the dissociated labeled cells near the slice juxtaposition. These 

co-culture experiments illustrate the power and control afforded by an isolated, reductionist culture 

system in parsing intrinsic and extrinsic developmental programs. It is important to note that dis-

sociated primary culture is itself a form of co-culture, wherein the heterogeneous cellular compo-

sition can be used to the advantage of the researcher. 

1.5.3. Dissociation: a bit of chaos to disrupt intrinsic spatial organization 

The major difference between the organotypic and dissociated cultures is the relative spatial 

organization of cells. Simply put, dissociation disrupts the spatial relationships between cells in 

two ways, 1) by randomizing their relative positioning, and 2) by altering the cellular density dur-

ing plating. 

By randomizing the cortex we are also disrupting the gradients and structures that were estab-

lished during embryonic development and are utilized for axon pathfinding over long distances. 

Thus, the dissociation process not only disrupts these large-scale chemical gradients, but also ran-

domizes cellular positioning upon plating, leading to randomized cellular environments. We dis-

cussed above how cellular scaffolds and extracellular gradients form a molecular framework that 

ensures the ‘proper’ presynapses form on the ‘proper’ targets. This molecular framework is dis-

rupted by dissociation. The distance that any given gradient can reach is in turn confined to a 

hyper-local region. For secreted factors, this is small scale paracrine signaling: in a 2D culture 

system, the plating density is associated with the average distance between cells. As discussed 

above, the maximum effective distance for soluble molecules, such as neurotrophic factors or mor-

phogens, is 25 cell diameters or approximately 250 um, with decreasing distances for less diffusi-

ble molecules such as ECM components[409]. For adhesion molecules, these gradients are abolished 
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entirely, reduced to molecular distances15. Thus, through dissociation, we are testing the extent to 

which interneuron subcellular synaptic specificity relies upon these long-distance signaling factors 

and cellular structures. Given the often-overlapping gradients in an intact cortex, this question 

would otherwise be impossible to test in vivo or in organotypic slices. 

But dissociation is also testing the extent to which the local microenvironment determines 

cellular identity. Indeed, a major concern of dissociated culture is the effect that the randomization 

process has on cellular identity. A major question therefore arises: to what extent is the environ-

ment simply a permissive bystander to the unfolding of cell intrinsic processes, or is the local 

environment functioning in an instructive manner, guiding the neuron’s development along a se-

ries of potential fate branch points. As discussed above, regional identity in the cortex is, at least 

initially, is driven by a complex network of transcriptional regulation and paracrine signaling that 

establishes polarized identity across the cortical sheet. Thus, regional identity is associated not 

only with the local cellular microenvironment, but in a knock-on manner, also more distal cellular 

microenvironments. Through this mechanism, regional identity of glutamatergic cells is intimately 

linked to cellular positioning along the A-P and L-M axes. Since dissociation randomizes cellular 

positioning across all axes, it is safe to assume that, in a dissociated culture context, regional iden-

tity is either retained but randomized, lost entirely, or reestablished at random. Either way, the 

generally uniform distribution of interneurons across different cortical regions discussed above 

suggests that matching targeting and target regional identity may not be a prerequisite for inter-

neuron synaptic specificity. 

 
15 If axon pathfinding via adhesion molecule gradients are based on differential expression between neighbors, then 
cellular randomization will increase this differential massively, since it is highly unlikely that a neighboring cell will 
express similar levels of these molecules. This could be a confound. 
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The same does not appear to be true of cellular identity and positioning along the deep-to-

superficial (radial) axis. Rather, at least for cortical glutamatergic neurons, cellular identity appears 

to be largely independent of radial cellular positioning. This principle is most clearly illustrated by 

stem cell differentiation experiments, where both glutamatergic[410-412] and GABAergic[412-414] 

cells retain molecular markers of and determinants for neuronal cell type identity in a dissociated 

context, with RNA expression and splicing profiles that generally correspond with their in vivo 

correlates[44, 412, 413, 415]. Of note, however, their synaptic specificity has not been assessed in this 

context, with researchers instead testing this property through transplantation studies. There is ev-

idence to suggest that some identifying neuronal properties may be impacted by cellular radial 

positioning, however. The most significant effect was shown by Oishi et al., for L4 neuron identity, 

where in vivo repositioning of L4 neurons into L2/3 by shRNA interference led to a fate switch 

such that they resembled L2/3 pyramidal neurons. Of note, the fate switch was verified not only 

by molecular expression patterns, but also connectivity: the repositioned L4 cells also lacked their 

characteristic thalamocortical afferents[21]. Other research on radial positioning showed that mul-

tiple morphological properties of glutamatergic cells are altered in the reeler mouse[89, 130]. These 

in vivo experiments are more difficult to interpret, however, since these molecules are repurposed 

in many developmental processes, with the observed cellular identity changes and altered radial 

positioning being a parallel but causally unrelated phenotypes, rather than the radial positioning 

changes being causal predecessor to the identity changes. In contrast, connectivity is generally 

retained in the reeler cortex, as discussed above, suggesting these morphological changes are not 

sufficient to disrupt the cellular identity underlying afferent connectivity profiles. Moreover, the 

reeler cortex in reality is neither fully inverted nor randomized, as was shown by multi-probe in 
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situ gene expression profiling[150] and functional studies[78, 118, 131]. Regarding interneuron connec-

tivity, however, attempting to parse the impact of spatial positioning, and thus local environmental 

cues, on synaptic specificity in vivo is not so easy. This is primarily due to the fact that interneurons 

migrating into the cortex tend to position themselves near their synaptic partners. This is true not 

only in the wild-type cortex, but also in the ‘inverted’ reeler cortex, where interneurons will also 

be positioned in a generally inverted manner[40, 416, 417]. Given this propensity for self-organiza-

tion,the question of how local positioning impacts cellular identity and targeting is not easy to 

solve in vivo. 

Dissociated culture offers an alternate approach to test these hypotheses. Although many stud-

ies around the turn of the century suggested synaptic specificity is retained in a culture dish[418], it 

is generally assumed, that specificity is lost following the dissociation and plating process. This is 

demonstrated by observations that Glutamatergic axons innervate the AIS and organize GABAA 

receptors in dissociated cultured hippocampus[419], which does not occur in vivo. Similarly, in den-

drites, some gephyrin clusters will be juxtaposed with glutamatergic synapses[262], a non-physio-

logical organization. In the extreme, isolated neurons on microislands, where they are forced to 

grow within a highly confined space, will target themselves and form autapses where glutama-

tergic presynapses will be in apposition to GABAergic postsynapses and vice versa[420]. Although 

these data suggest that targeting specificity is not retained after dissociation, it is important to 

recognize that all of these experiments used non-physiological cell densities, opening the possibil-

ity that the ectopic targeting is an ‘any port in a storm’ response, whereby low affinity molecular 

interactions that would otherwise be outcompeted are utilized because they’re the strongest given 

the context. Indeed, using more physiological cell densities, Williams et al., recapitulated both the 

cellular and subcellular targeting specificity of hippocampal DG-to-CA mossy fiber synapses in 
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dissociated culture[421]. More recent studies have used stem cell-derived neurons to model hippo-

campal connectivity in vitro[391], showing that the stem-cell-derived CA3 PyNs are able to recapit-

ulate their in vivo cellular targeting specificity in a dissociated context, an important step for dis-

ease modeling. Indeed, there has been a renewed interest recently in image-based profiling of syn-

aptic connectivity using dissociated neuronal cultures[199]. 

1.5.4. Summary of ex vivo targeting specificity 

Above we discussed the challenges and opportunities of investigating neuronal targeting spec-

ificity in dissociated cultures compared to in vivo conditions. In vivo, cortical interneurons tend to 

exhibit preferential targeting rather than strict selectivity, forming connections that are lamina-

specific, cell-type-specific, and subcellular-compartment-specific. Whether this targeting is reca-

pitulated ex vivo in a dissociated culture context is the primary question we address in this study.  

Regarding the isolation and control of experimental conditions, both organotypic slice cultures 

and dissociated cultures allow researchers to separate tissue from confounding factors, enabling 

the study of intrinsic processes. Organotypic slices can replicate certain in vivo conditions, such as 

interneuron subcellular targeting, independently of external input. Co-culture experiments further 

enhance the understanding of intrinsic and extrinsic factors influencing cellular development and 

connectivity.  

Dissociated cultures disrupt spatial organization, randomizing cellular positioning and alter-

ing cellular density. This disruption challenges the notion of strict targeting specificity observed 

in vivo. While some studies suggest that specificity is lost in dissociated cultures, recent research 

using more physiological cell densities has shown promising results in recapitulating cellular and 
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subcellular targeting specificity. Stem cell-derived neurons have also been utilized to model con-

nectivity, indicating the potential for disease modeling and renewed interest in studying synaptic 

connectivity in dissociated cultures. 

1.6. Summary of principles 

To summarize, the developmental stage underlying synaptic specificity can be broken into 

those prior to synapse formation, synaptic targeting itself, and those following synapse formation. 

Prior to synapse formation, the process of selecting a specific synaptic target arises through an 

interaction between two distinct pairs of components, namely 1) the presynaptic cell interacting 

with its microenvironment, and 2) the postsynaptic target interacting with the target microenviron-

ment. Here we are defining ‘microenvironment’ as anything other than the presynaptic cell and the 

postsynaptic target. There are also several prerequisites, namely 1) spatial proximity between pre-

synaptic growth cone and postsynaptic target, 2) molecular complementarity between the two, and 

3) a conducive microenvironment. The ‘conducive’ microenvironment is simply a cellular land-

scape within which these components acquire the necessary spatial proximity and express the ‘ap-

propriate’ molecules at the appropriate subcellular regions. As such, this landscape can be func-

tioning in either a permissive manner, acting as a passive bystander that allows cell intrinsic pro-

grams within the presynaptic cell and postsynaptic target to unfold, or in an instructive manner, 

guiding the neuron’s development along a series of potential fate branch points. Synaptic target 

recognition is the physical interaction between the axon growth cone and the putative target, 

wherein the mutual expression of complementary adhesion molecules enables the presynaptic cell 

to select a specific postsynaptic target out of all possible partners. Here, the operative interaction 

is solely between the presynaptic cell and its putative target, and can be viewed as a binary deci-

sion: to form (or not to form) a synapse. Following successful synaptic targeting, the presynaptic 
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and postsynaptic components engage in reciprocal signaling to assemble the synapse. The synapse 

can now be considered a unit. In addition to the presynaptic and postsynaptic cells interacting with 

their respective microenvironments, this post-formation stage also includes direct and sustained 

transsynaptic cross-talk between the presynaptic and postsynaptic cells. This cross-talk includes 

both anterograde, presynaptic-to-postsynaptic, and retrograde, postsynaptic-to-presynaptic, 

transsynaptic signaling. Moreover, the effects of this signaling can be the local (isolated to proxi-

mal changes within the synapse itself) morphological and molecular changes discussed above, 

regional (extending beyond the immediate vicinity of the synapse), such as definition of molecu-

larly distinct subcellular regions[385-387, 392, 422], and even signaling to the nucleus, such as survival 

signals[423, 424] and transsynaptic delivery of transcription factors[425]. Competition between nearby 

synapses on the postsynaptic cell can lead to specific elimination, resulting in stereotyped connec-

tivity. 

 

1.7. Conclusion and hypothesis 

We set out to test whether cortical interneuron subcellular synaptic specificity requires the 

higher order cortical and extracortical organization present when these neurons begin to send out 

their axonal projections in their native context. To state the experiment formally, our null hypoth-

esis postulates that cortical interneuron subcellular targeting is dependent on one or more of the 

following: 

1. The interneuron’s positioning within a specific cortical subregion or layer (and by exten-

sion, its migratory history). 

2. The target cell’s positioning within a specific cortical subregion or layer (and by extension, 

its migratory history). 
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3. Some pre-existing cellular structure(s) or molecular gradient(s) formed by intermediate 

(i.e. non-targeted) cells. 

4. Indirect interaction(s) between the cortex and extracortical tissue. Examples include inputs 

from vasculature, extracortical neuronal projections into the cortex, or outward projections 

from cortical neurons to extracortical regions. 

If subcellular targeting depends on any of the above principles, then disrupting these processes 

by excising the cortex, randomizing its contents, and growing it in isolation should also randomize 

interneuron targeting. Alternately, if subcellular targeting specificity is recapitulated in this ran-

domized and isolated context, we can conclude that: 

1. Direct contact between the pre- and postsynaptic adhesion molecules alone can account for 

interneuron subcellular targeting specificity. In other words, environmental cues, be they 

cellular structures, molecular gradients, or otherwise, are not required for these interneuron 

populations to form ‘appropriate’ subcellular connections. 

2. Expression of the presynaptic molecules necessary for such targeting is intrinsically deter-

mined by the presynaptic cell, and that this designation occurs prior to interneuron migra-

tion into the cortex. 

3. The molecular gradients responsible for localizing the target adhesion molecules to the 

‘appropriate’ subcellular location are intrinsically determined in the target cell, and these 

gradients persist (or can be re-formed) after the target cell settles into its ‘appropriate’ layer. 

This question is not simply one of basic biology, however. There is also translational potential 

here. Psychiatric diseases are due to abnormal synaptic circuitry. The interneuron subtypes we 

have chosen to study, soma-targeting basket cells (BCs), AIS-targeting chandelier cells (ChCs), 
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and dendrite-targeting somatostatin cells (SstCs) are all hypothesized to underlie a wide variety of 

psychiatric pathologies such as schizophrenia [425-429], autism [430-434], and bipolar disorder [435-438]. 

Interneuron dysfunction and resultant excitatory inhibitory imbalance is associated with seizure 

disorders [61, 439-441]. Synaptic circuitry is therefore a prime candidate for drug discovery. Recapit-

ulation of these circuits in a culture dish would greatly facilitate these discoveries. 
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Chapter 2: Materials and methods 

2.1. Sample preparation and image acquisition 

2.1.1. Animal husbandry 

All animal handling and maintenance were performed according to the regulations of the In-

stitutional Animal Care and Use Committee of Columbia University Medical center. Mouse lines 

used in this study are detailed in Table 1. Whenever possible, mice were maintained as homozy-

gotes for breeding purposes. The Nkx2.1Cre allele is a BAC transgenic, so homozygous breeders 

were identified by the proportion of Cre positivity of the offspring. Nkx2.1CreER homozygotes are 

embryonic lethal, and thus were maintained as heterozygotes. Since the SstCreER allele is a knock-

in-knock-out, all animals used in this study were SstCreER heterozygotes. For all experiments in-

volving the RelnRL/RL Reeler mutant, RelnRL/wt or Relnwt/wt littermates were used as controls. 

RelnRL/RL animals are infertile, so all crosses to generate these animals were from heterozygous 

parents. All animal information, including ID, cross information, and genotype were stored in a 

database for reference. All embryonic time points were counted from discovery of vaginal plug 

(E0.5). 

2.1.2. Genotyping 

DNA was sourced from tails and digested in proteinase K (proK) in (50 mM Tris, 1 mM 

EDTA, 0.5% Tween, 1x Proteinase K, pH 8.8) at 65°C for at least one hour, and proK was heat 

inactivated at 95°C for 10 minutes prior to use for genotyping reactions. Animals were genotyped 

using published or custom primers as outlined in Table 2. Genotyping protocols used either 2x 

Hotstart PCR Master mix (NEB) or 2x DreamTaq Green Master mix (Thermo Scientific K1081) 

according to manufacturer’s protocols. Target-specific thermal cycling protocols are available 
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upon request. PCR products were separated by electrophoresis using 1.5% to 2% agarose gels in 

TAE buffer and visualized with ethidium bromide or Gel Red [Biotium]. Animal cross information 

and genotyping results including gel images were stored in a database for cross-reference. Heat-

inactivated DNA was systematically stored should animals require re-genotyping. 

2.1.3. Tamoxifen Induction 

For all experiments involving CreER induction with tamoxifen, dosages were calculated on a 

ug/g basis, with animals weighed at time of treatment. Table 3 shows the specific dosage calcula-

tions for each condition.  Experiments involving Nkx2.1CreER mice were performed according to 

Taniguchi et al., 2013[1] with minor modifications. In brief, Nkx2.1CreER;Ai34 studs were crossed 

with Swiss Webster females and monitored for timed plugs. Pregnant females were orally gavaged 

with tamoxifen at embryonic day 17.5 (E17.5) to induce Cre recombination. Since tamoxifen treat-

ment can complicate pregnancy, in cases where emergency cesarian sections were performed, pups 

were fostered with the closest age-matched litter, at oldest P2. Experiments involving SstCreER mice 

were performed in adult mice using a tamoxifen ramping protocol developed by Raza et al., 

2017[2]. Briefly, animals were treated with increasing doses of tamoxifen over the course of three 

days as follows: Day1, 80 µg/g; Day2 160 µg/g, Day3, 320 µg/g. We found this protocol to have 

much higher rates of survival than the initial protocol developed by Taniguchi et al., 2011[3]. 

2.1.4. Perfusions and tissue preparation 

Mice were deeply anesthetized by intraperitoneal injection of ketamine/xylazine (87.5 mg/kg 

and 12.5 mg/kg, respectively) and confirmed by toe pinch prior to non-survival surgery. Buffer 

formulations for perfusions and associated products are listed in the Perfusion and Slice Prepara-

tion Buffers subsection of Appendix A. For samples used in PV- and Sst-based cellular localization 

experiments (see Immunostaining below), tissue was prepared according to Gallerani & Au 2020[4] 
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via trans-cardiac perfusion with Phosphate Buffered Saline (PBS) solution, then 4% PFA in PBS. 

Brains were extracted and post-fixed overnight at 4°C in the same fixative. Samples were sliced 

into 50 µm sections on a Leica VT1000S vibratome and stored in propylene glycol:glycerol:PBS 

solution (3:3:4) antifreeze solution at -30°C until use in immunostaining. 

For experiments involving immunostaining of synaptic molecules, samples were prepared ac-

cording to Notter et al., 2014[5]. Briefly, mice were intracardially perfused with 15-20 mL ice cold, 

oxygenated ACSF [125 mM NaCl, 26 mM NaHCO3, 25 mM glucose, 2.5 mM KCl, 2.5 mM CaCl2, 

2 mM MgCl2, 1.25 mM NaH2PO4], pH 7.4,). After decapitation, the brain was extracted from the 

skull and sliced into 2 mm sections using a CytoVista™ Coronal Mouse Brain Slicer [Thermo 

Scientific V11320]. Tissue slices were then immersion fixed in 4% PFA in PBS for one hour, 

washed extensively with PBS, cryoprotected in 30% sucrose in PBS overnight at 4°C, then em-

bedded in OTC [Sakura Finetek 4583] on dry ice and stored at -80°C. Just prior to immunostaining, 

tissue was sliced in to 40 µm sections at -20°C on a cryostat and transferred to PBS. 

2.1.5. Cortical dissection and dissociation 

Dissection and dissociation were performed as outlined in Nunnelly et al., 2022[3] using buff-

ers and products listed in Appendix A, Dissection and Dissociation media. Briefly, cortices from 

P3-P5 pups were micro-dissected into chilled Hibernate A (HibA) media (Hibernate A[Gibco], 

1% Pen/Strep [Gibco]). Briefly, the brain was excised from skull and meninges were carefully 

removed. The cortex was separated from subcortical regions and hippocampus and cortices were 

stored intact on ice until dissociation. The Dissociation media formulation and associated products 

is listed in Appendix A. Briefly, Papain [Worthington Biochemical LK003178] was resuspended 

to 20 U/mL in 5 mL HibA media and activated by incubating for ~20 minutes at 37°C, mixed with 

DNAseI (200 U/mL final, [Worthington Biochemical LK003172]), then added to minced cortices. 
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Cortical tissue was dissociated at 37 °C for 15 min on an end-over-end rotator. Papain was removed 

after centrifugation at 200 × g for 5 min, and tissue was resuspended in HibA. Tissue was dissoci-

ated by trituration in HibA media and filtered through a 40 µm filter to ensure single cell suspen-

sion.  

2.1.6. Tissue culture 

Concentration and viability of dissociated cells was determined using a Countess II FL cell 

counting system [Life Technologies] with trypan blue exclusion assay to determine viability. Sur-

vival above 80% was deemed acceptable for culturing. Cells were then centrifuged and re-sus-

pended in plating media to a concentration of 6 × 107 viable cells per mL, and 15-25 µL cell sus-

pensions were spotted into the center of a well on poly-D lysine pre-coated 24-well plates. Cells 

were allowed to adhere for 30-45 minutes in a 37°C, 5.0% CO2 tissue culture incubator, then pre-

warmed plating media was added to a final volume of 500 µL/well. The following day (DIV1), 

media was fully changed to growth media, and cultures were maintained by 50% media changes 

performed every other day. Total well volume was increased to 750 µL on DIV7 and 1 mL on 

DIV14. Unless otherwise noted, cultures were fixed on DIV21 in 4% PFA [Electron Microscopy 

Sciences] in PBS for 10 minutes, washed 4x in PBS, and 1 mL PBS was added for storage. Fixed 

culture plates were wrapped in Parafilm and stored in a 4°C refrigerator until processed for im-

munostaining. All tissue culture media formulations are listed in the Tissue Culture Reagents and 

Media subsection of Appendix A.  

For experiments involving IL-13, the peptide [Biolegend 575904] was resuspended in growth 

media to working concentrations just prior to addition. Treatment was initiated at DIV13 and sam-

ples were fixed 24 hours later. This earlier time point was chosen to match the P5-P15 window of 

synaptogenesis identified by Barron et al., 2023[2]. All tissue culture was performed using 24-well 
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optical plastic tissue culture plates [Ibidi 82426]. As outlined in Appendix A, plates were pre-

treated with 20 µg/mL poly-D lysine [Sigma Aldrich P6407] in borate buffer (10 mM Sodium 

Borate, pH 8.5 (sodium tetraborate and boric acid [Sigma S9640 and B6768, respectively]) over-

night at room temperature, then rinsed with sterile water and allowed to dry before plating. Tissue 

culture time points were counted from the day of plating (DIV0). 

2.1.7. Immunostaining 

Cryopreserved tissue slices were processed as free-floating sections according to previous 

work[6] with slight variation. In brief, free-floating tissue slices were blocked and permeabilized in 

10% Donkey serum, 0.01% Triton-X100 in PBS for one hour, then endogenous mouse IgG was 

blocked by overnight incubation at 4°C with an anti-mouse Fab fragment [Jackson immu-

noresearch 715-007-003]. Samples were washed 4x in TBS, then incubated with primary antibod-

ies for 2-3 days, washed, and incubated with secondary antibodies overnight. All primary and 

secondary antibodies used in this study are listed in Table 4 and Table 5, respectively. Following 

the initial blocking and permeabilization step, all incubation steps were performed using 1% don-

key serum in TBS at 4°C, and all wash steps were performed using 4x washes with TBS. TBS was 

used instead of PBS because the anti-gephyrin antibody is phospho-specific. Slices were mounted 

by paintbrush on SuperFrost Plus charged slides [Fisher Scientific 12-550-15] in TrueBlack 

mounting media [Biotium 23017], coverslipped, cured overnight at RT, then stored in the dark at 

4°C prior to imaging. Since the tissue cultures were grown on plates specifically designed for 

microscopy, all immunostaining was performed in well. Cultures were blocked and permeabilized 

as above, with exclusion of Fab incubation. Primary and secondary incubations were also per-

formed as outlined above, but incubations were only overnight. Following the final wash after 

secondary incubation, a drop of Aqua-Poly/Mount [Polysciences 18606] or TrueBlack mounting 
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media was added directly to the growth region and the well was covered with 15 mm round co-

verslip. Coverslipped samples were stored in the dark at 4°C prior to imaging. PV and SST im-

munostaining of PFA-perfused tissue was performed according to Gallerani and Au 2020[7]. 

2.1.8. Fluorescence microscopy 

PV- and Sst-stained samples were imaged on Zeiss epifluourescent tiling microscope at 200x. 

For cultures, we chose representative regions for bulk cultures and for single cells, areas where 

individual cells were isolated and in the center of the growth region. For slices, we chose coronal 

sections between Bregma 0.61 and -1.31 mm and imaged from anterior cingulate to S1 of cortex. 

Synapses were imaged on a Zeiss LSM 800 confocal microscope using a 40x oil objective, 0.5x 

zoom, and a pinhole size of 37 µm to gather 1024x1024 voxel Z stacks of variable depth. These 

imaging conditions yielded an X,Y,Z resolution of 0.312, 0.312, 0.500 µm/voxel. Following a low-

resolution preview scan, multi-tile regions of interest were designated for imaging at the afore-

mentioned resolution. Initial focal points were established by the addition of support points and 

verified by autofocus prior to imaging. The designated ROIs were imaged overnight via automa-

tion inherent to the Zen Blue Software [Zeiss]. 

2.2. Sample Nomenclature 

This topic is discussed at length in the Nomenclature section of Chapter 1. Briefly, all images 

were systematically assigned unique names as outlined in Appendix B based on the biological 

sample of origin and imaging process, according to the following pattern: [Experiment ID]_[Sam-

ple ID]_[Biological conditions]_[Staining conditions]_[Scene ID]_m[Tile ID]_[variable stem]. 

The Experiment ID consisted of the mouse birthdate for slices or the seeding date for culture. The 
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Sample ID was the mouse ear tag for slices or the well identifier (e.g. A6) for culture. The biolog-

ical conditions included the driver line and reporter, as well as any relevant mutations or treatment 

conditions. The staining conditions included the antibodies used in staining indexed by channel 

number. The Scene ID (i.e. tile region) was assigned in Zen Blue [Zeiss] either during the imaging 

setup or post-hoc during scene splitting. The Tile IDs were designated in FIJI based on the image 

metadata. Each of these name components was kept constant throughout downstream steps, thus 

providing an internal structure for image alignment and data referencing during image processing. 

Moreover, since image/sample nomenclature was rooted in the biological ID, we were able to use 

this identifier to cross-reference animal husbandry and genotyping information. The variable stem 

was assigned algorithmically based on data type and/or processing stage. This final tag ensured 

that different data from the source file would not overwrite each other. Image processing 

Image processing is discussed in-depth below in Custom code and in Chapter 1. Briefly, multi-

scene images were initially split into individual scenes in Zen Blue software and exported as .czi 

files. All images were systematically named prior to processing such that each image had a unique 

name with human-readable identifiers (experiment number, sample name, genotype, staining, 

scene number). Image metadata was read and extracted using the Bio-formats[8] plugin in FIJI[9], 

and source metadata was stored in a designated metadata folder for future reference.  Scenes were 

initially split into individual tiles and stored as .tif files. All downstream processing occurred on a 

tile-by-tile basis, with stitched scenes only used for visualization purposes. Images were processed 

in ImageJ/FIJI using freely available plugins or custom code written in the ImageJ macro language 

or Jython. Images were converted to the HDF5 format using the ilastik ImageJ plugin prior to 

supervised learning in Ilastik software[10]. Ilastik was trained on two pixel classifiers:  one for 

presynaptic and one for target, which were then exported as probability maps. Ilastik generated 
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probability maps were imported into FIJI and concatenated with the source image file. 3D object 

segmentation of presynaptic boutons was performed in FIJI using the 3D spot segmentation algo-

rithm based on seeds from a 3D local maxima filter, both of which are from the 3D ImageJ Suite 

(mcib3d plugin)[6]. Unsupervised classification results were mapped onto boutons using custom 

code written in FIJI/ImageJ using the CLIJ2 plugin[11]. 

2.4. Custom Code 

At most stages in the pipeline, custom code was written to facilitate image batch processing 

and analysis. This code was used for the following functions:  

2.4.1. Metadata extraction 

This code is discussed in greater depth in Chapter 1. Briefly, it extracts useful image infor-

mation from the image metadata, such as the original image dimensions (number of pixels in X 

and Y, plus the number of Z slices, channels, and timepoints), acquisition parameters (the X, Y, 

and Z voxel sizes in µm, time interval in ms, channel names, excitation information, pinhole size, 

detector gain), scene information (e.g. the number of tiles in each scene, the order of acquisition, 

and their X, Y, and Z locations on the microscope stage (in µm) as well as their their relative X, 

Y, and Z positions within the scene/tile region (in pixels/voxels)), and microscope information 

(microscope name, objective used, nominal magnification, and detectors). The acquisition date, a 

timestamp to the millisecond, is also extracted and, since it is consistent throughout all scenes 

acquired during the imaging session, is used as a unique unifying string for grouping. These data 

are extracted primarily from the Bio-formats metadata, a library that standardizes image metadata 

from many different microscope filetypes[11]. When the required information is unavailable 

through Bio-formats, it is extracted from the original image metadata. These aggregated data are 
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automatically stored in tabular form as a .csv file at a standardized location within a central 

metadata repository. Also stored are the Bio-formats metadata (as an XML file), the original image 

metadata (as a list in TXT format), and any post-hoc changes to the image that occurred prior to 

entry into the pipeline (so long as those changes are documented in the original metadata). 

2.4.2. Stitching 

This code is discussed in greater depth in the Stitching section of Chapter 1. Briefly, for multi-

tile scenes, the metadata extraction code automatically generates a generalized tile configurations 

map that designates the X, Y, and Z coordinates of each tile within its respective scene. The gen-

eralized tile configuration maps are automatically stored as TXT files at a standardized location 

within the metadata directory, and are thus accessible at any stage in the pipeline. We wrote custom 

code that harnesses the Grid/Collection Stitching plugin in FIJI[10, 12] to automatically stitch tiles 

at any stage in the pipeline into their respective multi-tile scenes using this generalized tile config-

urations map. 

2.4.3. File Grouping 

This code is discussed in greater depth in File Grouping section of Chapter 1. We wrote cus-

tom code that utilizes the file naming conventions and the extracted metadata to automatically 

group related files based on multiple parameters. In particular, individual tiles are automatically 

grouped by sample format (i.e. slice vs culture), experiment, sample (i.e. well for culture, mouse 

ID for slice), slide, and scene. We use the acquisition date in the metadata (a date-time string with 

millisecond resolution) to group images acquired during the same imaging session independent of 

scene name.  
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2.4.4. Image standardization 

We built in multiple checkpoints for image standardization to ensure that the inputs meet ex-

pectations for the given pipeline. We discuss them in greater depth in Chapter 1. We utilized the 

Bio-formats plugin to convert source images from their various microscope-specific image formats 

into the universal TIF image format and split multi-tile scenes into individual tiles, which serve as 

the unit of processing throughout the remainder of the pipeline. We utilized the extracted metadata 

for quality control (QC) stages to ensure images are structured as required and expected. These 

QC steps assess the following: image dimensions, pixel/voxel size, bitdepth, channel order, and 

dimension order. Whenever possible, images are automatically adjusted to meet pre-designated 

requirements (e.g. dimension order or pixel size adjustments), and when not possible, these inputs 

are rejected (e.g. missing channels, 2D images for a 3D pipeline). 

2.4.5. Image Correction 

We implemented background and shading correction in the X/Y dimensions by adapting the 

previously-published BaSiC plugin[13] to run efficiently for large, multi-channel tiled Z-stacks. 

This code is discussed in depth in the XY correction section of chapter 1. The code utilizes the 

metadata extraction and grouping algorithms mentioned above, as well as a rapid extended depth 

of focus algorithm implemented on the GPU via CLIJ2[8]. The approach collapses the Z stack while 

maintaining shading aberrations, then calculates corrections based on all tiles of the designated 

group using BaSiC. Corrections are stored in the metadata repository 1) to avoid recalculation of 

the same files, and 2) to generate a generalized/universal shading correction for rapid correction 

without calculation. 

We also implemented a batch correction step to correct for systematic error in staining inten-

sity and quality between independent imaging experiments. This code is discussed in depth in the 



143 
 

Batch correction section of chapter 1. This correction step utilizes the metadata extraction and 

grouping algorithms above to group tiles based on one or more pre-defined categories. The algo-

rithm extracts tile-based channel statistics (min, mean, max, SD, variance, quartiles, automatic 

threshold values) and histograms, both in toto and masked. These values are saved within the 

metadata folder, and then used to calculate the group-wide channel statistics and histograms. If 

establishing a standard for normalization, the same statistics are calculated across all groups (i.e. 

globally) and then saved as a basis for normalizing subsequent images sent through the pipeline. 

Each group is then adjusted such that the group-wide normalization value matches the global 

standard. The current study utilized sample format (e.g. slice vs culture) and acquisition date (i.e. 

one or more scenes imaged without interruption) as the basis for grouping and thus two separate 

global standards were calculated for slice and culture. We used the non-zero 75th quantile (Q75NZ) 

as the basis for normalization based on Graf et al., 2021[9] for this study, though we wrote the 

algorithm to be extensible. Tile, group, and global data are stored in the metadata folder, and there-

fore each group requires only one round of calculation.  

2.4.6. Pixel classification 

Corrected and uncorrected images were converted into HDF5 format using the Ilastik4imageJ 

plugin[10] prior to supervised training or batch application of the classifier model. Custom code 

was written to standardize this process and apply it in batch. As stated above, we used the Ilastik 

software to train two pixel classifiers: one for presynaptic signal and one for target signal. The 

pixel classifiers were used to generate probability maps, where the pixel intensity in each channel 

correlates with the probability that the pixel belongs to the designated class. Probability maps were 

exported in the HDF5 format. 



144 
 

2.4.7. Image concatenation 

After pixel classification, the input image and both probability maps were imported into FIJI. 

Probability maps were standardized to be on a 0-100 intensity scale and converted to 8-bit if re-

quired. The three images were then concatenated into a 15 channel image and exported as HDF5 

files. 

2.4.8. Object segmentation 

To segment objects of the desired class, we first generated a 0/1 binary mask from the corre-

sponding channel in the probability map. A 0.20 probability threshold (i.e. 20% chance the pixel 

belongs to the desired class) was chosen as a cutoff for class inclusion. The mask was then applied 

to the corresponding channel in the input image, thereby removing pixels with low probability of 

belonging to the desired class. Starting seeds for object identification were generated by finding 

3D local maxima on a 3D Gaussian filtered version of the masked image. The masked input was 

then segmented into objects using the 3D spot segmentation algorithm from the 3D ImageJ Suite 

(mcib3d plugin)[14]. A 3D size cutoff was applied to ensure objects fit within a designated volu-

metric range. Finally, the objects were filtered via 2D size filtering in the X, Y, and Z dimensions 

on our 3D objects to remove objects that fit the volumetric cutoff but were particularly elongated 

in any one dimension. Segmentation results were saved as binary masks in the TIF format. It is 

described in greater detail in the Object segmentation section of Chapter 1. 

2.4.9. Class mapping 

We wrote custom code to map the tabular classification results from the unsupervised model 

back onto the original binary image used for bouton segmentation. In order to avoid indexing 

issues, we based the mapping on object coordinates rather than index. The algorithm is rapid and 
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GPU-based via CLIJ2[15], and could be adapted to map any numerical values in a csv onto a cor-

responding binarized mask. It is described in greater detail in the Object class mapping section of 

Chapter 1. 

2.5. Object classification 

2.5.1. Supervised object classification 

Supervised object classification was performed in Ilastik using the concatenated image from 

image concatenation above as ‘Raw’ input and the binary segmentation mask from Object seg-

mentation above as inputs. Classified objects were exported as .TIF format, with tabular metrics 

and object classification exported in the .CSV format. No custom code was used for supervised 

object classification. 

2.5.2. Unsupervised training by autoencoder embedding 

Ilastik object metrics were filtered to remove columns containing redundant metrics (e.g. col-

umns with covariance metrics for the same two image channels). Columns related to pixel intensity 

metrics (e.g. mean intensity, skewness of intensity) and object morphometrics (e.g. object size, 

convex hull area), but not location (e.g. object centers, bounding boxes), were used as object fea-

tures for further analysis. Objects comprised of two or fewer pixels, as assessed in the ‘Size in 

pixels’ metric from Ilastik, were removed from the dataset. NA values in columns related to kur-

tosis or skewness of intensities were set to 0. Columns with zero variance, as assessed by Varian-

ceThreshold in the scikit-learn library[16], were removed from the dataset. 

The resulting dataset was randomly partitioned into three groups: 80% of objects were as-

signed to a ‘training’ partition, to determine scaling and train the autoencoder (see below); 10% 
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were assigned to a ‘validation’ partition, to assess the training progress of the autoencoder; and the 

remaining 10% was assigned to a ‘test’ partition, to assess accuracy across runs of the pipeline. 

Ilastik features in the training partition were scaled using the MinMaxScaler of scikit-learn, 

translating and scaling each feature to range between zero and one. The transformation determined 

from the training partition was applied to the validation and test partitions. 

Dimensionality reduction of scaled Ilastik object features was performed using a four-layer 

feedforward autoencoder[17] implemented in the Keras library in Python[18]. The autoencoder ac-

cepts scaled ilastik features as input, and attempts to output the same features. The autoencoder 

consisted of a two-layer encoder comprised of 64- and 16-node linear layers; and a two-layer de-

coder comprised of 64- and 432-node linear layers. All layers except the last were followed by 

rectified linear unit (ReLU) activation functions. The autoencoder was trained on the training par-

tition for 150 epochs on an Nvidia RTX 3080 graphics card. After each epoch, reconstruction 

accuracy was assessed on the validation partition using mean squared error. The epoch with the 

lowest validation error was saved, and the resulting encoder was used to reduce the training, vali-

dation, and test objects from a 432-dimensional Ilastik feature space into a 16-dimensional reduced 

embedding space. Autoencoder embeddings were batch corrected with the Harmony library in 

Python[19]. 

2.5.3. Unsupervised clustering 

Unsupervised object clustering was performed in Python using the Scanpy library[20], using 

GPU acceleration provided by the RAPIDS library . 16-dimensional autoencoder embeddings 

were loaded as features of an Anndata object[21], on which subsequent analyses were performed. 

A k-nearest neighbors network was computed with the scanpy.pp.neighbors function (n_neighbors 
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= 30), and the neighbors network was used the calculated a UMAP embedding[22] of objects with 

the scanpy.tl.umap function. 

Louvain clustering[23] was applied to the neighborhood network (scanpy.tl.louvain) at a vari-

ety of resolutions ranging 0.1 to 3.0. Clustering resolution and network neighborhood size were 

selected according to the following criteria: maximization of Calinski-Harabasz[24] and minimizing 

Davies-Bouldin[25] indicies, as assessed by metrics.calinski_harabasz_score and metrics.da-

vies_bouldin_score in scikit-learn respectively; clusters targeting distinct cellular compartments, 

based on Ilastik predicted targets; and visual coherence of clusters in UMAP space. 

2.6. Statistical analysis 

2.6.1. Spatial clustering analysis 

We hypothesized that synapses belonging to the same subgroup were likely to be clustered 

together through Louvain clustering. To test this hypothesis, we generated Spatial Compactness 

Analysis (SPA), a non-parametric clustering-algorithm-agnostic iterative procedure that evaluates 

both the compactness of the Louvain clusters and their inter-cluster dependencies (relationships) 

in the physical (biological) space. To measure cluster compactness, we compute nearest neighbors 

using the object center coordinates. Specifically, for each cluster, we compute the 10-NN of each 

sample in the physical space and record their cluster labels. We aggregate these labels over the 

entire cluster and perform a specific normalization process with respect to a ‘null’ neighbor distri-

bution. This normalization step is necessary because clusters with more samples would inherently 

have a higher probability of having observations that would be 10-NNs of observations in other 

clusters. To obtain the null distribution for a given cluster, we find the distribution of 10-NN neigh-

bors counts proportional to the percentage of total samples in each cluster. The null neighbor com-

putation represents the distribution of neighbors when there is no biological relationship in the 
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Louvain clustering, and we sample based purely on cluster size. Therefore, dividing the coordi-

nate-based neighbor count by the null neighbor count measures a deviation from randomness. Re-

peating this process for each cluster enables us to construct a spatial correlation matrix. For any 

pair of clusters, a ratio greater than 1 indicates spatial correlation, while a ratio less than 1 indicates 

spatial anti-correlation. A cluster's ratio value with respect to itself indicates the cluster's own spa-

tial compactness. 

2.6.2. Statistical comparisons 

For most statistical comparisons we utilized built-in functions within Prism. Proportional 

comparisons between conditions, such as the supervised classifier comparisons in Chapter 4, break 

some of the fundamental assumptions of ANOVA. In these cases we utilized a generalized linear 

model (GLM). Relative cell type proportions are naturally distributed in the closed interval [0 - 1]. 

Therefore, we used a logistic regression with a logit link to model response variables in that inter-

val. However, compositional data tends to be enriched with zeroes, depleted of ones and left-

skewed. We modeled this with a quasibinomial distribution that uses an extra parameter to account 

for overdispersion. We also accounted for heteroskedastic residuals using robust standard errors 

calculated with White's original method using the R package sandwich[26]. We assessed the model 

assumptions and the influence of outliers using the R package performance[27]. We computed the 

95% confidence intervals based on these robust standard errors using the R package broom. Fi-

nally, for each model, we ran multiple iterations randomizing the relative cell type proportions 

across subjects to assess model calibration and the rate of false positives. 

 

  



149 
 

Bibliography to Chapter 2: Materials and methods 
1. Taniguchi, H., et al., A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral 

cortex. Neuron, 2011. 71(6): p. 995-1013. 
2. Gallerani, N. and E. Au, Loss of Clustered Protocadherin Diversity Alters the Spatial Distribution of Cortical 

Interneurons in Mice. Cereb Cortex Commun, 2020. 1(1): p. tgaa089. 
3. Notter, T., et al., A protocol for concurrent high-quality immunohistochemical and biochemical analyses in 

adult mouse central nervous system. Eur J Neurosci, 2014. 39(2): p. 165-75. 
4. Nunnelly, L.F., et al., St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat Commun, 

2022. 13(1): p. 7735. 
5. Barron, J.J., et al., Group 2 innate lymphoid cells promote inhibitory synapse development and social 

behavior. bioRxiv, 2023. 
6. Linkert, M., et al., Metadata matters: access to image data in the real world. J Cell Biol, 2010. 189(5): p. 

777-82. 
7. Schindelin, J., et al., Fiji: an open-source platform for biological-image analysis. Nature Methods, 2012. 

9(7): p. 676-682. 
8. Berg, S., et al., ilastik: interactive machine learning for (bio)image analysis. Nature Methods, 2019. 16(12): 

p. 1226-1232. 
9. Ollion, J., et al., TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear 

organization. Bioinformatics, 2013. 29(14): p. 1840-1841. 
10. Haase, R., et al., CLIJ: GPU-accelerated image processing for everyone. Nature Methods, 2020. 17(1): p. 5-

6. 
11. Preibisch, S., S. Saalfeld, and P. Tomancak, Globally optimal stitching of tiled 3D microscopic image 

acquisitions. Bioinformatics, 2009. 25(11): p. 1463-5. 
12. Peng, T., et al., A BaSiC tool for background and shading correction of optical microscopy images. Nature 

Communications, 2017. 8(1): p. 14836. 
13. Graf, J., et al., FLINO: a new method for immunofluorescence bioimage normalization. Bioinformatics, 2021. 

38(2): p. 520-526. 
14. Pedregosa, F., et al., Scikit-learn: Machine Learning in Python. ArXiv, 2011. abs/1201.0490. 
15. Kramer, M.A., Nonlinear principal component analysis using autoassociative neural networks. AIChE 

Journal, 1991. 37(2): p. 233-243. 
16. Chollet, F.a.o. 2015; Available from: https://keras.io. 
17. Korsunsky, I., et al., Fast, sensitive and accurate integration of single-cell data with Harmony. Nature 

Methods, 2019. 16(12): p. 1289-1296. 
18. Wolf, F.A., P. Angerer, and F.J. Theis, SCANPY: large-scale single-cell gene expression data analysis. 

Genome Biology, 2018. 19(1): p. 15. 
19. Virshup, I., et al., anndata: Annotated data. bioRxiv, 2021: p. 2021.12.16.473007. 
20. McInnes, L. and J. Healy, UMAP: Uniform Manifold Approximation and Projection for Dimension 

Reduction. ArXiv, 2018. abs/1802.03426. 
21. Blondel, V.D., et al., Fast unfolding of communities in large networks. Journal of Statistical Mechanics: 

Theory and Experiment, 2008. 2008: p. 10008. 
22. Caliński, T. and J. Harabasz, A dendrite method for cluster analysis. Communications in Statistics, 1974. 

3(1): p. 1-27. 
23. Davies, D.L. and D.W. Bouldin, A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 1979. PAMI-1(2): p. 224-227. 
24. Zeileis, A., Object-oriented Computation of Sandwich Estimators. Journal of Statistical Software, 2006. 

16(9): p. 1 - 16. 
25. Lüdecke, D., et al., performance: An R package for assessment, comparison and testing of statistical models. 

Journal of Open Source Software, 2021. 6(60). 
26. Zhu, F., et al., Architecture of the Mouse Brain Synaptome. Neuron, 2018. 99(4): p. 781-799 e10. 
27. Zhang, X. and V. Bennett, Restriction of 480/270-kD ankyrin G to axon proximal segments requires multiple 

ankyrin G-specific domains. J Cell Biol, 1998. 142(6): p. 1571-81. 
 

https://keras.io/


Chapter 3: Image-based multidimensional analysis of synapses 

3.1. Introduction 

Traditionally, synapses are studied using electrophysiology, neuroanatomical reconstructions, 

or biochemistry. Although these methods offer considerable benefits, they are not without their 

limitations. Electrophysiology and neuroanatomical reconstruction are both high resolution tech-

niques that enable investigations of synapses on a cellular and subcellular level in situ. Both tech-

niques suffer from throughput limitations, however. Researchers are only able to study individual 

cells one at a time and, based on the amount of work required to completely process a single cell, 

datasets rarely exceed a few dozen samples. In contrast, biochemical techniques are high through-

put, enabling researchers to study thousands or hundreds of thousands of synapses at a time. These 

techniques, however, require removal of the synapse from its native context and yield an average 

measure for the whole population. Synapses are incredibly diverse, however, with differential en-

richment in different brain regions[1]. Given the limitations of current techniques, we sought to 

develop a high-throughput, high-resolution fluorescent image processing and analysis platform to 

study individual synapses on a population level in situ. Specifically, we wanted to be able to study 

these populations synapses-by-synapse using a wide array of metrics. Moreover, we wanted to be 

able to use the platform for both hypothesis testing and discovery. 

In recent years several genetic tools have become available to identify and manipulate specific 

interneuron populations. Mouse lines harboring specific Cre drivers and Cre-dependent reporters 

facilitate irreversible fluorescent labeling and genetic manipulation of specific cortical interneuron 

populations. Cre-dependent reporter lines enable us to interrogate different properties of these in-

terneurons. The Ai34 reporter labels Cre-positive cells with synaptophysin::tdTomato (Syp-tdT), 

enabling genetically-targeted visualization of axon termini and presynaptic boutons. This genetic 
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toolbox therefore enables unprecedented access to specific neuronal subtypes, allowing research-

ers to study synaptic connectivity at a population level in normal and disease contexts. In addition, 

advances in machine learning, AI-based statistical modeling, and computing power have enabled 

researchers to analyze imaging data at unprecedented depth. We combined these technologies to 

develop an image processing and analysis platform that enables us to study neuronal synapses at a 

population-wide level in situ using hundreds of metrics per synaptic bouton. Coupling these data 

with a supervised classification model allowed us to robustly classify hundreds of thousands of 

synapses per run based on canonical subcellular targeting class, showing its utility for hypothesis 

testing. Further, given the depth of data associated with each bouton, we built in the ability to 

analyze the dataset using an unsupervised learning model, which in turn revealed an unprecedented 

amount of diversity within these canonical targeting classes. 

The platform can be broken down into five stages (Figure 3.1): 1) input addition and stand-

ardization, 2) image correction,16 3) pixel classification, 4) object segmentation, and 5) object 

classification. The first step reads the biological images in their various forms, identifies their in-

trinsic structure, and breaks them into standardized, individual units for downstream processing. 

The second step corrects for common issues with fluorescent bio-images, such as optical aberra-

tions and batch-to-batch variability. The third step utilizes machine learning algorithms to classify 

the fluorescent signals according to biologically meaningful criteria. The fourth step extracts ob-

jects of interest from the resultant images, then extracts hundreds of metrics per object. The fifth 

 
16 Image correction includes both XY-correction of optical artefacts and batch correction to standardize sample-to-
sample fluorescence intensity values. 



152 
 

step uses these data to classify the objects based on supervised learning models for hypothesis 

testing or  

Figure 3.1| A schematic displaying the five stages of the platform.  
The platform generally consists of five stages of image processing and analysis:  
1) Image standardization: Inputs are added to the pipeline and standardized for downstream 
processing. This stage identifies the intrinsic structure of the image files, assigns each image in 
the series a unique name based on the image metadata and nomenclature rules, then converts the 
images and metadata into standardized formats. The code stores original, standardized, and cus-
tom metadata in a central repository. It then uses these metadata to assess whether the current 
file structure accords with pre-determined experimental parameters. Note: different metadata are 
extracted and utilized at various stages of processing. We display this component of the platform 
with a dashed outline because, although it is not an image processing stage per se, it is utilized at 
multiple stages for data storage, quality control, file organization, image correction, and image 
stitching purposes. It therefore serves as an organizing principle for the various processing stages. 
2) Image intensity correction: Images are corrected for issues common to fluorescent bio-images, 
such as optical aberrations and batch-to-batch intensity variability. This stage utilizes the hierar-
chical and categorical relationships identified in the first stage to group images for processing. 
Measures from individual tiles, image series, and experimental conditions are stored in the 
metadata folder. The conditions-wide metrics are initially derived retrospectively (i.e., from the 
images themselves) and set as a standard for prospective correction of subsequent image series. 
3) Pixel classification, which utilizes machine learning models to classify the raw fluorescent sig-
nals according to biologically meaningful criteria.  
4) Object segmentation: this stage identifies objects within the pixel-classified and raw images. 
The segmentation algorithm is modular and therefore malleable to different object shapes as re-
quired for experiment requirements. Also generated is the measurand image, which serves as the 
image from which intensity-based object metrics are derived during the object classification stage. 
5) Object classification: This stage measures object statistics from the segmentation and measur-
and images, then uses these data to classify objects. Object classification can use supervised learn-
ing models (5a) for hypothesis testing, or unsupervised models (5b) for discovery. The former fits 
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the objects to user-designated classes based on a user-trained model, whereas the latter classifies 
objects based on the internal structure of the dataset itself. Of note, these approaches are not mu-
tually exclusive, and can be utilized in parallel to validate each other. 
 

unsupervised models for discovery. Different metadata are extracted and utilized at various 

stages of processing. Overall, these stages allow for multiple machine learning-based steps to pro-

cess and analyze fluorescence microscopy images, yielding hundreds of spatial and morphological 

metrics per pre-synaptic bouton. This approach and the depth of data obtained enabled us to ro-

bustly classify synapse subtypes based not only on pre-determined classes for hypothesis testing, 

but also using a hypothesis-blind approach for discovery of novel bouton subtypes. 

3.2. Experiment design 

3.2.1. Initial question and impetus to create the pipeline 

Our experimental question was initially based on a biological question of synaptic targeting. 

Briefly, different subtypes of cortical GABAergic interneurons synapse onto distinct subcellular 

regions of the target cell (Figure 3.2, A). The three subclasses of interest are dendrite-targeting 

somatostatin (Sst) cells, the soma- and proximal dendrite-targeting basket cells, and axon initial 

segment (AIS)-targeting chandelier cells. Presented practically, we wanted to know whether these 

cortical interneuron subclasses recapitulated subcellular specificity in a culture dish. The results 

from these experiments are discussed at length in chapter 2, but we realized very early on in our 

investigations that quantifying our results by manual annotation would be, from a practical stand-

point, impossible. In culture, a single interneuron can form over 3000 synapses; we were labeling 

thousands of cells in a single well. In slice, a single 320 μm x 320 μm x 20 μm 3D tile image17 

 
17 Volumetrically, this is approximately 2 nL. 
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easily contained tens of thousands of labeled interneuron synapses; we would have to image hun-

dreds of tiles to avoid region-to-region or sample-to-sample bias. And GABAergic interneurons 

are a minority population in the cortex! In order to make any statistical argument for or against our 

hypothesis, we would have to automate the classification and counting process. Doing this required 

considerable trial and error, but we believe that the platform we present here, though still in its 

infancy and not without its faults, not only solves our synaptic bouton classification problem, but 

also sheds new light on synaptic bouton classification altogether. 

3.2.2. Labeling the presynaptic compartment: reporter selection 

In order to test our hypothesis, we had to label two aspects of our sample: 1) the presynaptic 

boutons of the different interneuron classes, and 2) the different subcellular target compartments. 

For the former, we utilized mouse genetic tools based on the Cre/loxP driver/reporter system to 

differentially label distinct interneuron cell types. As diagrammed in Figure 3.2, B, by using a 

genetically engineered ‘driver’ line, Cre is selectively expressed based on endogenous expression 

patterns of the ‘driver’ gene, here SstCre. Once expressed, Cre translocates to the nucleus, where it 

targets loxP sites in another genetically engineered ‘reporter’ allele for recombination. Here, the 

loxP sites flank a stop cassette that blocks downstream transcription. Cre-mediated recombination 

excises the stop cassette, leading to expression of a downstream reporter protein. Since a) the re-

porter is under control of a constitutively active promoter (here CAG), and b) recombination is an 

irreversible genetic modification, Cre recombination leads to a) permanent and b) heritable re-

porter expression. The specific interneuron driver lines we chose and our reasoning for doing so 

are discussed in chapter 2. This reasoning is summarized in Figure 3.2, C. Detailed information on 

mouse lines used in this study can be found in Table 1. Note that, unless otherwise stated, all 
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further references to a driver line imply the presence of the Ai34 reporter allele. For example, 

Nkx2.1CreER should be understood as Nkx2.1CreER;Ai34. 

Since we used a fluorescent reporter line and are here discussing the image processing and 

analysis platform, a discussion of the reporter is fitting. We used the Ai34 reporter line (Figure 

3.2, B), which expresses the synaptophysin::tdTomato (Syp-tdT) chimera protein following Cre-

mediated excision of a stop cassette. Synaptophysin localizes to neuronal presynapses, whereas 

tdTomato is a bright red fluorescent protein, so the Syp-tdT chimera localizes tdTomato to presyn-

aptic boutons. In sum, coupling a Cre driver line with the Ai34 reporter allowed us to selectively 

Figure 3.2 | Presynaptic cell labeling strategy 
A) Schematic of the three interneuron classes and their subcellular targets.  
B) Schematic of the genetic labeling strategy. i. An interneuron class-specific Cre driver (here Sst-
Cre) expresses cre upon promoter activation. ii. Cre excises the a stop codon flanked by loxP sites 
(LSL sequence) in a reporter gene (here Ai34). The LSL sequence is positioned between a consti-
tutively active promoter (CAG) and a fluorescent reporter gene (Syp-tdT). iii. Cre-mediated LSL 
excision leads to permanent and heritable expression of Syp-tdT, which localizes to synaptic ves-
icles. iv. This enables presynaptic bouton visualization in cells that have activated the Cre driver.  
C) Table of Cre driver lines, labeled populations, and utility in culture. NexCre, which labels corti-
cal glutamatergic neurons, is not included here. This driver was only used for validation experi-
ments presented here.  
D-E) examples of ‘off-target’ labeling in the Ai34 reporter line in slice and culture. D) Syp-tdT 
expression profile from a ChC-enriched region of the Nkx2.1CreER;Ai34 mouse in slice. Insets show 
magnified images of the indicated regions. Labled soma is indicated by asterisk and neurites by 
green arrows. E) Syp-tdT expression profile from a SstCre;Ai34 mouse in culture. Inset shows a 
magnified image of the indicated region, with annotation as in D.  
F) Syp-tdT labels presynaptic boutons that target the expected postsynaptic densities (PSDs). 
Nkx2.1Cre;Ai34 (upper) labels all MGE-derived GABAergic interneuron populations; NexCre;Ai34 
(lower) labels cortical glutamatergic neurons. PSD95 is a glutamatergic postsynaptic marker; 
Gphn is a GABAergic postsynaptic marker.  
G) Syp-tdT labels presynaptic boutons of the expected neurotransmitter type. Nkx2.1CreER;Ai34 
samples from BC or ChC-enriched regions labels GABAergic interneurons and NexCre;Ai34 
(lower) labels glutamatergic cells. VGAT is a GABAergic presynaptic marker; Gphn is a GABAer-
gic postsynaptic marker. 
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label presynaptic boutons of different interneuron populations with a red fluorescent protein. Ex-

ample images of the Syp-tdT signal in slice and culture are shown in Figure 3.2, D and E, respec-

tively. It is important to emphasize here that we used the same reporter to label different popula-

tions. This methodological parity in labeling allows us to make direct comparisons between dif-

ferent synaptic populations. We know, for instance, that among different interneuron populations 

labeled using the same Ai34 reporter, any changes in Syp-tdT-labeled bouton morphology or in-

tensity are due to biological differences between these populations, and not technical differences 

in labeling. Fewer uncontrolled variables yield a better experimental design and a clearer interpre-

tation.  

Some variables are beyond our control, however. We chose to use the Ai34 reporter line for 

our studies because of its specificity for labeling presynaptic boutons. During validation experi-

ments, however, we witnessed low level Syp-tdT signal in neurites and soma of labeled cells (Fig-

ure 3.2, D and E, arrowheads and asterisks, respectively). Syp-tdT localization to somata was wit-

nessed in both tissue slices and cultures (arrowheads). Although the off-target labeling of neurites 

was evident in slice (Figure 3.2, D, arrowheads), it was more prominent in cultures (Figure 3.2, E, 

arrowheads), with more immature cultures in particular displaying greater Syp-tdT localization to 

neurites (data not shown). This suggests that synaptophysin becomes increasingly more specific 

to presynaptic boutons with progressive neuronal maturation. These conclusions were further sup-

ported by counterstaining with pre- and post-synaptic markers, as discussed below. Although this 

off-target labeling was initially a nuisance, we not only subverted, but even exploited it to extract 

more information than initially anticipated. We did this by incorporating a post-hoc pixel classifi-

cation step, which we discuss in greater detail in the Pixel Classification section below. Despite 

our ability to account for, correct, and at times even exploit such specificity issues, the need to 
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incorporate this step is illustrative of the principle that decreased labeling specificity requires in-

creased post-hoc compensation during image processing, and vice versa. Generally speaking, less 

post-hoc image processing implies a more robust experimental system.  

We next sought to validate this reporter for interneuron synaptic targeting. To do so, we 

stained cortical SstCre, Nkx2.1CreER, Nkx2.1Cre, and NexCre cultures for VGAT, gephyrin, and 

PSD95 (Figure 3.2, F-G). NexCre labels cortical glutamatergic (but not GABAergic) neurons, and 

therefore labels glutamatergic presynaptic boutons. It served as a positive control for glutamatergic 

markers and negative control for GABAergic ones. We used VGAT as a marker of GABAergic 

presynapes, gephyrin for GABAergic postsynaptic densities (PSDs), and PSD95 for glutamatergic 

PSDs. Shown are images from SstCre and NexCre cultures. As expected, Syp-tdT boutons from the 

Nkx2.1Cre mouse were juxtaposed with gephyrin but not PSD95, and vice versa for NexCre (Figure 

3.2, F). SstCre and Nkx2.1CreER displayed similar results as Nkx2.1Cre (data not shown). Also as 

expected, Syp-tdT boutons from Nkx2.1CreER BC and ChC preps were VGAT-positive and showed 

high apposition to gephyrin but not PSD95. In contrast, Syp-tdT boutons from the NexCre culture 

were VGAT-negative and showed high apposition to PSD95 but not gephyrin. SstCre and Nkx2.1Cre 

displayed similar patterns of juxtaposition as Nkx2.1CreER (not shown). These results help to vali-

date our genetic approach to label GABAergic presynapses using different interneuron-specific 

drivers and the Ai34 reporter. In addition, Syp-tdT signal previously identified as ‘neurite’ was 

neither VGAT-positive nor juxtaposed with gephyrin, further supporting our conclusions of ‘off-

target’ labeling. These experiments display an orthogonal approach to validate tools and verify 

conclusions. 
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3.2.3. Labeling the target compartments: antibody selection 

We next turned to visualizing the subcellular target compartments. A schematic of the com-

partments and the antibodies used to visualize them is shown is Figure 3.3, A. We used Ankyrin 

G (AnkG) as a marker of the AIS, Gephyrin as a marker of GABAergic PSDs, and combined 

staining of Kv2.1 and Kv2.2 (Kv2) as a general marker of the soma and proximal dendrites. Ex-

amples of the staining patterns for these antibodies are shown for culture and slice (Figure 3.3, A). 

Since we are here discussing principles for choosing labels, it is worthwhile to delve into our rea-

soning and preliminary experiments for choosing this particular antibody panel to test our hypoth-

esis. 

We used AnkG as a marker of AIS. We based our decision here largely on wide body of 

literature associated with this protein at the AIS[2-19]. Simply put, AnkG is the canonical marker of 

this subcellular compartment, antibodies directed at AnkG are well-validated, and these antibodies 

yielded the expected results in our culture system and in slice (Figure 3.3, A). 

We used a combination of Kv2.1 and Kv2.2 monoclonal antibodies in the same channel to 

label soma and proximal dendrite[20-25]. We based this choice on literature findings: individually 

these proteins have distinct cell- and layer-specific expression patterns in pyramidal cells[26]. We 

reasoned that visualizing both Kv2 antibodies in the same channel would limit the potential for 

false negative classification of soma targeting boutons. This combination yielded the expected 

results in both culture and slice  (Figure 3.3, A). Henceforth we refer to the combined labeling of 

Kv2.1 and Kv2.2 simply as Kv2.  

Labeling the dendritic target compartment was more challenging. MAP2 is a canonical marker 

of dendritic shafts[27, 28], and we initially tested antibodies to MAP2 as a direct label of dendrites. 

We encountered several issues, however. First, when counterstained with drebrin and gephyrin, 
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markers of dendritic spines and inhibitory PSDs, respectively, we witnessed a number of GABAer-

gic boutons that were not juxtaposed with MAP2 (Figure 3.3, B). This result was in part expected. 
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Although inhibitory dendritic input primarily targets dendritic shaft, a sizeable subset of GABAer-

gic boutons target spine necks and heads[29, 30], which are not labeled by MAP2[26, 29-33]. Second, 

we also noted an unexpected decrease in MAP2 intensity in high density growth regions in culture 

(Figure 3.3, C). These low intensity regions were evident with three different MAP2 antibodies 

(data not shown), indicating this staining pattern is independent of the antibody used. These low-

signal regions were inversely correlated with PSD95 and gephyrin signal, indicating that this was 

not a technical issue arising from decreased antibody penetrance, but rather a biological phenom-

enon due to lower levels of the MAP2 epitope within these regions. Given the inverse correlation 

with PSD95 staining, we suspect the decreased MAP2 signal may be activity-dependent, as has 

been shown previously in slice[34]. Based on these issues with MAP2 we decided it was not a 

reliable indicator of the dendritic subcellular compartment for our purposes. 

We therefore decided to use gephyrin, a general marker of inhibitory post synaptic densities 

(PSDs) instead. Unlike MAP2, gephyrin signal was not affected by cellular density  (Figure 3.3, 

C) and labeled spines targeted by GABAergic synapses (Figure 3.3, B). In addition, our extensive 

Figure 3.3 | Target Compartment labeling strategy.  
A) Final panel used to visualize the target compartments. Left: A schematic of the cortical inter-
neuron populations and their subcellular targets. Displayed are the antibodies used and the most 
prominent subcellular localization of their targeted proteins. Right: Example staining images in 
culture (upper) and slice (lower). Signals are colored to match the schamatic. 
B) MAP2 does not label dendritic spines targeted by SstCre cells. Left: Schematic of the antibody 
labeling strategy to assess dendritic spine targeting by SstCre interneurons. Right: Example an 
SstCre;Ai34 dissociated culture stained as in the schematic. The region of interest is magnified and 
shown in the lower panels. Note that the boutons circled in white are juxtaposed with drebrin 
and gephyrin, but not MAP2. Unlike the boutons on the dendritic shaft above, these boutons 
target dendritic spines. 
C) MAP2 staining intensity decreases in high synaptic density regions. Left: Schematic of the an-
tibody labeling strategy to assess synaptic density in low intensiity MAP2 regions witnessed in 
culture. Right: Example a high density growth region in dissociated culture, stained as in the 
schematic. The region of interest is magnified and shown in the lower panels. Note that the region 
with high PSD95 and Gphn staining has low MAP2 intensity. 
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use of gephyrin in validating our genetic approach to labeling GABAergic presynapses (Figure 

3.2, F-G) provided further confidence in decision to move forward using this antibody. We there-

fore settled on our final antibody panel of Ankyrin G, Kv2, and gephyrin to label the three subcel-

lular compartments targeted by ChCs, BCs, and SstCs, respectively (Figure 3.3, A). Since gephyrin 

PSDs are present at all target compartments, we defined any bouton with positive gephyrin signal 

but negative for both Kv2 and AnkG as dendrite-targeting. We defined any bouton with no 

gephyrin, Ankyrin G, or Kv2 signal as unknown-targeting. As discussed below, the unknown-

targeting class comprised less than 1.5% of all boutons, validating this staining approach as largely 

comprehensive. Although we found this combination generally sufficed, as outlined in greater 

depth in the Pixel Classificiation section below, we did encounter some specificity and sensitivity 

issues. We therefore trained a second supervised pixel classifier (Figure 3.1, #3) to compensate for 

and/or exploit these issues, thereby providing a more comprehensive and representative picture 

than was possible with the target staining alone. 

3.3. File organization 

3.3.1. Nomenclature18  

For the pipeline to be functional and its outputs to be meaningful, we needed to be able to 

track an image and its associated data across different stages and in various formats. A single 

source image added to the pipeline can yield dozens of associated data files in various formats. 

Systematically naming these files in a consistent and predictable manner was key to organizing 

and associating data from the same sample. In other words, our structured system of nomenclature 

served as an organizing principle upon which we built the pipeline. Moreover, the input and output 

 
18 The nomenclature, including specific definitions for each field, is outlined in greater depth in Appendix B. Here we 
discuss the rationale behind it and how it was utilized to streamline processing. 
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data are organized both hierarchically and categorically, which is reflected in our naming system. 

Understanding this organization is critical for understanding the text that follows, and therefore 

also the platform itself. It is for this reason that nomenclature is a critical step and requires discus-

sion. 

We took a structured approach to sample nomenclature that would ensure the filenames  

1. are human-readable and meaningful,  

2. reflect the hierarchical nature and/or the experimental categories of the samples, and  

3. are unique at each processing stage, but 

4. contain elements that persist throughout all stages of processing. 

These points are best illustrated by the nomenclature structure itself, and how it plays out in a 

concrete example. We systematically named each image or its associated data according to the 

following pattern:  

[Experiment ID]_[Sample ID]_[Biological conditions]_[Staining conditions]_[Scene]_m[Tile]_[variable stem ID] 

For example, the following slice sample from mouse #7441: 

20201120_7441_SstCre-Ai34_AnkG-Kv2-Gphn _TR1_m03_BatchQ75NZ.tif 

As per point #1 above, critical experiment parameters are immediately recognizable within 

this filename: it includes a date (2020-11-20, here the mouse’s birthdate), the mouse ID (7441), 

and its genotype (SstCre;Ai34), as well as the staining conditions for the sample (it is a tissue slice 

stained for AnkG, Kv2, and Gphn). As per point #2, it also includes important grouping/hierar-

chical information: the specific source image is the third tile (m03) from the first tile region/scene 

(TR1). These portions, which have been emphasized in bold, comprise the image tile’s base name, 

which is kept constant at all stages of the pipeline and is present in every output (point #4). Im-

portantly, this base name is assigned at the first stage in the pipeline, when multi-tile scenes (or 

tile regions) are split into individual tiles (the processing unit of our pipeline). This specific file’s 
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position in the pipeline is designated by the [variable stem ID] portion, shown above in italics: it 

is the output image from batch-correction using the 75th (non-zero) quantile (BatchQ75NZ.tif). 

This designator comprises the stem of the filename, which is varied in a predictable manner and 

used to distinguish data from different stages of the pipeline that are associated with the same 

source tile. Appending the variable (but non-unique) stem to the constant (but unique) base yields 

a unique name for each file at every stage of the pipeline (point #3). 

Beyond simply containing meaningful information, this systematic nomenclature also has 

considerable utility. Most importantly, the constant base plus variable stem structure is the basis 

for automatic file/data handling throughout the pipeline. Each stage of the pipeline was designed 

to batch process/analyze any number of tiles, i.e., the user is able to designate any number of tiles 

as inputs, and the pipeline will process them sequentially without any further user input. Input lists 

for a single run, therefore, can easily reach lengths of hundreds or thousands of files. To complicate 

this picture further, as outlined in the pipeline schematic (Figure 3.1), various stages of the pipeline 

can require multiple input files to process any given tile. Each of these inputs is handled in a 

distinct way during processing: improper designation will yield errors during processing or erro-

neous outputs. So it is critical that the distinct types be properly designated at the outset. Therefore, 

two forms of file alignment must occur here to process any given tile correctly:  

1. tile alignment: distinct inputs from the same tile (e.g. 7441_[…]_TR1_m03_*) must be 

aligned so they are processed together, and  

2. type alignment: inputs of a specific type (e.g. input image vs presynaptic output vs target 

output) must be identified as that input type, such that each is handled properly during 

processing. 



165 
 

Our nomenclature system solves both alignment problems. First, since the base/tile name iden-

tifies the tile and is consistent throughout the pipeline, it is easy to identify which files are associ-

ated with which tile at any stage simply by matching bases. Second, since distinct data types are 

predictably designated with distinct stems, it is easy to identify an input as that type because it has 

that stem. For instance, [tilename_mX]_Presynaptic.h5 and [tilename_mX]_target.h5 are easily 

identified by user and computer as two different forms of data from the same tile. Thus, tile align-

ment is reduced to base/tile name matching, whereas type alignment is reduced to stem matching. 

Even with such a system, manually aligning inputs is inefficient and error prone, especially if 

dealing with hundreds or thousands of tiles in a single run. Since the file nomenclature follows a 

designated set of rules, we can utilize it to perform these alignment steps automatically. Each stage 

of our pipeline performs the tile alignment step automatically in seconds, thereby avoiding issues 

from data misalignment: tiles missing required inputs are skipped automatically, as are tiles with 

multiple inputs of the same type. We use type alignment checkpoints to ensure that each input 

matches the expected type: files with unexpected stems are rejected, thereby avoiding pipeline 

errors and erroneous results. 

Beyond file/data handling, this filename pattern also facilitates automatic grouping of related 

(i.e., hierarchically-associated) files. Another important consequence from our nomenclature sys-

tem is that it facilitates integration of data gathered within the pipeline with data that exists outside 

of it. We discuss our utilization of the nomenclature for automated tile grouping in greater detail 

in Appendix B. In summary, our nomenclature system provides each image with a unique identi-

fier, similar to a barcode, that contains structural information about sample organization. This 

‘barcode’ allows us to store each object and its associated data within a database, thereby facilitat-

ing downstream analysis of the entire dataset. 
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3.3.2. Adding an input: standardization of metadata, files, and file structures 

We sought to create a pipeline that could be adapted for any number of biological problems, 

with as few limitations as possible on the imaging equipment or the image structure used. Biolog-

ical images, however, are frequently saved in proprietary, microscope-specific file formats with 

non-standardized internal file structures. Moreover, the diversity in biological questions implies 

that acquisition parameters themselves can be highly variable, e.g., different questions may require 

different magnifications, image dimensions, file structure, etc. The experimenter must be able to 

designate those criteria at the outset, (and so the pipeline itself must be able to accommodate such 

changes). Further, once the experimental design has been determined, there must be checks in 

place to ensure that the input data adheres to the required criteria. Simply put, the input data must 

fit within pre-defined set of criteria: non-standard inputs will lead to processing errors, or worse, 

erroneous results. 

Critical for image standardization is knowing how the image file is structured and how it was 

acquired[35-38]. This information is contained in the image metadata, which details how the image 

was acquired and how the file is internally structured. Examples of such data include the image 

dimensions (the size, in pixels or voxels, of the image in the X, Y, Z, C (channels), and T (time) 

dimensions), calibration values (the X, Y, and Z voxel sizes in µm, and the time interval in ms), 

and scene information (the total number of tiles in the scene, as well as their names, order of 

acquisition, and X, Y, and Z locations in µm on the microscope stage). These metadata are con-

tained as key-value lists within the image file. Problematically, manufacturers do not follow a 

standardized practice for what they list or how they list it[39]. For example, the width of 512x512 

pixel image may be stored as width=512 by one manufacturer and sizeX=512 by another. Thus, 

the very information needed to standardize input images is itself unstandardized. 
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The very first problem we encounter, then, is standardization. The above discussion boils 

down to three stages of standardization, all of which are performed in the first step of the pipeline: 

1. Standardization of metadata: the pipeline should be able to identify the file’s internal struc-

ture and acquisition parameters (i.e. metadata) and save this information in a standardized 

form at a standard location. 

2. Standardization of file formats: the pipeline should be able to read non-standardized file 

types and convert them into a universal format. 

3. Standardization of file structure: for any inputs that do not meet predetermined, standard-

ized structure, the pipeline should be able to convert them to that form if possible, or reject 

them if not. 

We addressed the first two standardization problems by positioning the Bio-formats software 

at the interface between microscope output and pipeline input. Bio-formats utilizes an expansive 

library to read biological imaging data from over 150 proprietary and non-proprietary image for-

mats, and to write these data to standardized, open file formats[40]. It is therefore specifically de-

signed to solve the first two standardization problems. 

The first step in our pipeline addresses the first problem listed above, i.e., it extracts metadata 

from the source image and stores it in a standardized form and in a standardized location within a 

central repository (Figure 3.4, A). We provide a comprehensive list of the extracted metadata fields 

in table 6. Some examples of these data include the image dimensions (the size, in pixels or voxels, 

of the image in the X, Y, Z, C (channels), and T (time) dimensions), calibration values (the X, Y, 

and Z voxel sizes in µm, and the time interval in ms), and scene information (the total number of 
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tiles in the scene, as well as their names19, order of acquisition, and X, Y, Z locations in µm on the 

microscope stage). Importantly, the specific set of stored metadata values could be adapted to re-

searcher requirements. These data are extracted primarily from the standardized Bio-formats 

metadata, but when unavailable there, are either pulled from the original image metadata or derived 

from metadata that is present. These aggregated data are automatically appended to a source 

metadata table (a CSV file) located at a standardized location within a central metadata repository. 

Also stored in the repository are the Bio-formats/OME metadata (as an XML file), the original 

image metadata (as a list in TXT format), and if present in the original metadata, an audit trail that 

documents post-hoc changes to the source image that occurred prior to entry into the pipeline (as 

a TXT file). Finally, we use the extracted metadata to automatically derive information required 

for downstream steps of the pipeline, such as the tile configurations map, which designates how 

the tiles of a multi-tile image are physically arranged relative to each other, or the tile groupings, 

which automatically classifies tiles into specific groups based on metadata and nomenclature (both 

discussed later). This information is then structured as needed and stored at predetermined loca-

tions within the metadata directory for ease of access downstream.  

The second step in the pipeline addresses the second problem above, namely standardization 

of file format. We use Bio-formats to import the user-designated, microscope-specific source im-

ages into FIJI, where we can then process it as if it were any other image (Figure 3.4, B). We use 

the above metadata to designate commands for how to open the file, and what (if any) processing 

steps are needed to make the file conform to the predesignated standards. For example, multi-tile 

scenes are split automatically into individual tiles (the unit of processing throughout the remainder 

of the pipeline), and renamed according to their pre-designated tile name. This ensures that, from 

 
19 Note that the scene and tile names are derived directly from the image metadata, at the very first step in the pipeline. 
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the outset, the inputs into the pipeline conform to the nomenclature expectations. Ultimately, the 

Figure 3.4 | Input standardization and quality control checks. 
A flowchart of the initial stage of the platform, where inputs are imported and standardized. 
Different bioimaging experiment require different experimental parameters and image struc-
tures, with file formats largely dependent on the microscope used for acquisition. This means 
that the metadata, file, image, and sample structure are all variable. This stage standardizes the 
image metadata and file structure, derives the sample structure, then performs quality control 
checks to ensure that the inputs accord with a pre-designated image structure. 
A) Metadata extraction. The platform extracts the original image metadata, Bio-Formats (i.e., 
standardized) metadata, and custom metadata from the input images. It identifies hierarchical 
and categorical relationships between tiles within the acquisition series and between other image 
series already in the pipeline, and generates a generalized tile configuration file to automate im-
age stitching. These data are stored in a central repository in standardized forms.  
B) Image import. The images in the acquisition series are imported and split into individual tiles 
(the processing unit of the pipeline), then algorithmically assigned unique names using a stand-
ardized nomenclature based on the image metadata. 
C) Quality checks. The image structure, such as its dimension numbers, sizes, and order, are 
compared to pre-designated standards. If the image does not meet the requirements, it is adjusted 
to meet those standards if possible or rejected from further analysis if not. Tiles are saved in a 
standardized and generally accessible file format at a standard location relative to the input di-
rectory. 
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standardized tile is saved in the generic and universally accessible TIF format within a standard 

directory for ease of access. 

The third step of the pipeline runs the input through a series of quality control (QC) stages to 

ensure the input images conform to the predesignated criteria (Problem 3) (Figure 3.4, C). These 

steps assess the following fundamental aspects of the file structure: image dimensions, pixel/voxel 

size, channel order, and dimension order. Images are automatically adjusted to meet requirements 

when possible (e.g. images are scaled to match required pixel sizes, channels are rearranged if 

misaligned), and rejected when not possible (e.g. missing channels, 2D images for a 3D pipeline, 

static images in a time-lapse pipeline). These QC and standardization steps not only ensure that 

inputs can be handled during downstream processing, but also that data from independent experi-

ments are comparable if run through the same pipeline. 

3.3.3. File Grouping and Data Organization 

As described above, the first stage of our pipeline splits multi-tile scenes into individual tile 

images. This splitting process greatly facilitates downstream processing, but it also ignores the 

hierarchical structure of the data itself. There are times, however, when the tiles must be re-grouped 

according to various nodes in this hierarchy: sample-to-sample intensity correction and stitching 

of individual tiles into a scene both depend on the hierarchical relationships within the data. This 

splitting function also ignores categorical relationships within the data: samples with the same 

staining conditions or sample format (e.g., slice vs culture) have the same experimental conditions, 

and therefore belong to the same group. Our pipeline utilizes the image metadata and filename 

structure to identify these hierarchical and categorical relationships automatically. 

We have written code to automatically parse the filename and group tiles both hierarchically 

and categorically based on nomenclature patterns and metadata values. We discuss this code and 
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provide examples for its utilization in Appendix B: Sample nomenclature. We utilize different tile 

groupings at almost every stage of the pipeline, from pre-processing to analysis. Simply put, these 

automated groupings facilitate automated decision-making throughout the pipeline. As discussed 

in the Batch correction section below, we use categorical groupings to shuttle different samples 

into different processing steps when required and hierarchical groupings to rapidly and efficiently 

align thousands of files from numerous inputs. The more sophisticated the pipeline becomes, the 

more important it will be to automatically identify and carve out different groupings. 

We have, in effect, created an ecosystem for images, their metadata, and the resultant image 

data. Each object is provided a unique identifier and automatically grouped categorically and hi-

erarchically. This allows images and their associated data to be tracked throughout the processing 

pipeline. Data from one stage can be easily accessed and utilized for subsequent stages. This or-

ganization should greatly facilitate imaging experiments. 

3.3.3.1. Stitching 

A clear example of the utility of this ecosystem is image stitching. Stitching takes individual 

tile inputs and organizes them based on their acquisition coordinates into a single, fused scene 

(Figure 3.5). The stitching process itself is automated, and ultimately uses a native stitching func-

tion within FIJI to stitch individual tiles into a scene. To perform this operation, the stitching func-

tion needs to know the name and X, Y, and Z coordinates of each tile within the scene. The tile 

configuration map serves as this stitching blueprint; it is a TXT file that structures these data in a 

standardized way to make it readable for the stitching function. Simply put, the tile configuration 

map designates which files the stitching algorithm needs to open and where each image goes within 

the scene. We encountered two problems for the stitching algorithm: 1) the tile configuration map 

is not automatically generated when scenes are split, i.e. we had to write code to build one for each 
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scene, and 2) Since the filenames in the tile configuration map must match the tile filenames in the 

directory exactly, each (functional) tile configuration map only works for the specific files it des-

ignates, i.e., we would need different tile configuration files to stitch the same scene at different 

stages of the pipeline. 

We solved the first problem using the image metadata. Embedded within the source metadata 

is the X, Y, and Z position in µm of the objective on the stage at onset of imaging. As part of the 

metadata extraction algorithm, we convert these positions to pixels/voxels, then set them relative 

to the scene origin (the format required by the stitching algorithm). We solved the second problem 

using our nomenclature system. Simply put, for each scene we create a tile configuration map with 

generalized tilenames, and is used as a blueprint to stitch tiles into their corresponding scene at 

any stage within the pipeline. Storing these data at a standardized location within the central 

metadata repository enables algorithmic access to these data at any stage of the pipeline. We have 

Figure 3.5 | Generalized scene stitching 
The stitching algorithm identifies the scene name based on the tile nomenclature (A), then finds 
the corresponding generalized tile configuration file in the metadata directory and adjusts the tile 
configurations contents to match the files in the input directory (B). Finally, stitches the tiles in 
the scene that are present within the input directory (C). 
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written code that, given an input directory and tile, automatically identifies the corresponding gen-

eralized tile configuration map, creates a specific map for all images in the scene within the input 

directory, and stitches those images according to an extensible set of user options. The code auto-

matically removes missing files from the output tile configuration map. It has built-in options for 

3D images, such as ignoring the Z position or flattening the image via various Z projection algo-

rithms  (minimum, maximum, mean, standard deviation, and median intensity, as well as extended 

depth of focus). These projection algorithms utilize the GPU and operate on a tile-by-tile basis, 

decreasing RAM requirements and processing times. Since the acquisition-based tile positions 

may not actually be aligned (e.g. due to an uncalibrated microscope), we also include an option to 

calculate the optimal fit. This solution is permanently saved as a generalized tile configuration map 

in a separate location of the metadata directory, and if present, the user can opt to use this version 

rather than the original, metadata-based one. Since all the required input data is extracted automat-

ically and all these steps are executed algorithmically, stitching is performed almost instantane-

ously with far less room for user error. 

In combination, this provides an example for our structured approach to file nomenclature, 

metadata extraction, and file organization greatly facilitates algorithmic access to and standardized 

manipulation of images. 

3.4. Image correction 

Our pipeline relies heavily on multi-variable (big data) models and machine learning to clas-

sify pixels and objects. Humans are very good at spotting systematic differences and, when we 

recognize those differences are irrelevant, we can often look past them to look for more relevant 

differences. Computers, unless specifically trained to do so, are not able to look past such differ-

ences. An isolated machine learning model accepts the input data as is, basing its decisions on 
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statistical differences within the dataset and how it is trained to respond to such differences. If the 

data contains systematic errors that the model has not been trained to take into account, it will view 

those errors as relevant divergences in the dataset and make decisions accordingly. In other words, 

instead of recognizing relevant differences, the system will pick up on the systematic errors. 

Simply put: junk in, junk out. 

Common sources of systematic error in bio-imaging data include intensity aberrations due 

microscope optics and sample-to-sample variability in staining quality (‘batch effect’). We can 

correct for such systematic errors with additional machine learning models, but oftentimes it is 

easier and more robust to take a rational approach. We therefore implemented two image correc-

tion steps to correct for known systematic errors in image intensity: 1) X/Y correction and 2) sam-

ple-to-sample (or ‘batch’) correction. 

3.4.1. X/Y correction 

Optical microscopy data often exhibit a radial decrease in intensity from the center of the 

image, an effect known as vignetting[39, 41]. This intensity drop-off is an optical effect of the objec-

tive lens itself, varies based on aperture and focal length settings, and is present to some degree in 

all lenses, but especially so in fluorescence images. The intensity effects due to vignetting is easily 

seen in stitched images, as shown in Figure 3.6 A. We corrected for vignetting in our pipeline by 

adapting the previously-published BaSiC plugin[42] to run efficiently for large, multi-channel, 

multi-tile Z-stacks (Figure 3.6, B-E). We chose BaSiC because it takes a ‘retrospective’ approach 

to correction (i.e. it relies on the actual image data from an image series to calculate the correction), 

is robust against typical image artefacts, works for diverse imaging conditions, and requires rela-

tively few input images. 
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We assumed that, since all tiles in the same acquisition series were acquired at the same time 

Figure 3.6 | Fast XY correction of tiled Z stacks. 
A) An example of the effect of vignetting on a tiled image series. B) Correction of vignetting using 
the BaSiC algorithm. C) The flat-field calculation for the displayed series. D) The dark-field cal-
culation for the displayed series. E) Schematic for fast correction of tiled Z stacks. Step 1 collapses 
each tiled Z stack into a 2D image that maintains the original shading aberrations (step 1). The 
resulting 2D EDF tile images in the group were then combined into an image stack (step 2), which 
is in turn used to calculate the group-wide flat-field and dark-field XY corrections in BaSiC (step 
3). BaSiC outputs the flat-field and dark-field calculations as images, which we store in the 
metadata repository. The other direct output from the calculation stage is a stack of XY-corrected 
EDF images. As an option, these images can be split back into individual tiles and saved. We then 
used the resultant flat-field and dark-field calculations as a basis for correcting each tile as a full 
Z-stack (step 4). 
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using the same acquisition parameters, these images would also exhibit similar vignetting. We 

therefore decided to process these images as a unit. The original BaSiC algorithm was designed 

for use with multi-tile 2D images or single-tile 2D time series images (i.e. both 3D images), rather 

than multi-tile Z-stacks (i.e. 4D images). Given BaSiC’s input structure, to process an acquisition 

series as a unit we must concatenate all associated tiles into a single image stack. Preliminary 

testing with a 4-channel , 62-tile, 40-Z-slice (i.e. 2480 images per channel) acquisition series re-

quired us to load all 12GB into memory, and BaSiC processing took over an hour per channel. For 

comparison, the largest similarly-stained acquisition series currently in our dataset is 242 tiles and 

35 Z-slices (i.e. 8470 images per channel), would require 50 GB RAM just to load the file, and 

assuming linear scaling for processing time, would take ~3.4 hours per channel. Since such pro-

cessing times and memory requirements are not tenable for a high-throughput system, we decided 

to break down this correction step to be handled more efficiently Figure 3.6, E. The BaSiC algo-

rithm operates in two stages: the first, a ‘calculation’ stage, calculates the flat-field and dark-field 

aberrations across the image stack (step 3 in the schematic). The second, a ‘correction’ stage, cor-

rects each image of the stack by removing the flat-field and dark-field aberrations (step 4). The 

BaSiC plugin allows users to input pre-calculated flat-field and dark-field images in order to per-

form the correction(Figure 3.6, C and D). We exploited this feature to increase efficiency (Figure 

3.6, E). We noted that the XY aberration within any given tile will generally be consistent across 

the Z stack, but there is no guarantee that all images within the Z stack will be in focus. We there-

fore utilized a rapid extended depth of focus (EDF) algorithm implemented on the GPU via 

CLIJ2[15] to collapse each tiled Z stack into a 2D image that maintains the original shading aber-

rations (step 1). The resulting 2D EDF tile images in the group were then combined into an image 

stack (step 2), which was in turn used to calculate the group-wide flat-field and dark-field XY 
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corrections in BaSiC (step 3). BaSiC outputs the flat-field and dark-field calculations as images, 

which we store in the metadata repository. The other direct output from the calculation stage is a 

stack XY-corrected EDF images, which can be split back into individual tiles and saved if desired. 

We then used the resultant flat-field and dark-field calculations as a basis for correcting each tile 

as a full Z-stack (step 4). 

Despite the increase in total steps, the efficiency gains are quite remarkable. Since the correc-

tion calculation operates on 2D images, this approach decreases total RAM requirements and cal-

culation times by a factor equal to the size of the Z stack (in our case, 35-80 fold). Moreover, 

splitting the correction phase into tile-by-tile processing similarly decreases total RAM require-

ments by a factor equivalent to the number of tiles in the acquisition series (~240-fold for our 

largest). Importantly, this decrease in RAM requirements enables parallel processing of multiple 

groups, further increasing efficiency. Using the same system, calculating the correction takes less 

than a minute per channel, whereas applying the correction to each tile is accomplished in a matter 

of seconds. Since the flat-field and dark-field calculations are permanently stored in the metadata 

directory, we avoid the need to recalculate should we have to rerun the same files. Moreover, since 

we store the detectors and objective used for acquisition within metadata, we can calculate ‘uni-

versal’ flat-field and dark-field profiles for those conditions and save it as a specific profile for 

prospective correction, e.g. of small acquisition series that are underpowered for their own retro-

spective calculation, or very large acquisition series (e.g. thousands of tiles) where the calculation 

stage would require considerable time. This again highlights the strengths of this ecosystem at 

different experimental scales. 
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3.4.2. Batch correction 

A major source of systematic error is the sample-to-samples variability in staining intensity 

and quality between different biological samples and independent imaging experiments. We there-

fore included a stage to correct for this source of variance. When considering this stage of the 

pipeline, we had several requirements that needed to be met: 

1. Works for 2D and 3D multi-channel images. 

2. Includes a masking step, so that only relevant pixels/voxels are included in the correction 

calculations. 

3. Correction is series-by-series rather than tile-by-tile. That is, the series is the unit for cor-

rection; every tile within the series is adjusted using the same coefficients/correction. 

4. The series data is calculated from individual tiles (not a concatenated stack). 

5. The correction standard initially is set retrospectively (i.e. from the actual data), but for all 

subsequent runs is applied prospectively. That is, we did not want the basis for correction 

to change from one run to the next. 

6. Different correction standards can be set for different conditions. For example, slice and 

culture samples needed to have distinct correction standards for the same markers. 

We tested several off-the-shelf solutions but were unable to find one that satisfied all our 

needs. We therefore decided to build our own solution. The correction step utilizes the grouping 

algorithm above to group tiles based on one or more user-designated categories. 

Figure 3.7, A shows a schematic of the batch correction algorithm. In the first phase, the al-

gorithm cycles through every tile in the group and (1a) measures channel intensity statistics (min, 
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mean, max, SD, variance, automatic threshold values), (1b) extracts histograms, and (1c) calcu-

lates the non-zero quartile values from the histogram. If the user supplies a mask, then it will 

 

Figure 3.7 | Sample-to-sample (batch) intensity correction. 
A) A schematic of the batch correction algorithm. The first stage (magenta) measures channel in-
tensity statistics across the whole tile. These data are permanently stored in the metadata direc-
tory (i.e. they are measured only once). Measurements are from both masked and unmasked tiles. 
The mask can be supplied by the user (option 1) or derived from a series-wide threshold value 
calculated in the second stage (option 2). The second stage (yellow) calculates series-wide metrics 
from the associated tile measures in the metadata directory. These values serve as the basis for 
series-wide batch correction. If a mask is not supplied (option 2), a series threshold value is cal-
culated from the series histogram, then used to mask each tile. This option requires re-opening 
each tile to extract a mask and recalculate masked values. Stage three (cyan) calculates the global 
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values from all available series values, which in turn serve as a basis for standardization of inten-
sity of all subsequent runs. These values are calculated by default on the initial run and stored 
permanently in the metadata directory. Global values can be recalculated from all available series 
data later if desired, in which case any current global values are archived. 
B-C) Uncorrected (B) and batch-corrected (C) slices. Slices were batch corrected using the 75th 
non-zero quantile matching method. Data are presented without display adjustments. 

 

measure, extract, and calculate the same data for the masked pixels/voxels only. The second phase 

utilizes the tile metrics and tile histograms to calculate (2a) channel intensity statistics and auto-

matic threshold values (2b) a cumulative histogram, and (2c) quartile values for the entire group. 

If the user has not provided a mask, they are prompted at the outset to designate an autothreshold 

method for masking. The algorithm will then cycle through the tiles a second time, this time mask-

ing the images based on the designated threshold value calculated for the group, then measures, 

extracts, and calculates the masked statistics and masked histograms for each tile, followed by 

calculations of these values for the group. The third phase sets the global standards to which each 

group is adjusted. It does this essentially by repeating the second phase, but this time uses the 

group-wide data as inputs to calculate (3a) global statistics, (3b) histograms, and (3c) quartiles. 

This global calculation is done only on the first run or upon user override. Finally, in the fourth 

phase, the algorithm (4a) calculates the correction coefficients for each channel from the group 

values and global standards, then (4b) adjusts each tile based on a user-designated correction 

method. A set of uncorrected and corrected slices is shown in Figures 7 B and C, respectively.  

 

We included several features to make this batch correction efficient, robust, and malleable: 

First, the tile, group, and global metrics and histograms, as well as the correction calculations 

(i.e., the outputs from phases 1-4a) are saved to a designated location in the metadata directory, 

with measurement values saved in list form using pre-defined keys, and histograms saved as 1D 
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images using algorithmically-derived filenames. Masked and unmasked values are saved using 

distinct keys, so these data do not overwrite each other. Permanently storing these data not only 

ensures consistency from run to run, but also provides a major efficiency gain: the measurement 

and extraction step (i.e. phase 1) is by far the most time-consuming part of phases 1-4a because it 

requires reading tiles from disk. Since the tile data are permanently stored in the metadata folder, 

tiles with existing values do not have to be re-measured on subsequent runs. This means that pro-

cessing times for this stage do not increase as more images are added to the pipeline, an important 

feature when datasets can have thousands or even tens of thousands of tiles. 

Second, we utilized the hierarchical structure of our sample nomenclature to align thousands 

of files from numerous inputs rapidly and efficiently. During this stage, multiple types of input 

data must be aligned for each user-designated input tile. Using a brute-force, iterative search ap-

proach, the total number of potential file combinations scales exponentially with a linear increase 

in the number of inputs. We used the hierarchical experiment-sample-scene-tile nomenclature 

structure to perform this alignment recursively from experiment down to tile, with higher order 

mismatches skipping lower order searches. This alignment approach linearizes the relationship 

between inputs and potential combinations, and led to a ~50-fold reduction in processing times at 

this stage compared to a brute-force approach. 

Third, since the group calculations are based on tile measures that are readily available in the 

metadata directory, our approach avoids high RAM requirements and long read, write, and calcu-

lation times for large groups. Instead, calculating the group and global values takes a milliseconds. 

Since the resulting values are stored in the metadata folder using distinct key identifiers, they are 

readily accessible for any downstream runs. 
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Fourth, tiles can be grouped in many ways. Since these values are stored in the metadata di-

rectory, recalculating group values for a different grouping method does not require re-measuring 

tile values. Instead, the new grouping values are simply recalculated from re-ordered existing tile 

data. Group data for each grouping method are stored using unique keys, meaning that selecting a 

new grouping method does not overwrite data from other grouping methods. The current study 

utilized acquisition series (i.e. AcquisitionDate timestamp) as the grouping method because it en-

sured that all images within the set 1) share the same acquisition parameters, 2) are from the same 

slide/plate, independent of changes in scene or even sample. 

Fifth, the global standards are calculated and set by default based on the input data from the 

first run (i.e. retrospectively), but not recalculated on subsequent runs. For subsequent runs, the 

correction coefficients are calculated based on the pre-existing global standard (i.e. prospectively), 

meaning that images from all runs utilize the same correction standard, and are thus comparable. 

Since data from the first run may not be representative, we also built in the option to re-calculated 

and re-set the global standards from all available data later if desired. Upon re-calculation, the pre-

existing global standards are automatically archived, thereby giving users the option to return to 

any prior standards if desired. 

Sixth, we built in the ability to have different global standards for different experimental con-

ditions. For instance, for the current study we designated different standards for different sample 

formats (i.e., slice vs culture). Similarly, one could designate different global standards based on 

any change in experiment format, such as different staining conditions or biological conditions. 

Importantly, each input is handled automatically based on its corresponding groupings from the 

auto-generated groupings table stored in the metadata directory. This automatic file handling and 
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decision-making step ensures that inputs are processed as expected, with little need for human 

input and little room for human error. 

Seventh, we included several correction methods, including non-zero quantile matching for 

the 50th and 75th quantiles (Q50NZ and Q75NZ, respectively) with and without log transform. The 

current study used the linear Q75NZ method for correction, a standard for slide-to-slide correction 

of bioimaging data from multiplexed tissue arrays[43]. The code used for any given correction 

method is modular, so adding other correction methods in the future is relatively simple, making 

this step of the pipeline malleable and extensible. 

In summary, this stage makes an initial pass at correcting batch-to-batch variation. The cor-

rection methods built into this step are admittedly rudimentary. That said, the structured storage of 

hierarchically-organized metrics that, ultimately, reflect experimental desing creates data ecosys-

tem that could be utilized for more complex batch correction methods. Thus, we have created a 

framework that is extensible and malleable. For example, image acquisition parameters, which we 

extract in the first step of the pipeline and store in metadata folder, could be utilized to guide batch 

correction. Similarly, AI-based methods could be substituted for our naïve arithmetic transfor-

mations. Additionally, other image correction steps, such as denoising or deconvolution could be 

incorporated at this stage. Separating signal from noise is critical. Here, we provide a framework 

to do that. 

3.5. Pixel Classification 

Biologists often use antibody staining as means of marking biological substructures, but it is 

important to keep in mind that the resultant staining pattern is not actually the substructures. Rarely 

does the staining pattern line up perfectly with the biological substructure or cell type for which it 

is a marker. Some antibodies bind off-target proteins, others don’t bind the target protein in certain 
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biological contexts (e.g. due to post-translational modifications), and sometimes the target protein 

isn’t throughout the entirety of the biological substructure for which it is a marker. Biologists 

understand these exceptions and use context clues and knowledge of the biological system to in-

terpret the staining data in a way that makes sense given the experimental question and biological 

context. 

An example may help to illustrate this point in more concrete terms. Our experimental ques-

tion investigates GABAergic interneuron subcellular targeting. To investigate this question exper-

imentally, we used antibodies to stain proteins that canonically localize to the subcellular compart-

ments of interest as markers of these subcellular compartments: Ankyrin G for the axon initial 

segment (AIS), Kv2.1 + Kv2.2 (Kv2) for the soma and proximal dendrite (soma), and Gephyrin 

for GABAergic post-synaptic densities (PSDs) generally. Figure 3.8, A-D shows the staining pat-

terns for each of these antibodies at low resolution. Figure 3.8, E shows synaptophysin-tdTomato 

(syp-tdT) labeling of presynaptic boutons from an AIS-targeting GABAergic interneuron labeled 

by Nkx2.1CreER driver; our indicator of GABAergic synapses at the AIS. Although we are using 

these antibodies as markers for the subcellular compartment, these antibodies are not staining the 

subcellular compartments per se. Each of these antibodies presents subtle but important diver-

gences from the ‘marker’ paradigm. Their staining patterns at the AIS illustrate this point well 

Figure 3.8, A’-E’. Ankyrin G is a canonical marker of the AIS. Although the Ankyrin G antibody 

we used displayed significant enrichment at the AIS, it also stained neurites in general at a lower 

intensity Figure 3.8. A, B, meaning that the Ankyrin G staining is not exclusive to the AIS. More-

over, it is not localized throughout the entire AIS: it is specifically excluded from regions with 

high Kv2 clustering Figure 3.8, A’-C’, which has previously been documented[15]. We are using 
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Kv2.1 and Kv2.2 as markers for neuronal soma and proximal dendrite Figure 3.8, C’, but as men-

tioned already Figure 3.8, C’, E’’ and described previously, both proteins also localize to the 

AIS[15, 44], where they cluster to form potassium channels adjacent to GABAergic PSDs[15]. Of 

note, these Kv2-enriched PSD subdomains of the AIS do not contain Ankyrin G. Gephyrin is a 

canonical marker of GABAergic PSDs, but not all Gephyrin antibodies recognize all GABAergic 

Figure 3.8| Staining pattern of subcellular markers generally and at the AIS. 
The top row shows the general staining pattern for the markers, and the bottom row shows the 
staining pattern at the axon initial segment (AIS). The displayed AIS is boxed. In the second row, 
the marker’s staining pattern is indicated by X’, and its relation to presynaptic boutons from an 
AIS targeting GABAergic interneuron is indicated in X’’. 
A) Merged image of Ankyrin G, Kv2, and Gephyrin staining. B) Ankyrin G signal at the AIS. 
Ankyrin G is a canonical marker of the AIS. Note that this antibody also stains neurites in general 
at a lower intensity, and is excluded from Kv2-rich regions of the AIS. C) Kv2.1 and Kv2.2 com-
bined (Kv2) signal. Kv2 is a marker of neuronal soma and proximal dendrites. Note that it also 
localizes to the AIS, where it is found in apposition to AIS-targeting GABAergic synapses. D) 
Gephyrin staining. Gephyrin clustering is a canonical marker of GABAergic post-synaptic densi-
ties (PSDs). This gephyrin antibody (mAb7a) recognizes gephyrin that is phosphorylated at S270. 
Gephyrin localized to PSDs at the AIS is not phosphorylated at S270, as indicated by the lack of 
signal in apposition to the Syp-tdT signal. E) Syp-tdT signal from an Nkx2.1CreER;Ai34 AIS-target-
ing GABAergic interneuron. The Syp-tdT signal here serves as a positive indicator of GABAergic 
synapses at the AIS. 
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PSDs. Specifically, the gephyrin antibody we used in this study (mAb7a, the industry standard) 

recognizes a phosphorylated form of gephyrin (S270), which clusters and forms a scaffold for 

GABAA receptors. Figure 3.8, D, D’, D’’, E’’ illustrates this staining pattern within our system. 

Importantly, gephyrin PSDs at the AIS are not phosphorylated at S270, meaning that this Gephyrin 

antibody does not recognize GABAergic PSDs at the AIS[45], which we witness: few of the Syp-

tdT-labeled boutons at the AIS are in apposition to gephyrin staining. Of note for our system in 

particular, the regions of Kv2 channel clustering at the AIS are the same regions where Ankyrin 

G is excluded and Gephyrin lacks S270 phosphorylation[46] Figure 3.8, C, and is adjacent to the 

cisternal organelle complex, an AIS-specific endoplasmic reticulum specialization where ChC (but 

not non-ChC inhibitory) boutons typically cluster[47]. As biologists, we use this knowledge of the 

biological context to reinterpret the raw staining patterns: the regions where Kv2 is present and 

AnkG is absent are not only part of the AIS, but (despite the absence of Gephyrin staining) are the 

part of the AIS where GABAergic PSDs associated with ChC synapses are enriched. Thus, there 

is a level of processing that occurs between viewing the raw staining data and inferring biological 

meaning from those data. Biologists don’t just view the staining patterns; they also interpret them. 

We wanted to train a computer to interpret the raw staining data as a biologist does. We there-

fore took a supervised learning approach to train machine learning models to classify pixels of our 

confocal images based on biologically meaningful criteria. We trained two pixel classifiers, one 

for presynaptic data (Figure 3.9) and another for target data (Figure 3.10). We chose to train two 

classifiers because each classifier performs a mutually exclusive classification, i.e., an increased 

probability to be categorized as one class requires decreasing probability it is categorized some 

other class. We are, however, interested in synaptic targeting, and thus do not want the presynaptic 
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and target signals to be in any way dependent on each other, let alone mutually exclusive. In con-

trast, we do want the possible classes within the presynaptic classifier to be mutually exclusive, 

and similarly for the classes within the target classifier. Simply put: using a single classifier would 

lead to competition between presynaptic and target classes, whereas we are interested in their in-

tersection. In all cases, we chose to use probability maps as the outputs from the pixel classifiers. 

These probability maps are multichannel images, with a total number of channels corresponding 

to the total number of classes for the classifier. The intensity values for each channel are on a 0-

100 scale and reflect the percent probability that the pixel falls into that class. Given that the classes 

are mutually exclusive, the sum of all channels for any given pixel/voxel is 100. 

3.5.1. Presynaptic pixel classification 

The presynaptic classifier is shown in Figure 3.9. This classifier was trained exclusively using 

the synaptophysin::tdTomato (Syp-tdT) reporter channel. We chose four classes for the presynap-

tic classifier: 1) background (i.e. unlabeled), 2) labeled soma, 3) labeled neurite, and 4) presynaptic 

bouton. Although our study is primarily concerned with synaptic targeting (and so also the pre-

synaptic bouton class), we chose to include the labeled soma and labeled neurite classes because 

together these three classes encompass the different subcellular compartments within which we 

observed real (i.e. non-background) labeling from cells expressing the Ai34/Syp-tdT reporter. That 

is, these are the categorical distinctions a biologist would make when viewing the signal in this 

channel, and we wanted to train our classifier to make the same distinctions. In addition, including 
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these classes opens up further avenues for downstream investigation, such as comparisons of la-

beled cell numbers or morphological analysis of labeled cells.  

3.5.2. Target pixel classification 

The target classifier is shown in Figure 3.10. This classifier was trained exclusively using the 

Ankyrin G, Kv2, and Gephyrin channels. We chose seven classes for the target classifier: 1) back-

ground, 2) AIS, 3) soma & proximal dendrite, 4) gephyrin PSDs, 5) non-AIS Ankyrin G (i.e. target 

Figure 3.9 | Presynaptic pixel classifier. 
Only Syp-tdT (magenta), the presynaptic marker channel, is used to train the presynaptic pixel 
classifier (yellow). Probability maps of the four classes modeled by the presynaptic classifier are 
shown separately (cyan): 1) background (i.e. unlabeled), 2) labeled soma, 3) labeled neurite, and 
4) presynaptic bouton. A merged image showing the cumulative probabilities for all positive 
signals is shown (green). Images are from a sparsely-labeled SstCre primary cortical culture. 
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neurite), 6) KV2 at the AIS (i.e. AIS PSDs), and 7) nuclei (Figure 3.10). Again, although our study 

is primarily concerned with targeting at the AIS, soma/proximal dendrite, and distal dendrite, we 

decided to include the other (non-background) classes because they are a more accurate reflection 

Figure 3.10 | Target pixel classifier. 
The target classifier was trained exclusively using the Ankyrin G, Kv2, and Gephyrin channels 
(magenta) of the source image (orange). Probability maps for the seven classes modeled by this 
classifier are shown (cyan): 1) background, 2) AIS, 3) soma & proximal dendrite, 4) gephyrin 
PSDs, 5) non-AIS Ankyrin G (i.e. target neurite), 6) KV2 at the AIS (i.e. AIS PSDs), and 7) nuclei. 
An overlay of all probability maps less background is shown (green). The ROI shown here is the 
same as in Figure 9. 
 



190 
 

of the subcellular compartments identifiable from this combinatorial staining. As discussed above, 

we chose to distinguish AIS PSDs from the AIS in general because a) this classification more 

accurately represents our biological knowledge of the structure itself, and b) it provided us with a 

surrogate PSD at the AIS, which given the Gephyrin antibody specificity otherwise would be miss-

ing. We included the nuclei class because this compartment was readily identifiable from the Kv2 

signal, and its inclusion would enable us to quantify total cell numbers. 

 

3.6. Object classification 

The next stage of our pipeline moves from analyzing images as a disconnected series of pix-

els/voxels to identification, measurement, and classification of discrete objects. As outlined in Fig-

ure 3.11, this stage consists of four steps: 1) designating/constructing the image base data from 

which object measurements are extracted (the object measurand image), 2) synthesizing pix-

els/voxels into discrete, extended objects (the segmented objects), 3) extracting the measurements 

for each object from the measurand image, and 4) classifying the objects based on these measure-

ments and the classification model. We took two approaches to object classification, a) a super-

vised learning approach and b) an unsupervised (hypothesis-blind) approach. In our current pipe-

line, object metrics are extracted as part of the supervised learning step and saved in tabular form 

as part of the outputs from this stage. However, object measurement could be a separate step. We 

use these same metrics as inputs for unsupervised classification, meaning that both classification 

steps are ultimately based on the same data. We discuss these steps here. 
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3.6.1. Object Measurand Concatenation 

This step designates the measurand for object-based measurements, i.e., the image from which 

object measurements are extracted. This step essentially takes any number of distinct input images 

for a given tile and combines (i.e., concatenates) channels into a multi-channel image stack with a 

Figure 3.11 | Object classification schematic. 
The object classification moves from analyzing images as a disconnected series of pixels/voxels 
to identification, measurement, and classification of discrete objects. This stage consists of four 
steps: 1) Measurand generation. This image is the the base data from which object measurements 
are extracted. It is concatened from the pixel classifier inputs and outputs. Here the measurand 
is a 15-channel image. 2) Object segmentation. This step synthesizes pixels/voxels into discrete, 
extended objects, then assigns each object a unique identifier. 3) Object measurement. In our 
pipeline, a total of 431 unique metrics are extracted for each object and its local neighborhood. 
These include morphometrics, intensity-based photometrics, and cross-channel intensity covari-
ants. 4) Object classification. There are two approaches to object classification, 4a) a supervised 
learning approach and 4b) an unsupervised (hypothesis-blind) approach. Both approaches use 
the same object measurements as input data, and are therefore complimentary modes of analysis. 
Images are from a ChC-enriched primary cortical culture where Nkx.21CreER labeled the cells. The 
ROI shown here is the same as in Figure 8. 
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pre-designated channel order. One could, presumably, use any number of input channels at this 

stage, with the only downsides being increased calculation times and (potentially) decreased inter-

pretability. We wanted the inputs for our object classification stage to include not only the outputs 

from both pixel classifiers (i.e., the biological interpretations), but also the images used as inputs 

for the pixel classifiers (the input channels). We therefore concatenate the pixel classifier input 

channels (i.e. Syp-tdT, Ankyrin G, Kv2, and Gephyrin) and the and target pixel classifier output 

channels into a single 15-channel stack Figure 3.11, #1. The pixel classifier images are in the form 

of probability maps. This 15-channel image serves as the first input for the supervised object clas-

sifier, i.e., the measurand for presynaptic bouton measurements. 

3.6.2. Object segmentation 

This stage utilizes the pixel classifier probability maps and the corresponding input channel(s) 

to derive objects via segmentation. We use the probability maps to designate a probability cutoff 

to remove low probability pixels from the input channel, which is then fed into a segmentation 

algorithm to extract objects of a designated class. This stage is malleable and can be used to extract 

objects of any class from the input images, so long as there is a corresponding probability map. 

We extracted presynaptic bouton objects using the Syp-tdT input channel and presynaptic bouton 

probability channel Figure 3.11, #2. Moreover, the specific segmentation function utilized is mod-

ular, and therefore can be modified to accommodate objects of different shapes. We utilized the 

3D spot segmentation algorithm from the 3D ImageJ Suite (mcib3d plugin[48]), which uses input 

seeds (calculated via 3D local maxima) as a starting point for object identification, then designates 

pixels as components of that object via a process of 3D expansion. We tested other 3D segmenta-

tion algorithms within the 3D Suite (e.g. simple segmentation, iterative thresholding, and hystere-

sis thresholding), and found that the Spot segmentation algorithm did the best job segmenting and 
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splitting the (largely spherical) presynaptic boutons, was relatively simple, consistent, and easily 

automated. We save the segmentation output as a binary image, which in turn serves as the second 

input for the supervised object classifier (i.e., it designates the 3D extended objects themselves).  

3.6.3. Object measurement 

The next step uses the object segmentation mask and measurand image to extract measure-

ments for each object Figure 3.11, #3. Although the object measurement step is built into our 

supervised classification stage, these steps are functionally and conceptually distinct. It is therefore 

more fitting to discuss them separately. Object measurement begins by transforming the binary 

segmentation image into an object label map via a connected components labeling algorithm. 

Simply put, this algorithm considers adjacent, non-zero pixels/voxels to be part of the same object. 

Every resultant object is then designated a unique, non-zero identifier value (its index, label, or 

ID), with background/non-object designated as zero. (Practically speaking, each set of connected 

pixels/voxels is given a unique intensity). These objects are then used as the basis for measuring 

summary statistics across the object. The measurements include location-based metrics, morpho-

metrics, and photometrics. Location-based metrics include information about the object’s relative 

coordinates within the image. We did not include any location-based metrics as inputs for object 

classification. Morphometrics include size- and shape-based measurements, such as volume, sphe-

ricity, and min/mean/max radii. Photometrics are intensity-based measurements such as 

min/mean/max intensity for each channel, as well as cross-channel metrics like intensity covari-

ance. These intensity-based statistics can be measured within the object itself or from the object’s 

neighborhood (i.e., pixels/voxels within a given radius, excluding the object itself). In total, we 

extracted 431 non-redundant metrics per bouton across the 15 channels. These metrics serve as 
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inputs for both the supervised Figure 3.11, #4a and unsupervised Figure 3.11, #4b object classifi-

cation classifiers. 

3.6.4. Supervised object classification 

The supervised object classification step fits the objects to a pre-defined classification model 

based on the object’s metrics. As discussed, it uses the measurand image and object mask as inputs 

Figure 3.12, A. We chose five object classes Figure 3.12, B: 1) Non-bouton, 2) Dendrite-targeting, 

3) Soma-targeting, 4) AIS-targeting, and 5) Unknown-targeting. We then established classifica-

tioin criteria for each object class. 1) The Non-bouton class encompasses any objects that are not 

boutons, i.e., objects that either a) do not fit the expected shape and size (e.g. single voxel, small, 

non-spherical/flat, or very large objects), or b) do not have significant overlap with contiguous 

high Presynaptic Bouton probability. Non-boutons are generally technical artefacts from the seg-

mentation stage, and we excluded these objects from downstream analysis. 2) The Dendrite-tar-

geting class is any bouton with clear overlap of high probability Gephyrin PSD, but does not over-

lap with Soma, AIS, AIS PSD. 3) The Soma-targeting class is any bouton that overlaps with Soma 

but does not overlap with AIS or AIS PSD. 4) the AIS-targeting class is any bouton that overlaps 

with AIS or AIS-PSD. Finally, 5) the Unknown-targeting class is any object that fits the bouton 

criteria but does not fit any of the other three bouton classes, i.e., it does not overlap with Gephyrin 

PSD, Soma, AIS, or AIS PSD. The Unknown-targeting class comprised approximately 0.99% of 

all objects and 1.4% of all boutons. The model itself was trained by expert observers using a subset 

of the input data (Figure 3.10, C). Object classification is then assigned based on maximum prob-

ability across all classes (Figure 3.10, D). We excluded any Non-bouton classified objects for 

downstream analysis, yielding bouton targeting.  
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Figure 3.12 | Object classification inputs and outputs. 
A) The object classification inputs consist of the measurement basis image and an object mask. 
Our basis image was concatenated from the raw target signal and target pixel classifier probability 
maps, as well as the presynaptic signal and presynaptic probability maps. The object mask results 
from segmentation of the raw presynaptic signal using the bouton probability score for threshold-
ing, followed by a 3D spot segmentation algorithm that uses local maxima as seeds. B) Object 
probability scores for the five object classes: Non-bouton and Dendrite-, Soma-, AIS-, and Un-
known-targeting. Class definitions and classification criteria are provided in the text. C) Ground 
truth input for the current tile. The probability scores are based on minimal user training. D) Ob-
ject classification is assigned based on maximum probability across all classes. Excluding the Non-
bouton class yields the bouton targeting. Images are from a BC-enriched primary cortical culture 
where Nkx.21CreER labeled the cells.  
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3.6.5. Supervised classifier validation 

We validated our model using a ground-truth validation set of ~5400 independently classified ob-

jects that had been excluded from training. The validation set consisted of 30 tiles from 10 inde-

pendent experiments, with 20-300 randomly-selected objects per tile. It included boutons from 

both slice and culture and from all driver lines. Figure 3.13, A shows an example tile subregion. 

We compared the model predictions Figure 3.13, B to the validation set Figure 3.13, C, noting 

mismatches between ground truth and prediction for each class Figure 3.13, D. We then generated 

a confusion matrix to calculate true positive, true negative, false positive, and false negative scores 

to assess model performance. Overall model performance was high, with an accuracy20 of 94.2% 

across all objects and 95.3% across all boutons, with similar accuracy for each bouton class indi-

vidually (Figure 3.13, E). Specificity21 and negative predictive value22 had similarly high scores 

across all categories. Precision23 and sensitivity24 were similarly high for all objects and all bou-

tons, though we did witness decreased performance for both metrics among specific object classes. 

To assess how our model’s predictive performance deviated from ground truth for specific classes, 

we generated confusion matrices to assess precision and false discovery rate (FDR)25 (Figure 3.13, 

 
20 Informally, accuracy is the fraction of predictions that the model got correct. Formally, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  (𝑇𝑇𝑇𝑇 +
𝑇𝑇𝑇𝑇)/(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹), where TP = true positives, TN = true negatives, FP = false positives, and FN = false 
negatives.   
21 specificity is also known as the true negative rate (TNR). Informally, it is the probability that an actual negative is 
predicted to be negative. Formally, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹).  
22 Negative predictive value (NPV) or negative predictive power informally tells you how often a model is correct 
when it makes a negative prediction, i.e., how often a negative result represents a true negative. Formally, 𝑁𝑁𝑁𝑁𝑁𝑁 =
 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹). 
23 precision is also known as the positive predictive value (PPV). Informally, precision measures how often a model 
is correct when it makes a positive prediction, i.e., the proportion of positive predictions out all correct predictions. 
Formally, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇).  
24 sensitivity is also referred to as recall or true positive rate (TPR). Informally, sensitivity describes how often the 
model predicts the class when it actually is that class. In other words, it is a measure of how well a model can identify 
true positives, or the proportion of actual positives that it identified correctly. Formally, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +
𝐹𝐹𝐹𝐹). 
25 False discovery rate (FDR) informally is how often a model is incorrect when it makes a positive prediction. For-
mally, 𝐹𝐹𝐹𝐹𝐹𝐹 =  𝐹𝐹𝐹𝐹/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)  =  1 –  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 
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F) and sensitivity and false negative rate (FNR)26 (Figure 3.13, G). The model performed worst 

Figure 3.13 | Supervised object classifier performance. 
A) An example region of interest (ROI) used in the validation sample. The validation set consisted 
of 4742 randomly-selected objects from 30 tiles and 10 independent experiments. The validation 
set was classified without model feedback. The objects circled in orange are mismatches between 
ground truth and prediction. B) Ground truth classification for the ROI. Mismatches are circled 
as in A. C) Model prediction for the ROI. Mismatches are circled as in A. D) Matches are shown 
in white, mismatches in red. E) Model performance metrics across all classes, all bouton classes, 
and each object class individually. ACC: accuracy; TPR: sensitivity, recall, or true positive rate; 
TNR: true negative rate; PPV: precision or positive predictive value; NPV: negative predictive 
value. Please refer to the text for formal and informal definitions of these performance indicators. 
F) Precision and false discovery rate of the object classifier. Shown is the confusion matrix where 
each value has been normalized by the total predicted counts for that class (TP+FN). The diagonal 
shows precision, or how often a model is correct when it makes a positive prediction, (precision = 
TP/(FP+FN)). The off-diagonals show false discovery rate, or how often a model is incorrect when 
it makes a positive prediction, (FDR = FP/(TP+FN) = 1 - precision). Note that the axes of F are 
flipped compared to G to emphasize the precedence of the predicted class for this metric. 
G) Sensitivity (i.e., recall or true positive rate, TPR) and false negative rate of the object classifier. 
Shown is the confusion matrix where each value has been normalized by the total ground truth 
counts for that class (TP+FP). The diagonal shows sensitivity, how well a model can identify true 
positives, or the proportion of actual positives that it identified correctly, (sensitivity = 
TP/(TP+FP)). The off-diagonals show the false negative rate, or the proportion of actual positives 
that the model identified incorrectly, (FNR = FN/(TP+FP) = 1- sensitivity) for all class combinations. 
Note that the axes of G are flipped compared to F to emphasize the precedence of ground truth 
and prediction for these metrics. 
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for the Unknown-targeting class, with this class having 40% precision and 40% sensitivity. The 

confusion matrices revealed these issues were primarily due to false prediction of Non-bouton as 

Unknown-targeting (FNR=0.400) and misclassification of this class as Non-bouton (FDR=0.318), 

respectively. In total, 67% of all Unknown-targeting false positives were actually Non-bouton, and 

56% of all misclassified Unknown-targeting were improperly classified as Non-bouton. Also of 

note for this class were the moderately high FDR (0.170) and FNR (0.140) for the dendrite class, 

indicating a secondary node of misclassification and misprediction for this bouton type. As stated 

above, however, this class is negatively defined and constitutes less than 1.5% of all boutons. Also 

present but far less prominent performance issue was a decreased precision for the AIS-targeting 

class (0.697) primarily due to their misclassifications as Soma-targeting boutons (FDR=0.206), 

which accounted for 68% of the misclassified AIS-targeting boutons and 20% of all AIS-targeting 

boutons. Of note, the AIS-targeting class is the second smallest class, comprising 3.5% of all ob-

jects and 5.0% of all boutons. Given the small proportion of this class overall, increased training 

with AIS-enriched images could rectify these performance issues. Alternately, the metrics we are 

currently using may be suboptimal for positively predicting this class. Overall, these data show 

that our supervised bouton classification model scores well on all performance metrics.  

3.6.6. Ability to detect changes in subcellular targeting 

We initially set out to build a platform to screen interneuron connectivity. There are two gen-

eral requirements for such a platform: 1) scalability and 2) ability to detect changes. The latter is 

in part covered by the performance metrics analysis above. This analysis, however, does not take 

into account the biological sample’s ability to change due to intervention. We therefore set out to 

 
26 False negative rate (FNR) informally is the proportion of actual positives that the model identified incorrectly. 
Formally, 𝐹𝐹𝐹𝐹𝐹𝐹 =  𝐹𝐹𝐹𝐹/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)  =  1 −  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 



199 
 

run a small scale pharmacological screen to assess whether our culture system was amenable to 

changes. To do this we partnered with Anna Molofsky’s group at The University of California San 

Francisco, who recently found that IL13 transiently increases cortical interneuron synapse num-

bers in vivo and ex vivo slices[49]. In a personal communication, they noted that their preliminary 

data suggested the increase may be subtype-specific. We therefore used our culture system to test 

this hypothesis. We used Nkx2.1Cre;Ai34 mice to label presynaptic boutons of all MGE-derived 

interneurons. We then generated dissociated cortical cultures, which we grew to DIV14. We se-

lected this time point because we found from live imaging that it corresponded to peak synaptic 

growth with a high level of plasticity. We then treated with increasing concentrations of IL13 for 

24 hours and assessed subcellular targeting using our supervised classification system described 

above. This small-scale screen consisted of six different treatments with two biological replicates 

each. It was repeated on three independent occasions. Unexpectedly, we did not witness a change 

in total synapse numbers, indicating that the biological response to IL13 in culture and in vivo are 

distinct. We found, however, a profound shift in subcellular targeting at higher IL13 concentrations 

(p<0.0001 for interaction between IL13 concentration and subcellular target, by 2-way ANOVA). 

Specifically, we witnessed shifts of ~10% and ~20% at 100 and 200 ug/mL (both P<0.0001) from 

dendrite to soma targeting (Figure 3.14, A and B). AIS targeting was unaffected, suggesting the 

effect is cell type specific. Although small in scale, this experiment is proof of concept that our 

platform is scalable and that a dissociated culture system can be used to detect pharmacologically-

induced changes in interneuron subcellular targeting. As illustrated by the unexpected lack of 
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change in synapse numbers in culture, it will be important to identify the limits of recapitulation 

in this system and to better define in vivo correlates in development.  

3.6.7. Unsupervised object classification 

We next asked whether an unsupervised analysis of the objects would a) arrive at the same 

classes, and b) reveal finer classifications of boutons in an unbiased manner. Our pipeline for un-

supervised clustering was adapted from single cell RNA sequencing techniques. Briefly, we took 

the object feature metrics computed by Ilastik as input, performed basic filtering and rescaling, 

reduced the dimensionality of the dataset using an autoencoder, and clustered objects embedded 

in this reduced space into putative classes of boutons. 

Preprocessing applied standard machine learning techniques: we kept Ilastik features related 

only to object morphology (e.g. object size and perimeter concavities) or intensity (e.g. mean in-

tensity of an image channel, covariance of two channel intensities), but not location (e.g. center or 

Figure 3.14 | IL13 shifts interneuron subcellular targeting preference from dendrite to soma. 
A) Examples of bouton subcellular targeting from an Nkx2.1Cre;Ai34 culture after treatment 
with IL13. Cultures were treated on DIV14 with vehicle or the designated concentrations of IL13 
in ug/mL and analyzed 24 hours later. Boutons are colored by target. blue: dendrite; red: soma; 
green: AIS. B) Change in targeting distribution compared to vehicle. Each point is calculated 
from all boutons in a single tile. Data are from two biological replicates per condition, with 25 
tiles per sample. Experiment was repeated three times. Representative results are shown. 2-Way 
ANOVA with Šídák’s multiple comparisons test.  * p<0.05; **** p<0.0001.  
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bounding box of the object) or object classification (e.g. assigned class, probability of class); un-

informative features with zero variance were removed; and object metrics were rescaled to the 0-

1 range to ensure that autoencoder accuracy and training is not unduly influenced by individual 

features. 

We applied dimensionality reduction to counteract the curse of dimensionality, the phenome-

non that when analyzing high-dimensional datasets, data points become sparse, making it difficult 

to determine the underlying structure of the data. Dimensionality reduction attempts to map high-

dimensional data to a lower dimension while attempting to preserve the relative structure of the 

data. We utilized an autoencoder[50], a neural network which is trained to reconstruct its input as 

output. The network features a ‘bottlenecked’ middle layer of lower dimension than the inputs, 

forcing the network to learn a reduced representation of the input data during training. Outputs 

from this layer serve as the embedding—the reduced-dimensionality coordinates. We selected on 

a four-layer network, with two layers before the embedding layer and two layers after to recon-

struct the inputs, and a 16-dimensional embedding, which maximized the reconstruction accuracy 

on a pilot dataset while minimizing the embedding dimensionality. Training was performed on 

80% of the objects, validation for each training epoch was performed on a distinct 10% of objects, 

and model comparison was performed on the remaining 10% of objects. The 16-dimensional em-

bedding was subsequently used for visualization of objects in UMAP space, and for clustering. 

Figure 3.15 shows all objects from a preliminary run rendered using Uniform Manifold Ap-

proximation and Projection (UMAP), a non-linear dimension reduction technique to visualize the 

relationships between objects[51]. The algorithm creates a network of nearest neighbors between 

points, then arranges these points in two dimensions, optimizing to maintain neighbors in the net-

work. As a consequence, points nearby in UMAP space tend to be closely related. Overlaying the 
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supervised classification predictions on the UMAP plot revealed that the different classes largely 

cluster together, separately from other classes (Figure 3.15 A), indicating that the autoencoder 

embedding distinguishes between boutons of different classes. We next mapped the probability 

scores onto the UMAP space (Figure 3.15, B-F). These data revealed that the non-bouton class 

was largely segregated from the bouton classes (Figure 3.15, B). We therefore excluded these 

objects from further analysis. Dendrite-targeting (Figure 3.15, C), soma-targeting (Figure 3.15, D), 

Figure 3.15 | supervised classification calls as autoencoded parameters rendered into UMAP 
space. 
Figure 3.16 | Supervised classification calls as autoencoded parameters rendered into UMAP 
space. 
A) The supervised object classification results were visualized on UMAP space based on unsu-
pervised learning parameters. B-F) Probability of supervised classes modeled on UMAP. The 
non-bouton class (B) is largely segregated from the bouton classes. Based on these results, we 
excluded the non-bouton class from downstream analysis. The Dendrite-targeting (C), soma-
targeting (D), AIS-targeting (E), and Unknown-targeting (F) classes all show distinct regional 
enrichment patterns, indicating the autoencoder recognized distinct signatures for these bouton 
classes. 
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and AIS-targeting (Figure 3.15, E) boutons were largely restricted to their own regions within the 

UMAP, further validating the unsupervised approach. Objects with high probability for unknown-

targeting (Figure 3.15, F) displayed considerable mixing with the non-bouton and dendrite classes, 

but little intermixing with soma- or AIS-targeting classes, further confirming that these are bor-

derline cases as suggested by our ground truth validation. Overall, these data further validate our 

supervised model and indicated that the autoencoder had considerable potential for unsupervised 

learning. 

We next used our autoencoder embedding as a basis for clustering. Simply put, we wanted to 

test whether the unsupervised learning model based on the same data would arrive at similar clas-

ses as the supervised classifier and/or identify new classes. We used the Louvain method of clus-

tering, which detects communities of similar objects based on a weighted neighborhood net-

work[52]. We selected this method for its robust detection of arbitrarily-structured communities, 

minimal parameter space, and ease of implementation. This algorithm takes two parameters—

resolution, which controls the number of clusters detected, and ‘k’, the number of nearest neigh-

bors to include when constructing the neighborhood network. These parameters were selected to 

(1) optimize two metrics of comparing intercluster and intracluster dispersion: maximizing the 

Calinski-Harabasz score[41] and minimizing the Davies-Bouldin score[53], under the assumption 

that clusters should comprise similar objects, and (2) reflect the segregation of target classes, with 

each cluster enriched for a single target. We discuss these parameters in greater depth in Chapter 

4. This preliminary clustering analysis yielded 10 distinct classes that generally accorded with the 

supervised classifications: separate clusters encompassing soma-, dendrite-, and AIS- targeting 

classes (Figure 3.17, A and B). Moreover, the clustering analysis revealed considerable heteroge-

neity within the dendrite- and soma-targeting bouton classes. The heterogeneity within the soma-
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targeting boutons was particularly enticing since the supervised classification showed at least two 

Figure 3.17 | Unsupervised classification reveals novel bouton subtypes of canonical targeting 
classes. 
A) Supervised classification rendered onto unsupervised model and displayed as a UMAP. The 
soma-targeting class is split into multiple distinct regions, which are circled. B) Classification 
from a clustering algorithm based on the autoencoder parameters that comprise the unsuper-
vised model. The unsupervised model suggests 10 distinct bouton classes that largely fit as sub-
groups within the targeting classes predicted by the supervised model. Two distinct soma-tar-
geting classes (0 and 8) are circled. C) Original staining data for a predominantly soma-targeting 
interneuron. The Syp-tdT signal is from a single neuron labeled using the Nkx2.1CreER driver and 
Ai34 reporter. This driver line labels soma- and AIS-targeting GABAergic interneurons. D) Object 
classification results mapped onto the images from C. The soma-targeting boutons from the su-
pervised classifier are split into two distinct classes by the unsupervised classifier: class 8 targets 
soma of small, round neurons, whereas class 0 targets large pyramidal neurons.  
Note that the clusters presented here are from preliminary experiments and therefore differ from 
those in Chapter 4. The splitting of the soma-targeting class into two distinct clusters was ob-
served in both, as discussed in Chapter 4. 



205 
 

separate regions of enrichment within the UMAP (Figure 3.17, A), which were designated as sep-

arate clusters by the clustering algorithm (classes 0 and 8, Figure 3.17, B).  

 

3.6.8. Object class mapping 

One of the major strengths of this approach is that we can visualize the classification results 

in situ. That is, we can see the classes identified by our unsupervised classifier within their original 

biological context by mapping them back onto the original images. To do this, we wrote custom 

code that takes the tabular classification results from the autoencoder and maps them onto the 

original object segmentation image. Of note, the algorithm is rapid and GPU-based via CLIJ2[54], 

and could easily be adapted to map any tabular numerical values onto a corresponding binarized 

mask. The code also outputs summary statistics for each tile, including counts and percentages of 

each class and, if supplied, overlap with the supervised classifier calls for all objects within the 

tile. The output is a single channel Z stack, with classes mapped by intensity value. To visualize 

each class independently, we also wrote code to split these classes into separate channels. Figure 

3.17, C shows the staining data from an isolated interneuron expressing Syp-tdT via the 

Nkx2.1CreER driver and Ai34 reporter, which primarily labels Soma- and AIS-targeting GABAergic 

interneurons. The boutons are primarily Soma targeting based on visual inspection (Figure 3.17, 

C) and supervised classification (Figure 3.17, D). This cell, however, displays both class 0 and 

class 8 Soma-targeting boutons, which show strikingly distinct characteristics: class 0 targets large, 

pyramidal neurons, whereas class 8 targets neurons with small, round soma (Figure 3.17, D). In 

other words, our unsupervised classification approach revealed novel, biologically-relevant bouton 

subtypes within the canonical soma targeting class. These preliminary results demonstrate the 

power of our approach to investigate synaptic diversity. 
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3.7. Conclusions 

In this chapter we present an image-based tool to classify objects based on a multidimensional 

analysis of underlying metrics. We built this system to serve as a foundation upon which other, 

more complex image-based questions can be asked. In particular, the inclusion of a centralized 

repository for metadata allowed us to create a data ecosystem that streamlines processing and 

greatly increases extensibility. We used this workflow to assess cortical interneuron subcellular 

targeting at scale. Given the relative ease of training and its adaptability, this model could be ex-

tended to other tissue formats, such as organoids or different brain regions. In addition, the classi-

fication schema could be modified for different target staining to assess other forms of synaptic 

targeting, such as glutamatergic neuron targeting, or even cellular or regional specificity. Finally, 

the workflow could be adapted to ask biological questions outside of neuroscience. We hope that 

this serves as an important steppingstone. We provide a more in-depth discussion of this work and 

our findings from the next chapter in the Discussion section below. 
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Chapter 4: Principles of cortical interneuron synaptic organization 

4.1. Introduction 

In vivo, distinct GABAergic cortical interneuron populations target specific subcellular do-

mains of the target cell (Figure 4.1, A). Somatostatin cells (Sst, blue) target distal dendrites, basket 

cells (BC, red) target soma and proximal dendrites, and chandelier cells (ChC, green) target the 

axon initial segment. We initially set out test whether these cortical interneurons require a precisely 

patterned cortical environment to form the proper subcellular connections. We hypothesized that 

interneuron subcellular targeting specificity is largely independent of the broader cortical environ-

ment (laminar, positioning, afferent connections, etc.), and as such would be recapitulated in a 

dissociated culture setting  (Figure 4.1, B). Note that recapitulation implies not only that targeting 

specificity is intrinsically determined by the presynaptic cell, but also that compartmentalization 

of the target molecules in the correct subcellular regions is intrinsically determined by the target 

cell. 

Figure 4.1 | GABAergic in-
terneuron subcellular tar-
geting specificity in vivo 
and model for interneuron 
specificty in culture.  
A) In vivo, distinct GA-
BAergic cortical interneu-
ron populations target spe-
cific subcellular domains of 
the target cell. Somatostatin 
cells (Sst, blue) target distal 
dendrites, basket cells (BC, 
red) target soma and proxi-
mal dendrites, and chande-

lier cells (ChC, green) target the axon initial segment. B) We hypothesized that interneuron sub-
cellular targeting specificity is largely independent of the broader cortical environment (laminar, 
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positioning, afferent connections, etc.), and as such would be recapitulated in a dissociated cul-
ture setting. Note that recapitulation implies not only that targeting specificity is intrinsically de-
termined by the presynaptic cell, but also that compartmentalization of the target molecules in 
the correct subcellular regions is intrinsically determined by the target cell. 
 

To state the experiment formally, our null hypothesis postulates that cortical interneuron sub-

cellular targeting is dependent on one or more of the following: 

1. The interneuron’s positioning within a specific cortical subregion or layer. 

2. Some pre-existing cellular structure(s) or molecular gradient(s) formed by intermediate 

(i.e. non-targeted) cells and utilized by the presynaptic and/or postsynaptic cell(s).  

3. Indirect interaction(s) between the cortex and extracortical tissue. Examples include sig-

naling from the choroid plexus, vasculature, and afferent or efferent (extracortical) projec-

tions. 

In other words, if subcellular targeting depends on any of the above principles, then disrupting 

these processes by excising the cortex, randomizing its contents, and growing it in isolation should 

also randomize interneuron targeting. Alternately, if subcellular targeting specificity is recapitu-

lated in this randomized and isolated context, we can conclude that: 

1. Expression of the presynaptic molecules necessary for such targeting is intrinsically deter-

mined by the presynaptic cell. Specifically, interneuron identity is designated s prior to 

settling and axodendritic polarization and is stable in a randomized cellular context. 

2. The molecular gradients responsible for localizing the target adhesion molecules to the 

‘appropriate’ subcellular location are intrinsically determined in the target cell. Specifi-

cally, the molecular identity of the target subcellular compartments is determined prior to 

settling. These gradients form during or after axodendritic polarization, and are stable in a 

randomized cellular context. 
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3. Direct contact between the pre- and postsynaptic adhesion molecules alone is sufficient for 

‘appropriate’ interneuron subcellular targeting specificity. 

4.2. Experiment design 

Testing this model required differentially labeling three different interneuron classes. To do 

this we harnessed a number of well-characterized genetic tools based on the Cre-lox driver-reporter 

system (see Chapter 1, Figure 4.2). Specifically, we used the following driver lines: Nkx2.1Cre to 

label all MGE-derived interneurons (Figure 4.2, A), SstCre to label the Sst+ population of dendrite-

targeting interneurons  (Figure 4.2, B), PVCre to label all PV-expressing cells in cortical slices  

(Figure 4.2, C); and the inducible Nkx2.1CreER line with late embryonic (E17.5) tamoxifen induc-

tion to label both chandelier and basket cells27  (Figure 4.2, D and E, respectively). We used 

Nkx2.1CreER for the culture system instead of the canonical PVCre line because cortical interneurons 

do not express PV until late adolescence or early adulthood in vivo, and expression does not occur 

at all in our culture conditions (data not shown). We also included the NexCre driver line, which 

labels cortical glutamatergic excitatory neurons, as a negative control for GABAergic synapses 

and a positive control for glutamatergic synapses during validation experiments, as discussed in 

greater depth in Chapter 1, Labeling the presynaptic compartments: reporter selection. 

 
27 Late tamoxifen induction of the Nkx2.1CreER mouse labels late-born cortical interneurons. These are largely ChCs 
and BCs. See the Cortical Development section of the Introduction for the molecular and developmental basis for 
differential labeling in this mouse compared to the constitutively active Nkx2.1Cre mouse. 
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Figure 4.2 | Presynaptic labeling of distinct interneuron populations using mouse driver lines 
and the Ai34 reporter. 
A-C) The labeling strategies used for the specific cortical interneuron populations. In each case, a 
schematic of the Cre driver and the labeled interneuron population is shown at left. A high reso-
lution example image showing the driver line’s targeting specificity within the cellular (L2-L6) 
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layers of the cortex is shown in middle. A low resolution image of the superficial layers of the 
cortex at right shows the distal dendrite (L1) targeting pattern of each labeled population. Note 
that PV is not expressed in our culture conditions, precluding use of the PVCre line for our tissue 
culture experiments. We opted to use the Nkx2.1CreER line for these experiments instead.  
D-E) Isolated examples of chandelier (D) and basket (E) cells labeled after late embryonic (E17.5) 
tamoxifen (TAM) induction of the inducible CreERT2 (CreER) construct in the Nkx2.1CreER mouse. 
Note that Nkx2.1Cre (A) labels all MGE-derived neurons, whereas E17.5 TAM induction of the 
Nkx2.1CreER mouse (D-E) selectively labels late-born MGE interneurons. Potentially labeled inter-
neuron populations not shown in the image are displayed in muted colors.  
F) Late tamoxifen induction of the Nkx2.1CreER mouse labels almost exclusively the PV+ popula-
tion of cortical interneurons, with minimal labeling of Sst+ cells. Since most interneurons labeled 
by the Nkx2.1CreER mouse are PV+ and Sst-, we concluded that the majority of labeled cells are 
basket or chandelier cells.  
G) Since there are no positive markers to differentiate chandelier cells and basket cells, we used 
bouton morphology as a means to differentiate regions enriched for these populations. Shown 
are examples of morphology-based bouton classification to distinguish chandelier cell cartridges 
from non-cartridge boutons in cortical slices. Cartridges are shown in green, whereas non-car-
tridge boutons are shown in magenta. Based on the data from F, we concluded that the non-
cartridge boutons are from soma-targeting basket cells.  
H) A heat map of the of cartridge and non-cartridge bouton distribution within the cortex of the 
Nkx2.1CreER mouse at different Bregma coordinates along the anterior-posterior axis. Sections 
were processed as free-floating, and we thus lost information about left-right orientation for these 
slices. We have therefore assumed bilateral symmetry.  
I) A schematic summarizing the data from D-H characterizing the populations labeled by E17.5 
TAM induction of the Nkx2.1CreER mouse. Note that the labeled populations of AIS-targeting chan-
delier cells and soma-targeting basket cells are differentially enriched across the cortex in this 
mouse. 

 

Since all MGE-derived interneurons come from Nkx2.1-expressing progenitors, we were con-

cerned about the specificity of our strategy of using the Nkx2.1CreER driver line to label BCs and  

ChCs. We therefore sought to validate this mouse to label these populations. We first wanted 

to assess the extent to which late tamoxifen induction of the Nkx2.1CreER mouse labeled 1) Sst+ 

interneurons, 2) PV+ interneurons, and 3) Sst-/PV- interneurons. Since Sst and PV localize to the 

cell body, we used the Ai14 reporter, which like Ai34 is a Cre-dependent reporter, but unlike Ai34 

leads to expression of bright tdTomato that localizes throughout the cell. We then stained a series 

of coronal sections sampled from across the cortex for Sst and PV. We trained different pixel 
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classifiers to identify Sst+, PV+ soma, and tdT+ soma and boutons (data not shown), then seg-

mented the labeled soma and assessed overlap to derive all staining combinations across all cortical 

sections. In this way we were able to classify tdT+ soma as being Sst cells (Sst+/PV-), PV cells 

(Sst-/PV+), dual-postive (Sst+/PV+) or neither (Sst-/PV-). Approximately 90% tdT-labeled neu-

rons were PV cells, and fewer than 10% of all were Sst cells (Figure 4.2, F). We witnessed minimal 

labeling of Sst+/PV+ cells generally, and none that were also tdT+. These data ruled out the con-

cern for any significant labeling of Sst interneurons. 

Since the Nkx2.1CreER mouse labels both BCs and ChCs, we wanted to know whether we could 

target specific regions of this mouse during dissection to generate cultures enriched for these cell 

types. We therefore asked whether there were cortical regions of this mouse that were differentially 

enriched for labeled BCs and ChCs. BCs and ChCs do not have markers that categorically distin-

guish these cell types. BCs and ChCs do, however, have morphologically distinct boutons: ChCs 

form cartridges, whereas BCs do not. We therefore used this feature to assess regional enrichment. 

To do this, we used the tdT pixel classifier mentioned above, and extracted only the tdT+ boutons. 

We were unable to train a pixel classifier using the default feature sets in Ilastik to differentiate 

cartridge from non-cartridge tdT+ boutons. We therefore opted for a different approach. ChC car-

tridges have distinct, elongated, vessel-like morphology compared to dispersed, individual boutons 

or perisomatic baskets. Moreover, cartridges tend to be oriented radially relative to the cortical 

surface. We therefore used native feature extraction code in FIJI to assess vesselness and orienta-

tion within the bouton probability channel. We then built a scale that took these features into ac-

count to classify pixels as either cartridge or non-cartridge (Figure 4.2, G). We then created statis-

tical maps of local average probability normalized to overall bouton probability to map local en-

richment of cartridge and non-cartridge boutons. Finally, we registered these enrichment maps to 
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the Allen Mouse Common Coordinate Framework (AllenCCF), a 3D brain reference atlas that can 

be used register brain slices from different animals to a common coordinate system. By registering 

all slices to the same common reference atlas, were able to generate a 3D reconstruction of all 

labeled cells throughout the brain from which we derived a statistical model for Nkx2.1CreER cel-

lular labeling. The results for the slice series are shown in Figure 4.2, H. Based on these data we 

confirmed a previously observed medial enrichment of ChCs as well as a decrease in cartridges 

along the rostral->caudal axis[1]. Additionally, we demonstrated for the first time a ventrolateral 

enrichment of cartridges in the piriform cortex and a dorsolateral enrichment BCs from S1 to the 

end of the neocortex. These results are summarized in Figure 4.2, I. Based on these data we con-

cluded that the ChC and BC populations labeled by late embryionic (E17.5) tamoxifen induction 

of the Nkx2.1CreER mouse are sufficiently distinct and could be targeted during dissection for en-

richment. 

Having validated the Nkx2.1CreER line for labeling BCs and ChCs, and armed with a dissection 

strategy, we next crossed our Cre driver lines with the Ai34 reporter line, which permanently labels 

cre-expressing cells with presynaptically-localized synaptophysin::tdTomato (Syp-tdT) (Figure 

4.2, A-E). We discuss our validation of this presynaptic reporter in Chapter 3, Labeling the pre-

synaptic compartments: reporter selection.  

We next turned to visualizing the subcellular target compartments of the three interneuron 

types of interest (Figure 4.3, A). As discussed in Labeling the target compartments: antibody se-

lection of Chapter 3, we eventually settled on using Ankyrin G to label AIS, a combination of 

Kv2.1 and Kv2.2 (Kv2) to label soma and proximal dendrite, and Gephyrin to label GABAergic 

PSDs in general. A schematic of the compartments and the antibodies used to visualize them is 

shown in Figure 4.3, B. 
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Figure 4.3 | Target compartment labeling and bouton targeting classification strategies. 
A) Schematic of the three interneuron classes and their subcellular targets. B) Schematic of the 
antibody staining approach to visualize the subcellular target compartments. C) Example images 
of subcellular targeting in dissociated culture from three different sample preparations. Antibody 
labeling is colored as in B, but gephyrin staining is excluded. D) Example raw 4-channel input 
image. E) Inputs for each machine learning (ML)-based pixel classification. Presynaptic inputs are 
in blue, target in magenta. F) ML-based pixel classification outputs. Presynaptic classifier bins pre-
synaptic reporter (Syp-tdT)-positive pixels into four distinct subclasses (background, bouton, neu-
rite, soma). Target classifier bins target channels into seven target subcompartments (background, 
Soma/Proximal dendrite, AIS, Gephyrin PSDs, Neurite, Kv2 at the AIS, and nuclei). G) Pixel clas-
sifications are exported as probability maps, with one channel per class. H) The raw Syp-tdT chan-
nel and presynaptic probability maps are used for bouton identification and segmentation. I) Met-
rics are extracted for each object from the fifteen channels (raw, presynaptic, target) and used for 
supervised (left) and/or unsupervised (right) object classification. 
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Given this experimental framework, we were now ready to test our model. To restate the hypoth-

esis briefly, we sought to test whether a) cortical interneuron subcellular synaptic specificity (Fig-

ure 4.3, A) requires some higher order cortical organization present when these neurons begin to 

send out their axonal projections, or b) if the cell intrinsic programming and direct cell-cell inter-

actions that remain after excision and randomization are sufficient for ‘proper’ subcellular target-

ing. Randomized subcellular targeting in the randomized context would support the former, 

whereas recapitulation would support the latter.  

Preliminary experiments using bulk cultures from SstCre mice and BC and ChC preps from 

Nkx2.1CreER mice (Figure 4.3, C) suggested a differential bias in SstCre cultures towards dendrite-

targeting boutons and Nkx2.1CreER towards soma- and AIS-targeting. The strongest indicator was 

the presence of cartridge-like structures in the Nkx2.1CreER ChC culture, which were completely 

absent from the SstCre culture.  

These promising qualitative results prompted us to quantify the data. The large number of 

labeled boutons meant that manual counting and classification would be impossible from a practi-

cal standpoint. We therefore developed a machine learning based platform to classify and quantify 

boutons by subcellular target at scale (Figure 4.3, D-I). We discuss this tool at length in Chapter 

3. Armed with this tool, we revisited our question from a quantitative and statistical perspective. 

4.3. Supervised classification of cortical interneuron boutons 

4.3.1. GABAergic interneuron subcellular targeting is recapitulated in dissociated culture 

We first wanted to establish a gold standard to which to compare subcellular targeting in cul-

ture. We established these benchmarks by evaluating subcellular targeting of these different driver 

lines in cortical slice (Figure 4.4, A-B). Nkx2.1Cre labels all of the MGE-derived interneuron clas-
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ses. We therefore used the targeting distribution of this mouse as a baseline when comparing be-

tween driver lines. We expected SstCre to display increased dendrite- and decreased soma- and 

AIS-targeting. We expected PVCre to show the opposite trend: more soma and AIS targetin, and 

less dendrite targeting. In aggregate, we expected Nkx2.1CreER to show higher proportions of AIS-

targeting, but were agnostic to the amount of soma and dendrite targeting. Moreover, we expected 

the ChC-enriched regions of this mouse display more AIS-targeting and BC-enriched regions more 

soma-targeting. As shown in Figure 4.4, B, this is precisely what we witnessed. The Nkx2.1Cre 

slices displayed comparable levels of soma and dendrite targeting; PVCre displayed predominantly 

soma targeting; SstCre displayed a strong preference for dendrite-targeting AIS targeting. 

Nkx2.1CreER displayed regional variability: overall, the targeting proportions were similar to 

Nkx2.1Cre, but with slight enrichment of AIS targeting; in BC-enriched regions this AIS targeting 

was largely absent; in ChC-enriched regions it was more prominent.  

Given this benchmark, we were finally prepared to ask whether subcellular targeting is reca-

pitulated in dissociated culture (Figure 4.4, C). We generated dissociated cultures from Nkx2.1Cre, 

SstCre, and Nkx2.1CreER mice. For the latter, we included both bulk cultures and BC and ChC-

targeted preps (Figure 4.4, D-E). As discussed in Chapter 1, PV is not expressed in dissociated 

cultures (data not shown), so we excluded the PVCre driver line from this analysis. Again, we used 

Nkx2.1Cre as a baseline, expecting similar trends as in slice. If subcellular targeting is not recapit-

ulated, we should expect no difference between the three driver lines. If it is, then the SstCre culture 

should display higher levels of dendrite-targeting and lower levels of soma- and AIS-targeting than 

Nkx2.1Cre, whereas the Nkx2.1CreER culture should have lower proportion of dendrite-targeting 

boutons and a higher level of soma- and AIS-targeting. As shown in Figure 4.4, E, this is indeed 
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what we witnessed. The Nkx2.1Cre culture displayed an intermediate phenotype between the pri-

marily dendrite-targeting SstCre culture and the enriched soma-targeting of Nkx2.1CreER bulk cul-

tures or BC prep. AIS-targeting was significantly enhanced in the Nkx2.1CreER ChC prep. These 

data strongly suggested retention of identity and recapitulation of targeting in dissociated culture. 

Indeed, direct comparison between slice and culture revealed no statistical difference between 

these conditions (Figure 4.4, F). These data suggest that GABAergic interneuron subcellular tar-

geting is primarily intrinsically determined. 

Given the current model for Martinotti cell targeting of L1[2] and the absence of distal dendritic 

tuft formation in dissociated culture[3], we were surprised not to see a difference between slice and 

culture for SstCre. We noted that in slice, L1-targeted boutons are a minority of all boutons labeled 

by SstCre (Figure 4.4, A, G). We therefore hypothesized that SstCre targeting in culture more closely 

resembled the cellular layers (L2-L6) of the cortex. Comparing SstCre culture targeting to targeting 

in different cortical layers revealed that the heavily-enriched dendrite targeting in L1 was indeed 

Figure 4.4 | Recapitulation of interneuron subcellular targeting in a dissociated culture system. 
A) Example images of bouton targeting in slice. Syp-tdT and target signals are shown for SstCre 
only; all others show maximum projection images of bouton targeting. Approximate laminar 
boundaries are denoted in white. For Nkx2.1CreER, targeting is shown for superficial and deep 
ChC-enriched regions and BC-enriched regions. B) Quantification of targeting by Cre driver line 
in tissue slices. Statistical comparisons use the Nkx2.1Cre sample as the expected targeting distri-
bution. The Nkx2.1CreER samples do not distinguish between enriched regions. C) Schematic of the 
subcellular targeting of cortical interneurons in intact tissue (left) and their hypothesized targeting 
in dissociated culture (right). Dendrite-targeting Sst cells are in blue, soma- and proximal den-
drite-targeting basket cells (BCs) are in red, and AIS-targeting chandelier cells (ChCs) are in 
green. D) Example images of bouton targeting in dissociated culture for Nkx2.1Cre, SstCre, and 
Nkx2.1CreER BC and ChC preps. Staining is above, and targeting below. E) Quantification of tar-
geting distributions in culture. Statistical comparisons use the Nkx2.1Cre sample as the expected 
targeting distribution. F) Comparison of targeting in tissue slices and dissociated culture for SstCre 
and Nkx2.1CreER. The latter compares BC-rich slice regions with BC-enriched cultures or ChC-rich 
slice regions with ChC-enriched cultures. There was no significant difference between slice and 
culture conditions. G) Comparison of SstCre targeting in dissociated culture and to different lay-
ers in slice. * P<0.5, ** P<0.1, *** P<0.01, **** P<0.001.  
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an outlier (Figure 4.4, G). Thus, the culture targeting profile of SstCre closely matched targeting of 

the cellular layers (L2-L6) of the cortex. In summary, these data strongly support a model whereby 

MGE interneuron subcellular targeting specificity and identity are recapitulated in dissociated cul-

ture. 

4.3.2. GABAergic interneuron boutons are highly organized within the cortex 

Adapting our platform to slice data allowed us for the first-time to assess cortical interneuron 

targeting in its native context on a population-wide scale. Given that the cortex is highly structured, 

we next asked how subcellular targeting of different interneuron populations differs across this 

structured environment. 

For these studies we decided to swap the Nkx2.1CreER mouse for PVCre. We did this for several 

reasons. First, since we were now working in an in vivo context, we were no longer limited by PV 

expression issues in culture, allowing us the option to use the PVCre driver to label these interneu-

ron populations. Second, from a practical standpoint, for the Nkx2.1CreER mouse, the need to man-

ually induce Cre recombination through tamoxifen induction within a narrow embryonic window 

leads to considerable litter-to-litter variability in labeled populations. PVCre, on the other hand, 

labels cells automatically based on intrinsic PV expression and so does not have these consistency 

issues. PVCre is therefore a more robust labelling method. Third, the PVCre mouse labels a larger 

population of interneurons than the Nkx2.1CreER mouse. Specifically, within the molecularly de-

fined taxonomy of cortical interneurons[4], it labels the entire Pvalb subclass of the MGE lineage 

and therefore provides a more comprehensive picture of this subclass of interneurons. Finally, as 

an extension of the last point on interneuron taxonomy, the combination of Nkx2.1Cre, SstCre, and 

PVCre offers a taxonomically nested set: Nkx2.1Cre labels the entire MGE neighborhood of cortical 
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GABAergic interneuron presynaptic boutons, which in turn comprises three subclasses. PVCre la-

bels the Pvalb subclass, whereas SstCre labels the Sst and Sst-Chodl subclasses. This driver combi-

nation, then allows us to assess subcellular targeting specificity of distinct taxonomically-defined 

MGE interneuron populations, as well as the MGE interneuron population as a whole. 

As outlined in the introduction, the cortex is conventionally divided into six distinct layers 

(L1-L6), each of which has a distinct cellular composition. We anticipated the greatest differences 

in targeting enrichment to track with acellular (L1) and cellular (L2-L6) layers of the cortex. L1 is 

largely acellular, being comprised mainly of complex network of axonal and dendritic connections. 

The vast majority of GABAergic inputs within this layer from MGE-derived interneurons come 

from L2/3 and L5 Sst Martinotti cells (MCs), which synapse onto pyramidal cell distal dendritic 

tuft. Very few PV interneurons project into this layer, and very little soma- and AIS-targeting 

occurs here. In contrast, L2-L6 are all cellular layers, with distinct glutamatergic neurons inhabit-

ing (and thereby defining) each layer. Compared to L1, L2-L6 are heavily enriched for soma- and 

AIS-targeting, though high levels of (non-proximal) dendrite targeting also occurs. Although the 

axo-axonic connections more prevalent in the cellular layers of the cortex, they comprise a small 

minority population overall compared to soma or dendrite targeting synapses.  

Given this organization, we expected different cortical interneuron populations to display dif-

ferential enrichment of bouton subtypes between L1 and L2-L6. Specifically, we had the following 

expectations: 

1. L1 should be almost exclusively dendrite-targeting boutons. This targeting should be evi-

dent in Nkx2.1Cre and SstCre, but not PVCre mice.  

2. Compared to L1, L2-L6 should be much more heavily enriched for soma- and AIS target-

ing, and less for dendrite-targeting. 
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3. Within L2-L6, soma- and AIS-targeting should be as follows:  PVCre > Nkx2.1Cre > SstCre. 

4. Within L2-L6, dendrite-targeting should be as follows: SstCre > Nkx2.1Cre > PVCre. 

5. Within L2-L6 we expected PVCre to label primarily (but not exclusively) soma-targeting 

boutons, and the SstCre labeled population to be enriched for (but not exclusively) dendrite-

targeting boutons. 

6. We expected the AIS-targeting population to comprise a minority of all interneuron bou-

tons, add to be enriched as follows:  PVCre > Nkx2.1Cre > SstCre.  

7. Finally, since Nkx2.1Cre is comprised of both Sst and PV interneurons, we expected the 

boutons labeled by Nkx2.1Cre to be a composite of the PVCre and SstCre populations. 

As shown in Figure 4.4, A, and in greater detail below, all but one of these expectations were 

met. Specifically, we were unable to satisfactorily confirm #6 due to an overall lack of AIS target-

ing across all mice (quantified in Figure 4.4, B). Although we did witness AIS-targeting in all three 

driver lines, we saw considerably less than expected, especially for PVCre. We were therefore not 

confident to make conclusions about this population within these driver lines. We suspect that this 

underrepresentation arises in part from specificity issues of our supervised classifier (see Chapter 

3.6.5 discussion of supervised classifier performance metrics) and too lenient inclusion of non-

bouton objects during segmentation, which are in turn misclassified as soma- or dendrite-targeting 

(covered in greater depth in the Discussion section below). We therefore present the AIS targeting 

data alongside the soma- and dendrite-targeting data. Given our low confidence in these results, 

however, we caution against over interpretation. 

Mapping the supervised bouton classification back onto the original images not only con-

firmed these expectations, but also revealed unexpected enrichment patterns of bouton populations 

across cortical architecture (Figure 4.5, A and B). As discussed above, we had anticipated major  
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Figure 4.5 | Spatial organization of the target de-
termines interneuron bouton subtype laminar and 
areal enrichment, but not subtype targeting speci-
ficity. 
A) Cortical interneurons display laminar enrich-
ment of subcellular targeting. Bouton labeling (left); 
target staining (middle), and supervised targeting 
(right) are shown for an Nkx2.1Cre mouse. Cortical 
layers are delineated in yellow. 
B) Cortical interneurons display regional enrich-
ment of subcellular targeting. Boutons, target stain-
ing, and targeting in the primary somatosensory 
cortex of an SstCre mouse. Barrels are outlined in 
yellow. 
C-D) Glutamatergic (target) cell layering is partially 
inverted in the Reeler mouse. Data shows cortical 
slices of control (A) and Reeler (B) cortical sections 
stained for CTIP2 staining (green), a marker of early-born glutamatergic cells that reside in deep 
layers. Background autofluorescence is shown in blue as a reference. Note the partially inverted 
and/or randomized  positioning of these cells in the Reeler mouse compared to control.  
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E) Examples of subcellular targeting probabilities for different interneuron populations across a 
cortical column. The spatial distribution of Sst interneuron targeting is disrupted in the Reeler 
mouse. WM, white matter. AC, acellular region.  
F) Distinct interneuron bouton populations display distinct targeting enrichment profiles across 
a cortical column. Data shows the average probability of encountering a bouton of the designated 
targeting class between the cortical surface (0) and start of WM (1). Note that the Nkx2.1Cre mouse, 
which labels both the PV+ and Sst+ interneuron populations, displays a targeting profile that re-
sembles a combination of the PVCre and SstCre profiles. Note also that the enrichment profile of 
SstCre is partially inverted in the Reeler mouse, with dendrite-targeting enrichment occurring at 
the cortical base rather than surface. 
G-H) Laminar enrichment profiles of bouton targeting differ by cortical region. As in F, but with 
dendrite (G) and soma (H) targeting profiles by cortical region (M1 and S1BF). Note that the two 
dendrite targeting peaks in the PVCre mouse are more superficial in S1 compared to M1. This 
mouse also displayed enriched soma-targeting in S1. 
I) Cortical spatial disorganization in Reeler mouse does not alter overall subcellular targeting 
specificity of Sst interneurons. 

 

differences between L1 and L2-L6. Much to our surprise, we also witnessed distinct bouton class 

enrichment patterns within L2-L6. These patterns were evident both across cortical layers and 

between cortical regions. Specifically, we witnessed layer-like strata throughout the cortex (Figure 

4.5, A) and barrels in the somatosensory cortex (S1) (Figure 4.5, B). Of note, the differential bou-

ton enrichment in L1 and within barrels was evident from the Syp-tdT channel alone, and did not 

require a counterstain to visualize (Figure 4.5, A and B). We therefore sought not only to charac-

terize bouton spatial organization, but also to understand its basis. 

Our culture data strongly suggests that interneuron subcellular targeting specificity is largely 

intrinsically determined. In contrast, these distinct laminar and regional enrichment profiles 

strongly suggest that these bouton classes are highly organized in a way that reflects the underlying 

cortical structure. Our culture experiments disrupted not only cortical structure, but also the corti-

cal milieu, afferents, and efferents. We therefore wanted to test the extent to which cortical laminar 

structure alone is important for interneuron subcellular targeting. We hypothesized that disrupting 
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glutamatergic cell spatial organization would also disrupt cortical interneuron bouton organization, 

but that overall subcellular targeting proportions would be minimally affected. 

As described in the introduction, the laminar organization of the cortex arises from the inside-

out birth and migration pattern of glutamatergic neurons, where newly-born glutamatergic neurons 

migrate up the radial glial fiber, past earlier born neurons, to the cortical surface. This migration 

process is based on a reelin gradient established by Cajal-Retzius cells near the cortical surface: 

removing the reelin gradient disrupts glutamatergic neuron migration, leading to disrupted laminar 

organization[3, 5-15]. Specifically, upon reelin disruption, cortical layering generally follows a re-

versed order, with specific regions displaying high levels of intermixing and ectopic positioning[13, 

16, 17]. We therefore used the well-characterized Reeler mouse, which has a recessive loss of func-

tion mutation in the reln gene, to disrupt cortical lamellar organization in vivo, while still main-

taining an intact cortical milieu, afferents, and efferents[9]. We confirmed that cortical structure is 

indeed disrupted in the Reeler mouse via Ctip2 staining, a marker of early-born cortical L5-6 glu-

tamatergic neurons. Figure 4.5, C and D show the CTIP2 staining pattern in control and Reeler 

mutant mice respectively, which shows that the glutamatergic cells of the cortex are generally 

inverted in the Reeler mouse. 

We decided to use the SstCre population to test this hypothesis. We did this for several reasons. 

First, within our three driver lines, SstCre displayed the highest level of bouton spatial organization 

across the cortex. Second, Sst Martinotti cells have been shown to leave a trailing axon in the 

nascent L1 as they transition from tangential migration near the cortical surface to radial migration 

into deeper layers[8]. This process is hypothesized to result in the characteristic L1 targeting of this 

population. Cortical laminar organization plays a central role in these processes. Third, although 

laminar positioning of most MGE interneurons is independent of reelin signaling[11, 18], L2/3 Sst-
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positive MCs do appear to utilize reelin for proper positioning[19]. We therefore reasoned that this 

population would also be the most susceptible to disruptions in cortical structure, and thus was the 

best candidate to assess the interplay between subcellular targeting specificity and cortical organ-

ization. We used SstCre;relnRl/Rl (SstCre Reeler) mice as the experimental group, and used Sst-

Cre;relnwt/* littermates, where ‘ * ‘ indicates any allele, as controls (SstCre Control or simply SstCre). 

To assess these spatial differences quantitatively, we collapsed our 3D classification images 

into 2D projection images that show class regional average (Figure 4.5, E). We then used these 

averaged maps to assess class enrichment along the superficial to deep axis. We did this by meas-

uring signal intensity along perpendiculars to both the L1 surface and L6/WM border. We normal-

ized each measure by its total length and averaged all normalized measures to yield a statistical 

profile of absolute class enrichment between the surface (0) to base (1) of the cortex. Data are 

presented as smoothed, weighted averages from at least 50 measures per cortical region from at 

least 5 mice per condition (Figure 4.5, F-H). To assess differences by layer and by region simulta-

neously, we performed this profiling in both the primary motor (M1) and primary somatosensory 

barrel field (S1BF) regions of the cortex for dendrite- and soma-targeting (Figure 4.5, G and H, 

respectively). 

As is clear from these profiles, all three driver lines showed distinct regional peaks and troughs 

in in targeting specificity across this superficial to deep axis in both M1 and S1BF, reflecting layer-

specific enrichment of these different bouton populations. Moreover, the populations labeled by 

the three driver lines generally reflected taxonomic expectations, with SstCre and PVCre displaying 

mutually exclusive enrichment profiles, that were both present in Nkx2.1Cre. Since the cortical 

layers of the Reeler mouse approximate inversion, we wondered whether there would be enrich-
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ment of dendrite targeting boutons at the base of the cortex instead of surface. Indeed, this disrup-

tion was reflected in the spatial positioning of dendrite-targeting boutons. Figure 4.6, E-H show 

the spatial organization and targeting probability in the SstCre control and Reeler mice. As is clear 

from these profiles, the strong enrichment of dendrite-targeting boutons in L1 at the cortical sur-

face of SstCre control mice absent in the Reeler mutant. In contrast, dendrite targeting is enriched 

within an acellular zone (AC) near the L6/WM border. Quantification across multiple mice re-

vealed that this dendrite targeting enrichment was a characteristic feature of Reeler mutants, con-

firming a partial reversal of the trends we saw in control (Figure 4.5, E-F). Interestingly, the den-

drite and soma targeting classes did display distinct profiles within the cellular ‘L2-6’ of the Reeler 

cortex. Apart from the increased targeting of acellular region near the base of the cortex, however, 

the Reeler mouse showed very little evidence of layering per se along the superficial to deep axis. 

Instead, we witnessed a ‘mound’ of soma targeting boutons that gradually increased from the cor-

tical surface that plateaued at 25% of cortical depth until tapering again at 80% depth. Thus, most 

laminar Sst targeting enrichment patterns are disrupted when the target cells are disorganized. 

We also saw differences between cortical regions. PVCre, for example, displayed significantly 

more soma-targeting boutons in S1BF than in M1, with the enrichment peaking at ~35% of cortical 

depth, the approximate location of L4 barrels. Surprisingly, dendrite targeting boutons also showed 

subtlety different enrichment patterns in M1 and S1BF. Specifically, this bouton class displayed 

two distinct peaks at 35-45% and 60-70% of cortical depth. Remarkably, these peaks occurred 

approximately 10% closer to the cortical surface in S1BF than in M1, further underscoring regional 

differences in interneuron bouton organization. We also witnessed enriched dendrite-targeting for 

the SstCre population within barrels (Figure 4.5, B). Any differential enrichment across layers and 
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regions witnessed in SstCre control mice was absent in the Reeler mutant, as shown by the compar-

isons of M1 and S1 (Figure 4.5, G and H). Finally, we found no statistical difference between 

control and Reeler conditions in SstCre interneuron subcellular targeting (Figure 4.5, E)28, further 

supporting our conclusions from culture experiments that interneuron subcellular targeting speci-

ficity is largely intrinsically determined. In aggregate, these data show that cortical interneuron 

boutons are highly organized within the cortex, displaying differential laminar enrichment across 

the superficial to deep axis as well as distinct region-specific enrichment. In addition, the Reeler 

data confirm that cortical interneuron bouton spatial organization arises in response to the under-

lying lamellar organization of glutamatergic target neurons. 

4.4. Unsupervised clustering of cortical interneuron boutons 

Our supervised bouton classification model utilizes hundreds of measures per object to clas-

sify boutons by canonical targeting classes. We wondered, however, whether the canonical classi-

fication system was telling the whole picture. We therefore used an unsupervised clustering ap-

proach to approach bouton classification from a discovery standpoint. As with our supervised clas-

sifier, we first developed this approach using our culture system. The unsupervised machine learn-

ing algorithm and clustering approaches, as well as parameters and batch correction methods are 

discussed in Chapter 1 and revisited in the Discussion. We here discuss how we developed a stable, 

unsupervised model of bouton subcellular classification from our complete culture dataset, and the 

biological insights we gained from it. 

 
28 Note that the distribution of SstCre subcellular targeting in slice shown here differs from that shown in Figure 4. In 
each case, the compared samples run were in parallel through the same iteration of classifiers. These experiments, 
however, were performed independently and used distinct iterations of the supervised classifiers for quantification. 
We therefore caution against comparing between these results directly. For now, we attribute the differences to noise 
(Gremlins…). 
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4.4.1. Developing a stable, unsupervised model of interneuron subcellular targeting in culture 

Our final dataset of boutons from culture was derived from 10 independent experiments 

(plates) and 30 different samples (wells). We imaged these samples over 27 imaging sessions, 

yielding a total of 1380 tiles split across 163 scenes. In aggregate, these data yielded just under 3.1 

million boutons, each of which had 431 non-redundant metrics. Given this dataset, our first task 

was to generate a stable, unsupervised model for bouton classification based on subcellular target-

ing. We used the four-layer network with 16-dimensional autoencoder embedding discussed in 

Chapter 1 to train the network and reduce the dimensionality of our dataset. We found that our 

dataset had considerable sample-to-sample variability. Figure 4.6, A shows a Uniform Manifold 

Approximation and Projection (UMAP) of select boutons from different samples overlaid with 

their sample ID. The same data is shown sample-by-sample overlaid with the supervised targeting 

classification in Figure 4.6, B. We were concerned that unsupervised clustering on these data as is 

would lead to clustering by sample, rather than by subcellular target. We therefore used Har-

mony[20] as a means of batch correction. This approach led to significantly higher intermixing, as 

is evident in Figure 4.6, C and D, which show the same samples after batch correction. 

We next wanted to assess divisions within this population by clustering. As discussed in Chapter 

1, we used the Louvain method of clustering, which detects communities of similar objects based 

on a weighted neighborhood network[21]. We selected this method for its robust detection of arbi-

trarily-structured communities, minimal parameter space, and ease of implementation. The Lou-

vain algorithm takes two parameters: resolution, which sets the ‘granularity’ of the downstream 

clustering, and ‘k’, the number of nearest neighbors included when constructing the neighborhood 

network. Using a low resolution yields more basic class types, i.e., a few large clusters, whereas 

high granularity implies more refined classification, i.e., many smaller clusters. A higher k value 
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leads to smoother bounds between classes, but also increases classification error. Figure 4.6, E 

shows the relationship between these parameters and the number of resultant clusters for k-neigh-

bor values of 5, 10, and 15, and resolution values of 0.1, 0.2, 0.4, 0.6, 1, 1.3, 1.6, and 2. Since some 

of the resultant clusters can be small and thus bias downstream analysis, we set a retention thresh-

old of 0.5%, 3-fold lower than the 1.5% of our ‘Unknown’ targeting class, ignoring any popula-

tions below this cutoff. Figure 4.6, F shows the number of retained clusters as a function of varying 

k-neighbors and resolution. As expected, using a lower resolution led to fewer classes, whereas 

using a higher k value led to greater retention, as the very distinct boundaries defining very small 

populations became blurred, and they were in turn absorbed in larger cluster. 

Before settling on any specific parameters, we wanted to know what would be driving the 

clustering in the first place. Specifically, we wanted to confirm that the clustering would be based 

on systematic differences in bouton targeting, not sample batches. We did this by assessing the 

basis for population divisions as we generated finer and finer clusters. We therefore assessed 

whether increasingly granular clustering would lead to increased batch identity or increased tar-

geting identity. To do this, we utilized the LISI score, which measures the effective number of 

objects of known class represented in the local neighborhood of each object in the identified clus-

ter. Simply put, the LISI score is a statistical representation of the number of objects that need to 

be sampled in the neighborhood before two are drawn from the same class. As such, the value 

ranges from 1 to N, the number of known classes, with 1 indicating perfect purity and N indicating 

perfect intermixing. We used this metric to test cluster intermixing of two parameters, namely 

sample identity (which would allow us to assess the extent to which batch effect was still present 

after correction), and supervised targeting class (which would assess the extent to which the clus-

ters were segregating along known synaptic targeting classification). 
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Figure 4.6 | Generation of a model for interneuron bouton subcellular targeting in dissociated 
culture by unsupervised classification. 
A-B) UMAP showing autoencoder embedding of interneuron boutons without batch correction. 
In A, boutons are shown in aggregate, colored by sample. In B, the same UMAP is shown, but 
split to show positions of individual samples on the UMAP embedding. Boutons are colored by 
supervised class. 
C-D) As in A-B, but after batch correction using Harmony.  
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E-F) Heatmaps showing the relationship between the k-neighbors and resolution hyperparame-
ters used in Louvain clustering. The total number of clusters (E) identified ithin the batch-cor-
rected dataset using different combinations of these parameters.Note the increased number of 
identified clusters with higher resolution. F) Clusters with population sizes below 0.5% of the 
total were subsequently removed. F shows the total number of retained clusters. Note that in-
creasing the number of k neighbors used to define the neighborhood also leads to increased re-
tention, as distinct boundaries between populations are blurred, leading to fewer sharply-defined 
small populations that would otherwise be removed 
G-H) LISI scores were used to assess intermixing of independent classification for the same bou-
tons. Sample intermixing (G) was used to assess batch effect, whereas supervised targeting class 
was  used to asses the impact of synaptic targeting (H) on the cluster delineations at each param-
eter combination tested for the Louvain clustering. LISI scores range from 1 (absolute purity) to 
N (absolute intermixing), where N is the number of possible categories. Data show combined 
scores for all retained clusters identified using the given parameter combination, and are pre-
sented as box and whiskers plots, with whiskers indicating the 10th-90th quantiles. 
I-J) Heatmaps showing (I) the Calinski-Harabasz (CH) and (J) the Davies-Bouldin (DB) scores for 
all parameter combinations. A higher CH score indicates that the identified clusters are dense 
and well-separated, and so we wanted to maximize this metric. The DB score is used to signify 
‘similarity’ between clusters, so we wanted to minimize this score. Importantly, we wanted to 
select scores that provide yielded a peak (CH) or valley (DB) relative surrounding scores when 
plotted: continuously ascending or descending lines provide no reason to choose one score over 
another, being instead indicative of issues in parameter selection or the structure of the data itself. 
The combination of k=10 neighbors and resolution of 0.4 was chosen based on this analysis, and 
resulted in nine clusters that crosswed the 0.5% cutoff. 
Note that for the CH score, values for k=15 neighbors with resolution at or below 0.6 are presented 
as out of range. The CH scores for these conditions were extremely high compared to other con-
ditions, thereby masking changes among the lower scores. Since these parameter combinations 
displayed a descending trend, and so were uninformative from a parameter selection standpoint, 
we have masked them to provide a clearer picture of the trends within more informative but 
lower-scoring conditions. 
K-N) Distribution of boutons from different samples (K, L) and the targeting distribution (M-N) 
for the retained clusters, presented as a proportion of total (K, M) or absolute values (L, N). Note 
the high level of sample intermixing (K and L) compared to targeting enrichment (M and N), 
indicating that the clustering partitions are primarily driven by synaptic targeting rather than 
sample-to-sample differences. 
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We first wanted to rule out that clustering would be driven by batch effect. A high amount of 

sample intermixing would result in a high LISI score, we therefore wanted this value to be as high 

as possible, and to show little to no change with increasingly granular clustering. Figure 4.6, G 

shows the LISI scores for all retained clusters across the different conditions. The data are pre-

sented as box and whiskers plots, with whiskers indicating the 10th-90th quantiles. In general, we 

witnessed little to no change in sample-specific enrichment across these conditions within the re-

tained clusters. In contrast, when all clusters were included, we saw decreased LISI scores (i.e., 

greater batch effect) for conditions with k=5 neighbors, especially with decreasing resolution val-

ues (data not shown). Although this result is at first counterintuitive (decreased resolution should 

lead to larger populations and so more intermixing), the most highly-affected conditions were also 

those with the highest proportion of clusters excluded due to our size cutoff (Figure 4.6, E and F). 

This result indicates that sample-based effects are likely still present, but are only a concern in 

very small populations. Since this effect was noticeably absent after excluding small clusters, we 

concluded that sample-specific signatures were of little concern within the range of conditions 

tested. This analysis alleviated concerns that batch effect was driving clustering. 

Next we wanted to ensure that cluster segregation was occurring along the lines of synaptic 

specificity. We therefore used the supervised targeting data as a benchmark, expecting that ever 

more granular clustering would lead to further enrichment for a single subcellular target. Since we 

wanted to see increasing levels of population purity, we wanted the LISI scores to decrease with 

increasing resolution. As shown in Figure 4.6, H, this is exactly what we saw. Although the effect 

size is relatively small within this resolution range, there is a clear decrease in overall LISI score 

with increasing resolutions at all k values, indicating that clustering tended to occur in accordance 

with subcellular targeting. 
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Next, we wanted to approached parameter selection from an objective, statistical standpoint. 

We assumed that (1) the identified bouton clusters should comprise similar objects, and (2) that 

the segregation from unsupervised clustering should also segregate along the lines of supervised 

targeting, with each identified cluster enriched for a single subcellular target. We therefore selected 

resolution and k-neighbors values based on two separate analyses. For (1) we wanted to optimize 

two metrics that compare inter-cluster and intra-cluster dispersion, namely the Calinski-Harabasz 

(CH) and the Davies-Bouldin (DB) scores. The CH score describes how similar an object is to its 

own cluster (intra-cluster dispersion, or cohesion) compared to other clusters (inter-cluster disper-

sion , or separation)[22]. A higher CH score indicates that the identified clusters are dense and well-

separated, and so we wanted to maximize this metric. The DB score compares the distance between 

clusters and the size of the clusters themselves[23]. The DB score is used to signify ‘similarity’ 

between clusters, so we wanted to minimize this score. Importantly, we wanted to select scores 

that yielded a peak (CH) or valley (DB) relative surrounding scores when plotted: continuously 

ascending or descending lines provide no reason to choose one score over another, being instead 

indicative of issues in parameter selection or the structure of the data itself. Figures 6, I and J show 

the for the CH and DB scores, respectively. As can be clearly seen, we witnessed gradual peaks in 

the CH score using both k=5 and k=10 nearest neighbors, with apexes at k=5/res=0.8 (CH=32700) 

and k=10/res=0.4 (CH=35600). Note that the values for k=15 neighbors with resolution at or below 

0.6 are presented as out of range. The CH scores for these conditions were extremely high com-

pared to other conditions, having values between 160,000 (res=0.1) and 60,000 (res=0.6) that 

masked more subtle changes among lower scores. Since these conditions displayed a descending 

trend, they were uninformative from a parameter selection standpoint. We therefore excluded these 

conditions from candidate selection and have hidden their values to provide a clearer picture of the 
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trends within more informative conditions. The DB score, in contrast, displayed very different 

trends. Although conditions using k=5 neighbors generally displaying very low scores, which is 

what we wanted, the trendline was generally increasing and therefore uninformative. Conditions 

using k=10 neighbors in contrast displayed a sharp drop that reached a nadir at res=0.4, then rap-

idly increased again by 0.8, and then was followed by another, more gradual valley between 0.8 

and 2. Of note, the nadir in the DB score at k=10,res=0.4 corresponded with the peak in CH score 

using the same condition, indicating that these conditions minimized intra-cluster and maximized 

inter-cluster differences. In other words, these conditions provided us with the most compact and 

separated clusters among all conditions tested. 

These conditions resulted in nine clusters that passed the size cutoff (we excluded 9 others, 

most of which had fewer than 10 members). The counts for the included and excluded clusters is 

presented in Table 7. Figure 4.6, K and L, respectively show the sample distribution within the 

nine retained clusters as a percent of total population or in absolute values. These data show strik-

ingly similar proportions of all samples across all clusters, further alleviating concerns that the 

identified clusters would be heavily affected by batch effect. In contrast, we saw considerable 

enrichment of specific targeting classes within these clusters, as shown by the targeting distribution 

as a percent of cluster population and in absolute values (Figure 4.6, L and N, respectively). Of 

note, we witnessed target-specific enrichment patterns within distinct clusters, further confirming 

that our chosen parameters were distinguishing by subcellular target. 

4.4.2. Unsupervised classification of cortical interneuron boutons identifies novel subclasses  

Our prior analysis left us reasonably assured that our unsupervised clustering was detecting 

real differences in subcellular synaptic targeting specificity. We therefore wanted to investigate 

the differences between the identified clusters. Since we found the targeting-associated LISI scores 
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to be low for clusters 0-7 (Figure 4.7, A), we were confident in designating each as a distinct 

subclass of the supervised targeting classes. To do this, we assessed the distribution of supervised 

targeting classes within these clusters (Fig. 6, M and N), and assigned each as dendrite or soma 

targeting based on the greatest enrichment of supervised targeting class. This analysis revealed 

that the greatest partitioning occurred within the dendrite-targeting class, which was split into six 

distinct clusters, namely 0-3, 6, and 7. In contrast, the soma-targeting class was split into two 

subclasses, namely clusters 4 and 5. To show this partitioning, we recolored these clusters to match 

our standard color palette for dendrite and soma targeting used in the supervised clustering (Figure 

4.7, B). This class assignment was further supported by the location of these clusters on UMAP 

space relative to the supervised targeting classes. Figure 4.7, C shows the supervised classes over-

laid onto the UMAP as a topological map, showing distinct regions occupied by each of these 

targeting classes. As is clear when viewing each of the clusters in isolation (Figure 4.7, D), these 

subclasses generally fall within the UMAP space occupied by the assigned targeting class, with 

different subclasses occupying distinct regions of these territories. As noted, only cluster 8 dis-

played considerable intermixing of the classes designated by our supervised model. We have col-

ored this cluster green since it is the only one that displayed significant enrichment for the AIS-

targeting class (Figure 4.6, M-N) and generally occupied the same territory as this class on UMAP 

space (Figure 4.7, C, D). We also note that (1) our supervised classifier displayed a comparatively 

low true positive rate for AIS-targeting (0.697) (see Chapter 1 discussion of supervised classifier 

performance metrics), opening the possibility that the unsupervised model could outperform our 

supervised model for some AIS-targeting boutons, and (2) even utilizing different clustering pa-

rameters (i.e., tuning values for k neighbors and resolution), we were unable to find a combination 

that led to more than 20% enrichment for the AIS-targeting class, instead splitting it into different  
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Figure 4.7 | Unsupervised classification of cortical interneuron boutons in culture identifies 
canonical interneuron bouton classes and reveals novel bouton subclasses. 
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A) LISI scores associated with batch effect (left) and predicted targeting (right) for the retained 
clusters identified by the selected unsupervised model. Values closer to 1 indicate less population 
mixing. For Batch scores, a value of 1 would indicate boutons from that cluster are derived exclu-
sively from a single  sample (i.e., presence of batch effect). For targeting, 1 would indicate all 
boutons in the cluster target a single subcellular region defined by the supervised classifier (i.e., 
dendrite, soma, AIS, or unknown). B) UMAP of unspervised bouton classification in culture. The 
retained clusters are designated numerical identifiers 0-8 based on cluster size. Cluster colors 
were assigned as discussed in the text. Clusters excluded due to small size were combined and 
are shown here as NA. C) Topological representation of the supervised bouton classification ren-
dered onto UMAP. Note the two peaks within the soma-targeting class (red). D) Unsupervised 
clusters shown in isolation. Cluster colors and identifiers are presented as in B. E-L) Selected fea-
ture expression in the identified bouton clusters. Features have been ordered by type. On first 
row: mean raw signal intensity of (E) Syp-tdT, (F) gephyrin, and (G) Ankyrin G. At right: Mor-
phological features, namely (H) object size in voxels (volume). On second row: from pixel classi-
fication, mean probablity scores of (I) bouton, (J) gephyrin psd, (K) non-AIS ankyrin G (i.e., neu-
rite), and (L) soma. Displayed are eight of the 431 features used for clustering. M-O) Mapping of 
the unsupervised clasificationonto isolated cells in culture. In each case, images are as follows: 
Syp-tdT overlaid with targets (left), supervised classifier prediction (middle) and unsupervised 
cluster identity (right). Images show boutons from an isolated (O) SstCre interneuron, or 
Nkx2.1CreER interneurons from (P) ChC-rich or (Q) BC-rich culture preparations. P) Specific unsu-
pervised bouton subtypes are enriched within distinct cell populations in culture. Data are com-
piled from isolated interneurons as in M-O. * P<0.5, ** P<0.1, *** P<0.01, **** P<0.001. 
 
 

clusters. Given these caveats, we were comfortable designating cluster 8 as AIS-targeting within 

the clusters identified by this model. 

We were surprised by the amount of subdivision within the dendrite and soma targeting clas-

ses and were curious about what differentiated these populations. We therefore looked at the dif-

ferential expression of features used to train the autoencoder (Figure 4.7, E-L). We found differ-

ences within these clusters not only in raw signal intensity from the antibody staining (Figure 4.7, 

E-G), but also morphological features such as object size (Figure 4.7, H), and probability-based 

features from our pixel classifiers (Figure 4.7, I-L). Indeed, features associated with the pixel clas-

sifiers tended to show the most variability between clusters, indicating the added power of this 
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approach. Within the dendrite-targeting clusters, some of the major differentially-expressed fea-

tures were bouton, gephyrin PSD, and Ankyrin G neurite probability (Figure 4.7, I-K, respec-

tively). Within the identified soma-targeting subclasses, we saw differences in bouton size and 

bouton, gephyrin PSD, and soma probability (Figure 4.7, H-J, L, respectively) among others. We 

found that cluster 8, the tentatively designated AIS-targeting cluster, was the cluster most strongly 

associated with Ankyrin G raw signal (Figure 4.7, G), as well as AIS and AIS PSD probability 

(not shown), further validating our assignment of cluster 8 as the AIS targeting class. We next 

mapped the unsupervised clustering back onto the original images. As shown in  Figure 4.7, M-O, 

for isolated cells, our class assignment for these clusters largely accords with the supervised tar-

geting data and targeting assignment by visual inspection. As with supervised classification, the 

different clusters did not strictly map onto distinct isolated cells, though we did see distinct enrich-

ment profiles for different cells, suggesting biological validity to the clusters. Finally, we com-

pared cluster distribution across isolated SstCs, BCs, and ChCs, witnessing significantly different 

distribution profiles for each (Figures 7, P). Specifically, we witnessed enriched soma targeting (4 

& 5) in BCs, AIS targeting (8) in ChCs, and dendrite targeting (6) in SstCs. This further verified 

that the unsupervised classification is detecting differences in subcellular targeting and validated 

our subclass assignments. 

4.4.3. Dendrite-targeting bouton subclasses partition based on proximity to soma 

Since the soma and AIS targeting bouton classes are defined by targets that are spatially de-

fined within spatially restricted subcompartments, we expected the classes identified by the Lou-

vain clustering method to also be physically clustered. In other words, since boutons of the same 

class should target the same subcellular compartment, they should also be close to one another in 
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physical space. We therefore sought to use physical proximity as an independent means of vali-

dating the results from our unsupervised clustering. To do this, we performed a Louvain analysis 

based on the x, y, z coordinates for each Autoencoder identified object in SstCre and Nkx2-1Cre bulk 

cultures to assess whether classes are physically clustered. We performed the Louvain analysis 

using k=10 nearest neighbors, then included an additional step to control for differences in relative 

abundance for each cluster, as discussed below. Since this analysis may be unfamiliar to some, 

and there are some nuances involved in how to interpret the data, we first present the results from 

our analysis, then use it as a heuristic to describe the analysis itself and how to read them, and 

finally go into depth on the results themselves. 

The results from this analysis are shown in the correlation matrix in Figure 4.8, A. Here, the 

correlation plot is organized by class ID, which is assigned automatically based on cluster size (0 

= largest), with the color designated as previously based on identified subcellular targeting. The 

numerical value in each cell is the spatial correlation score, which, intuitively, can be thought of 

as a measure of compactness/closeness of a cluster. This ‘compactness’ score is computed by con-

sidering the identity distribution of k-nearest neighbors in the physical space surrounding each 

bouton assigned to that class, and then comparing this distribution to what would be expected by 

random chance. This process is iterated for each bouton, arriving at a statistical score for the com-

pactness (or spatial clustering) of the class as a whole. For row 𝑖𝑖, column 𝑗𝑗 on the correlation 

matrix, a larger number indicates more of class 𝑖𝑖’s k-nearest neighbors are coming from class 𝑗𝑗; a 

smaller number indicates fewer of class 𝑖𝑖’s k-neighbors are coming from class 𝑗𝑗. 

There are four important things to note here. First, the matrix displays a directional relation-

ship and therefore must be read in a specific manner, namely row to column. Starting with row 𝑖𝑖 

and reading the value in column 𝑗𝑗 asks how many of class 𝑖𝑖’s k-nearest neighbors are coming from 
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class 𝑗𝑗. Doing the inverse, i.e., starting from column 𝑗𝑗 and reading the value in row 𝑖𝑖, does not 

provide any information about the inverse relationship. Rather, the inverse relationship is depicted 

in the cell at row 𝑗𝑗, column 𝑖𝑖. 

Second, as a logical extension of the last point, the diagonals along the matrix show intra-

group or homotypic, relationships, i.e., whether the population is spatially clustered or self-

avoidant, whereas the off-diagonals show inter-group, or heterotypic, relationships. These off-di-

agonally can be thought of as a ‘correlation coefficient’ that measures the strength of association 

between observations between two different bouton classes. 

Third, the compactness score is a log2 transform of the ratio between the observed and ex-

pected (i.e., null) interaction. Therefore, a value of 0 indicates that the true identities of the k-

nearest neighbors are no different from any k-random neighbors. Both positive and negative devi-

ations from 0 are meaningful, indicating non-random spatial relationships within and/or between 

populations: values less than 0 indicate the objects are spatially anti-correlated, with these popu-

lations inhabiting distinct spatial regions; values greater than 0 indicate non-random spatial clus-

tering. The greater the magnitude of deviation from 0, the less random the observation. Moreover, 

since the compactness/closeness score is a logarithmic transform, the scale should not be inter-

preted linearly: a value of ±1, for instance, is 2-fold deviation from expected, whereas ±2 is a 4-

fold deviation. The value of -3.64, the greatest magnitude in our dataset, is 12.5-fold more anti-

clustered than expected by random chance. 

Fourth, we are calculating the ratio of observed to expected as a means of controlling for 

differences in class sizes. Inherently, it would be more likely for any given bouton’s k-nearest-

neighbors to contain boutons from more populous classes than from smaller ones. Therefore, we 

are using the probability of a random encounter to control for this effect. This difference in class 
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sizes explains why the matrix is not symmetrical. An important mathematical consequence of this 

normalization method is that it can overrepresent clustering in smaller classes. Simply put, with 

progressively smaller classes, the probability that they would have a neighbor belonging to another 

small class becomes exceedingly small. As we are normalizing by an ever-smaller denominator, 

the effect of such an encounter on the compactness score becomes extremely high. We have fil-

tered out exceedingly small populations to avoid such overrepresentation, presenting the counts 

for the included classes in Table 7. Even so, the mathematical nuances of this score are important 

to keep in mind while interpreting the results. 

As described above, we wanted to use physical clustering as an independent method to vali-

date our statistical clustering method. Specifically, we anticipated that boutons of the same type 

will be spatially clustered. Such homotypic spatial clustering is identifiable based on intra-group 

compactness score along the diagonal of the correlation matrix (Figure 4.8, A). Specifically, we 

expected the diagonals to be greater than 0. This is exactly what we saw (Figure 4.8, A). As indi-

cated by the values along the diagonal, all identified bouton clusters displayed within-group cor-

relation scores greater than 0, indicating they are non-randomly distributed and spatially clustered 

within the culture dish, as expected. Specifically, the AIS-targeting (cluster 8) displayed the high-

est intra-group score of +2.75 (6.74 more clustered than random) as might be expected given the 

highly restricted area that defines the AIS. Although this was the smallest class that we included, 

at 6.6% of the total population it is unlikely that the score is artefactually inflated to this value due 

to population size. The next highest intra-group correlations were from the two soma-targeting 

classes (4 and 5), with class 5 having a score of +2.28 (4.07-fold) displaying slightly higher clus-

tering levels than class 4 with +1.77 (3.41-fold). These data confirmed our suspicions that soma- 
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Figure 4.8 | Unsupervised dendrite-targeting bouton 
subtypes in culture follow a proximal-to-distal spa-
tial organization relative to the target soma. 
A) Log2 Compactness score matrix based on spatial 
nearest neighbor analysis. ‘0’ indicates spatial relation-
ship expected by random chance. Positive values indi-
cate higher spatial clustering, whereas negative values 
indicate spatial avoidance. B) As in A, but reordered to 

maximize sub- and super-diagonal values, with soma-targeting subpopulations (types 4 and 5) 
set as an anchor. The relationships suggest the identified dendrite-targeting subpopulations are 
ordered sequentially at increasing distances from the soma. C) Left: Original order (as in A) and 
Right: compactness-optimized order (as in B) of bouton subtypes. The position in the sequence is 
coded as a heatmap. D) Example ROI overlaid with unsupervised bouton subpopulations with 
original color palette. E) ROI from D, but with boutons colored by sequence position as in C. (i) 
shows soma-targeting boutons only, with no distinction between types 4 and 5. (ii-vii) show se-
quential addition of dendritic subtypes based on the sequence in B. The boutons are recolored as 
a heatmap to emphasize sequentiality. Note the increasingly proximal-to-distal spatial organiza-
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tion of the dendrite-targeting bouton subtypes. F) UMAP of unsupervised clustering with sub-
types outlined by subcellular target compartment suggested by B and E. G) Schematic showing 
the target cell subcompartments revealed through the unsupervised analysis. 

 

targeting boutons would be spatially clustered. Unexpectedly, we also witnessed high scores for 

two dendrite-targeting classes, namely classes 6 with +1.61 (3.07-fold) and class 2 with +1.27 

(2.41-fold), indicating that these dendrite-targeting bouton classes highly spatially clustered. All 

other dendrite-targeting bouton classes displayed non-random intra-group clustering, with the low-

est scores being for class 1 with 0.83 (1.78-fold) and class 3 with 0.72 (1.65-fold). Although we 

expected the dendrite-targeting classes to be less clustered, the extent of physical clustering ob-

served was particularly surprising given our labeling method for this compartment: unlike the AIS 

or soma, which are large, extended subcellular compartments, gephyrin PSDs are themselves 

highly distributed, punctate structures, so evidence that these are themselves clustered indicates a 

level of self-organization within the culture dish that was quite unexpected. 

Encouraged by these findings, we became intrigued by the non-random signatures from the 

inter-class (heterotypic) relationships on the off-diagonals. We witnessed both correlated [e.g., 

2→6, +0.77 (1.71-fold); 6→2, +0.79 (1.73-fold)] anticorrelated [e.g., 5→2, -3.06 (8.33-fold); 

8→6, -2.40 (5.28-fold)] classes. Indeed, the strongest relationship in the entire dataset was mutual 

avoidance between class 5 soma-targeting and class 6 dendrite-targeting boutons. The 5→6 score 

of -3.64, for instance, indicates a 12.5-fold enrichment over random chance. Given that these rela-

tionships are founded on subcellular targeting of distinct compartments, we next asked whether 

there is a natural, optimized order for these bouton classes. To do this, we set the AIS-targeting 

class as an anchor, and iteratively identified the next class in the sequence by maximizing the sum 
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of the sub- and super-diagonals for every remaining permutation of inter-class relationship29. Us-

ing this iterative process, we arrived at 8, 5, 4, 0, 1, 7, 3, 2, 6 (Figure 4.8, C) as the most repre-

sentative permutation for the sequential, spatial ordering of the identified bouton subclasses. Of 

note, this consensus sequence generally followed the pattern of AIS→Soma→Dendrite. 

Having arrived at this sequence, we re-ordered our correlation matrix hoping this re-organi-

zation would reveal additional intrinsic spatial relationships between the identified bouton classes 

(Figure 4.8 B). This revealed three distinct, spatially correlated nodes within the dendrite-targeting 

class consisting of 0 & 1, 7 & 3, and 2 & 6, which displayed progressively stronger anti-correlation 

with the AIS- and soma- targeting classes. This relationship suggests that this sequence reflects an 

increasing distance from soma. We verified this visually by recoloring our original bouton classes 

(Figure 4.8, C and D) as a heat map based on this sequence (Figure 4.8, C), and mapping the re-

colored heatmap back on to SstCre; Ai34 bulk culture (Figure 4.8, E). This mapping shows that the 

identified dendrite-targeting classes are arranged at increasing distances from target cell soma. In 

addition, we noted that the class most enriched in individually labeled dendrite-targeting SstCre 

cells was type 6, the most distal of the dendrite-targeting subclasses (Figure 4.7, P). This spatial 

analysis led us to conclude that unsupervised classification identified distinct dendritic inhibitory 

boutons arranged in a proximal-to-distal spatial orientation in relation to the target cell soma (Fig-

ure 4.8, F and G). This spatial organization is partially reflected in the UMAP, with the most distal 

node (2 & 6) occupying a region at the opposite pole from the soma (5 & 4), and the remaining 

dendrite-targeting classes occupying more medial positions (Figure 4.8, F). A schematic for the 

 
29 The sub- and super-diagonals are the cells below and above two adjacent diagonals. Visually, the sub- and super-
diagonals are encompassed by drawing a square around two adjacent diagonals. For example, the sub-diagonal of cell 
0,0 is cell 1,0 (C=+0.46); the super-diagonal of cell 1,1 is cell 0,1 (C=+0.38). Maximizing the sum of these values also 
maximizes inter-group spatial clustering. That is, it ensures that adjacent diagonals are also maximally spatially cor-
related. Maximizing these values across the correlation matrix yields a matrix with an optimized sequence of spatially 
correlated bouton classes. 
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proposed positioning of the dendrite-targeting boutons is shown in Figure 4.8, G. We conclude 

that the spatial relationships between the identified subclasses represents a principle of spatial self-

organization of interneuron boutons that arises within a culture dish. 

4.4.4. Unsupervised soma-targeting boutons subtypes are associated with distinct target cell 
profiles 

We next wanted to investigate the partitioning of the soma-targeting subtypes (classes 4 & 5). 

PV basket cells are a morphologically and molecularly heterogenous population[2, 24]. We therefore 

asked whether this partitioning reflected distinct presynaptic basket cell types by comparing the 

distribution of classes 4 and 5 boutons from individual basket cells in culture (Figure 4.9, A). 

Although we witnessed basket cells that preferred one type or the other, no individual basket cell 

displayed exclusively one bouton type, suggesting the partitioning between the soma-targeting 

bouton classes is not a marker of presynaptic cell identity. We therefore looked to the postsynaptic 

cell. Our spatial analysis indicated that both soma-targeting classes displayed strong homotypic 

compactness scores, with weaker, but still positive, heterotypic relationships. We postulated two 

models to explain these data (Figure 4.9, B): 1) a soma polarization model, where distinct subtypes 

are associated with distinct subcellular compartments, e.g., one subtype closer to AIS and the other 

closer to dendrite, and 2) a somatic heterogeneity model, where distinct soma-targeting bouton 

subtypes are enriched on distinct soma, with some overlap. If the data reflected the soma polariza-

tion model, we expected to see differences between the two subtypes in the mean  
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Figure 4.9 | Unsupervised soma-targeting bouton subtypes are associated with distinct target 
cell profiles: evidence of preferential cellular targeting in culture. 
A) Distribution of class 4 and 5 soma targeting boutons across 20 individual basket cells from 
Nkx2.1CreER cultures showing class preference but not exclusivity in some cells. B) schematics for 
somatic polarization and somatic heterogeneity models to that could explain the inter- and intra-
type compactness scores for the two soma-targeting bouton subtypes. See text for details. C) Mean 
probability of AIS within a 10 voxel radial neighborhood of the bouton. Contrary to the the po-
larization model, there was no statistical difference between types 4 and 5. Other bouton subtypes 
are shown for reference. D) Upper: example images showing target cell soma with majority sub-
type 4, a mix of 4 and 5, or majority 5. Kv2 staining is shown to demarcate the target cell soma. 
Lower: Distribution of soma-targeting subtypes on target soma. Data shows Log2 ratio of sybtype 
5 to subtype 4 boutons per soma, with data pooloed from SstCre and Nkx2.1Cre bulk cultures. Soma 
were categorized as shown for downstream analysis. Soma at ±∞ have exclusively type 4 or 5 
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boutons. Dotted lines at ±1.2 indicate the thresholds for majority designation, an OR of 2.3, or 
appoximately 70% one type over the other. E-G) Soma categorized as in D were assessed for total 
synapses/soma (E), mean Kv2 intensity/soma (F) and soma size (G). H) Schematic of the target 
regions and soma types identified through this analysis. I-J) as in E and F, respectively, but with 
comparison between SstCre and Nkx2.1Cre driver lines. Note the consistent difference in the ma-
jority type 4 population between SstCre and Nkx2.1Cre. The Nkx2.1Cre line labels both SstCs and 
BCs, suggesting the difference is due to the BC population not labeled by SstCre. K) Schematic of 
the inferred BC population forming a high number of type 4 boutons onto target cells with high 
Kv2 levels. * P<0.5, ** P<0.1, *** P<0.01, **** P<0.001. 
 
intensity of AIS in the neighborhood. As shown (Figure 4.9, C), there was no statistical difference 

between soma-targeting subtypes for this metric. We also found no difference in mean intensity of 

nuclei in the neighborhood (data not shown), suggesting the distinction is not based on soma vs 

proximal dendrite targeting. We therefore rejected the polarization model. Next we tested the so-

matic heterogeneity model. Given this model, we expected to see different levels of enrichment 

for types 4 and 5 on different target cell soma. We therefore manually segmented ~1000 soma 

based on their Kv2 staining and assessed subtype enrichment on a soma-by-soma basis by calcu-

lating the subtype enrichment score via a log2 transform of the 5/4 ratio (Figure 4.9, D). To ensure 

that our analysis was sufficiently powered for each individual soma, we set a minimum inclusion 

threshold of 5 boutons/soma. The mean number of boutons per soma was 39.5. Graphing the en-

richment scores of all soma revealed five peaks corresponding to five different soma categories: 

exclusively 4 (-∞), majority 4 (-6 – -1.2), mix 4/5  (-1.2 – +1.2), majority 5  (+1.2 – +6), and 

exclusively 5 (+∞). Based on these data, and the observation that individual basket cells display 

both types 4 and 5 soma-targeting boutons (Figure 4.9, A), we posited that the distinction between 

somatic subtypes 4 and 5 reflects, in part, a property of the postsynaptic cell. We therefore assessed 

the mean Kv2 intensity, soma size, and number of boutons/soma across these populations, and 

found significant differences across all of these parameters (Figures 9, E-G), indicating that these 

soma populations are indeed distinct and lending further support the somatic heterogeneity model 
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(Figure 4.9, H). Finally, since Nx2.1Cre and SstCre label distinct interneuron populations, we asked 

whether the soma targeted by these driver lines were also distinct. We found that the majority 4 

soma class displayed increased number of synapses per soma (Figure 4.9, I) and increased mean 

Kv2 intensity (Figure 4.9, J) in Nx2.1Cre culture compared to SstCre. Since SstCre labels only den-

drite-targeting somatostatin cells, whereas Nkx2.1Cre labels both somatostatin cells and soma-tar-

geting basket cells, we concluded that these differences must be accounted for by basket cells 

displaying preferential cellular targeting in dissociated culture (Figure 4.9, K). 

4.4.5. Basket and somatostatin cells display distinct axonal growth strategies in dissociated 
culture 

We noticed from our individually-labeled cultures that BCs and SstCs have distinct morphol-

ogies, with BCs forming highly convoluted, tight networks of connections, and SstCs forming 

straight neurites with more dispersed boutons over larger areas (Figure 4.10, A). Given these mor-

phological differences, we hypothesized that these cell types utilize different axonal growth strat-

egies to achieve distinct forms of inhibitory coverage, and that these differences would be reflected 

by the bouton subtypes along an axonal branch. Specifically, we reasoned that we could use the 

bouton sequence from our spatial compactness analysis to assess how an axon utilizes the cellular 

environment during growth and synapse formation: along an axon, smaller changes in sequence 

from bouton to bouton would reflect a stronger adherence to the underlying cellular topography, 

whereas large changes would reflect more abrupt jumps from one subcompartment to another. We 

formalized this analysis as the sequentiality score, which is displayed with a schematic for calcu-

lation in Figure 4.10, B. Given the spatial sequence uncovered from our compactness analysis, we 

can directly transform a bouton of class 𝛽𝛽 into its corresponding position in the sequence, 𝜎𝜎. This 
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transformation in turn allows us to calculate the sequentiality score for two adjacent boutons on an 

axonal branch as follows: 

𝑆𝑆 = 1 − |𝜎𝜎𝑖𝑖−𝜎𝜎𝑖𝑖+1|
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚−𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

 

where 𝜎𝜎𝑖𝑖 is the position in the sequence corresponding to a bouton of class 𝛽𝛽 at index 𝑖𝑖 on the 

axon, and 𝜎𝜎𝑖𝑖+1 is that of the next bouton. The absolute value of the difference, |∆𝜎𝜎|, then, provides 

a metric for the magnitude of jump along the sequence. 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 are, respectively, the max-

imum and minimum sequence values within the full set of boutons analyzed. We subtract from 1 

so that smaller jumps in the sequence yield higher sequentiality scores. The average sequentiality 

score per branch, 𝑆𝑆𝑏̅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ, is then calculated as: 

𝑆𝑆𝑏̅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ =  1 −  
∑ |𝜎𝜎𝑖𝑖 − 𝜎𝜎𝑖𝑖+1| 𝑛𝑛
𝑖𝑖=0 

 (𝑛𝑛 − 1)(𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚)
 

Where 𝑛𝑛 is the total number of boutons on the branch. 𝑆𝑆 and 𝑆𝑆𝑏̅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ are unitless metrics that 

can be compared across different bouton sets and range from 1 (no change in identity across the 

entire branch) to 0 (the greatest possible jumps from bouton to bouton). A value of 0.5 would 

correspond to random order given an equal distribution of all bouton types. We next wanted to 

establish biologically-relevant standards for comparing our observed 𝑆𝑆𝑏̅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ values. Since 𝑆𝑆𝑏̅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 

is a function of identities and order of boutons on an axonal branch, we calculated the expected 

value for each branch, 𝑆𝑆𝑒̅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, by randomizing the bouton order across 10,000 iterations. 

𝑆𝑆𝑒̅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 serves as an internal control for the actual value of each branch, 𝑆𝑆𝑎̅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, by defining 

random sequentiality: values greater than 𝑆𝑆𝑒̅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 indicate stronger adherence to the underlying 

cellular topography than expected by random chance, whereas smaller values indicate more sub-

compartment jumps. 
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Figure 4.10 | Bouton subtype sequentiality reveals distinct targeting strategies for Basket and 
Sst cells in culture. 
A) Representative morphologies and bouton sequence values for an individual BC (left) and SstC 
(right) in dissociated culture. B) Sequentiality measurement schematic. C-E) Frequency distribu-
tion of sequentiality scores for all boutons from isolated BCs (C, E) and SstCs (D, E) in culture. 
Actual distributions are compared to expected for that cell type (C, D), or between cell types (E). 
F-I) average sequentiality scores per axonal branch for all bouton types (F, G) or for dendritic 
types only (H, I). Data are shown cumulatively (F, H) or on a cell-by-cell basis (G, I) Cumulative 
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data is also compared to the expected cumulative distribution. J) Schematic for axonal growth 
and synaptic targeting of basket cells (top) and Sst cells (bottom) in culture based on sequentiality 
data. Basket cells form many synapses along the target compartment of a single cell. Sst cells form 
synapses across many target cells. * P<0.5, ** P<0.1, *** P<0.01, **** P<0.001.  

 

We first compared the actual distribution of sequentiality scores, |∆𝝈𝝈|, to the expected distri-

bution from our randomized simulations for individual BCs (n=10) from Nkx2.1CreER BC preps 

and SstCs (n=12) from SstCre cells diluted in unlabeled cortical preps. Both cell types displayed 

distributions with significantly smaller jumps than expected (Figure 4.10, C and D, respectively), 

indicating the targeting sequence is non-random. Moreover, the distribution for BCs was shifted 

towards smaller jumps than SstCs (Figure 4.10, E). In line with these data, we found that the actual 

sequentiality per branch (𝑆𝑆𝑎̅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) for both BCs and SstCs was significantly higher than expected 

(𝑆𝑆𝑒̅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), with BCs further displaying higher 𝑆𝑆𝑎̅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 values than SstCs (Figure 4.10, F). This 

trend was witnessed across multiple individual cells, with relatively consistent values between 

branches (Figure 4.10, G). We wanted to ensure that this difference between and SstCs was not 

driven solely by soma-targeting boutons, and therefore ran the same analyses on branches com-

prised only of dendritic subtypes. We witnessed the same non-random sequentiality for BCs and 

SstCs, with BCs again displaying higher values than SstCs (Figure 4.10, H and I). Based on this 

analysis, we conclude that both BCs and SstCs display non-random axonal growth patterns in 

culture, and further, that BCs adhere more closely to underlying cellular topography than SstCs. 

Axon guidance can proceed through two distinct molecular mechanisms: 1) via surface-bound 

(haptotactic) cues, such as subcellular gradients of adhesion molecules, or 2) via soluble (chemo-

tactic) cues, such as secreted molecules that form gradients by diffusing throughout the environ-

ment. These sequentiality data indicate that Basket cells axons tend to follow subcellular gradients 

more closely than Somatostatin cells, suggesting the former are more reliant on haptotactic cues, 
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and the latter chemotactic cues, for axon guidance. We summarize these results schematically in 

Figure 4.10, J. 

4.4.6. Unsupervised classification in slice identifies bouton classes with distinct laminar dis-
tributions 

Given the findings from our unsupervised classification in culture, and the laminar enrichment 

differences we witnessed in cortical columns using our supervised classifier, we next wondered 

whether an unsupervised approach might differentially identify bouton subclasses based on spatial 

distribution in cortical slices. 

We ran into major roadblocks in data processing given the number of objects assessed. To put 

this into concrete terms, our complete culture dataset contained just under 3.1 million boutons from 

1435 tiles, our complete slice dataset from 40 slices was comprised of just over 800 tiles and 

contained 42.1 million boutons. To put this into perspective, with the tabular input bouton data 

consisting of approximately 1 GB per tile, to run all of these boutons through our unsupervised 

classifier, which currently processes the data in memory, would require over 800 GB of RAM, 

resources we simply do not have. At the time of writing, we are in the process of adapting our 

unsupervised pipeline to store data to disk, thereby decreasing RAM requirements at the expense 

of longer calculation times. As such, the following data was not generated using a stable model, 

and we stress that these results are preliminary. Nevertheless, the experiments presented here are 

not only a natural extension of the other experiments within this chapter, but the results from this 

preliminary study also accord with findings discussed earlier in this chapter. We therefore include 

them with the disclaimer that they are preliminary and may not hold given a more comprehensive 

and stable model. 
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Our preliminary test set included two cortical columns from two different cortical slices of a 

single mouse. The four two scenes were comprised of 6 tiles total, and yielded 413,500 boutons 

(average 69,000 boutons per tile). Our first question was whether the unsupervised autoencoder-

based learning method would be able to differentiate between the canonical targeting classes from 

our supervised model. As previously, we tested this by assessing the distribution of probability 

scores and predicted targeting class on a UMAP rendering of the embedded autoencoder data. As 

expected, targeting probability scores (Figure 4.11, A-C) and classification (Figure 4.11, D) were 

by in large relegated to distinct regions of the UMAP space, indicating our autoencoder model was 

able to identify distinct differences between these populations even in this new sample format. We 

then performed unsupervised clustering, empirically selecting parameters that distinguished the 

three canonical bouton classes. This approach led to the identification of 16 distinct subclasses. 

Soma-targeting boutons were almost exclusively contained within a single population (cluster 4), 

with the remainder distributed within clusters 1, 2, and 8. The AIS-targeting population was found 

exclusively in a single cluster (cluster 2), but as with our unsupervised culture experiments, the 

identified population also contained a high proportion non-AIS targeting (mainly dendrite, some 

soma), indicating the unsupervised classifier may be encountering similar issues for this targeting 

class in both contexts. The remaining clusters subdivided the dendrite-targeting class. 

Given how compositionally distinct L1 is from other cortical layers, we wondered whether 

the unsupervised clustering would identify dendrite-targeting boutons in this layer as distinct from 

other dendrite-targeting boutons in the cortex. We therefore mapped the bouton’s depth (i.e., its 

distance in pixels from the cortical surface) onto the UMAP. Remarkably, this analysis cleanly 

divided the UMAP into three distinct populations (Figure 4.11, F), which we confirmed to be L1, 

L2-6, and subcortical white matter (WM) by mapping the bouton cluster identity back onto the  
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Figure 4.11 | Unsupervised classification of cortical interneuron boutons in slice identifies 
bouton subclasses with distinct laminar distributions. 
Data show preliminary results from an application of our unsupervised learning algorithm to a 
cortical column from an Sst-Cre mouse. 
A-F) Autoencoder embedding of slice bouton data rendered onto UMAP space, overlaid with the 
bouton’s supervised classifier soma-targeting probability score (A), AIS-targeting probability 
score (B), dendrite-targeting probability score (C), supervised class (D), unsupervised class (E), 
and cortical depth (i.e., distance from cortical surface) in pixels (F). Approximate boundaries be-
tween populations in L1, L2-L6, and subcortical white matter (WM) are outlined in yellow, and 
the boundary between identified, “superficial” (8 & 12) and “deep” L1 classes is indicated by 
purple and aqua dashed line.  
G-P) Images of an Sst-Cre cortical column run through the unsupervised classifier. The Syp-tdT 
(G) and target (H) input signals a representative cortical column. For the targets, Kv2 is in red, 
Ankyrin G in green, and gephyrin in blue. Approximate boundaries between L1, L2-L6 and WM 
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are shown on the target image for reference. Mapping of supervised (I), and unsupervised (J) 
class for all labeled boutons in the column. Unsupervised classes shown in K-P were selected 
based on asymmetric laminar distributions, specifically those enriched in L1 (K), L2-6 (L), WM 
(M), superficial L1 (N), deep L1 (O), and superficial or deep L2-L6 (P). 
Q. A schematic summarizing the bouton identified classes with distinct laminar distributions. 

 

original image (Figure 4.11, G-M). This mapping not only confirmed that specific clusters were 

located in L1 (3, 6, 8, 11, 12, and 14), L2-6 (1, 2, 4, 5, 7, 10, 13, 15, 16), or WM (9) (Figure 

4.11, K, L, and M, respectively), but also revealed the L1 population itself was divided into ‘su-

perficial’ (8, 12) and ‘deep’ (3, 6, 11, 14) subpopulations (Figure 4.11, N and O, respectively), 

and that within L2-6, cluster 7 tended to be in superficial, and cluster 0 in deep layers (Figure 

4.11, P). These data are summarized schematically in Figure 4.11, Q. We added a line to the 

UMAP in Figure 4.11, F at the border between the ‘superficial’ and ‘Deep’ L1 populations to 

further emphasize the spatial relationships indirectly encoded by the autoencoder and detected by 

the clustering algorithm. These results are particularly remarkable since we specifically excluded 

any spatial positioning information as inputs for the autoencoder, indicating that the unsuper-

vised model was able to differentiate these populations indirectly from morphological and inten-

sity metrics alone. Moreover, we saw depth-based gradations in both dimensions of the UMAP, 

suggesting that a high degree of the differences identified between these bouton subclasses are 

associated with their positioning along the superficial to deep axis. 

4.5. Conclusions 

In this chapter we present our biological findings on cortical interneuron synapses using an 

image-based multidimensional analysis of their synapses. Specifically, we show how we used the 

tool presented in Chapter 1 to test outstanding questions in cortical interneuron synaptic biology. 

To summarize, we first showed that cortical interneuron subcellular targeting can be recapitulated 
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in dissociated culture. Next, we showed that synaptic boutons are highly organized within the cor-

tex, and that this spatial organization is based on the positioning of their target cells. We then 

utilized our unsupervised classifier to reveal previously unrecognized heterogeneity within the ca-

nonical bouton targeting classes. Next, we found that these newly identified classes are spatially 

organized within the culture dish. Then, we utilized this spatial organization to discover that SstCs 

and BCs enact distinct forms of inhibitory coverage. Finally, we applied the unsupervised cluster-

ing technique to a cortical column, which in turn revealed a remarkable level of bouton spatial 

organization within the cortex. We provide a more in-depth discussion of the methodology and 

biological findings in the Discussion section below. In addition, we discuss how these results fit 

within a larger body of work that challenges long-standing paradigms about neuronal connectivity. 

We end by presenting a conceptual framework that reframes the narrative of synaptic connectivity. 

Our hope is that this framework will serve as a basis for predictive models of synaptic connectivity.  
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Chapter 5: Discussion 

5.1. Summary of methodological approach 

5.1.1. A multidimensional imaging platform to assess synaptic connectivity 

We present here an image-based tool to score synapse target specificity of interneurons at 

scale. The workflow is effective in both tissue sections and dissociated culture. Given the relative 

ease of training and its adaptability, the model could be extended to other tissue formats, such as 

organoids or different brain regions. In addition, the classification schema could be modified for 

different target staining to assess other forms of synaptic targeting, such as glutamatergic neuron 

targeting, or even cellular or regional specificity. The workflow utilizes two approaches to presyn-

aptic bouton classification: supervised for hypothesis testing, and unsupervised for discovery. We 

show examples of both classification approaches in this study to address unanswered questions in 

interneuron biology. We discuss these findings in greater detail below. Here we will discuss the 

workflow itself, compare it to existing approaches, and outline places for improvement. 

The workflow consists of five general steps: 1) input standardization, 2) image correction, 3) 

pixel classification, 4) object segmentation and measurement extraction, and 5) object classifica-

tion. Different metadata are extracted and in a centralized repository, thereby facilitating 

bookkeeping, image processing, and analysis. These stages are largely modular, making it easy to 

add, remove, or modify intermediate processing steps if required. As a principle, we wanted to 

minimize user interaction at any given stage of processing. Ideally, the user would have to do no 

more than designate the input directory and output directory, confirm a standard set of parameters, 

and press ‘Run’, with the code handling all subsequent steps for any number of input images. We 

also sought to reduce human error by minimizing file handling: a) any stage that requires more 

than one input type for the same image aligns these inputs automatically from the available files, 
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and b) the outputs for each stage serve as inputs for the next. We have structured our file- and 

object-naming system that enables users and software to track various forms of the same sample 

through all stages the pipeline, facilitating integration of these data into a database. The platform 

does not require any special techniques or equipment: our data is based on immunofluorescence 

microscopy images acquired using a laser-scanning confocal microscope, both standards of the 

field for decades. Moreover, the pipeline is easily generalizable: it can be adapted for use in almost 

any biological question that utilizes fluorescence microscopy simply by changing the stains, im-

aging parameters, classifiers, and segmentation steps.  

The key innovation of our approach is the harnessing of multidimensional imaging data for 

parallel supervised and unsupervised classification approaches to characterize synaptic connectiv-

ity. Our inclusion of a pixel classification step generated biologically-relevant quantitative anno-

tations to fluorescence microscopy images. In addition, it acts as a force multiplier that enabled us 

to extract over 400 metrics per object from standard four-channel images. Coupled with the large-

scale, population-wide dataset, this depth and breadth of data provided sufficient power to identify 

distinct synaptic populations. Our supervised classifier has high precision, accuracy, and sensitiv-

ity, indicating overall high levels of concordance with manual human scoring. Unsupervised clas-

sification of the same objects revealed previously unrecognized diversity within these canonical 

classes. Moreover, parallel classification approaches served as a means of cross-validation. Since 

the underlying metrics used for classification are location-independent, we were able to utilize 

spatial patterning as an orthogonal means of validation and discovery. This approach allowed us 

to identify an unprecedented level of self-organization in both dissociated culture and intact tissue 

slices. 
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5.1.2. Comparison to other studies 

Our approach to characterizing presynaptic boutons is similar to other synapse imaging plat-

forms developed independently by Seth Grant’s lab at the University of Edinburgh[1-4] and Mark 

Bathe’s lab at MIT[5-7]. The study from Zhu and colleagues[1] is the best representation for com-

paring our platform to that from the Grant lab. Here, Zhu et al., used two fluorescently-labeled 

postsynaptic scaffolding molecule, PSD95 and SAP102, expressed from their native genetic loci 

to characterize excitatory synapses throughout the brain. The group extracted multiple features and 

performed an unsupervised multidimensional analysis to identify synaptic heterogeneity across the 

brain. There are many strengths to the approach used in this and subsequent studies from the same 

group[2, 4]. First, the all-genetic labeling approach side-steps a lot of batch-to-batch variability in-

herent to immunostaining. Second, the far higher resolution used by these authors yields a more 

detailed picture of synaptic structures. Third, the scale of imaging (whole brain) provides a much 

more comprehensive picture of the synaptome. Finally, mapping the synapses onto a common 

coordinate framework both contextualizes and generalizes the results. Despite being limited to 

only two channels and purely post-synaptic labeling, the authors found a remarkable level of syn-

aptic diversity throughout the brain, with specific enrichment within different brain structures and 

cortical/hippocampal layers. Our approach coupled immunolabeling of subcellular target compart-

ments with a conditional transgenic labeling approach to visualize the presynaptic boutons of spe-

cific cortical inhibitory interneuron populations. Our approach represents multiple steps forward. 

First, the use of targeted population labeling not only provided us with an overall picture of the 

MGE interneurons synaptome (via Nkx2.1Cre), it also allowed us to deconvolve this picture into 

distinct subpopulations (Sst Cre and PV Cre). This approach, then, provides an inroad to the investi-
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gation of cell-type specific synaptomes. Second, visualizing postsynaptic proteins and target com-

partments in tandem with the presynaptic label provides a more comprehensive picture of the syn-

apse. Not only did this provide important information on synaptic targeting and specificity, it also 

allowed us to make inferences about transsynaptic cross-talk. In other words, visualizing both the 

presynaptic and postsynaptic components in tandem provides information about neuronal commu-

nication. Finally, our spatial analysis of the unsupervised classification represents an orthogonal 

approach to validate the statistically-defined synapse classes. Due to technical limitations men-

tioned in Chapter 4, we were unable to perform the same unsupervised classification at scale on 

cortical slices. It will be interesting to see whether the spatial organization hinted at from our pre-

liminary analysis holds up across multiple samples and labeling approaches. 

The Bathe lab has also developed a similar imaging approach to profile and classify synap-

ses[7]. Specifically, the approach utilizes multiplexed fluorescence microscopy of over a dozen 

antibody-linked nucleic acid probes to image synaptic proteins in a single sample. Guo et al cou-

pled this labeling approach with super-resolution microscopy to visualize the organization of these 

probes at the nanometer scale. In a testament to the extensibility of this approach, subsequent pub-

lications have utilized this platform to compare the molecular compositions of excitatory and in-

hibitory synapses[5] and to assess the effects of disease-associated genetic interventions[6]. Alt-

hough there is no published use of the platform on intact tissue slices, it has been utilized in com-

plex 3D cultures of stem cell derived organoids[8]. There are multiple similarities between this 

approach and ours, though it is also worthwhile to point to some subtle differences.  

First, we will discuss sample preparation and acquisition parameters. Since the Bathe lab has 

published multiple studies using their platform, we will primarily focus on that from Danielson 
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and colleagues[5]. Like our platform, the Bathe lab’s approach visualizes both pre- and post-syn-

aptic labels, providing a comprehensive picture of the synapse. Despite this similarity, the focus 

was quite different. The studies from the Bathe lab assessed synapse diversity primarily from a 

molecular and morphological standpoint. We on the other hand were primarily interested in syn-

aptic diversity as it pertains to targeting specificity. Thus, the Bathe lab labeled general synaptic 

proteins, whereas our labels were chosen to identify target compartments. This speaks to the mal-

leability and power of these approaches to investigate diverse biological questions. Despite this 

similarity, a major difference is the type and number of biological targets visualized. Compared to 

the Grant lab, which uses a 2-channel all-genetic approach, and our study, which uses a 4-channel 

hybrid genetic and immunostaining approach, the Bathe lab developed an (ultimately) all-immuno 

approach that is capable of imaging upwards of 12 biological targets within the same sample. The 

expansion of biological targets is a major innovation, which we discuss in greater detail alongside 

other multiplexed imaging approaches below. We will now discuss the all-immuno approach. 

There are both positives and negatives to this approach. A) it is a generalized approach to labeling 

synapses, where all synapses expressing the targeted biomolecule are labeled. This is a top-down 

approach that relies on post-hoc deconvolution and marker expression to identify different synaptic 

populations. We took a bottom-up approach of labeling specific neuronal populations and asking 

how the synapses differed between those populations. This bottom-up approach embraces cellular 

diversity as a basis for synaptic diversity. The former is more equipped for discovery, whereas the 

latter is better equipped for hypothesis testing. Both approaches are valid. B) antibodies enable a 

huge level of control and versatility at the expense of batch-to-batch systematic error. Antibody 

panels consist of modular units that can be swapped based on the question at hand. As demon-

strated by subtle changes across studies[5-8], this approach is far more malleable than a fully genetic 
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approach. This malleability comes at a cost, however. Antibodies are notoriously finicky. Sample-

to-sample and batch-to-batch variability with antibody staining is a major issue. Each antibody-

antigen interaction acts independently, multiplexed imaging experiments rarely have established 

internal controls, and the number of targets (in the dozens) is often insufficiently powered for 

robust statistics-only based correction of systematic differences. To be fair, this is also a limitation 

of our own study. We discuss this problem in greater detail below. Finally, another major differ-

ence in imaging parameters is resolution. Compared to our study, Danielson et al. used far higher 

resolution. The higher resolution provides a higher level of confidence in characterization, since 

the point spread function at low resolution yields greater signal overlap. The use of a far higher 

resolution limits the amount of sample imaged, however. This is a trade-off that ultimately depends 

upon the biological question at hand. Danielson et al. were primarily interested in the molecular 

composition of synapses, which required high resolution imaging. We were interested in synaptic 

connectivity, and chose our imaging parameters based on the size of the target compartments. This 

compromise is evident in the size of the dataset: Danielson et al. had a dataset of 180,000 synapses, 

whereas ours was over 1.6 million. That is, we sacrificed resolution for the sake of scale. Advances 

in microscopes and imaging speeds at high resolution will enable high-resolution imaging at scale. 

Second is image processing and analysis. Like our incorporation of the presynaptic pixel clas-

sifier, this platform utilizes an AI/ML approach for synapse detection based on a probability map 

(DoGNet)[9]. DoGNet is architecturally more sophisticated than our pixel classification approach: 

it utilizes a convolutional neural network to calculate synapse probability, whereas we are using a 

random forest approach. On the other hand, our approach presupposes (and accounts for) a higher 

degree of biological sophistication: whereas DoGNet differentiates between only two classes (syn-

apse vs non-synapse), we differentiate the presynaptic channel into four mutually exclusive classes 
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(background, bouton, labeled soma, neurite). As discussed above, synaptic proteins are often found 

in non-synaptic contexts, and ‘off-target’ staining is common in biological imaging. Multi-classing 

can help to segregate these signals, thereby integrating biologically-relevant context that would 

otherwise be lost from a more simplistic approach to feature extraction. We incorporate this con-

cept into our feature measurements by extracting features not only from the raw staining image, 

but also from the presynaptic and target probability maps. The differences in these approaches is 

evident in the number of features used for classification. Despite imaging 12 biological targets, 

Danielson et al., extracted only 108 features. Our four-channel imaging, on the other hand, yielded 

over 400 non-overlapping features. This added depth provides additional power for discovery. This 

group also utilized a multidimensional, unsupervised statistic approach to classify synapses[5-7]. 

Although similar at face value, there are some subtle differences between our approaches. A) Un-

like these studies, we also incorporated a supervised branch of object classification. The supervised 

and unsupervised approaches work synergistically to cross-validate each other, thereby providing 

more confidence in the ultimate models. B) We also incorporated spatial analysis as an orthogonal 

mode of validation. Such an analysis makes sense given our focus on subcellular targeting, but 

may not translate as a validation method for all questions. That said, independent validation of 

unsupervised classification is critical. 

5.1.3. Current and future imaging approaches to synaptic diversity 

Highly multiplexed and multidimensional imaging platforms provide a new avenue to dis-

cover diversity and characterize biological objects. One clear conclusion from the studies men-

tioned above is that synapses are not only remarkably diverse, but also that there is an inherent 

organization to this diversity. This makes biological sense given the hierarchical organization of 

neuronal diversity[10-15] and the statistical approaches used for cluster identification[16]. At the end 
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of the day the observed diversity is a function of the extracted features. This presents a potential 

issue in synapse categorization. Since the classification is ultimately based on the feature set, and 

different experiments will utilize different features (e.g. they visualize different biomolecules), the 

classification from one experiment will not translate to those from another. Much like the growing 

pains of single cell RNA-sequencing (scRNAseq)[17], however, technical biases within current 

pipelines, subtle differences between feature sets, and variability in analytical methods may un-

dermine reproducibility and transference of previously identified classes to new datasets. Across 

different scRNAseq datasets, large sets of variably expressed genes can be used to cut through 

systematic experimental error and identify replicable cell types with high accuracy[17]. Such statis-

tical approaches are not possible when the number of visualized targets is low. This picture is 

further complicated when biomolecules are independently visualized using targeted molecular 

probes.  

Ultimately, a comprehensive analysis of synaptic diversity, and how it is structured, may re-

quire a standardized feature set from panel-less, genome-wide imaging data. Toward this end, 

considerable advances have been made recently in multiplexed imaging and high dimensional his-

tology techniques to overcome the spectral limits of conventional fluorescence microscopy and 

increase the number of biological molecules imaged in a single sample. These approaches include 

including spectral unmixing[18, 19], cyclic staining[20-23], and DNA barcoding[24, 25] (reviewed in [26-

29]). As described above, such multiplexed approaches have already been used to profile synaptic 

diversity in tissue culture[5, 7, 8, 30] and neuronal connectivity in intact brain[31]. Orthogonal labeling 

of the same structure will offer redundancy, ultimately yielding a more robust platform. Combin-

ing these multiplexed imaging techniques with our approach to pixel classification and feature 

extraction would enable significantly higher dimensional analysis and finer parsing of synaptic 
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subclasses and phenotypes. It may also offer an avenue for batch correction and classification 

transference. 

This is not to say that limited classification systems, like those discussed above, are invalid. 

The validity of any given classification system must be based on its utility. Hypothesis-blind ap-

proaches are, at the end of the day, tools for hypothesis generation. These hypotheses, in turn, 

require orthogonal approaches to validate the discoveries. In other words, a classification system 

is validated by its ability to provide biological insights beyond simply diversity. This brings up a 

good question: how are we to interpret the features used for classification? Unlike scRNAseq da-

tasets, where features are targetable genetic reads, the features in multidimensional imaging da-

tasets are morphological and photometric readouts of biomolecules extended in space. Whereas 

differences in gene expression profiles often offer a clear pathway forward, the biological signifi-

cance of differentially expressed features from multidimensional imaging is less clear. Abstract 

mathematical entities, like variance or kurtosis of a biomolecule within a segmented region of 

space, are not readily targetable for intervention. The similarity between imaging and single cell 

RNAseq datasets breaks down here. Multidimensional imaging features offer phenotypic de-

scriptors, the biological relevance of which may not always be immediately apparent. Instead of 

peering deeper into the class-defining features, the spatially-extended nature of imaging data offers 

something that scRNAseq cannot: the ability to assess spatial relationships between identified ob-

ject classes. As discussed in greater depth below, spatial analysis of our unsupervised bouton clas-

ses ultimately revealed fundamental differences in how basket and Sst cells distribute inhibitory 

coverage onto target cells. We therefore offer an example for how data from these platforms can 

be utilized. We hope this pipeline serves as a useful guide for designing and implementing biolog-

ical image processing and analysis in neuroscience and other fields. 
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Synapses are highly polar objects. We approached object identification by segmenting the 

presynaptic bouton only, then measuring signal intensity or probability using scalar (i.e., non-di-

rectional) metrics within the object bounds or its immediate surroundings. Previous studies have 

assessed similar questions of synaptic diversity from a post-synaptic perspective[1-3]. A true assess-

ment of the synaptome would combine both approaches, with segmentation of the full (pre- and 

post-) synapse. Such an analysis yield a more comprehensive survey of these subcellular structures 

by enabling the extraction of more information: 1) the same scalar object metrics extracted for the 

presynaptic bouton here could be extracted also from a) the postsynaptic component, b) the syn-

aptic cleft (pre-post overlap), and c) the synapse as a whole (combined object), and 2) identification 

of pre- and post-synaptic components would enable vector-based (i.e., directional) measurements, 

which would more robustly reflect synaptic targeting and provide more nuanced metrics of synapse 

structure and biology. Finally, an all image-based method that abandons user-designated object-

associated features altogether may offer a more objective and sensitive approach to synapse clas-

sification. Given the highly polar structure of synapses, such an approach will require a prior step 

of object alignment, which is crucial given the largely random orientation of synapses in tissue. 

Such an approach would offer the added advantage of unsupervised feature selection, which could 

in turn be helpful for discovering new synaptic phenotypes.  

5.1.4. A hurdle to progress: batch-to-batch variation 

We used two stages of batch correction in this study, 1) naïve image intensity correction, and 

2) Harmony[32] for batch correction of data for the unsupervised classifier. Our current method for 

batch correction of images stems from correction methods proposed for multiplexed tissue array 

imaging[33], whereby channel signal intensities for an entire acquisition series are matched via the 

75th non-zero quantile to a reference intensity. We are using Harmony, a state-of-the-art method 
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for batch correction of single cell RNA sequencing (scRNAseq) data to correct for batch-to-batch 

variation in object (bouton) metrics for the unsupervised object classification. Both batch correc-

tion methods have several drawbacks, however. First, a major issue arises from the fundamental 

assumption operating between both batch correction methods, namely that in aggregate, signal 

intensities and/or metrics should be consistent from sample to sample. Assuming consistent inten-

sities and adjusting intensities accordingly may obscure true biological variance between samples 

by over-correcting. This is particularly important when comparing interventions or conditions that 

are expected to alter the specific signals under investigation. A good example here is the need to 

use distinct benchmarks for culture and slice data during the intensity correction stage. Second, 

overall signal intensity is a very blunt metric that does not take into account the wide variety of 

qualitative changes that can occur between staining sessions. For instance, the dynamic range be-

tween two distinct structures stained by the same antibody (e.g. intensity of Kv2 at soma vs prox-

imal dendrite or AIS) can vary considerably from one experiment to another. Our approach does 

not take into account such changes. 

There are several methods to counteract these issues: 1) inclusion of a standardized control 

for batch-to-batch comparison, 2) incorporation of sample knowledge, such as image metadata or 

acquisition parameters[34], as an orthogonal set of metrics to guide standardization,  3) the use of 

machine learning methods, such as the use of generative adversarial networks[35, 36], specifically 

for batch correction and/or model generalization. The method of quantile-matching used in multi-

plexed tissue array imaging should include an internal control, such as a standard set of cells or 

tissue included on each slide, to be used as a standard of comparison between staining sessions. 

Unfortunately, including a standard only gets one so far: it can control for differences in staining 

and acquisition parameters from one experiment to the next, but cannot control for differences in 
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tissue preparation (such as perfusion, post-fixation, pre-staining storage, etc.,) that may impact the 

quality of staining. 

Experimental error is classically broken into two types: random error, which can be dealt with 

by statistical analysis and sufficiently powering experiments, and systematic error, which is asso-

ciated with systematic differences in sample preparation and measurement. The latter are com-

monly referred to as batch effects, and can be identified and corrected post-hoc. Systematic error 

is a major issue in bioimaging, where minor changes in sample preparation or acquisition can lead 

to systematic differences between samples. The issue here is that the biologically relevant differ-

ences between sample conditions are not separable a priori from systematic error, and sometimes 

it is not readily apparent which category the systematic differences fall into. Over-correcting for 

systematic can mask biologically relevant changes.  

The typical approach to identify and correct for systematic error is replication. Biological data 

is often organized hierarchically. For example, biologists distinguish between technical replicates, 

which are replicated measures of the same sample, and biological replicates, which are replications 

of different samples. Large scale imaging experiments are more complex. At the lowest level, they 

consist of individual pixels within a single image (a tile). Multiple individual tiles comprise a 

sample region. Multiple sample regions can be used to image the same tissue specimen. Multiple 

tissue specimens will comprise a single biological sample. In the case of mouse experiments, mul-

tiple mice will comprise a litter. Multiple litters a genotype. And so on, and so on. This hierarchy 

of replication is important for experimental design. And it comes with a number of assumptions: 

we expect higher degrees of variance between two different levels than within a single level. But 

incorporating such a hierarchy into our statistical approaches is not straightforward. Often we as-

sume, as we did in this study, that measures should generally be consistent across experiments. As 
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stated above, this can lend itself to over-correction and potentially mask biologically relevant dif-

ferences. We suggest that future approaches to batch correction in bioimaging should be developed 

with this hierarchy in mind. We did not take such an approach in this study. But we have created 

a pipeline where these data are automatically collected and systematically stored. This is the first 

step. Such standardized data structures can be incorporated into models to parse systematic error 

from biologically meaningful differences. Future work will be needed to tackle this problem. 

5.2. Summary of biological findings 

5.2.1. Insights into interneuron development from dissociated culture experiments 

In this study, we labeled three distinct cortical interneuron populations that target different 

subcellular regions of the postsynaptic cell. We then utilized the image processing and analysis 

pipeline described above to assess subcellular targeting of these populations in intact tissue slices 

and dissociated culture. This experimental design allowed us to compare directly interneuron tar-

geting fidelity within these two contexts, and to test any potential deviations from expected in 

dissociated culture. We found that, overall, all three interneuron populations generally recapitu-

lated their in vivo targeting profiles: somatostatin cells (SstCs) preferentially targeted dendrite, 

basket cells (BCs) targeted soma and proximal dendrite, and chandelier (ChCs) cells targeted the 

axon initial segment (AIS). That is, we found no statistical difference in targeting proportions be-

tween intact slice and dissociated culture.  

At face value, this finding suggests that subcellular targeting is recapitulated in dissociated 

culture. We cautiously accept this conclusion, but suggest a more nuanced interpretation. We dis-

cuss the nuanced interpretation in greater depth below. To explain the caution, we’ll use ChCs as 

an example. Electron microscopy studies of individual ChCs in slice have shown that these cells 

display near 100% AIS targeting[37, 38]. Our data appears to conflict with this observation: none of 
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the ChC regions analyzed displayed over 50% AIS targeting. There are three possibilities for this 

disagreement: 1) the ChCs actually form off-target synapses 2) there is contamination of non-ChC 

synapses, and 3) our measure is noisy, i.e., false positive classification of ‘non-bouton’ objects 

within the ‘bouton’ class. We hold the EM data as a gold standard, and therefore conclude that the 

deviation in slice must be due to the latter two possibilities. First, contamination. Unlike the EM 

studies, which investigate targeting of individual ChCs, we are assessing targeting across entire 

ChC-enriched cortical regions. Based on this approach, we do not anticipate a ‘pure’ population 

of ChC synapses. Our ‘ChC’ culture samples are similarly prone to contamination. These cells 

derive from targeted perinatal dissections of the same ChC-enriched regions. (We did this to ensure 

parity in comparison between conditions.) Thus, contamination explains one component of the 

difference. Regarding noise: we built our classifiers to be inclusive of interneuron boutons with a 

broad range of sizes and intensities. The initial formulation to discern ‘bouton’ signal from non-

bouton signal utilized an orthogonal method of verification: counterstaining with the GABAergic 

presynaptic marker VGAT. Due to microscope channel limitations, we could not include this coun-

terstain in our subsequent targeting studies. Thus, in the absence of this counterstain, we may be 

including objects that by eye resemble boutons but are not actually presynapses. Classifying such 

objects as ‘boutons’ would subsequently result in an increase in ‘off-target’ categorization. Such 

noise is prone to batch-to-batch variability, as discussed above, and therefore is difficult to control. 

It would also be present in both slice and culture samples. We believe these false positives likely 

explain another component of this deviation. Additional experiments with an orthogonal means of 

verifying synapses and the ability to trace each synapse back to its source cell would bolster our 

confidence in this conclusion. Assuming that contamination and noise are statistically consistent 
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between conditions and stabilized through replication, we conclude that the amount of off-target 

synapses quantified using the imaging workflow is similar between slice and culture.  

Our observation that subcellular targeting is recapitulated in a dissociated culture context 

sheds light on two important aspects of interneuron development. Specifically, it eliminates the 

following theoretic possibilities: 

1. cortical interneuron identity (subcellular targeting profile) relies upon the local cortical en-

vironment after settling (cellular positioning, etc.)  

2. subcellular targeting relies upon a precisely structured cortical environment to guide axons 

to their targets and/or refine promiscuous connectivity to its ultimate specificity. 

Instead, these data suggest these interneuron classes have little reliance on their terminal en-

vironment in determining subcellular targeting preferences. We discuss the implications of this 

finding on our understanding of interneuron identity and mechanisms of subcellular targeting in 

turn. 

5.2.2. Persistence of interneuron identity 

The possibility for a context-dependent change in cellular identity is best encapsulated by two 

competing models of cellular specification: the progenitor specification model and the progressive 

specification model[39]. The progenitor specification model, in its most extreme form, posits that 

interneuron identity is established at neuronal birth through environmental cues that bestow a ge-

netic blueprint for differentiation and maturation. The progressive specification model, on the 

other hand, posits that the epigenetic information necessary for sculpting interneuron identity is 

acquired later in development, through interactions with the cortical environment. From a reduc-

tionist standpoint, the former posits that the cortical environment simply potentiates intrinsically-
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determined fate, whereas the latter proposes that the cortical environment acts instructively on a 

more plastic identity to determine the interneurons ultimate fate. In vivo attempts to alter cortical 

spatial organization by interfering with glutamatergic neuron migration have shown that interneu-

rons adopt their laminar position in response to cues from the pyramidal cells they will ultimately 

target[40-43]. That is, despite abnormal positioning of the target cells, interneurons will position 

themselves as ‘normal’ near those cells, thereby ensuring a normal cellular environment and para-

crine signaling. This difficulty repositioning interneurons into an abnormal cellular environment 

in vivo has confounded attempts to test these models. Dissociation and plating, on the other hand, 

decouples interneurons from their target cells and fully randomizes the cellular environment. It 

therefore offers a platform to sidestep this confound and more completely test these models. 

Our results suggest that an interneuron’s subcellular targeting profile is genetically and irre-

versibly specified prior to axodendritic polarization. This is not to say that the entirety of molecular 

expression profiles, firing patterns, etc., are predetermined at birth. Heterotopic transplantation 

studies have shown that specific molecular markers, cellular morphology, and physiology of in-

terneurons are impacted by the local environment[44, 45]. Assuming that these molecular and mor-

phological changes are due to selective differentiation rather than selective survival, the most par-

simonious explanation is that broad brushstrokes of interneuron cellular identity are largely spec-

ified before they reach their final settling place in the brain, in line with a progenitor specification 

model, whereas finer details of interneuron phenotype are progressively specified at different de-

velopmental stages, as different genetic programs are irreversibly selected in response to the local 

environment. In other words, specific limits are set at birth for the ensuing plasticity. 

What aspects of cellular identity abide by which model? Our data indicates that the primary 

designator of an interneuron’s identity, its targeting preference, is established prior to axodendritic 



276 
 

polarization. That is, it does not arise in response to the local cellular environment after settling. 

This aligns with results from molecular expression profiling of interneurons during development, 

which showed that distinct, cardinal populations of interneurons were identifiable during migra-

tion[46-48] and even at different progenitor regions within the ganglionic eminences[49, 50]. In con-

trast, the final cellular environment is critical in determining selective survival[51, 52] and fine-tun-

ing terminal aspects of identity, such as cellular morphology and activity-dependent expression 

profiles[44, 45]. The morphological aspects in particular are supported by our data, which show that 

interneuron synapse positioning is ultimately determined by the positioning of the target. The fact 

that we see recapitulation of subcellular targeting in a dissociated culture means that we can use 

this method to test more conclusively whether interneuron identity is specified at birth or results 

from progressive stages of specification over development. In-depth molecular, physiological, and 

morphological profiling of interneurons in dissociated culture vs intact tissue would provide more 

information on the degree of recapitulation in this randomized context. 

5.2.3. Models for cortical interneuron subcellular targeting 

We outlined multiple models of synaptic specificity in the introduction, and generally divided 

them into ‘pre-contact’ and ‘post-contact’ models. We also differentiated between the presynaptic 

and postsynaptic cells, which are ultimately involved in the synaptic connection, from third party 

‘environmental’ mediators, that are not. Our data conclusively shows that the spatial organization 

of the cortical environment is not a prerequisite for ‘appropriate’ interneuron subcellular targeting. 

This finding allows us to more precisely pinpoint the degree to which these interneuron popula-

tions rely on these different models for ‘proper’ subcellular targeting. Generally speaking, we can 

conclude that cortical interneurons have little reliance on third party mediators to establish this 
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connectivity. Rather, their targeting specificity is heavily reliant on intrinsically determined mo-

lecular expression and localization profiles within the presynaptic and postsynaptic cells. Regard-

ing the presynaptic cells, as discussed above, this means that the operative receptors on the growth 

cone are determined prior to axodendritic polarization. For the target cells, this means that not only 

are the postsynaptic recognition molecules and guidance cues similarly pre-determined, but also 

that they generally localize to the correct subcompartments via cell intrinsic mechanisms. This also 

means that cortical interneuron targeting specificity is heavily biased towards hyper-local mecha-

nisms30, such as target-directed axon guidance cues and/or domain-based target recognition mod-

els. In other words, they have little reliance on ‘pre-contact’ third-party mediators of axon guid-

ance, including large scale haptotactic and chemotactic guidance cues as well as cells that act as 

guideposts or scaffolding. This contrasts sharply with what is known of long-distance glutama-

tergic connections, which rely heavily on these mechanisms for regional, laminar, and cellular 

specificity[54-61]. This makes biological sense given the differences between projection neurons and 

interneurons: projection neurons project to distal regions, and thus are highly reliant on the inter-

mediate environment to guide their axons to their ultimate destination; Interneurons, on the other 

hand, project locally, with the same cell type forming repetitive motifs in many different brain 

regions. To be sure, our results do not exclude all pre-contact mechanisms outlined in the intro-

duction. Interneurons may place a heavy emphasis on local chemotactic cues for axon guidance, 

provided these are expressed by the target cells themselves. Such hyper-local chemotactic guid-

ance cues have been shown for interneuron populations in other brain regions, such as cerebellar 

 
30 Here we define ‘hyper-local’ based on the effective intercellular communication range defined by Francis & Palsson, 
1997 [53]. 
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basket cells[61], and it is reasonable that cortical interneurons would also utilize similar mecha-

nisms. 

At face value, our findings on somatostatin cells appear to contradict the previously-proposed 

mechanism for how they target pyramidal cell distal dendritic tuft in L1[46]. Lim and colleagues 

showed that translaminar Sst cells target this region by leaving a trailing process during radial 

migration out of the superficial layers.  Since the distal dendritic tuft does not form in dissociated 

cultures[62], we are unable to test whether translaminar somatostatin cells preferentially target distal 

dendritic tuft when uncoupled from migration. That said, it is noteworthy that, according to our 

spatial organization data, somatostatin cells were specifically enriched for the most distal of the 

dendritic subtypes (type 6), though it is unclear whether these boutons in culture bear any molec-

ular resemblance to those that target distal dendritic tuft of intact tissue. Based on these differences, 

we propose that somatostatin cells utilize different mechanisms for translaminar and intralaminar 

targeting of dendritic compartments in intact tissue. This makes sense since the translaminar trail-

ing process is distinct from the intralaminar axons it sends out after settling. In dissociated culture, 

Somatostatin cell targeting is likely more akin to intralaminar targeting, as supported by the pro-

portional enrichment of subcellular targeting, which matched that of the cellular layers (L2-6). 

Whether translaminar Somatostatin cells utilize the same local guidance cues and target recogni-

tion molecules for both processes is unclear, however. These questions could be addressed by 

coculture experiments, where dissociated MGE from animals with genetically label Martinotti 

cells are seeded onto organotypic slices with and without L1 or the cellular layers. 

Another model for synaptic specificity is promiscuous targeting followed by specific elimi-

nation. Microglia have been shown to mediate large scale synaptic pruning in an activity-depend-

ent manner[63, 64], with specialized microglia that remodel GABAergic synapses[65]. Our culture 
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conditions, however, do not support growth and survival of microglia[66], meaning this mechanism 

for targeted synapse elimination is absent. This does not exclude specific elimination altogether, 

but instead limits the potential mechanism(s) in our culture model to processes intrinsic to the pre- 

and postsynaptic cells. Live imaging, conditions that support microglia[66], and pharmacological 

manipulations[67] could all be utilized to test this possibility in our culture model. 

In the parlance of ‘necessary’ and ‘sufficient,’ our data suggests that third party mediators of 

axon guidance and synapse refinement are not necessary for proper interneuron subcellular target-

ing, and that hyper-local molecular cues from the postsynaptic cell are sufficient to explain this 

recapitulation. We note, however, that the models for subcellular targeting presented in the intro-

duction are not mutually exclusive, and that these cells may utilize additional pre- and post-contact 

mechanisms to optimize targeting efficiency and specificity in vivo. In the following sections we 

propose a framework for understanding and interpreting synaptic targeting that provides a more 

nuanced view of these findings.  

We also note that we did not investigate cellular targeting specificity. Chandelier, basket, and 

somatostatin cells all display high levels of laminar specificity in intact tissue[68-71], but it is unclear 

what underlies this phenomenon. Spatial analysis of chandelier connections from electron micros-

copy data, for instance, showed no evidence of target selectivity beyond spatial proximity [38]. This 

finding accords with primary reliance on hyper-local targeting models outlined above, and sug-

gests that cellular specificity may be based on nothing more than settling position. Alternately, the 

general confinement of boutons to a single layer for intralaminar targeting could be due to repul-

sive guidance cues in adjacent layers. In line with this latter model, full reconstructions of individ-

ual axo-axonic cells (AACs) revealed that some AACs displayed translaminar targeting that 

skipped intermediate layers (e.g. targeting of AISs in L2/3 and L5, but not L4)[70]. This finding 
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suggests an interplay between environment-mediated axon guidance and cellular recognition in 

target AIS selection. To be sure, this axon guidance could operate through classical haptotac-

tic/chemotactic molecular cues, as occurs with projection neurons[54, 57, 58, 72-75], or by coupling 

migration with axonal targeting, as has been shown for translaminar somatostatin cells[46]. Either 

way, these data suggest that the spatial organization of the environment may be important for in-

terneuron cellular specificity. We did not assess cellular specificity in this work because 1) we 

lacked the means of labeling these subtypes and their targets, 2) large-scale cellular connectivity 

of interneurons has only recently been mapped, and 3) channel limitations forced us to prioritize 

subcellular specificity over cellular specificity. New methods to label specific subtypes of inter-

neurons[14, 76, 77], recent large-scale work to map their cellular specificity[69, 71, 78], and multiplexed 

imaging approaches (reviewed in [26-29]) all help to sidestep these limitations. In combination with 

the platform introduced here, tackling this question is now much more feasible. 

5.2.4. Redefining synaptic targeting classes 

As noted above, one of the major advantages of our approach is parallel supervised and unsu-

pervised classification. We used the same data discussed above for unsupervised clustering to 

identify bouton subclasses using a hypothesis-blind method. We utilized metrics such as the CH, 

DB, and LISI scores to objectively choose parameters for clustering. This approach yielded nine 

distinct bouton types, each of which displayed high levels of enrichment for one of the three pri-

mary targeting classes from our supervised approach: six dendrite-targeting, two soma-targeting, 

and one AIS-targeting bouton types. We found that individual basket, chandelier, and somatostatin 

cells were specifically enriched for some of these subtypes over others, which accords with our 

expectations and helps to validate this classification model as biologically meaningful. 
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The identified subtypes were not randomly distributed, but instead displayed a remarkable 

level of spatial organization within a culture dish: the two soma-targeting subtypes were associated 

with distinct soma profiles, whereas different dendrite-targeting subtypes were positioned at in-

creasing distances from the soma. Regarding the two soma-targeting subtypes, we found individual 

soma exclusively associated with or heavily enriched for one soma-targeting subtype or another, 

suggesting the subtype is determined in part by properties of the postsynaptic cell. We also wit-

nessed individual basket cells displaying enrichment (but not exclusivity) for one subtype or an-

other, suggesting preferential cellular targeting in dissociated culture. These findings are in line 

with findings from hippocampal Dentate Granule cells, which have morphologically and function-

ally distinct synaptic terminals on the same axon depending on their postsynaptic target[79, 80]. They 

also bolster the notion that retrograde transsynaptic signaling is a major determinant of presynaptic 

properties. Further characterization of target cells (e.g., via soma morphology or cell type marker 

expression) and comparison to overall GABAergic bouton somatic targeting (e.g., via parallel 

staining with VGAT) would help to bolster this observation.  

Regarding the six dendrite-targeting subtypes, our spatial clustering analysis found that these 

bouton types are located at increasing distances from soma. Specifically, the unsupervised classi-

fier was able to identify boutons at distinct proximal, medial, and distal dendritic regions relative 

to soma. We note that this proximal-to-distal sequential ordering of the dendrite-targeting classes 

reflects distance from any soma, not distance from the target cell’s soma along the dendrite. Alt-

hough the latter is what neuroscientists typically mean when discussing the proximal, medial, and 

distal dendritic compartments, the randomized positioning and orientation of cells, combined with 

the lack of markers for these compartments in dissociated culture complicates such an analysis. 

Future experiments will be required to address whether the ordering identified here corresponds 
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with positioning along the dendrite. That said, this finding suggests a previously unrecognized 

level of spontaneous self-organization of interneurons in dissociated culture. In line with this ob-

servation, the most distal dendrite-targeting subtype (type 6) was enriched in individual somato-

statin cells, which target more distal regions of the dendritic tree than basket cells.  

In the cortex, a defining feature of Martinotti cells, a subset of somatostatin cells, is translam-

inar targeting of distal dendritic tuft in L1. It is unclear whether the most (spatially) distal dendritic 

classes identified in culture correspond to those targeting distal dendritic tuft in intact tissue. Alt-

hough a possibility, other studies suggest this is probably not the case. Martinotti cells couple 

axonal targeting of dendritic tuft to their radial migration out of the marginal zone[46], which cannot 

occur in this dissociated context where these cells do not migrate. In addition, the distal dendritic 

compartment is not formed via cell intrinsic mechanisms in culture[62], suggesting the synaptic 

recognition molecules typically enriched at this subcellular region in tissue are distributed through-

out the dendritic tree in dissociated culture. Thus, the increased targeting of more distal dendrite 

in somatostatin cultures is likely due to a previously unrecognized targeting mechanism that is not 

shared by basket cells, such as the different axon growth strategies discussed below. Moreover, 

somatostatin cells likely utilize this targeting mechanism within the cellular layers of the cortex, 

after settling. Although it has not been a primary focus of research on somatostatin cells, all Sst 

subtypes form intralaminar synapses[76]. It will be important to characterize these synapses further, 

both with regard to their molecular composition and their subcellular positioning on the target cell. 

Profiling of intralaminar and translaminar somatostatin synapses, and how they compare to the 

synapses formed in a dissociated culture, will be helpful for defining the biological relevance of 

the synapse classes identified by unsupervised clustering. 
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This spatial analysis also revealed that BCs and SstCs display different axon growth patterns. 

Our sequentiality analysis indicates that both BCs and SstCs display non-random axonal growth 

patterns in culture, and further, that BCs adhere more closely to underlying cellular topography 

than SstCs. Since we are unaware of terms to differentiate such neurite growth strategies, we will 

coin the term ‘vineal’ (of or pertaining to vines, < Latin vīnea, vine[81]) to describe neurite growth 

along cellular structures, and ‘avian’ (bird-like) to describe the high propensity to jump across 

these structures. Axon guidance can proceed through two distinct molecular mechanisms: 1) via 

surface-bound (haptotactic) cues, such as subcellular gradients of adhesion molecules, or 2) via 

soluble (chemotactic) cues, such as secreted molecules that form gradients by diffusing throughout 

the environment. These sequentiality data indicate that Basket cell axons tend to follow subcellular 

gradients more closely than Somatostatin cells, suggesting the former are more reliant on hapto-

tactic cues, and the latter chemotactic cues, for axon guidance. These growth patterns reflect dif-

ferent strategies for achieving inhibitory coverage that align closely with our understanding of the 

role these cells play in regulating networks. Indeed, a wide body of literature suggests the spatial 

positioning of inhibitory synapses relative to the soma leads to different strength and properties of 

inhibitory control[82-89]. Distal dendritic targeting by SstCs act as a rheostat to modulate target cell 

responsiveness, whereas somatic and proximal dendritic inhibition by BCs is far stronger, acting 

as a binary switch that alternately shuts down or enables target cell firing. Our sequentiality data 

suggests that the axonal growth strategies of BCs and SstCs are an orthogonal mechanism to 

achieve the same ends: assuming a constant number of boutons per presynaptic cell and an equal 

synaptic strength per synapse, the more vineal strategy of BCs will lead to stronger and more 

robust inhibition of fewer cells, whereas the more avian strategy of SstCs will lead to more dis-

tributed, but ultimately weaker coverage of individual cells. 
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5.2.5. Cortical interneuron subcellular targeting in intact tissue 

What can we conclude about supervised targeting in slice? Proportionally, our supervised tar-

geting data accorded with expectations: PV Cre boutons were primarily soma and proximal dendrite 

targeting, Sst Cre boutons were primarily dendrite targeting, and Nkx2.1Cre, which labels both PV+ 

and Sst+ interneurons, displayed an intermediate phenotype. Even more striking was the level of 

spatial organization of these bouton types. Our population level analysis revealed that cortical in-

terneuron boutons are highly organized. We witnessed both laminar and regional differences in 

interneuron subcellular targeting.  

Regarding laminar enrichment, we found that the spatial patterning generally tracked with the 

standard divisions of the cortical layers. These population-level synaptic results largely accord 

with prior work showing the axonal trees of individual interneuron subtypes are often confined to 

specific laminae[15, 69]. Consistent with what is known about cortical interneuron development and 

connectivity[14, 90-92], we found that the subcellular targeting profile of the entire MGE lineage is 

largely accounted for by the Sst and PV populations, each of which displays a distinct targeting 

profile. Specifically, we witnessed a greater density of dendrite-targeting synapses in deeper layers 

in PV cells, whereas dendrite-targeting of Sst cells was denser in more superficial layers. 

As expected, most boutons in the acellular layer (L1) of the cortex were classified as dendrite 

targeting. PV boutons were almost entirely absent from this layer, indicating that, as expected, the 

majority of MGE interneuron boutons found here are from Sst Martinotti cells. In addition, our 

unsupervised classification approach identified distinct populations of dendrite-targeting boutons 

within L1, suggesting sublamination. This result aligns with a wide body of literature on sublam-

ination of L1 based on differential molecular expression[93-98] and connectivity[93, 99]. It is unclear 

what underlies the distinction identified by our unsupervised classifier in slice. These different 
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bouton classes may derive from different Sst subtypes. According to this model, the class distinc-

tion and differential positioning would be accounted for by distinct Sst subtypes preferentially 

targeting different subdendritic regions of the same postsynaptic cells. For example, two subpop-

ulations of Martinotti cells, fanning-out SST-Calb2 and T-shaped SST-Myh8 cells, have distinct 

subcellular and sublaminar innervation patterns: the former target distal dendritic tuft and apical 

branches in lower L1, and the latter almost exclusively tuft in upper L1[76, 99]. Alternately, the class 

distinction could reflect distinct targets. In line with this possibility, different pyramidal cell types 

have distinct distal dendritic tuft morphologies and branching patterns within L1, and show differ-

ent dendritic densities in upper and lower L1[15]. In this case, rather than distinguishing boutons 

from different presynaptic Sst types, the classifier would be making distinctions based on target 

cell type or targeted subcellular region. These possibilities are neither mutually exclusive nor ex-

haustive, of course. Experiments that label different Sst interneuron subtypes and/or target pyram-

idal cells could address these questions. 

We also witnessed labeled boutons in the cortical white matter (WM). Synapses in the WM 

have been reported in human[100]. We witnessed WM boutons in both Nkx2.1CreER and SstCre mice. 

The WM boutons in the Nkx2.1CreER mouse are likely from the Meis2 interneuron population[13, 

101]. These cells reside in the WM and project locally within WM, deep L6, and superficial stria-

tum[101]. Somatostatin cells have been observed in WM of both human[102] and mouse[76, 103]. In 

mouse, these cells also express NPY and nNos, generally correspond to the Sst Chodl population, 

and have a projection neuron phenotype[10, 14]. It is unclear whether they form synapses in WM, 

however. More work will have to be done to characterize these connections and to identify the 

source cells. 
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We also observed differences in synaptic target enrichment between cortical regions. In par-

ticular, we witnessed increased dendrite-targeting density for the SstCre-labeled population within 

barrels of the somatosensory cortex. The increased concentration of dendrite-targeting boutons in 

barrels of the SstCre mouse is likely due to recently characterized Sst-Hpse and Sst-Crh cells, both 

of which are non-Martinotti cells that preferentially target barrels[76, 104, 105]. It will be important to 

take a systematic approach to characterizing synapses of different interneuron subtypes. 

Of note, our data is a statistical representation using data combined from multiple mice. These 

patterns were far more pronounced within individual mice, and even more so within a single cor-

tical region. We suspect the aggregate data masks many of these patterns because we are stand-

ardizing the surface to base cortical distance using a linear transformation that assumes consistent 

spacing of layers across subjects and across regions. We did this because we did not include an 

independent measure for cortical layer, and using the observed bouton layering pattern for this 

purpose would be circular. We know, however, that layer spacing differs along the rostral-caudal 

axis and between cortical regions. Registering the slices to a common coordinate framework, such 

as that provided by the AllenCCF mouse brain reference atlas[106], would allow us to perform non-

linear standardization based on slice reference coordinates. This in turn would provide a more 

representative illustration of the spatial patterning of these bouton populations that preserves subtle 

laminar differences. 

This study represents an important step forward in generating a fine-mapping of interneuron 

synaptic identity within the mouse brain. We show on a population-wide level that inhibitory syn-

apses display high degrees of laminar and regional patterning in the mouse brain. Important work 

has already been done on this front from the perspective of excitatory postsynapses[1]. It will be 
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interesting to compare the spatial distribution of inhibitory and excitatory synapses within the cor-

tex. 

5.2.6. Interneuron targeting in the reeler cortex 

What can we conclude from the reeler experiments? We found little quantitative difference 

between control and reeler conditions in SstCre interneuron subcellular targeting. These data further 

support our conclusions that interneuron subcellular targeting specificity is largely independent of 

cortical organization and primarily intrinsically determined by the presynaptic and postsynaptic 

cells. The striking laminar enrichment patterns of dendrite- and soma-targeting boutons witnessed 

in all other mice were largely absent in the reeler mutant, with little to no differential enrichment 

across cortical laminae or regions. These data strongly support a model wherein cortical interneu-

ron bouton spatial organization arises in response to the underlying laminar organization of glu-

tamatergic target neurons. The conclusion that interneuron bouton patterning arises from the spa-

tial localization of the targets is in line with prior work on interneuron migration[41] as well as our 

culture results from this study. Our findings are also in line with studies showing cortico-cortical, 

cortico-thalamic and thalamo-cortical circuits are largely intact in the reeler mouse[107].  

reeler mutants displayed a partial reversal in the spatial distribution of dendrite- and soma-

targeting boutons compared to control. The partial reversal is interesting, and elucidates the mo-

lecular mechanisms underlying Sst Martinotti cell targeting of L1. L1 targeting by Martinotti cells 

has been shown to unfold in a developmental process that links tangential and radial migration 

with axon pathfinding and synaptic specificity. In brief, Martinotti cells form synapses on pyram-

idal cell distal dendritic tufts in layer 1 during their inward radial migration from the cortical sur-

face. Remarkably, we see a partial reversal of Sst dendrite targeting enrichment in the reeler 

mouse: dendritic targeting is decreased near the cortical surface, but increased in the acellular zone 
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near the cortical base. These data suggest that MCs may synapse onto the appropriate targets even 

in the partially reversed cortical structure. Assuming MCs utilize the same migration/targeting 

model established by Lim et al.[46] within this altered structural context, our data suggests that MCs 

respond to the partially inverted cortical environment during tangential migration by following a 

deeper migratory path near the subventricular zone. They would then leave a trailing axon in this 

subventricular region during an outward radial migration towards more superficial region, ending 

this process in the ‘appropriate’ location near their inappropriately positioned synaptic targets.  

This model is partially supported by previously published studies. Inverted pyramidal neurons 

are a common feature of the reeler cerebral cortex[108, 109], with apical dendrites often pointing 

towards the subventricular zone. Independent studies have shown that the laminar positioning of 

cortical interneurons generally correlates with the allocation of projection neurons, even in cases 

where cortical layering is inverted via disrupted Reelin signaling[41, 110]. Such ‘appropriate’ posi-

tioning was shown for L5/6 Calbindin-positive (CB+) GABAergic interneurons[110], a hallmark 

expression and positioning profile of T-shaped Martinotti cells[76, 105]. These findings suggest that 

these MCs adopt a laminar position in response to Reelin-independent cues. In other words, ‘ap-

propriate’ positioning is likely driven by molecular gradients established by the target cells them-

selves, and only indirectly related to the reelin gradient insofar as it is responsible for ‘appropriate’ 

positioning of the target cells at the cortical surface. This is not the case for all MCs, however. 

Studies have shown that laminar positioning of L2/3 prototypical MCs[40] and perhaps calretinin-

positive L5 Fanning-out MCs[110] is Reelin-dependent. Specifically, these cells display positional 

randomization and redistributed across all layers, as would be expected for Reelin-dependent mi-

gration. Indeed, these MC subpopulations may account for the ectopic (i.e., not inverted) Sst im-
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munoreactive fibers enriched in superficial regions of the reeler mouse cortex[111]. Since MC tar-

geting of L1 is closely tied to migration, these data suggest MC-subtype specific effects of the 

reeler mutation on cortical circuitry. Laminar positioning is not the same as synaptic targeting, 

however. These models will have to be tested by labeling specific MC subpopulations[76, 112, 113] or 

migratory streams[46] and investigating targeting in the context of Reelin disruption. 

5.2.7. Reframing synaptic specificity from studies in dissociated culture 

We found that three populations of cortical interneurons displayed targeting preferences in 

dissociated cultures that were indistinguishable from those witnessed in vivo. Our results help to 

validate dissociated culture as a reductionist model for interrogating synaptic connectivity. These 

findings are in opposition to the consensus view that neurons in dissociated culture will predomi-

nantly target promiscuously, and synaptic specificity is not recapitulated[114]. This view is based 

on early culture studies of the autonomic nervous system that showed examples of synapse for-

mation in culture for which there are no in vivo counterparts and a significant shift in the propor-

tions of physiological connections, such that small minority populations in vivo became an over-

whelming minority in vitro, and vice versa (reviewed in [115]). The belief that dissociated neuronal 

cultures express synaptic specificity was subsequently bolstered by advances in cellular labeling 

techniques and subsequent experiments that not only refuted stringent specificity in culture[116], 

but also expanded the list of non-physiological connections in dissociated cultured neurons[117-119]. 

In low-density hippocampal cultures, for instance, glutamatergic cells will form non-physiological 

synapses with mismatched postsynaptic GABAAR clusters onto the AIS of target cells[117], a region 

never innervated by hippocampal glutamatergic neurons in vivo[118]. At the furthest extreme, iso-

lated neurons on microislands will target themselves, forming autapses with mismatched presyn-

aptic and postsynaptic components[119]. These studies, as well as other supportive data, have spread 
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the belief that much of the observed synaptic specificity in mature animals derives from promis-

cuous synaptogenesis followed by specific elimination[120]. 

Our results on cortical interneuron subcellular targeting push back on this interpretation, sug-

gesting a ‘specificity first’ model does occur in culture. We are not the first to show recapitulation 

of synaptic targeting in a dissociated context, however. Indeed, studies have shown that multiple 

CNS systems recapitulated physiological synaptic targeting in a dissociated context. Williams et 

al., focusing on the hippocampus, observed that dentate gyrus (DG) neurons in dissociated culture 

behaved similar to their in vivo counterparts, preferentially forming synapses onto CA3 rather than 

CA1 neurons[114]. Remarkably, the resultant synapses had distinctive phenotypes reminiscent of 

DG→CA3 Mossy fibers, including size, subcellular location, and physiological profile. Also in 

hippocampal cultures, GABAergic presynapses were preferentially found on target cell somata, 

whereas glutamatergic presynapses preferred dendrites, in accord with data from hippocampal 

slices[121]. These hippocampal innervation patterns were activity-independent, suggesting initial 

domain specificity without refinement. Similarly, dendrites of dissociated cerebellar granule cells 

correctly recognize their target axons in vitro[122], and stem cell derived Renshaw cells of the spinal 

cord displayed correct targeting preferences for V1 interneuron subtypes when co-cultured[123]. 

Thus multiple CNS systems have been shown to recapitulate both cellular and subcellular targeting 

specificity in a reductionist, dissociated context. 

To further complicate this picture, these affirmative findings tend to be inconsistent in differ-

ent labs. Linda Van Aelst’s group has replicated our findings on cortical interneuron subcellular 

specificity using our culture protocol (personal communication, Linda Van Aelst). On the other 

hand, Beatriz Rico’s group had previously attempted the same experiments, but instead of witness-

ing robust subcellular specificity reported here, they observed promiscuous targeting (personal 
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communication, Beatriz Rico). The same appears to be true of other CNS systems. Different 

groups have had difficulty replicating the findings from Williams et al. showing preferential 

DG→CA3 cellular specificity (personal communication, Kristin Baldwin). Despite utilizing the 

same cells to probe the same connections in dissociated culture, one group observed robust target-

ing specificity whereas another observed promiscuity. Taken as is, one group’s findings suggest a 

‘specificity first’ model whereas the other suggests a ‘promiscuity with selective elimination’ 

model. 

Let’s accept all these results at face value. How do we reconcile these studies? In conversation 

with Beatriz Rico, we noted that the primary methodological difference between our approaches 

was culture density. Our protocol uses seeding densities far higher than theirs, and indeed, higher 

than typically used for dissociated cultures. In line with their results, we found that subcellular 

targeting was more promiscuous with lower neuron densities or poor culture health (data not 

shown). Practically speaking, then, we can write off many of these contradictory findings as dif-

ferences in neuronal populations investigated and culture conditions utilized (more on this below). 

More philosophically, these experiments reveal that mechanisms utilized during circuit formation 

in a normal physiological context can be overruled or discarded, and non-physiological mecha-

nisms may be adopted, depending on the local environment. Specifically, they point towards a role 

for activity-independent molecular competition, both at and outside of the contact site, in regulat-

ing target recognition and synaptic specificity[117, 121]. We witness robust recapitulation of physio-

logical interneuron targeting in more physiological, high-density cultures, and less robust recapit-

ulation in less physiological, low-density ones. This heightened cell density likely enables greater 

levels of molecular competition, which in turn should contribute to greater selectivity in synaptic 
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connections. At non-physiological cell densities, neurons either die or adapt. Those that adapt em-

brace an ‘any port in a storm’ strategy of connectivity that overrules the more physiological sub-

cellular targeting specificity: chandelier cells innervate soma and dendrites (our observations) and 

glutamatergic cells innervate AIS[117]. In the most non-physiological environment, neuronal isola-

tion, these cells abandon the well-characterized clustered protocadherin-based mechanism for self-

recognition and self-avoidance[124] and form non-physiological synapses with mismatched pre- and 

postsynaptic components[119]. 

Any attempt at reconciliation must be in line with widely accepted molecular models of syn-

aptic connectivity and cellular differentiation[48, 125, 126]. Sperry’s Chemoaffinity Hypothesis pro-

poses that genetically-encoded molecular interactions underlie the specific patterning of neuronal 

connections[127]. As discussed below, this hypothesis has been refined into the synaptic adhesion 

molecule code model, where synaptic target recognition is mediated by a combinatorial code of 

complementary synaptic adhesion molecules[128-131]. Molecular expression profiles are not static, 

molecular affinities are neither binary nor exclusive, and synaptic molecules do not exist in isola-

tion, however. Differential binding affinities and expression profiles work both cooperatively and 

competitively at different stages of circuit assembly[128, 131-133]: instead of acting in mutual exclu-

sion, these mechanisms ultimately synergize to yield preferential outcomes based on the immedi-

ate environment. The critical distinction here is the level of emphasis placed on the immediate 

environment as an actor in determining synaptic specificity. Disregarding a role for the local en-

vironment does not leave a place for mechanisms to explain relative cellular competition and rel-

ative affinities. This suggests that the standard lock-and-key model for synaptic specificity should 

be modified to include not only the presynaptic and postsynaptic adhesion molecules at the contact 

site, but also the microenvironment within which they operate. This ‘microenvironment’ includes 
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the extracellular space surrounding the contact site, as well as intracellular and membrane-bound 

presynaptic and postsynaptic molecules within the local neighborhood. We discuss the implica-

tions of this principle and propose modifications to this conceptual framework for synapse for-

mation below. Suffice it to say, one major implication is that connectivity is not rigidly determined 

by cellular expression profile, but malleable and probabilistic based on the microenvironment: 

whether physiological or not, the resulting connectivity is ‘appropriate’ to the cellular environment 

and neuronal plasticity. 

This reframing places the burden of validity for a tissue culture model of connectivity on 

phenotyping the resultant synapses in both the physiological and reductionist contexts. Ultimately, 

defining the limitations of such a model system will require not only higher resolution definitions 

of synapse types and deeper phenotyping of connectivity (both in the physiological context and in 

the reductionist system), but also more precise characterization of overall culture conditions and 

the local microenvironment around a synapse. We noted that our culture system utilizes a high 

seeding density that is more in line with physiological cell densities than typical 2D culture models. 

Starting conditions are distinct from end-point conditions, however. Despite using a consistent 

seeding density, we witnessed wide variations in adherence and survival from one preparation to 

the next (data not shown). We suggest that studies on neuronal connectivity that utilize culture 

models should include orthogonal metrics of end-point culture health, such as cellular density and 

diversity, to ensure reproducibility. Further, the cellular topography within a dissociated culture is 

not homogonous: local neighborhood metrics should be included at multiple scales to help con-

textualize findings and normalize results. It will be interesting to see whether targeting specificity 

scales continuously with competition, or if there is a threshold density below which it collapses. 
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Further optimization and standardization of culture conditions will be required to scale this ap-

proach for more systematic screening assays. 

In line with this concept, we note that the total number of connections formed by individual 

cells was severely decreased in our high-density dissociated cultures compared to intact slice (data 

not shown)[38, 134-136]. Thus, although we did not witness a change in targeting identity or propor-

tional distribution, the overall efficiency per cell is severely reduced with randomization and 2D 

plating. That is, instead of forming promiscuous connections, the interneurons formed fewer con-

nections. We suspect that this decrease in total synapses results from fewer high affinity targets 

being within reach, and that dissociated 3D cultures with densities similar to the cortex would 

more closely parallel the physiological number of connections per cell. These also data suggest 

that the spatial organization of the cortex is not a prerequisite for proper interneuron targeting 

specificity per se. Rather, cortical organization ensures that more targets are within the limited 

reach of the axonal arbor, enabling more proper connections. Thus, cortical lamination likely 

evolved in part as a means of utilizing spatial proximity to optimize circuit assembly, both as a 

means of limiting detrimental connections and increasing the probability (and total number) of 

beneficial ones. 

5.2.8. A screening platform for neuronal connectivity 

One of the most exciting prospects given our findings is the ability to use our platform to 

screen cortical connectivity at scale. We show a small scale screen of cortical interneuron connec-

tivity following treatment with the cytokine IL13. We found that increased doses of IL13 over a 

24-hour treatment period led to significant shifts from dendritic to somatic subcellular targeting. 

This shows that our dissociated culture system is sensitive enough to detect changes in synaptic 

connectivity. Moreover, our performance metrics indicate that our supervised classifier is on par 
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with the human eye. There are two pressing questions in the field of neuroscience: 1) the molecular 

basis of synaptic connectivity, and 2) the molecular basis of psychiatric diseases, and the desperate 

need for treatments. Our discoveries open the door to using our approach to address these questions 

at scale. 

It has been proposed that a synaptic adhesion molecule code underlies the specific connectiv-

ity of the brain. We discussed this hypothesis at length in the introduction, and we propose an 

alternate model below. Our platform offers the ability to test this hypothesis at scale. In a landmark 

study, Favuzzi and colleagues showed that the cortical interneuron subtypes studied here utilize 

distinct molecular mechanisms for subcellular targeting[137]. The researchers utilized scRNAseq 

across development to define a list of putative adhesion molecules in each of these different inter-

neuron populations. They ultimately arrived at a list of 26 presynaptic adhesion molecules and 92 

putative postsynaptic partners across these three cell types. The authors verified the involvement 

of one presynaptic molecule for each of the three interneuron populations by painstakingly testing 

them in vivo. Dissociated culture would facilitate more extensive testing of the list of 100+ pre- 

and post-synaptic molecules. We propose that our platform could be integrated into this workflow 

to identify and test synaptic adhesion molecules in target recognition and synaptic specificity. Spe-

cifically, the workflow would involve: a) verification of targeting recapitulation in culture, b) in 

vivo identification of putative target molecules by scRNAseq, c) in vitro target screening by loss 

and gain of function interventions, and d) in vivo confirmation of hits using tissue slices. This 

workflow would involve building a supervised classifier to assess synaptic targeting both in culture 

and in slice. This workflow is not limited to cortical interneuron subcellular targeting. It could be 

utilized for any form of synaptic connectivity, so long as the targeting is recapitulated in culture. 

In addition, it does not necessitate the use of dissociated culture: organotypic culture using intact 
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slices would also work. This workflow, then offers an unprecedented ability to test the molecular 

basis of neuronal connectivity. 

A similar approach could be utilized to discover new therapies for psychiatric diseases. Psy-

chiatric diseases are associated with aberrant information flow. This altered flow of information 

ultimately arises due to abnormal synaptic connectivity or dysregulated synaptic communication. 

Interneuron dysfunction is a common theme in many psychiatric disorders[138, 139] and epilepsy[140, 

141]. Postmortem studies of brains form individuals with schizophrenia (SCZ) have revealed de-

creased BC and ChC cell and synapse numbers and altered GABAergic receptor subtype expres-

sion[139, 142-147]. Autism spectrum disorder (ASD) has been associated with BC, ChC and SstCs[148-

150] and excitatory/inhibitory imbalance[151]. Both parvalbumin and somatostatin cells have been 

implicated in various genetic forms of epilepsy[140, 141]. These associations are backed by genetic 

mouse models, such as ErbB4 in SCZ[152-154], MECP2 in ASD[149, 150], and TSC1[141] or Scn1a[140] 

in epilepsy, all of which have shown interneuron-specific phenotypes. If disease-associated phe-

notypes can be recapitulated in dissociated culture, it would offer a drug discovery platform for 

these diseases. Specifically, showing that human stem cell derived interneurons recapitulate syn-

aptic connectivity in culture would offer an inroad to personalized medicine in psychiatric dis-

eases. Differentiation protocols exist for GABAergic cortical interneurons and their glutamatergic 

targets. This, then, offers a putative path forward for using our approach and our discoveries to 

develop a platform for psychiatric drug discovery. Development in psychiatric drugs has largely 

stagnated. This is in part because the current methodology for discovery is observing and exploit-

ing side effects when these populations are given drugs not intended for treatment. Our findings 

offer an alternate path. Interneuron synaptic connectivity could be utilized as a means of testing 

molecular libraries. Moreover, if changes in connectivity are witnessed, we would also anticipate 
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functional changes to the networks that arise in culture. This offers parallel approach to screening 

that couples imaging with a functional readout. Thus, our findings provide a potential foundation 

for psychiatric drug development. 

What would be required to turn this into a screening platform? Simply put, it is scaling. We 

show a small-scaled screen of interneuron connectivity following 24-hour treatment with IL13. 

This experiment utilized 24 wells and, given our microscope setup, took over 40 hours to image. 

Screening molecular libraries, which can number in the tens of thousands of compounds, will re-

quire faster imaging, faster image processing, and a larger supply of cells. It will also require in-

ternal controls and greater standardization, as well as an approach for batch correction that is able 

to remove systematic error while retaining biologically-relevant systematic differences. Experi-

mental scaling will also require hardware scaling. We have already encountered issues in pro-

cessing based on the sheer size of the dataset. The 62 million bouton number quoted above is not 

even from the complete set of images. It is from a subset of tiles that we identified and used to 

analyze targeting profiles in cortical columns. The full dataset at the time of writing is likely four 

times as large, and probably needs to be padded out with more biological replicates. The hardware 

requirements are staggering: using our current code, which stores all of the data in working 

memory, would require terabytes (yes, plural) of RAM. We are in the process of adapting our code 

to store the calculations on disk, but this comes at a major efficiency cost. Back of the envelope 

calculations put processing times for the pilot set of cortical columns at a week using this method. 

Many of these issues could be surmounted by moving our platform to cloud-based computing 

systems. Such a move, however, requires expertise, is a lot of work, and can be very costly. We 

also note that scaling will require considerable advances in processing power and efficient code. 

Optimizing these conditions will take considerable time, effort, and expense; but the payoff is 
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potentially huge. We hope that our efforts here provide the theoretical and practical groundwork 

to make this a reality. 

5.3. The synaptic potentiality landscape 

Typically, synaptic biology is described through anecdotes: descriptions of model systems 

used as examples to convey generalized concepts of synaptic targeting, diversity, structure, plas-

ticity, function, etc. What follows is an attempt to synthesize current descriptive models and find-

ings from disparate studies on synaptic target recognition and synaptogenesis into a conceptual 

framework that could be used to formulate a predictive model for these post-contact processes. It 

is by no means a complete or comprehensive account, and primarily serves to restate, extend, and 

constrain current ideas on these processes based on our findings in culture. Thus, one of the pri-

mary goals here is to define relevant variables and to describe how they relate to one another. We 

end by suggesting what we believe would be needed to formalize such a predictive model mathe-

matically. 

The impetus for this framework initially arose from an attempt to reconcile seemingly contra-

dictory findings from in vitro and in vivo studies. As discussed above, our ability to recapitulate 

cortical interneuron in vivo synaptic targeting specificity in vitro contrasts sharply with prior at-

tempts showing that the same cell types formed promiscuous synapses in vitro in dissociated cul-

ture. As eloquently stated by Richard Bunge, 

If cultured neurons are found speaking a language we cannot at first 

comprehend, we may be well advised not to dismiss these signals as 

nonsense but rather to consider them as clues which we must learn 

to understand if we are to gain added insight into the mechanisms 
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of development and functioning of neural systems. (Bunge, 

1973)[115] 

We work from the premise that observations of non-physiological synaptic phenomena in 

vitro abide by the same natural laws as their more physiological counterparts in vitro and in vivo, 

and therefore that these apparently contradictory findings can be explained by the same set of 

fundamental principles. We hope that attempting to reconcile these non-physiological results will 

shed light on aspects of the phenomena that are less pronounced in more physiological contexts, 

and therefore have been underrepresented in prior descriptive models of synaptic targeting and 

synaptogenesis. 

5.3.1. Expanding the conceptual framework for synapse formation, diversity, and function 

We concluded earlier that localized molecular expression patterns, molecular affinities, and 

the immediate environment work in concert, ultimately 

yielding preferential synaptic states. In other words, 

synaptic states are determined probabilistically from 

‘bottom up’ biochemical interactions. Accepting this 

principle reframes the narrative of synaptic targeting, 

formation and function. From this perspective, neuronal 

connectivity exists in a dynamic, multidimensional 

space that ultimately synergizes into a potential energy 

landscape. That is, neuronal connectivity should be un-

derstood through a heuristic similar to Waddington’s 

epigenetic landscape (Figure 5.1)[48, 125, 126, 155]. Accord-

ing to this framework, synaptic states are stabilized or 

Figure 5.1 | Waddington’s visualiza-
tion of the potential energy landscape. 
The metaphorical epigenetic landscape 
proposed by Waddington is provides a 
conceptual framework for cell type 
specification during cellular differenti-
ation. A similar framework is helpful 
for conceptualizing synaptic connectiv-
ity, differentiation, and diversity. From 
Waddington, C.H., The strategy of the 
genes. 1957: Routledge. 
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destabilized as energetic maxima and minima are created or eliminated. ‘Synaptic state’ here en-

compasses the full breadth of synaptic properties: existence, morphology, molecular composition, 

polarized/depolarized. The local minima represent localized states of stability: different minima 

are associated with different stable states of synaptic properties. The local maxima represent en-

ergy barriers between these ground states. They act as a buffer from environmental noise up to a 

certain threshold, but above this threshold, the synapse rapidly transitions into another stable state. 

Thus, the landscape can be understood as a probability function for each synaptic state. Unlike 

Waddington’s epigenetic landscape, which is ultimately a descriptor of cell state, this synaptic 

potentiality landscape is extended in space and evolves over time in response to local conditions. 

Synaptic properties are embraced or discarded as the energy landscape moves from one ground 

state to another. The resultant energy barriers and spatiotemporal segregation synergize, allowing 

each synapse to operate semi-independently: a partially compartmentalized structure within a 

larger cellular network. 

This framework adds a probabilistic, combinatorial, and spatially-distributed spin to Sperry’s 

Chemoaffinity Hypothesis[127] specifically for the post-contact processes of synaptic development. 

Such a framework has been widely embraced for pre-contact processes, as exemplified by orthog-

onal chemical gradients acting sequentially[54, 156] and combinatorially[157-167] at relative (not abso-

lute) levels[156] to form a molecular coordinate system for axonal and dendritic guidance (discussed 

in the introduction and reviewed in[60, 157, 168]). The lock-and-key model applies Sperry’s 

Chemoaffinity Hypothesis to synaptic target recognition, proposing that synaptic specificity is 

achieved through molecular recognition between proteins on the surface of neurons[128, 169]. Spe-

cifically, Sperry concluded that:  
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“...cells and fibers of the brain and cord must carry some kind of 

identification tags, presumably cytochemical in nature, by which 

they are distinguished one from another almost, in many regions, to 

the level of a single neuron...” (Sperry, 1963)[127] 

According to this model, Sperry’s ‘identification tags’ are conceptualized as cell surface proteins 

that act like "locks" and "keys," where the key (a specific protein or molecule) on the axon terminal 

of one neuron fits into the lock (a complementary receptor or molecule) on the dendrite of the 

target neuron[127, 128, 169-171]. The initial formulation of Sperry’s Chemoaffinity Hypothesis pro-

posed that each neuron expressed unique, genetically-encoded chemical tags that mediate target 

recognition. Based on the number of neurons within vertebrates being orders of magnitude greater 

than the size of the genome, this hypothesis has been refined into the adhesion molecule code 

(AMC) model, where synaptic target recognition is mediated by a combinatorial code of comple-

mentary synaptic adhesion molecules[128-131]. Similar to a zip-code, this model suggests that dis-

tinct, combinatorially-expressed adhesion molecules will dictate distinct aspects of regional, lam-

inar, cellular, and subcellular connectivity using distinct lock-and-key combinations for ever-finer 

target specification[128, 169]. According to this model, the number of molecules required to specify 

a synaptic pair is likely large[128, 172], and the code may exhibit multiple levels of degeneracy[133, 

173]. 

Although the AMC model has considerable experimental support[128, 171] and predictive 

power[137, 174, 175], it also has its limitations. By focusing only on presynaptic and postsynaptic ad-

hesion molecules at the contact site, it does not include a role for the microenvironment around 

the putative synapse in regulating synaptic specificity, formation, and function. Many studies have 

shown, however, that the immediate microenvironment around the contact site plays a critical role 



302 
 

in regulating target recognition and synapse formation both in vivo and in vitro[62, 117, 119, 176-195]. 

That is, target selection is directed by a spataially-distributed network of adhesive and non-adhe-

sive interactions in the neighborhood of the contact site[176, 177]. This microenvironment includes 

extrasynaptic regions of the presynaptic[178-181] and postsynaptic[182-184] membranes (i.e., those out-

side the contact region), as well as the intracellular[185, 186] and extracellular microenvironments 

around the contact site. The extracellular conditions include not only biophysical conditions that 

impact protein folding like pH, temperature, and ionic strength, but also diffuse molecules in the 

extracellular space[187, 188] and components of the extracellular matrix[62, 189-192] either directly in 

indirectly involved in target recognition, and factors that impact competition like cellular den-

sity[119, 193, 194] and diversity[117, 182, 195]. 

Contrary to the lock-and-key model, which suggests that binary expression or absolute con-

centrations of complementary molecular pairs regulate synaptic target recognition, combinatorial 

molecular mechanisms[124, 196, 197] and relative expression levels[133, 173, 176, 177, 198] seem to be the 

rule in target recognition[128]. Since target recognition and synaptogenesis are localized to a small 

contact site, the relative preference must be established through dynamic, spatially-distributed in-

teraction networks on both the presynaptic and postsynaptic cells. This requires cross-talk within 

a growth cone or neurite simultaneously sensing multiple regions of the environment and ‘choos-

ing’ the most stable interaction[176, 177, 185]. Studies also show that a localized cell-cell contact can 

prompt activity-independent molecular competition within the neighborhood of the contact site, 

initiating a distributed network effect that can alter the surrounding synapses. This effect has been 

shown postsynaptically in sparse dissociated cultures, where non-physiological, weak mismatched 

glutamatergic synapses on target cell AIS and dendrite were eliminated after contact by a GA-

BAergic growth cone[117, 182]. In dendrites innervated only by glutamatergic cells, contact by a 
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GABAergic cell not only eliminated weak mismatched glutamatergic synapses, but also led to 

molecular and morphological changes in proximal, more physiological matched glutamatergic 

synapses that remained. Relative recognition and competitive specificity both suggest that mole-

cules beyond the immediate contact site play a role in target recognition and synaptogenesis. 

Finally, synaptic target recognition is just the first step within a dynamic and continuous pro-

cession of post-contact developmental processes. The lock-and-key model does not consider 

downstream anterograde and retrograde signaling processes critical in initiating synaptogenesis 

and establishing synaptic properties. The synaptic potentiality landscape proposed here tweaks this 

lock-and-key model by presenting target recognition as a dynamic, combinatorial, distributed, and 

probabilistic process involving not only the contact site, but also the immediate microenvironment 

around it. It proposes that the strength of the summed binding affinities at a contact site alone is 

not sufficient to explain the phenomena. Rather, this affinity is compared to other proximal con-

tacts within the neighborhood through a distributed, dynamic network of molecular interactions. 

These distributed networks function on both the pre- and postsynaptic side, and through a process 

of activity-independent cis and trans molecular competition, determine whether to initiate synap-

togenesis. Critically, it is this distributed initiation process that distinguishing synaptic target 

recognition from cellular recognition in general. It positions target recognition as the initial stage 

in a broader framework of post-contact synapse development, all of which can impact the wiring 

diagram[199] and physiological properties of the synapse[129, 130]. 
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5.3.2. Topography of the synaptic potentiality landscape: reconciling paradoxes in neuronal 
connectivity 

What determines the topography of this synaptic potentiality landscape? Like Waddington’s 

epigenetic landscape (Figure 5.2), the synaptic potentiality landscape is ultimately based on phys-

ical constraints, molecular affinities, and chemical concentrations. Each molecular interaction is a 

binary decision between molecular states (e.g. to bind or not to bind) with an associated probability 

function based on intrinsic properties and environmental conditions. These individual probabilities 

sum to form an overall probability function for every possible state. This overall probability func-

tion is the potentiality landscape. Embracing such a framework challenges standing ‘top-down’ 

rules of synapse formation31, but it also reconciles seemingly contradictory findings. To illustrate 

this point, let’s reframe target recognition and synaptogenesis according to this framework. 

 
31 More specifically, it reframes these ‘top-down’ rules as probabilistic patterns rather than hard and fast natural laws. 
Therefore, this reframing does not challenge the observations or conclusions, it cautions against their absolute ap-
plicability. In this respect, the ‘top-down’ rules mentioned here should be understood more as guidelines. 

Figure 5.2 | The complex system of interactions underlying the potential energy landscape.  
Waddington postulated that the shape of the slope in the epigenetic landscape is determined by 
the complex interaction between several molecules, here represented by the guy-ropes, the 
strength of which is ultimately controlled by genes, represented by the pegs in the ground an-
choring the guy-ropes. In the synaptic potentiality landscape, the shape of the slope is deter-
mined by a distributed network of molecular interactions within the neighborhood of the contact 
site. From Waddington, C.H., The strategy of the genes. 1957. 
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First, let’s imagine a single neuron in isolation. What does the synaptic potentiality landscape 

of this neuron look like? Since synaptic target recognition requires physical contact between two 

cellular surfaces, the probability for synapse formation drops to zero beyond the membrane. Prac-

tically speaking, then, the synaptic potentiality landscape for any given neuron is spatially con-

strained to its cell surface. Since the neuron is localized in space, this landscape is also constrained 

to that space. Lucky for us this is a thought experiment, so we aren’t limited by such pesky material 

realities. If we know the molecular composition of the cell and the environment, we could use that 

cell to measure the potentiality landscape across the environment. This would effectively map the 

synaptic potentiality landscape for that cell were it in contact with that part of the environment32. 

Thus, the synaptic potentiality landscape is practically constrained to the cell surface, but poten-

tially extends throughout the environment. 

What does that landscape look like on the cell surface? The specific potentiality function at 

any given location on the cell membrane is determined by the local chemical compositions and 

their intrinsic molecular affinities. Let’s imagine that this neuron is growing on an extended surface 

that replicates the ECM. In such a case, the neuron will engage standard cell intrinsic processes of 

axodendritic polarization and compartmentalize as discussed in the introduction. Thus, the synap-

tic potentiality landscape is not homogenous: axonal regions will have a higher probability to form 

presynapses and dendritic regions will have a higher probability to form postsynapses. 

Will it form a synapse? We know from studies discussed previously that the answer depends 

on the local environment. In general, there is a low probability a neuron will spontaneously form 

a synapse without direct cell-cell contact. Special conditions, such as electric field stimulation[200, 

 
32 Before brushing this off as a mere intellectual play, it is important to note that we can do something very similar 
via post-hoc image processing. For example, the presynaptic channels from one image could be registered onto the 
target channels of a different image. Thus, non-rigid image transformation could be used to generate a synthetic static 
map of this landscape. 
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201] or high concentrations of diffuse synaptogenic molecules[202-205] can shift this probability, lead-

ing to the formation of contact-independent hemisynaptic structures. In such cases, this framework 

suggests that the specific hemisynaptic structures that do form, i.e., presynapse or postsynapse and 

their specific molecular composition, will be determined by the local molecular composition of 

the targeted compartment. That is, the topography of this landscape at any given point in space 

and time is a function of the local molecular composition of the cellular compartment and its im-

mediate environment. 

Studies have shown that neurons tend to avoid themselves based on repulsive protocadherin 

code of self-recognition[124, 128, 131, 206, 207]. Traditionally, this is viewed as a top-down rule of neu-

ronal connectivity. Our model reframes this as just another energy barrier: neurons tend to extend 

their neurites away from themselves, thereby maximizing surface area, in part because this is a 

lower energy process than interacting with itself. We discussed earlier cases where neurons are 

forced to interact with themselves, thereby overcoming this energy barrier (and breaking the above 

rule). In such cases, these neurons will form autapses with mismatched presynaptic and postsyn-

aptic components[119]. This finding breaks another top-down rule of neuronal connectivity. Specif-

ically, neurons form presynaptic and postsynaptic components are matched based on the neuro-

transmitter: glutamatergic boutons with glutamatergic PSDs, GABAergic boutons with GABAer-

gic PSDs[129, 130]. Our model reconciles this result: given the environmental context, mismatched 

autapses are a low energy state that would be outcompeted in a more physiological context. Spe-

cifically, these autapses are higher energy states than self-avoidance, but provided forced self-

interaction, forming a mismatched autapse yields a more stable state than not utilizing the synaptic 

molecules for this purpose. From a biophysical perspective, the aggregate synaptogenic trans in-

teractions at the cell surface simply outcompete the aggregate non-synaptogenic cis interactions, 
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leading to adhesion molecule clustering and recruitment of an otherwise unutilized reserve pool of 

‘mismatched’ cytoplasmic presynaptic and postsynaptic molecules to the contact site. The clus-

tered, presynaptic and postsynaptic molecules are held in place by a few weak interactions. In 

aggregate, this mismatched state is energetically more stable than maintaining these molecules in 

a diffuse state outside of a synaptic assembly. Again, given a different context, these mismatched 

autapses would be outcompeted by more energetically favorable states. Each point on the cell 

membrane, then, has a degree of probabilities associated with different states, with the ultimate 

state established by the molecular composition, immediate environment, and system noise. 

Let’s go back to our first case, where the neuron is not forced to interact with itself. Now let’s 

add another neuron, and let’s say that these neurons come into contact. What does the synaptic 

potentiality landscape for each of these neurons look like? The Neuron Doctrine postulates that, 

as a rule33, information flow is polarized, with dendrites acting as inputs and axons acting as out-

puts[208]. In accordance with this rule, dendrites will generally have a high probability to form PSDs 

and a low probability for presynaptic boutons, and vice versa for axons. The synaptic potentiality 

landscape will thus also be generally polarized. Unlike the ‘top down’ postulates of the Neuron 

Doctrine, however, this synaptic potentiality landscape allows for exceptions. Dendro-dendritic 

synapses in the olfactory bulb[209, 210] and axo-axonic synapses such as AIS-targeting ChCs in the 

cortex or presynaptic bouton-targeting GABApre interneurons in the spinal cord[211, 212] break this 

rule of the Neuron Doctrine[208]. They are explained here by rare (but evolutionarily conserved) 

energetically favorable states that result from the specific molecular composition and compart-

mentalization within these cells. Given our two neurons, they could form an axo-axonic, dendro-

dendritic, or axo-dendritic synapse provided favorable conditions. Less stable states will tend to 

 
33 The ‘law of dynamic polarization’ 
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be outcompeted by more stable ones, and thus occur at lower frequencies. Given that there are 

only two neurons in this interaction, the low level of competition will enable low affinity molecular 

interactions during target recognition, and so also a higher number of low stability states. More 

specialized (i.e., molecularly distinct) synapses will tend to display greater stringency in targeting 

specificity than less specialized ones. Given this framework, it is perhaps unsurprising that such 

highly specialized synapses show stringent specificity[37, 211], whereas less specialized ones display 

a hierarchy of preferences in vivo[213-215]. The alternate synapses that such highly specialized cells 

would form are simply outcompeted by neurons in their surroundings. Thus, the dichotomy be-

tween stringent specificity and hierarchy of preference can be reframed as degrees of stability in 

the context of competition: a hierarchy of preference still exists for neuron types that display ‘strin-

gent specificity,’ these less-stable connections are simply outcompeted by surrounding cells within 

a physiological context. 

Let’s focus on the more common and better understood case of cells that preferentially form 

axo-dendritic synapses in a physiological context, such as a glutamatergic pyramidal cell of the 

cortex. And let’s say that it comes into contact with the target cell. Given that we have only two 

cells in our thought experiment, molecular competition is very low, and most adhesion molecules 

on the presynaptic and postsynaptic cell’s membranes (i.e. those outside of the contact site) will 

have defaulted to low affinity cis interactions (or no interactions at all). During the stage of syn-

aptic recognition at the contact site, mutually attractive adhesion molecules will lower the energy 

and mutually repulsive ones will increase it. These affinities act cooperatively and competitively 

to determine the ultimate strength of the trans interactions. That is, a combinatorial code of recog-

nition is at play. But unlike the standard AMC model that focuses on the contact point alone, we 

must also take into account other cis and trans interactions in the neighborhood. Our contact site 
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will be competing for a limited pool of molecules to stabilize the interaction, and so is operating 

in a distributed, competitive manner across both membranes. The contact site is competing not 

only with proximal cis interactions (an unengaged reserve pool), but also with trans axo-dendritic, 

dendro-dendritic, and axo-axonic connections with partially overlapping codes. Ultimately, these 

molecular interactions will default to the lowest energy state. If the initial energy barriers to break 

existing connections can be overcome, and the trans interactions at the contact site are lower en-

ergy than the competing cis and trans ones, the interactions at our contact site will stabilize. Given 

that our presynaptic cell preferentially targets dendrites, we known that these trans interactions 

will be much stronger at the target cell’s dendrites than at other subcellular regions. But this does 

not preclude weaker trans interactions at other subcellular regions of the target cell, such as the 

soma or AIS, from outcompeting even weaker cis or trans interactions in that neighborhood. In-

deed, studies have shown that glutamatergic cells from the hippocampus will form non-physiolog-

ical synapses onto soma and AIS of target cells in sparse cultures[117, 182]. Moreover, these weak 

glutamatergic connections will be outcompeted (and ultimately eliminated) by GABAergic cells 

forming more physiological connections. Note that although these GABAergic connections onto 

the AIS are more physiological, it is highly unlikely that they were formed exclusively by AIS-

targeting ChCs. Rather, as with our last example, the hierarchy of preference for target recognition 

is on display. In this case, the low level of competition is revealing unstable states arising from 

low affinity interactions that otherwise would be outcompeted in a more physiological context. 

Thus, the probability function for any synaptic state is modulated in part by activity-independent 

cellular competition distributed across the membrane. 

Let’s say that we got lucky and our two cells have not only come into contact, but also formed 

a stable trans interaction. We’ve determined that they can form a synapse, but will they? Simply 
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put, if the energy landscape at the contact site favors synapse formation, a synapse will form spon-

taneously. The current view suggests that synapse initiation is determined by retrograde and ante-

rograde signaling transsynaptic signaling, which transforms the contact site into a nucleation site 

for synaptogenesis[129]. Specifically, this nucleation is thought to occur via signaling from synaptic 

organizers at the membrane (typically thought to be adhesion molecules) into the cytoplasm, 

thereby recruiting synaptic components that establish a stable, functional synaptic structure. Im-

portantly, it makes no difference whether nucleation progresses through a few strong interactions 

or many weak ones, the result is the same either way: a dynamic, evolutionarily conserved process 

of molecular recruitment and assembly that yields an even more stable state, a synapse. We agree 

such signaling from the membrane and molecular recruitment is critical for initiating synaptogen-

esis, but suggest that it is only part of the picture. To explain this position, let’s go back to pre-

nucleation, where we have a stable trans interaction between our two cells of interest. Whether or 

not the energy landscape at the point of contact favors nucleation depends not only on the molec-

ular interactions at that location, but also those in the surrounding neighborhood. As studies have 

shown, initiation of synaptogenesis is determined not simply by transsynaptic communication, but 

also by a distributed network of molecular interactions within the proximity of the contact site[117, 

176, 177, 182, 187, 188]. These interactions include the distributed cis and trans interactions on the mem-

brane described before, as well as intracellular and extracellular interactions. For example, pre- 

and postsynaptic components spontaneously cluster (form condensates) in a concentration-de-

pendent manner even in the absence of cell-cell contacts, suggesting that these molecules exist in 

equilibrium between condensed and diffuse states[131, 216-229]. Adhesion molecules interacting in 

trans will stabilize clusters of pre- and postsynaptic components, shifting the balance toward the 

condensate state[228]. The total quantity of these nucleated components is limited, however. Thus, 
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higher reserves outside of the contact site will increase the probability of recruitment, whereas 

lower reserves will decrease it. That is, nucleation is a competitive process: synaptogeneisis is 

more likely to occur at low affinity contact sites when there is less competition for the requisite 

molecules in the neighborhood. As with target recognition, increased competition will increase 

specificity. Indeed it is difficult to conceptualize how his synaptic target recognition and synapse 

formation could operate via relative (not absolute) expression levels [133, 173, 176, 177, 198] unless they 

function through competitive network interactions distributed far beyond the contact site. Thus, 

initiation of synaptogenesis is determined not only by the strength of signaling from the contact 

site into the cytoplasm, but also by the synaptogenic potential at the contact site (a function of the 

neighborhood). 

These conclusions suggest that distinct regions on a neuron will have distinct synaptogenic 

potentials. Moreover, since distinct synaptic states have distinct requisite molecules, each state 

will have a distinct synaptogenic potential determined by the neighborhood concentrations of those 

requisite molecules. The same two neurons, with ostensibly the same presynaptic and postsynaptic 

components, can therefore form an array of molecularly distinct synapses as a result of differential 

synaptogenic potential and varied levels of molecular competition in the neighborhood. The dis-

cussion of component clustering above shows how activity-independent molecular interactions in 

the cytoplasm and membranes in the neighborhood can impact the synaptogenic potential. Synap-

togenic potential can also be modulated by extracellular molecules, including diffusible secreted 

factors acting over long distances[187, 188, 230] or locally secreted extracellular scaffolding proteins 

from neuronal and non-neuronal cells[189-192, 230-236] or via network proximal activity-dependent 

processes associated with synaptic plasticity (e.g. homo- and hetero-synaptic crosstalk)[178-181, 237-

239]. Defining the molecular mechanisms that determine this synaptogenic potential will be critical 
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not only for understanding synapse formation, but also uncovering the hierarchies within the com-

binatorial code of synaptic recognition. Importantly, based on the above discussion, ‘synaptogenic 

potential’ should not be understood as a simple measure applicable to all synapses. Rather, similar 

to the hierarchy of preference, it is a multidimensional metric defining the probabilities to form 

different synaptic states at that location. At a cell-cell contact, each membrane will have distinct 

synaptogenic potentials that will synergistically determine the probabilities for all possible synap-

tic states at the contact site. Critically, stable contacts can exist without acting as nucleation sites, 

thereby establishing a reserve pool of contact sites for activity-dependent synaptic plasticity[178-181, 

237-239]. Thus synapse formation and elimination are accompanied by nucleation and denucleation, 

respectively, unstable transitionary states wherein the neighborhood is dynamically adjusting the 

reserve pool of synaptogenic molecules and so also the synaptogenic potential within it. 

Let’s say that our luck still hasn’t run out, and a synapse forms at our contact site. We stated 

earlier that the synapse is a low energy state between unstable transitionary states. Why is the 

synapse more stable? The heightened stability is due to evolutionarily conserved, self-reinforcing 

interactions that dynamically maintain low energy states. The synaptic scaffolding condensates 

discussed in the introduction are good examples of such energetically favorable states[216, 217, 219, 

221-223, 225]. Here, a concentration-dependent fluid-fluid phase transition leads to the formation of a 

subcellular compartment consisting of high concentrations of highly specialized pre- or postsyn-

aptic components. The stability of these compartments is evident from studies where the applica-

tion of an environmental stimulus leads to the formation of ‘hemisynaptic’ assemblies (pre- or 

postsynaptic structures without their post- or presynaptic counterparts) independent of cell-cell 

contacts[200-203]. These structures persist for hours after the initial stimulus is removed, a testament 
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to the self-reinforcing nature of the reciprocally attractive molecular interactions within (and re-

pulsive interactions at the surface of) the condensate. When such condensates form at a cell-cell 

junction, the result is two self-sustaining subcompartments bridged by a network of stable adhesion 

molecules. Stabilization on one side leads to stabilization on the other, a virtuous cycle that that is 

not only energetically favorable, but also self-reinforcing. 

So we have our synapse. Compositionally, what does it look like? A synapse consists of two 

highly compartmentalized networks of molecular interactions on either side of the synaptic cleft, 

connected by a network of transsynaptic adhesion molecules. In total, a single synapse will be 

comprised of hundreds of distinct, highly specialized molecules[240]. These components can be 

broken down categorically by associated functions. All presynapses contain exocytic and endo-

cytic components, proton loading mechanisms vesicle release machinery, active zone proteins. All 

postsynapses contain neurotransmitter receptors, scaffolding molecules, and signal transduction 

mechanisms. Proteomics studies suggest all synapses share certain generic components, such as 

synaptic vesicle vesicular ATPases (vATPases) and proteins mediating synaptic vesicle endocy-

tosis[240]. Such ubiquitous synaptic molecules appear to be the exception rather than the rule, how-

ever. Research has revealed a remarkable diversity of chemical synapses within the CNS[241-243]. 

Given that over a thousand synaptic molecules have been identified, the compositional diversity 

of these molecular networks is potentially staggering. Perhaps unsurprisingly, synaptic proteomes 

from more closely related neuronal populations displayed greater levels of compositional overlap. 

That is, much of this diversity can be explained by the molecular identities (expression profiles) 

of the presynaptic and postsynaptic cells. Two distinct types of presynaptic neurons will form 

morphologically, molecularly, and functionally distinct synapses on the same postsynaptic cell. 

Similarly, the same presynaptic cell can form distinct synapses onto two (or more) different types 
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of postsynaptic cells (Our data here, see also[79, 80, 195, 242]). Molecular expression profiles constrain 

composition, but they do not dictate it entirely. A single presynaptic cell can form multiple differ-

ent types of synapses onto the same postsynaptic cell (Our data here, but see also [117, 182]), indicat-

ing that the specific composition of the pre- and postsynaptic structures ultimately depends on the 

molecular composition of (and competition within) the neighborhood and local environment 

around the contact site. 

Even more critical than stability or composition is functionality. Subcellular compartmental-

ization adjusts local molecular concentrations, altering the energetics of reactions. Pre- and 

postsynaptic assemblies create highly specialized microenvironments that increase efficiency of 

certain reactions and decrease the efficiency of others. That is, the same molecules will establish 

different network connections and function differently in a condensed synaptic assembly than in a 

diffuse cytoplasmic state[219, 229]. Moreover, the spatial segregation of these molecular networks 

enables them to function as partially isolated entities that are nevertheless integrated within a larger 

whole. The relationship between functional segregation and integration within a network has been 

formalized mathematically as ‘complexity’, and serves as a metric for the degree of independence 

between small and large subsets of a system[244-250]. Such complexity exists not only within the 

molecular networks comprising the synapse itself, but also between those synaptic networks and 

its local neighborhood. We discussed activity-independent homo- and heterosynaptic cross-talk 

above. We know also know from research on research on synaptic plasticity that activity-depend-

ent events at one synapse will affect other synapses in the neighborhood[178, 179, 181, 238, 239, 251, 252]. 

Given the compositional differences between synaptic types and the spatially distributed nature of 

synaptic network effects, it is perhaps unsurprising that molecularly similar synapses (homosynap-

tic) ones will abide by distinct coordinated plasticity rules than dissimilar (heterosynaptic) ones[180, 
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237, 238], (reviewed in [178, 179, 181, 239]), or that molecularly distinct subcellular compartments (e.g., 

proximal vs distal dendrites) abide by distinct plasticity rules[238, 251-254]. Indeed, the proximity re-

lationships defined by these plasticity studies may help to elucidate the spatial extent of these 

distributed network effects impacting events at a given contact site. Clarifying the causal bounda-

ries of this neighborhood will be critical for formulating a mathematical model to predict synaptic 

state transitions. 

5.3.3. Defining synaptic state: conceptual and practical considerations 

We mentioned earlier that ‘Synaptic state’ encompasses the full breadth of synaptic properties: 

existence, morphology, molecular composition, polarized/depolarized, physiological profile, etc. 

We propose that any specific combination of these properties represents a distinct synaptic state. 

Thus, ‘synaptic state’ is a multidimensional, quantitative descriptor associated with any point on 

the cell (or potentially any point in space). From this perspective, every synapse is unique, and 

synaptic diversity is the rule, not the exception. Conceptually, the complete set of all possible 

combinations encompasses the complete set of possible synaptic states. 

In reality, we know that certain properties are mutually exclusive. That is, due to fundamental 

constraints, the observed synaptic states represent a small subset of all potential states. For exam-

ple, gephyrin condensates exclude glutamatergic postsynaptic molecules and PSD95 condensates 

exclude GABAergic postsynaptic molecules[216, 217, 219, 221-223, 225] (c.f. introduction). This mutual 

exclusivity extends far beyond presynaptic neurotransmitter enzymes and postsynaptic scaffolding 

molecules. Using fluorescence activated synapse sorting (FASS) of synaptosomes coupled with 

mass spectrometry (FASS/MS), Van Oostrum and colleagues found very little overlap between 

the proteomes of GABAergic and glutamatergic synapses (~1% of the 1134 synapse-enriched pro-
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teins)[240]. This segregation is not simply due to transcriptional differences, but also post-transla-

tional compartmentalization. When both glutamatergic and GABAergic neurotransmitter synthesis 

enzymes are expressed in the same cell, these components segregate into distinct presynaptic struc-

tures with distinct functional properties[195, 255, 256]. Pre- and Postsynaptic structures with high con-

centrations of both glutamatergic- and GABAergic-specific molecules are high energy, unstable 

states. Such states either spontaneously collapse or never form in the first place. Specific combi-

nations that we do witness represent low energy states: distinct stable combinations of molecular, 

morphological, and functional properties. Provided favorable conditions, specific synaptic struc-

tures with distinct properties will form spontaneously. Ultimately, the specific state that arises is 

determined by the molecules available, their intrinsic binding affinities, the local conditions, and 

the amount of noise in the system. In other words, the result depends on the expression profiles of 

the presynaptic and postsynaptic cells and the immediate environment around the synapse. 

We also know that certain properties tend to occur together. For example, co-expression of 

specific calcium-mediated vesicle-binding (Syt2) and calcium-buffering (PV) proteins enable 

rapid synaptic communication in fast-spiking interneurons[257-265], as discussed in the introduction. 

Indeed, this observation can be extended to entire molecular networks of co-enriched molecules[240, 

266]. Van Oostrum and colleagues, for instance, identified multiple modules of highly co-enriched 

proteins within both GABAergic and glutamatergic synapse populations[240]. It is important to em-

phasize here that biological systems operate as degenerate networks[249, 267-271]: many distinct mo-

lecular compositions can lead to phenotypically similar synapses. This is most clearly depicted by 

clustering on a UMAP. Within this space, every possible state is represented, but only specific 
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combinations are realized. Although each individual synapse is unique, there are specific proper-

ties that are more likely to co-occur than others. According to this formulation, then, the total 

number of unstable synaptic states far exceeds the number of stable ones. 

Finally, from a practical standpoint, we do not have the ability to measure the full breadth of 

properties simultaneously for any given synapse. Our insights into these properties are fundamen-

tally limited by the tools we are using. An incomplete dataset can still be useful, however. We 

show in this work how visualization of four molecules enabled us to extract over 430 unique met-

rics. These ‘properties’ comprise a partial view of the multidimensional landscape these synapses 

inhabit. Dimension reduction and clustering analysis suggested that each of these synapses exists 

as one of nine classes. This clustering analysis provides us with a picture of the network’s degen-

eracy: the ability of structurally different elements to yield the same output[249]. 

5.3.4. Biophysical assumptions and their implications for neuronal connectivity 

This framework makes several assumptions based on fundamental biophysical and genetic 

principles. To be sure, none of the following assumptions are controversial, and most biologists 

will be familiar with each of them. Since they form the basis of this framework, however, it is 

important to state them clearly. We spell them out here and discuss their implications regarding 

neuronal connectivity. 

First, this framework implicitly accepts that molecules will be repurposed in different contexts 

if it is energetically favorable to do so. Fundamentally, molecular repurposing implies multifunc-

tionality, the ability of the same element to perform multiple functions or achieve multiple out-

comes within different contexts. That is, a molecule’s function is context-dependent, defined by 

its interactions within the molecular network and local conditions rather than some intrinsic and 

unchanging property of the molecule itself. This multifunctionality allows for genetic efficiency: 
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this versatility allows the system to dynamically adjust to changing conditions and perform a wide 

range of functions without requiring specialized components for each task. The same gene product 

can perform different functions in the same cell at different developmental stages[272-275]. The same 

molecule can also perform different functions at the same developmental stage in different cells[57, 

61]. We discussed examples of both in the introduction. Context-dependent functionality also im-

plies that removing such components can have context-dependent, heterogeneous effects. We dis-

cussed an example of this in the introduction, where deletion of Netrin-G2/NGL-2 had distinct 

effects depending on their pre- or postsynaptic expression[276-281]. These represent distinct synaptic 

states; deletion of the same component in these different contexts differentially destabilized each 

of these states in different ways. 

Second, it implicitly embraces molecular functional redundancy34. Whenever functionally re-

dundant molecules are available and their involvement is energetically favorable, they’ll be incor-

porated. This functional redundancy adds robustness to the system at the expense of efficiency. 

But it also conceptually reframes the underlying molecular interactions. They do not operate hier-

archically, as previously proposed[129, 130, 208]. Rather, they function as degenerate networks, where 

structurally different elements can yield the same output[249, 267-271, 282, 283]. The effect of altering 

these elements (e.g., by removing a component) or the environment depends on how central it is 

to the stability of the synaptic state(s). Taking out a central node could lead to complete collapse 

of most, if not all synapses. Functionally redundant molecules buffer these effects. Removing a 

redundant component could lead to instability, but strictly speaking, no phenotypic change. We 

 
34 We are here using the more familiar phrase ‘functional redundancy’ to evoke the more precisely defined concept of 
‘degeneracy.’ Strictly speaking, redundancy occurs when the same function is performed by identical elements, 
whereas degeneracy is the ability for structurally different elements to perform the same function in a context-depend-
ent fashion[249, 269]. Note the formal relationship between degeneracy, defined here, and multifunctionality, the ability 
of structurally identical elements to perform different functions within different contexts. Of note, in physics degen-
eracy refers to systems that exhibit multiple discrete or distinct energy values or states[269]. 
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discussed examples of this in the introduction, with Semaphorins/Plexins in the hippocampus[284-

287]. Gene products do not have to be homologous to be functionally redundant. This is exemplified 

by the roles of the evolutionarily unrelated adhesion molecule fasciclin and the cytoplasmic tyro-

sine kinase abelson in drosophila axon pathfinding[288]. Deleting either gene individually causes 

no significant abnormalities, but the absence of both leads to major defects in growth cone guid-

ance, rerouting commissural axons and formation of ectopic connections. We also witness this 

phenomenon with disease mutations. The genetic terms ‘penetrance’ and ‘expressivity’ ultimately 

describe probabilistic relationships between disease mutations and disease states. In synaptic dis-

eases, incomplete penetrance and/or expressivity are based on functional redundancy and synaptic 

state stability. Moreover, destabilization of one synaptic state may result in the adoption of another. 

This is witnessed with the complete removal of all neurexins, which has little effect on gross syn-

apse numbers and instead leads to diverse alterations in synaptic functional and morphological 

properties[129, 289]. When an intervention prompts large-scale state changes across multiple synaptic 

populations, this is known as “synaptome reprogramming”[1, 241, 290]. Combined with the heteroge-

neous molecular composition of synapses, state degeneracy explains the observation that partial 

phenotypes are more common than complete loss in knockout models[129, 130]. We discuss this in 

greater depth below. 

Third, the potentiality landscape is spatially extended. The synaptogenic potential at a contact 

site is determined through a distributed network of molecular interactions that extends far beyond 

the site of contact. This blurs the typically sharp boundaries for what we call a synapse: a compre-

hensive understanding of a synapse requires not only definition of the molecules within the pre-

synaptic and postsynaptic compartments and transsynaptic interactions, but also a comprehensive 

characterization of the neighborhood within which it exists. This assumption implicitly relates to 
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subcellular compartmentalization. Many molecules will spontaneously segregate into spatially dis-

tinct regions of the cell after reaching specific threshold concentrations. Compartmentalization is 

a fundamental principle of cellular biology: heightened local concentrations alter the energetics of 

reactions, thereby increasing efficiency. Moreover, these spatially segregated (but nevertheless 

connected) molecular networks function as partially isolated entities. As noted above, this rela-

tionship between interconnectivity and independence of nodes within a network has been formal-

ized mathematically as ‘complexity’[244-250]. It accords with data showing that individual synapses 

can operate independently, while still being integrated into the wider cellular network. This inter-

connectivity and semi-independence of molecular networks extends beyond simply synapses. A 

fundamental distinction can be made here between molecular networks within the cell (cell intrin-

sic) and those in the environment (cell extrinsic). Clearly, these networks are themselves con-

nected, and so the (ultimately false) dichotomy between ‘cell’ and ‘environment’ is based on de-

gree of network independence rather than two fully isolated entities. Cell intrinsic processes shape 

the environment, and vice versa. Truly independent entities are fully outside each other’s sphere 

of influence. Defining these spatial limits of biological causality in vivo, as done by Francis & 

Palsson for diffuse molecules in vitro [53], will help to constrain this complexity and identify the 

operative ‘environment’ for any given cell. 

Fourth, this formulation is inherently dynamic. The dynamic nature of synapse formation im-

plies that the relative impact of any individual component on the potentiality landscape is not static. 

Rather, an adhesion molecule important for establishing that initial pseudo-stable nucleation state 

during recognition may be inconsequential once the synapse is established, as has been witnessed 

experimentally[137, 291] (reviewed in [292]). This fits with well-established models of ‘critical peri-

ods’ during development. 
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Fifth, it also allows for nested state changes, where one aspect of the system can change dra-

matically, while leaving other aspects relatively unperturbed. An illustration of this concept from 

the potentiality landscape is a deep valley with a small hill in the center. The local minima on 

either side of the hill are distinct states. An example is polarization and depolarization. The synapse 

is easily able to jump between these two states, which in turn prompts distinct molecular interac-

tions (Ca2+ influx, vesicle binding, neurotransmitter release, etc.). But the overall structure and 

stability of the synapse itself (represented by the deep valley) is not changed. 

As noted above, none of these principles should be controversial or unfamiliar. Biologists call 

upon functional repurposing whenever they discover a new function for a biomolecule; they invoke 

functional redundancy when a loss of function intervention does not yield a loss of phenotype. In 

other words, these concepts are used retrospectively. As such, they are currently prospective only 

insofar as they predict that biological systems can behave unpredictably. We propose that the syn-

aptic potentiality landscape provides a framework to utilize these concepts prospectively: it pro-

vides the theoretical basis for a mathematical formalization to predict stable synaptic states based 

on cellular composition and context. 

5.3.5. Nothing is necessary, everything is sufficient: embracing nomenclature for a probabil-
istic, degenerate framework 

At its heart, this framework is probabilistic, not determinist. Truly embracing this concept 

forces us to evolve our nomenclature. It suggests probabilistic and quantitative descriptions of 

phenomena rather than the strict binaries of necessary and sufficient that are intrinsic to determin-

istic models. To explore this concept further, it’s helpful to understand how the current determin-

istic language is insufficient to describe the phenomena. This will reveal why it is necessary to 

abandon it in favor of a more accurate, probabilistic nomenclature.   
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Loss-of-function and gain-of-function experiments are staples of modern biology. The com-

mon interpretation of loss-of-function experiments is that they reveal molecules to be necessary, 

whereas gain-of-function experiments show them to be sufficient. Descriptions of specific mole-

cules being necessary and essential for specific connections are common in the literature. A careful 

assessment of the data, however, will reveal that most of these loss-of-function interventions result 

in partial phenotypes: decreased synapse numbers on the target instead of full elimination[61, 137, 

293-300]. Strictly speaking, a partial phenotype indicates that the removed molecule is not necessary; 

rather, its loss decreases the probability of forming the stereotyped connections. The synaptic po-

tentiality landscape naturally lends itself to such descriptions. It also offers a framework for un-

derstanding those ‘robust’ synapses that remain. They can be explained by molecular redundancy, 

repurposing of the lost molecule, synapses outside of a critical window, or simply stochastic noise. 

It is also not at odds with truly deterministic phenomena. It simply reframes them as specific limit 

cases of the probability function, where the probability is expressed in binarized 1’s and 0’s. In 

this way, it allows us to reconcile the data while providing accurate language to describe partial 

phenotypes. 

We can also look at this from the other side, namely gain-of-function experiments. Artificial 

synapse assays, the standard gain-of-function experiment in the connectivity field, suggest it is 

relatively easy to create a synapse. Indeed, many synaptic adhesion molecules induce synapse 

assembly[114, 130, 132, 291, 301-306], including molecules where knockout animals show little to no 

change in synapse numbers[303, 305, 307]. Viewed from a deterministic lens, these results are puz-

zling[129, 130]. The problem becomes even more paradoxical with studies that show synapse for-

mation can be induced independent of complementary adhesion molecules. Examples include 

postsynapse formation by local application of diffusely secreted molecules[202, 203] and electrical 
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field stimulation[200, 201], or presynapse formation by interaction with polylysine coated beads[204, 

205]. Of note, the resultant ‘hemisynaptic’ assemblies are morphologically and molecularly identi-

cal to standard pre- or postsynaptic structures. Regarding a role for adhesion molecules in synapse 

formation, ultimately these experiments suggest that none are necessary and many are sufficient. 

Given a deterministic framework, these findings are paradoxical[129, 130]. A probabilistic, de-

generate framework makes sense of these results. Such ‘sufficient’ conditions simply result in an 

energetic state that favors synapse formation. In other words, the nucleation step proposed to be 

driven by synaptic organizers[129, 130] can be achieved through any number of favorable conditions. 

Most of these nucleation events are driven by the neuron encountering complementary synaptic 

adhesion molecules on a stable surface. Some of them are completely independent of such mole-

cules. Either way, the result is the same: increased probability to form a synaptic assembly. 

At first glance, this reformulation may appear to be in opposition to the adhesion molecule 

code model of synaptic recognition. It is not. Rather, it generalizes this model and makes it dy-

namic. It proposes that cells (and even subcellular regions) will have optimized codes depending 

on their current state and molecular composition. That is, cells do not adhere to a singular, static 

synaptic adhesion molecule code. The interaction probabilities and their relative importance are 

dynamic and spatially extended; they adjust in accordance with the broader cellular and molecular 

context[156, 173, 187, 188, 295]. On the spatial front, this accords with studies showing that relative, not 

absolute, adhesion molecule concentrations control targeting preference[54, 128, 131, 133, 156] or that 

gradients of diffusely-secreted molecules can impact the probability of synapse formation[187, 188]. 

On the temporal front, this accords with well-established concept of developmental critical periods 

for synapse formation and maintenance[137, 291] (reviewed in [292]). Molecules important to stabilize 

cell-cell interactions during synaptic target recognition may be less important after synaptogenesis, 
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when molecular crosstalk and network effects have stabilized the synapse[137, 291]. The probability 

function associated with any individual code will change depending on the amount of cellular 

competition, for instance in dissociated culture versus intact tissue. 

5.3.6. Turning a heuristic into a predictive model 

We provide a conceptual framework here to understand synapse formation. The framework 

reconciles a large number of fringe cases of synaptic connectivity that are unexplained by current 

models. At its heart it is probabilistic, and arises from molecular interactions between the presyn-

aptic cell, the postsynaptic cell, and the local environment. It was inspired by Waddington’s epi-

genetic landscape but ultimately is based on a wide body of literature on neuronal connectivity, 

biochemistry, physical state modeling, and network modeling. It suggests that synapses operate as 

incompletely isolated degenerate networks[249, 267-269]. 

As it stands, however, this is a heuristic. Ultimately the utility of a model is based on its 

predictive power. In order for this framework to be formulated as a predictive model, it will have 

to be formalized mathematically. There are four requirements here:  

1. a comprehensive definition of stable (degenerate) synaptic states, 

2. the underlying variables that determine them,  

3. an experimental system to test them, and 

4. a mathematical theory to tie these together. 

Regarding the first two requirements, a more comprehensive molecular and functional char-

acterization of individual synapses, and the conditions within which they occur, will help to define 

the model’s constraints and enable comparison, transference, and testing. This is not a one lab job. 

It will require standardization and centralization of definitions and datasets from many different 
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sources and experimental designs. NCBI/NLM has established a navigable repository for gene 

expression datasets. The same needs to happen for multidimensional imaging data in neuroscience. 

These data must incorporate a systematic accounting of intrinsic (the molecules probed and the 

measures utilized) and extrinsic (environmental) variables. The latter includes not only treatments 

and mutations, but also contextual information, such as the tissue source (e.g., age and region 

dissociated for primary culture) and end stage sample data (e.g., culture age, fixation protocol, 

etc.). Once established, this archive should be integrated with ever-growing databases of neuronal 

connectivity, cellular expression profiles, molecular interaction networks, and molecular affinities. 

As discussed above, it is not enough just to know what is expressed, we also have to know where 

those molecules localize. A more complete understanding of subcellular localization profiles 

would greatly help here. This in turn will require more comprehensive annotation of subcellular 

compartments beyond the synapse. Such an ecosystem will enable computational researchers to 

assess spatial correlations and formalize synapse identities. 

At the end of the day, molecular profiles of synapses and their immediate environments will 

be required. A multidimensional imaging approach like ours, with a more comprehensive panel of 

synaptic, subcellular, and cellular markers will be critical to achieve this goal. This will require 

advances in multiplexed imaging of proteins. We discussed progress on this front, as well as per-

ceived barriers, earlier in the discussion. It is clear, however, that we are still years away from an 

imaging approach that parallels singe cell RNAseq at the protein level. In the short term, however, 

we can make probabilistic statements about synaptic states based on incomplete knowledge of 

molecular composition. We show here, for instance, how the distribution of synaptic targeting 

shifts with increasing concentrations of IL-13. We can formulate this relationship as a probabilistic 

statement between presynapse, postsynapse, environment, and noise. In this case, ‘synaptic state’ 
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is simply the bouton targeting class, and the stability of each is reflected in their relative propor-

tions and classification probabilities. The ‘underlying variables’ are admittedly incomplete (and 

indirect) measures of molecular composition: antibody staining and fluorescent protein expression. 

Nevertheless, we are able to conclude that changes in the environment (IL-13 concentrations) im-

pacts synaptic state stability. A similar conclusion can be reached from the different Cre driver 

lines, where we categorically change the molecular composition of the presynapse by altering cel-

lular identity. Unsupervised classification yielded insights into unexpected differences in synaptic 

states based on presynaptic cell identity. Clearly more comprehensive knowledge of presynaptic 

and postsynaptic molecular composition will enable finer distinctions in synaptic state classifica-

tion. Nevertheless, this approach helped us to uncover previously unrecognized differences in axon 

growth strategies of BCs and SstCs. That is, we are able to make significant advances even with 

an incomplete picture. The unmeasured properties, then, constitute noise: aspects of the system to 

which we are blind, and thus a source of error in any predictive system. Incorporating this unmeas-

ured ‘noise’ into a formalized model as a variable will be critical to quantifying how predictive it 

is. 

This last point brings up the third requirement: an experimental system for testing. We propose 

that tissue culture offers a means to massively increase throughput and therefore also test various 

models and conditions. We discussed at length the potential to use our system for adhesion mole-

cule screening and drug screening. These are examples of varying synaptic molecular composition 

and environmental conditions, respectively. In both cases, the primary outcome is a probabilistic 

statement about synaptic states. 

Finally, regarding the mathematics. We show in this study how multidimensional analysis can 

provide information on stable synaptic states. Measuring synaptic properties and defining stable 
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states is only the first step to formulating a predictive model, however. A predictive model will 

require an understanding of the underlying network’s degeneracy, i.e., how distinct combinations 

of synaptic properties and environmental conditions can yield similar synaptic phenotypes[249, 267, 

270, 271, 283]. There is a rich mathematical theory for modeling degenerate networks that could be 

applicable here[269, 308-310]. Neurons and the networks they create are complex systems: they consist 

of multiple incompletely isolated networks that operate with semi-independence[246, 247, 249, 250, 308-

311]. Incorporating this notion further complicates the picture. Complex systems[246, 247, 250] and their 

relation to degeneracy[249, 269] have been modeled mathematically for anatomically-connected brain 

regions. It remains to be seen whether these concepts can be reformulated for molecular interac-

tions in 3D space, where structural connectivity between the operative entities is fundamentally 

distinct. Finally, we discussed how both activity-independent (molecular) and activity-dependent 

(plasticity) competition can affect synaptic connectivity. This suggests that there are at least two 

distinct but related forms of synaptic competition that must be incorporated into the model. As-

suming a priori winner and loser identities can simulate processes occurring downstream of this 

identification, but it cannot identify how synapses become winners or losers in the first place[312]. 

Mathematical frameworks to detect (rather than assert) winners and losers have been formulated 

for cellular competition (survival vs death)[312], and could be a guide to a mathematical framework 

for synaptic competition. That said, cellular and synaptic competition are fundamentally distinct 

processes. For cellular competition, homotypic conditions can be used to establish a baseline of 

survival free from competition, which is in turn compared to heterotypic (competitive) conditions 

that forces winners and losers. Synapse formation differs insofar as heterotypic conditions not only 

result in the loss of specific synaptic states, but are oftentimes a prerequisite for the emergence of 

others. Moreover, current formulations for cellular competition are limited to just two populations. 
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There are likely hundreds of distinct, stable synaptic states, however, which are in part determined 

through distributed network effects within the microenvironment. Thus, reformulating the current 

framework would require not only extension beyond two competing identities, but also incorpora-

tion of context-dependent spatially extended conditions as parameters. Although difficult, such a 

framework would help us to determine which synaptic states actually compete with one another, 

while also identifying the factors that drive synaptic competition and synaptic state acquisition. In 

other words, it would help to map the synaptic potentiality landscape itself. 

Ultimately, we show a static picture of synaptic states. Synaptic development is a dynamic 

process, however. Synapse formation may be initiated by direct contact between a presynaptic and 

postsynaptic cell, but the events before and after have a bearing on the synaptic phenotype that 

ultimately arises. Even after maturation there is tremendous plasticity and turnover. Understanding 

how these states evolve over time is of great interest. But it is also a difficult problem. There is a 

rich mathematical theory of dynamical systems that could be useful here. Indeed, such approaches 

have been proposed and used to model cellular differentiation[48, 125, 155]. Whether these approaches 

are applicable to a spatially-extended 3D environment is unclear, however. It is also unclear 

whether such approaches can be synthesized with the previously mentioned methods to model 

degeneracy and complexity. It will be exciting to see whether these mathematical frameworks can 

be wrangled into a formalized model with real predictive power. At the end of the day, however, 

such a formalized model will have to be tested and validated using empirical data. We hope that 

the system we presented here provides the groundwork for these advances. 35  

 
35 Thank you for reading! I genuinely appreciate your dedication and attention. 
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Tables 

Table 1: Mouse lines used in this study 

 

 
 

  

Type Internal 
Name 

Alternate Name Strain Strain # Source 

Driver 
Lines 

Nkx2.1Cre BAC-Nkx2.1Cre C57BL/6J-Tg(Nkx2-1-cre)2Sand/J 008661 Jax 

  Nkx2.1CreER Nkx2.1CreER 

Nkx2.1CreERT2 
STOCK Nkx2-1tm1.1(cre/ERT2)Zjh/J 014552 Jax 

  PVCre PVCre,  
Pvalb-IRES-Cre 

B6;129P2-Pvalbtm1(cre)Arbr/J 
008069 Jax 

  SstCre Sst-IRES-Cre STOCK Ssttm2.1(cre)Zjh/J 13044 Jax 

  SstCreER SOM-CreER,  
SOM-CreERT2, Sst-
CreER, SstCreERT2 

B6(Cg)-Ssttm1(cre/ERT2)Zjh/J 010708 Jax 

  NexCre Math2/Cre, Neu-
rod6-cre, Neu-
rod6/Cre, NexCre, 
NEX-Cre 

Neurod6tm1(cre)Kan MGI:266865
9 

Schwab, et 
al., 2000 

Reporter 
Lines 

Ai34 Ai34D  
Ai34(RCL-Syp/tdT)-D 

B6;129S-Gt(ROSA)26Sortm34.1(CAG-

Syp/tdTomato)Hze/J 
012570 Jax 

  Ai14 Ai14 ,  
Ai14D 
Ai14(RCL-tdT)-D 

B6;129S6-Gt(ROSA)26Sortm14(CAG-

tdTomato)Hze/J 
007914 Jax 

Mutant 
Lines 

Reeler reeler, RelnRL B6C3Fe a/a-Relnrl/J 000235 Eric Olson 

Other SW Swiss Webster Tac:SW 
 

Taconic 
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Table 2: Genotyping primers 

reaction/target primer name alternate name(s) 
sequence 

250bp Internal 
Control Myog F Myog F, 250bp Internal Control Fwd 

TTACGTCCATCGTGGACAGC 

250bp Internal 
Control Myog R Myog R, 250bp Internal Control Rev 

TGGGCTGGGTGTTAGTCTTA 

265bp Internal 
Control isl1-Flox F1 

isl1-Flox F1, 265bp Internal Control 
Fwd 

TCT CTC ATT GGG GAA GCA AC 

265bp Internal 
Control isl1-Flox R1 isl1-Flox R1, 265bp Internal Control Rev 

TCC AGT GAA GGC CTT CC AGT 

Ai34/Ai9 oPDD001 oPDD001, ROSA_Ai--_tgLoxP_F 
AGCTGATCCGGAACCCTTAATA 

Ai34/Ai9 oPDD002 oPDD002, ROSA_Ai34_hSyn_R1 
TTCAGCCGAGGAGGAGTAGT 

Ai34/Ai9 oPDD004 
oPDD004, ROSA_Ai34_hSyn_F2| 

Ai34_ea1_F 
CCCACCTCCTTCTCCAATCA 

Ai34/Ai9 oPDD005 
oPDD005, ROSA_Ai--_tdTom_R2, 

Ai34_ea1_R 
CCT TGG AGC CGT ACA TGA AC 

Ai34/Ai9 oPDD007 
oPDD007, ROSA_Ai--_tdTom_R3, 

Ai34_ea2_R 
TGG AGC CGT ACA TGA ACT GG 

Ai34D 12209 12209, Ai34D Mutant, hSyp 
GGA GTG TGC CAA CAA GAC GGA GA 

Ai34D 12210 12210, Ai34D Mutant, hSyp 
CCA GCC TGT CTC CTT GAA CAC GA 

Ai9 oIMR9105 oIMR9105, Ai9 Mut Fwd, tdTomato  
CTGTTCCTGTACGGCATGG  

CreER CreERT2 F CreERT2 F 
GTGCCTGGCTAGAGATCCTG 

CreER CreERT2 R CreERT2 R 
AGAGACTTCAGGGTGCTGGA 

GFP EGFP-353For  EGFP-353For , GFP Fwd 
ACACCCTGGTGAACCGCA TCGAG  

GFP EGFP-648Rev  EGFP-648Rev , GFP Rev 
GCGCTTCTCGTTGGGGTCTTTGC  

NexCre NexCre #4 NexCre #4, NexCre Forward 
GAGTCCTGGAATCAGTCTTTTTC 

NexCre NexCre #5 NexCre #5, NexCre WT Reverse 
AGAATGTGGAGTAGGGTGAC 

NexCre NexCre #6 NexCre #6, NexCre Cre Reverse 
CCGCATAACCAGTGAAACAG 

Nkx2.1Cre 14314 14314, Nkx2.1Cre Transgene Reverse 
CGG TTA TTC AAC TTG CAC CA 

Nkx2.1Cre 17400 17400, Nkx2.1Cre Transgene Forward 
CTC TGG TGG CTG CCT AAA AC 

Nkx2.1CreER 14015 14015, Nkx2.1CreER Common F 
GCC TCC ACT CAA GCC AAT TA 

Nkx2.1CreER 14016 14016, Nkx2.1CreER Wild type Reverse 
CCT GGC CCT GTC TGT ACG  

Nkx2.1CreER oIMR9377 
oIMR9377, Nkx2.1CreER Mutant Re-

verse 
ATG TTT AGC TGG CCC AAA TG 

QIA-CRE CRE-QIAGEN-FW CRE-QIAGEN-FW, QIA-CRE Forward 
GAA CCT GAT GGA CAT GTT CAG G 

QIA-CRE 
CRE-QIAGEN-

REV CRE-QIAGEN-REV, QIA-CRE Reverse 
AGT GCG TTC GAA CGC TAG AGC CTG T 

Reeler 34153 34153, Reeler, Common, Rxn A,B CAC CCT TGA CTG AAA CAG GT 

Reeler 34154 34154, Reeler, WT, Rxn A GAA TCT GCT ACA CAG TTG ACA 

Reeler 34156 34156, Reeler, Mut, Rxn B AAG TAT TTT CTA ATT TTA TCA ACT TGC 

Reeler O JBXFwd1 Reeler O Cmn F, JBXFwd1 
gtcctcactctgcccttt 

Reeler O JBXRev1(wt) Reeler O WT R,  JBXRev1(wt) 
caggaatgaagcagactctc 
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Reeler O JBXRev2(mut) Reeler O Mt R, JBXRev2(mut) 
tcacggacaaactgctct 

ROSA mut oIMR9103 oIMR9103, ROSA mut Rev, WPRE 
GGC ATT AAA GCA GCG TAT CC  

ROSA WT  oIMR9020 oIMR9020, ROSA WT  Fwd 
AAG GGA GCT GCA GTG GAG TA  

ROSA WT  oIMR9021 oIMR9021, ROSA WT  Rev 
CCG AAA ATC TGT GGG AAG TC  

Sex SRY F SRY F, Sex Fwd 
TCATGAGACTGCCAACCACAG 

Sex SRY R SRY R, Sex Rev 
CATGACCACCACCACCACCAA 

Sst>CreER 9167 9167, Sst>CreER Mut F - RxnB 
TGT ACG GTC AGT AAA TTG GAC 

Sst>CreER 9176 9176, Sst>CreER Mut R - RxnB 
CAT TGA CAG GTA CCC AAC TG  

Sst>CreER 9177 9177, Sst>CreER WT F - RxnA 
TGC TGA AAC GCA ATG TTT GT  

Sst>CreER 9178 9178, Sst>CreER WT R - RxnA 
TTC CTG GAT AGG GCA GTG AG 

SstCre 9989 9989, SstCre Mutant Forward 
TGG TTT GTC CAA ACT CAT CAA 

SstCre 11224 11224, SstCre Common 
GGG CCA GGA GTT AAG GAA GA 

SstCre 11225 11225, SstCre Wild type Forward 
TCT GAA AGA CTT GCG TTT GG 

PV Cre A 17283 17283, PV Cre A Mutant Forward 
AAA TGC TTC TGT CCG TTT GC 

PV Cre A oIMR8290 oIMR8290, PV Cre A Wild type Forward 
CAG AGC AGG CAT GGT GAC TA 

PV Cre A oIMR8291 oIMR8291, PV Cre A Wild type Reverse 
AGT ACC AAG CAG GCA GGA GA 

PV Cre A oIMR9377 oIMR9377, PV Cre A Mutant Reverse 
ATG TTT AGC TGG CCC AAA TG 

PV Cre B 16210 16210, PV Cre B Wild Type Forward 
CCA TTC CCT CAT CCA CAG AG 

PV Cre B 27606 27606, PV Cre B Mutant Forward 
GAC GCA ATC GTC CGA TCC 

PV Cre B 49521 49521, PV Cre B Common 
CAA ACA AAC TGA ACA GAA ACT CAG G 
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Table 3: Tamoxifen induction of CreER driver lines 

Tamoxifen induction of CreER:  
Tamoxifen  Final Conc. TAM Stock Vol. Stock 
dosage (µg/g) (mg/mL) (µL/g) 

Nkx2.1>CreER via gavage of E17.5 pregnant dam 
High 200 20 10 
Low 20 2 10 
Single Cell 5 1 5 

Sst>CreER   via gavage or IP injection of adult mice 
Day 1 (2mg) 80 20 4 
Day 2 (4mg) 160 20 8 
Day 3 (8 mg) 320 20 16 
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Table 4: Primary antibodies 

 

 
  

Target Host mono/ 
Poly 

clone Subtype Source Catalog Dilution 

Ankyrin G Rb pAb   IgG Synaptic 
Systems 

386 003 1:1000 

Gephyrin 
(pS270, Gp)  

Gp mAb GpmAb7 IgG1k Synaptic 
Systems 

147-318 1:200 

Kv2.1 Ms mAb K89/34 IgG1k Neuromab 75-014 1:1000 

Kv2.2 Ms mAb N372B/1 IgG1k Neuromab 75-369 1:500 

MAP2 Chk pAb   IgY Synaptic 
Systems 

188 006  1:1000 

PV Gp             

PV Chk             

Sst Rt mAb YC7 IgG2b Chemicon MAB354 1:300 

Synaptophysin Ms mAb SVP-38 IgG1 Sigma S5768 1:200 

VGAT Rb pAb   IgG Synaptic 
Systems 

131 002 1:500 

https://www.scbt.com/scbt/product/ankyrin-g-antibody-h-215
https://www.sysy.com/products/gephyrin/facts-147318.php
https://www.sysy.com/products/gephyrin/facts-147318.php
https://www.antibodiesinc.com/products/anti-kv2-1-k-channel-antibody-k89-34-75-014
https://www.antibodiesinc.com/products/anti-kv2-2-potassium-channel-antibody-n372b-1-75-369
https://www.sysy.com/products/map2/facts-188006.php
https://www.cedarlanelabs.com/Products/Detail/188006(SY)?lob=AllProducts
https://www.emdmillipore.com/US/en/product/Anti-Somatostatin-Antibody-clone-YC7,MM_NF-MAB354
http://www.sigmaaldrich.com/catalog/product/sigma/s5768?lang=en&region=US
https://www.sysy.com/products/vgat/facts-131002.php?n=VGAT
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Table 5: Secondary antibodies 

  
Host Spe-
cies 

Target 
Species 

Conjugate Ex (opti-
mal) 

Em Source Catalog Dilution 

Dk Chk DL405 405 452 
Jackson Immu-
noresearch 

703-475-155 

1:500 

Dk Ms DL405 405 452 
Jackson Immu-
noresearch 

715-475-150 

1:500 

Gt Rb CF405M 405 452 Biotium 20373-500uL 

1:1000 

Dk Rb DL405 405 452 
Jackson Immu-
noresearch 

711-475-152 

1:500 

Dk Gp CF488A 488 515 Biotium 20169 

1:1000 

Dk Gp AF488 488 515 
Jackson Immu-
noresearch 

706-545-148 

1:500 

Dk Ms AF488 488 515 
Jackson Immu-
noresearch 

715-545-150 

1:500 

Dk Rb CF488A 488 515 Biotium 20015 

1:1000 

Dk Rt AF488 488 515 
Jackson Immu-
noresearch 

712-545-153 

1:500 

Dk Gp AF647 633 640 
Jackson Immu-
noresearch 

706-605-148 

1:500 

Dk Rt AF647 633 640 
Jackson Immu-
noresearch 

712-605-153 

1:500 

https://www.jacksonimmuno.com/catalog/products/703-475-155
https://www.jacksonimmuno.com/catalog/products/715-475-150
https://biotium.com/product/goat-anti-rabbit-igg-hl-highly-cross-absorbed/
https://www.jacksonimmuno.com/catalog/products/711-475-152
https://biotium.com/product/donkey-anti-guinea-pig-igg-hl-highly-cross-adsorbed/
https://www.jacksonimmuno.com/catalog/products/706-545-148
https://www.jacksonimmuno.com/catalog/products/715-545-150
https://biotium.com/product/donkey-anti-guinea-pig-igg-hl-highly-cross-adsorbed/
https://www.jacksonimmuno.com/catalog/products/712-545-153
https://www.jacksonimmuno.com/catalog/products/706-605-148
https://www.jacksonimmuno.com/catalog/products/712-605-153
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Table 6: Saved source metadata fields by category, with data type and source 

Below is a list of the metadata fields stored within the metadata table. Columns are as follows: 

• ‘Category’ designates the metadata’s source of origin. ‘Uninitialized’ metadata is inde-

pendent of the file itself, and designates metaparameters for extraction and file storage. All 

other metadata is considered ‘Initialized,’ i.e., derived via Bioformats either directly or 

indirectly from the image metadata. 

• ‘Name’ designates the field name. 

• ‘Type’ designates the data type. I = integer, S = string, B = Boolean, F = float. [X] indicates 

the data are stored as a [SeriesDelimiter]-delimited array. [SeriesDelimiter] is stored as a 

field in the metadata.  

• ‘Source’ specifies whether the metadata is designated (i.e., is a metaparameter), directly 

extracted from the metadata, or derived from extracted metadata. 

 

 

Category Name Type Source 
Uninitialized Index I Designated 
Uninitialized SourceDirectory S Derived 
Uninitialized SourceFile S Derived 
Uninitialized SceneName S Derived 
Uninitialized SceneNameRegex S Derived 
Uninitialized Format S Extracted 
Uninitialized BF-version S Extracted 
Uninitialized BF-supported B Extracted 
Uninitialized FileGroupOption S Extracted 
Initialized BF-Complete B Extracted 
Initialized OMEmetadataPath S Designated 
Initialized UsedFileCount I Extracted 
Initialized UsedFileDelimiter S Designated 
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Initialized UsedFileNames S Extracted 
Initialized IsMultiSeries B Derived 
Initialized SeriesCount I Extracted 
Scene SeriesIsSequential B Derived 
Scene SeriesIsConsistent B Derived 
Scene SeriesNumMin I Derived 
Scene SeriesNumMax I Derived 
Scene TileNamePrefix S Designated 
Scene TileNumMin I Derived 
Scene TileNumMax I Derived 
Scene TileNamePattern S Derived 
Scene TileNameRegex S Derived 
Scene SeriesDelimiter S Designated 
Scene SubSeriesDelimiter S Designated 
Instrument MicroscopeType S Extracted 
Instrument nDetectors I Derived 
Instrument DetectorIDs [S] Extracted 
Instrument DetectorModel S Extracted 
Instrument Offset [F] Extracted 
Instrument DetectorType [S] Extracted 
Instrument DetectorZoom [F] Extracted 
Instrument ObjectiveID S Extracted 
Instrument ObjectiveModel S Extracted 
Instrument Immersion S Extracted 
Instrument LensNA F Extracted 
Instrument NominalMagnification F Extracted 
Instrument WorkingDistance F Extracted 
Instrument WorkingDistanceUnit S Extracted 
Series Data SeriesIndex [S] Designated 
Series Data SeriesNames [S] Extracted 
Series Data TileNumbers [S] Derived 
Series Data TileNames [S] Derived 
Acquisition AcquisitionDate S Extracted 
Objective ObjectiveSettingsID S Extracted 
Objective Medium S Extracted 
Objective RefractiveIndex F Extracted 
Pixel BigEndian B Extracted 
Pixel DimensionOrder S Extracted 
Pixel Interleaved B Extracted 
Pixel PhysicalSizeX F Extracted 
Pixel PhysicalSizeXUnit S Extracted 
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Pixel PhysicalSizeY F Extracted 
Pixel PhysicalSizeYUnit S Extracted 
Pixel PhysicalSizeZ F Extracted 
Pixel PhysicalSizeZUnit S Extracted 
Pixel TimeIncrement F Extracted 
Pixel TimeIncrementUnit S Extracted 
Pixel SignificantBits I Extracted 
Pixel PixelType S Extracted 
Pixel SizeX I Extracted 
Pixel SizeY I Extracted 
Pixel SizeZ I Extracted 
Pixel SizeT I Extracted 
Pixel SizeC I Extracted 
Channel ChannelNumbers [S] Derived 
Channel AcquisitionMode S Extracted 
Channel ChannelColors [I] Extracted 
Channel EmissionWavelengths [F] Extracted 

Channel 
EmissionWavelengthU-

nits [S] Extracted 
Channel ExcitationWavelengths [F] Extracted 

Channel 
ExcitationWavelengthU-

nits [S] Extracted 
Channel Fluors [S] Extracted 
Channel ChannelIDs [S] Extracted 
Channel IlluminationTypes [S] Extracted 
Channel ChannelNames [S] Extracted 
Channel PinholeSizes [F] Extracted 
Channel PinholeSizeUnits S Extracted 
Channel SamplesPerPixels I Extracted 
Channel ChannelDetectorIDs [S] Extracted 
Stage position StagePositionX [F] Extracted 
Stage position StageXUnit [S] Extracted 
Stage position StagePositionY [F] Extracted 
Stage position StageYUnit [S] Extracted 
Stage position StagePositionZ [F] Extracted 
Stage position StageZUnit [S] Extracted 
Stitching SpatialDimensions I Derived 
Stitching StagePositionsOverlap F Extracted 

Stitching 
StagePositionsOverlap-

Source S Designated 
Stitching StitchingPositionsOverlap F Designated 
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Stitching 
StitchingPositionsOver-

lapForced B Designated 
Stitching StitchingPositionsStartX [F] Derived 
Stitching StitchingPositionsStartY [F] Derived 
Stitching StitchingPositionsStartZ [F] Derived 
Stitching StitchingPositionsUnit S Designated 

Stitching 
StitchingPositionsFileEx-

ists B Designated 
Stitching StitchingPositionsDir S Designated 
Stitching StitchingPositionsFile S Designated 

Stitching 
StitchingGeneralizedSuf-

fix S Designated 
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Table 7: Sizes of unsupervised bouton classes  

Size is the total bouton counts in the designated cluster. % is the percentage of all boutons. 

Clusters in red did not reach minimum size requirements and were excluded from downstream 

analysis. Related to Chapter2, Figures 6, 7, and 8. 

clus-
ter size % 

0 190491 14.05% 
1 183882 13.56% 
2 166980 12.31% 
3 159702 11.78% 
4 153496 11.32% 
5 142826 10.53% 
6 135733 10.01% 
7 132908 9.80% 
8 89933 6.63% 
9 130 0.01% 
10 80 0.01% 
11 21 0.00% 
12 11 0.00% 
13 2 0.00% 
14 2 0.00% 
15 2 0.00% 
16 2 0.00% 
17 2 0.00% 
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Table 8: Permissions statements for reproduced figures. 

Figure Figure title Permission statement 

1.4 Cortical development stages 
prior to circuit integration. 

Reprinted from Tyson, J.A. and S.A. Anderson, GABAergic inter-
neuron transplants to study development and treat disease. Trends 
in neurosciences. 2014 37(3): p. 169-177, Copyright © 2014 Else-
vier, with permission from Elsevier. 

1.5 The MGE lineage of cortical 
interneurons 

Reprinted from Yao, Z., et al., A taxonomy of transcriptomic cell 
types across the isocortex and hippocampal formation. Cell. 2021, 
184(12): p. 3222-3241.e26, Copyright © 2021 Elsevier, with per-
mission from Elsevier. 

1.6 Schematic summarizing the 
major MGE-derived cortical 
GABAergic interneurons based 
on their connectivity patterns 

Reprinted from Llorca, A. and R. Deogracias, Origin, Develop-
ment, and Synaptogenesis of Cortical Interneurons. Frontiers in 
Neuroscience, 2022. 16. Copyright © 2022 Llorca & Deogracias, 
under Creative Commons Attribution License (CC BY) 

1.7 The developmental landscape 
reflects attractor dynamics 

Used with permission of Annual Reviews, from Fishell, G. and A. 
Kepecs, Interneuron Types as Attractors and Controllers. Annu Rev 
Neurosci, 2020. 43: p. 1-30. Copyright © 2020 by Annual Reviews; 
permission conveyed through Copyright Clearance Center, Inc 

1.8 The evolution of corticogene-
sis: inside-out birth and migra-
tion patterns yield ontogeni-
caly-related cortical columns 

Reprinted from Kolk, S.M. and P. Rakic, Development of prefron-
tal cortex. Neuropsychopharmacology, 2022. 47(1): p. 41-57. Cop-
yright © 2022 Kolk & Rakic, under Creative Commons Attribution 
License (CC BY) 

1.9 Lamination of the cerebral cor-
tex 

Vogt, C. and O. Vogt, Allgemeine ergebnisse unserer hirn-
forschung. Vol. 25. 1919: JA Barth. Reproduced with permission 
from Springer Nature. 

1.10 Regional organization of the 
mouse cortex 

Reprinted from Kirkcaldie, M.T.K., Chapter 4 - Neocortex, in The 
Mouse Nervous System, C. Watson, G. Paxinos, and L. Puelles, 
Editors. 2012, Academic Press: San Diego. p. 52-111., Copyright © 
2012 Elsevier, with permission from Elsevier. 

1.11 Spatial patterning of the cortex Reprinted from Borello, U. and A. Pierani, Patterning the cerebral 
cortex: traveling with morphogens. Current Opinion in Genetics & 
Development, 2010. 20(4): p. 408-415., Copyright © 2010 Elsevier, 
with permission from Elsevier. 

1.12 Examples of topographic maps: 
the pathways transmitting tac-
tile information from the muz-
zle to the cortex 

Staiger, J.F. and C.C.H. Petersen, Neuronal Circuits in Barrel Cor-
tex for Whisker Sensory Perception. Physiological Reviews, 2021. 
101(1): p. 353-415. Copyright © 2021 the American Physiological 
Society. Reproduced with permission from the American Physio-
logical Society. 
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1.13, A-D Independence of laminar and 
regional iden-tity: evidence 
from the reeler cortex 

Reprinted from Wagener, R.J., et al., Thalamocortical Connections 
Drive Intracortical Activation of Functional Columns in the Mis-
laminated Reeler Somatosensory Cortex. Cerebral Cortex, 2015. 
26(2): p. 820-837. Copyright © 2015 Wagener, R.J., et al., under 
Creative Commons Attribution License (CC BY) 

1.13, E-F Independence of laminar and 
regional iden-tity: evidence 
from the reeler cortex 

Guy, J. and J.F. Staiger, The Functioning of a Cortex without Lay-
ers. Front Neuroanat, 2017. 11: p. 54. by permission of Oxford Uni-
versity Press. 

1.14 General localization of voltage-
gated ion channels in a model 
neuron 

Lai, H.C. and L.Y. Jan, The distribution and targeting of neuronal 
voltage-gated ion channels. Nat Rev Neurosci, 2006. 7(7): p. 548-
62., reproduced with permission from SNCSC'. 

1.15 Branch and sub-branch organi-
zation of morphologically de-
fined pyramidal neuron den-
dritic domains 

Reprinted from Bloss, E.B., et al., Structured Dendritic Inhibition 
Supports Branch-Selective Integration in CA1 Pyramidal Cells. 
Neuron, 2016. 89(5): p. 1016-30., Copyright © 2016 Elsevier, with 
permission from Elsevier. 

1.16 Glutamatergic cell in the cortex 
have layered subcellular com-
partments 

© 2021 Springer Science+Business Media, LLC, part of Springer 
Nature from Araya, R., Dendritic morphology and function. Neuro-
science in the 21st Century: From Basic to Clinical, 2022: p. 571-
606, reproduced with permission from SNCSC'. 

1.17 Mechanisms of axon and den-
drite guidance 

Reprinted from Chen, S.-Y. and H.-J. Cheng, Functions of axon 
guidance molecules in synapse formation. Current Opinion in Neu-
robiology, 2009. 19(5): p. 471-478, Copyright © 2020 Elsevier, 
with permission from Elsevier. 

1.18 Lamina-specific innervation of 
hippocampal neurons by dis-
tinct inputs 

Used with permission of Annual Reviews, from Sanes, J.R. and M. 
Yamagata, Many Paths to Synaptic Specificity. Annual Review of 
Cell and Developmental Biology, 2009. 25(1): p. 161-195; Copy-
right  ©  2009 by Annual Reviews, permission conveyed through 
Copyright Clearance Center, Inc. 

1.19, A-C Differential use of ephrin/Eph 
adhesion molecules in axon 
guidance during visual system 
development 

Reprinted from Kania, A. and R. Klein, Mechanisms of ephrin–Eph 
signalling in development, physiology and disease. Nature Reviews 
Molecular Cell Biology, 2016. 17(4): p. 240-256.Copyright © 2016 
Macmillan Publishers Limited. Reproduced with permission from 
SNCSC. 

1.19, D-E Differential use of ephrin/Eph 
adhesion molecules in axon 
guidance during visual system 
development 

Reprinted from Dufour, A., et al., Area Specificity and Topography 
of Thalamocortical Projections Are Controlled by ephrin/Eph 
Genes. Neuron, 2003. 39(3): p. 453-465., Copyright © 2003 by Cell 
Press, with permission from Elsevier. 
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1.20 Schematic Representation of 
the Bergmann Glial Fiber Scaf-
fold and CHL1 in Directing 
Stellate Axons to Innervate 
Purkinje Dendrites 

Reprinted from Ango, F., et al., Bergmann Glia and the Recogni-
tion Molecule CHL1 Organize GABAergic Axons and Direct In-
nervation of Purkinje Cell Dendrites. PLOS Biology, 2008. 6(4): p. 
e103. Copyright: © 2008 Ango et al. under Creative Commons At-
tribution License (CC BY) 

1.22 Scale-free graph of the iPSD 
proteome 

Reprinted from Uezu, A., et al., Identification of an elaborate com-
plex mediating postsynaptic inhibition. Science, 2016. 353(6304): 
p. 1123-9. Copyright © 2016, American Association for the Ad-
vancement of Science. Reprinted with permission from AAAS. 

1.23, up-
per 

Visual representation of the 
synaptic adhesion molecule 
code 

Reprinted from Llorca, A. and R. Deogracias, Origin, Develop-
ment, and Synaptogenesis of Cortical Interneurons. Frontiers in 
Neuroscience, 2022. 16. under Creative Commons Attribution Li-
cense (CC BY) 

1.23, 
lower 

Visual representation of the 
synaptic adhesion molecule 
code 

Reprinted from Sanes, J.R. and S.L. Zipursky, Synaptic Specificity, 
Recognition Molecules, and Assembly of Neural Circuits. Cell, 
2020. 181(3): p. 536-556., Copyright © 2020 Elsevier, with permis-
sion from Elsevier. 

1.24 Subcellular specificity of cere-
bellar basket cell inhibitory 
connections to Purkinje cells 
(PkCs) 

Reprinted from Williams, M.E., J. de Wit, and A. Ghosh, Molecu-
lar mechanisms of synaptic specificity in developing neural circuits. 
Neuron, 2010. 68(1): p. 9-18, Copyright © 2010, with permission 
from Elsevier. 

1.25 Lamina-specific innervation of 
hippocampal CA3 neurons by 
mossy fibers (MF) is mediated 
by domain-restricted repulsive 
adhesion molecule interactions 

Used with permission of Annual Reviews, from Sanes, J.R. and M. 
Yamagata, Many Paths to Synaptic Specificity. Annual Review of 
Cell and Developmental Biology, 2009. 25(1): p. 161-195. Copy-
right  ©  2009; 
permission conveyed through Copyright Clearance Center, Inc. 

1.26, A-B Regional regulation of synapto-
genesis yields subcellular spec-
ificity 

Reprinted from Klassen, M.P. and K. Shen, Wnt Signaling Posi-
tions Neuromuscular Connectivity by Inhibiting Synapse Formation 
in C. elegans. Cell, 2007. 130(4): p. 704-716., Copyright © 207 
Elsevier, with permission from Elsevier. 

1.26, C Regional regulation of synapto-
genesis yields subcellular spec-
ificity 

Used with permission ofSpringer Nature BV, from Poon, V.Y., 
M.P. Klassen, and K. Shen, UNC-6/netrin and its receptor UNC-5 
locally exclude presynaptic components from dendrites. Nature, 
2008. 455(7213): p. 669-73. Copyright: © 2008; permission con-
veyed through Copyright Clearance Center, Inc. 

1.27 Remodelling of CF and PF 
synaptic connections onto PCs 
during postnatal cerebellar de-
velopment 

Reprinted from Kano, M. and T. Watanabe, Developmental synapse 
remodeling in the cerebellum and visual thalamus. F1000Res, 2019. 
8. Copyright:  © 2019 Kano M and Watanabe T, under Creative 
Commons Attribution License (CC BY) 
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1.28, A Molecular basis of PF-PC syn-
apse formation and impact of 
targeted disruptions on PF and 
CF innervation domains 

Reprinted from Mishina, M., et al., Molecular mechanism of paral-
lel fiber-Purkinje cell synapse formation. Frontiers in neural cir-
cuits, 2012. 6: p. 90. Copyright © 2012 Mishina, Uemura, Ya-
sumura and Yoshida, under Creative Commons Attribution License 
(CC BY) 

1.28, B Molecular basis of PF-PC syn-
apse formation and impact of 
targeted disruptions on PF and 
CF innervation domains 

Kano, M. and M. Watanabe, Synaptogenesis and Synapse Elimina-
tion, in Handbook of the Cerebellum and Cerebellar Disorders, 
M.U. Manto, et al., Editors. 2022, Springer International Publish-
ing: Cham. p. 309-332. Copyright © Springer Nature Switzerland 
AG 2022. Reproduced with permission from Springer Nature. 

1.29 Model for transneuronal regu-
lation of receptor localization 
by axonal netrin-G proteins 

Used with permission ofThe National Academy of Sciences of the 
USA, fromNishimura-Akiyoshi, S., et al., Axonal netrin-Gs trans-
neuronally determine lamina-specific subdendritic segments. Proc 
Natl Acad Sci U S A, 2007. 104(37): p. 14801-6. Copyright © 
1957; permission conveyed through Copyright Clearance Center, 
Inc. 

5.1 Waddington’s visualization of 
the potential energy landscape. 

Used with permission of George Allen & Unwin Ltd., from Wad-
dington, C.H., The strategy of the genes. 1957: Routledge. Copy-
right © 1957; permission conveyed through Copyright Clearance 
Center, Inc. 

5.2 The complex system of interac-
tions underlying the potential 
energy landscape. 

Used with permission of George Allen & Unwin Ltd., from Wad-
dington, C.H., The strategy of the genes. 1957: Routledge. Copy-
right © 1957; permission conveyed through Copyright Clearance 
Center, Inc. 

 

 



Appendices 

Appendix A:  Buffer and media formulations: 

Dissection and Dissociation media: 

Dissection media: HibA 

Working solution for dissection and dissociation of mouse brain, and basal solution for papain 
digestion. Aliquot into 50 mL tubes and store at 4°C. 

• 500 mL Hibernate A [Thermo Scientific A1247501] 
• 5 mL Pen/Strep 

Dissociation media 

Working solution for dissociation of cortical tissue. Resuspend one vial of papain in 4.5 mL 
HibA media (20 U/mL final). Separately, resuspend one vial of DNAseI in 0.5 mL HibA 
(2000 U/mL working).  Activate by incubating for ~20 minutes at 37°C. Add DNAse I  (200 
U/mL final) after papain activation Resuspended papain and DNAse I solutions can be stored 
at 4°C for up to one week. Activated papain should be used within 24 hours.  

• 5 mL HibA media 
• 1 vial papain [Worthington Biochemical LK003178]  
• 1 vial DNAseI [Worthington Biochemical LK003172] 

Tissue culture media formulations: 

Basal media: NBA  

Base recipe for plating and growth media. Aliquot into 50 mL tubes and store at 4˚C. Good 
until most recent expiration date, at least 6 months. 

• 500 mL neurobasal-A medium (Life technologies 10888-022) 
• 5 mL GlutaMaX [Life technologies 35050-061] 
• 5 mL P/S  
• 5 ml HEPES 

Growth media: NBA/B27 PLUS  

make one 50ml tube of media at a time. Good for ~2 weeks at 4°C. NB: Aliquot B27 PLUS 
into 1ml aliquots upon first thaw and store at -20˚°C. 

• 50ml NBA basal media  
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• 1 mL B27 PLUS [life technologies A3582801]  

Plating media: NBA/B27 Plus/10%FBS/Laminin  

Thaw laminin at RT or (preferably) 4˚C. Do not refreeze. Add laminin just before use. Good 
for ~2 weeks if laminin is not added. Discard any excess plating media after laminin addition. 
NB: Aliquot Laminin into 20 µl aliquots upon first thaw and store at -20˚°C. 

• 9 mL Growth media (NBA/B27 PLUS) 
• 1 ml FBS 
• 20 µL (final 2 µg/L) Laminin [Sigma Aldrich L2020-1MG] 

Tissue culture dish and plate preparation: 

Tissue Dishes and plates: 
• 24-well Imaging plates: µ-Plate 24 Well Black ID 14 mm, Ibidi Cat.No: 82426  
• 96-well Imaging plates: µ-Plate 96 Well Black, Ibidi Cat.No: 89626 

10X Borate buffer: (0.01M, pH8.5) 

Makes 500 mL 10x Borate Buffer. Store at 4°C. 

• 1.24g boric acid (Sigma B6768, H3BO3, FW 61.83)  
• 1.9g borax (sodium tetraborate, Sigma S9640, Na2B4O7.10H2O, FW 381.4) 
• 500 mL dH2O 
• pH to 8.4, filter 

Poly-D lysine coating solution: PDL 

Makes a 20 µg/mL Poly-D lysine solution. Used to coat dishes prior to cell culture. Add final 
PDL solution to culture dish and incubate at room temperature overnight in a tissue culture 
hood. Wash 4x with cell culture grade water. NB: Resuspend poly-D lysine hydrobromide 
(PDL), Mol weight 70-150 kDa [Sigma Aldrich PD0899-50MG] to 500 µg/mL in cell culture 
grade water, aliquot into 1mL tubes, and store at -20°C.  

• 1 mL 10x Borate buffer.  
• 1 mL 500 µg/mL PDL 
• 18 mL tissue culture grade water.  

Perfusion and slice preparation buffers: 

Arificial cerebro-spinal fluid (ACSF): 

Used to perfuse animals for immunostaining of synapses. Before use, gas with 5% CO2 / 95% 
O2 for 10-15 minutes, then add CaCl2 to 2.5 mM final concentration.  

https://ibidi.com/multiwell-plates/282--plate-24-well.html#/25-surface_modification-ibitreat_15_polymer_coverslip_tissue_culture_treated_sterilized/33-pcs_box-15_individually_packed
https://ibidi.com/multiwell-plates/21-plate-96-well.html#/25-surface_modification-ibitreat_15_polymer_coverslip_tissue_culture_treated_sterilized/33-pcs_box-15_individually_packed
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• 125 mM NaCl 
• 26 mM NaHCO3 
• 25 mM glucose 
• 2.5 mM KCl 
• 2.5 mM CaCl2* 
• 2 mM MgCl 
• 1.25 mM NaH2PO4 
• pH 7.4 

* CaCl2 is prone to precipitation. Add it after bubbling and just before use.  

30% sucrose buffer: 

Used for cryopreservation of tissue. Add tissue to sucrose solution and incubate overnight at 
4°C. Tissue will sink to the bottom of the tube, indicating endogenous water has been dis-
placed and the tissue is ready for freezing. 

• 70 mL PBS 
• 30 g sucrose 
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Appendix B: Sample nomenclature 

General nomenclature structure for sample/image names:  

User input at scope: 

 [Experiment ID]_[Sample ID(modifier)]_[Biological conditions(modif.)]_[Staining conditions(modif.)]_ 

Example output image: 

 [Experiment ID]_[Sample ID(modifier)]_[Biological conditions(modif.)]_[Staining conditions(modif.)]_[Scene]_[Tile] 

 

Nomenclature Rules:  

• Bold fields ([Experiment ID] and [Sample ID]) are required inputs from the user. The 

[Experiment ID]_[Sample ID] combination must constitute a unique string for sample 

reference. No two samples should have the same (combined) value. Note that sample 

ID modifiers are ignored for uniqueness tests. 

• Italicized fields e.g. [Scene] and [Tile] are automatically generated and should not be 

entered by the user. 

• Underscores (i.e. _ ) indicate breaks between canonical, ordered information, e.g. be-

tween the [Experiment ID] field and the [Sample ID] field.  

• The name inputted at the microscope must end with an underscore.  

• Hyphens (i.e. - ) indicate breaks within canonical, ordered information. Examples in-

clude different genes within the [Genotype] field (e.g. SstCre-Ai34 designating driver-

reporter genotypes) or different identifiers within the [Sample ID] field (e.g. 7769-17 

designating ear-toe tags of the mouse ID).  

• Parentheticals indicate modifiers to the above hyphenated fields, e.g. the (Age&Sex) 

modifier to [Sample ID], or the (alleles) modifier to [Genotype]. Note that parentheti-

cals are optional (but informative) inputs. 
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• Only one of the non-bold, non-italicized, i.e.  [Biological] and [Staining] conditions 

fields is required. If this information is not included in full, it must be substituted with 

a string that references these conditions. 

Field definitions: 

[Experiment ID] 

Type: non-hyphenated date, [year][month][day] Description: Designator for the experi-

ment.  

• For cultures, this value should be the date of seeding.  

• For tissue samples , this value should be the date of birth or sample acquisition, and 

should correspond to the animal DOB (or acquision) in the Mouse Book. If these data 

are missing, use the date of perfusion as a last resort. 

[Sample ID(modifier)] 

Type: string Description: Sample designator 

• For cultures:  

o This value should be the well, as designated by Row and Column (e.g. B4). If 

more than one plates were generated on this date, a plate prefix is to be added, 

e.g.  Plate1-B4. 

o If the source sample differs between wells, e.g. B4 is from mouse 7441 and C4 

from 7559, these data should be stored as a modifier to this field, e.g. B4(7441).  

• For tissue samples: 
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o This value should be the mouse ID as recorded in the Mouse Book. The [ear 

tag]-[toe tag] ID should be prioritized, but if unavailable, the [cross tag]-[toe 

tag] ID should be used. 

• Sample fixation/perfusion information, such as Days in vitro (DIV) or Embry-

onic(E)/Postnatal(P) age and sex (M|F), should be stored as a modifier, e.g. B4(P4F-

DIV21) for culture or 7769-17(P56M) for slides. 

[Biological conditions(modifiers)]  

Type: string. Description: This value stores experimentally relevant biological conditions 

• Genotypes and alleles: 

o If the relevant alleles are dominant (and non-deleterious), no gene modifier is 

required. For example, SstCre/Cre and SstCre/wt animals show no (known) pheno-

typic differences, so SstCre is enough information. Recessive alleles should al-

ways have both alleles in parentheses, e.g. RELNRL/wt RELNRL/RL should be 

designated RELN(RL-wt) and RELN(RL-RL), respectively.  

o If the homozygous allele combination is deleterious, modifiers should be used. 

For example, SstCreER is a knock-in/knock-out, so SstCreER/wt acts as a dominant 

allele and should be labeled SstCreER, whereas SstCreER/CreER acts as a Sst 

knock-out and should be labeled Sst(CreER-CreER). 

• Treatments and protocol/dosages: 

o Any non-genetic intervention should be included here. If the animal was treated 

with drug, infected with virus, or grown under specific experimental conditions. 



362 
 

For example, viral transduction of SstCre;Ai34+ sample with AAV expressing 

Gephyrin-GFP and lentivirus expressing shErbB4 would be indicated as Sst-

Cre-Ai34-AAV(Gphn-GFP)-LV(shErbB4).  

o Note that if the treatment refers to a specific genotype (e.g. tamoxifen induction 

of CreER+ animals), it should be included as a modifier for the genotype, e.g. 

an Nkx2.1CreER+ mouse gavaged with 200ug/g tamoxifen at E17.5 would read 

as NkxCreER(gE17-200). 

[Staining conditions(modifier)]  

Type: string. Description: This value indicates the stain(s) utilized to visualize the sample. 

 

Required if the sample has multiple distinct staining conditions, e.g. slices labeled with more 
than one antibody panel.  

• [Primary antibody (secondary dye)] or [Fluorescent protein (microscope excita-

tion)] – suggested for user information. Required if the sample is stained with more 

than one antibody/dye panel. 

• Slide number – required if there is more than one slide per staining condition. Ensures 

scene values are unique within the slide.  

[Scene] 

Type: string, [string][digit] Description: Scene designator, based on microscope setup. 

 

Used interchangeably with ‘tile region’. The scene is automatically generated from image 

metadata and is designated by the user during the microscope imaging setup. The scene (or 
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tile region) is a set or group of adjacent tiles that can be stitched together into a continuous 

image. A single imaging session can yield one or more scenes / tile regions, and each scene 

/ tile region can be comprised of one or more tiles. 

[Tile] 

Type: string, m[digit] Description: Tile designator, based on microscope setup. 

 

Automatically generated from image metadata and designated by the user during micro-

scope imaging setup. This is the unit for processing in our pipeline, and can be comprised 

of multiple component (sub)images. For example, a single tile with (XYCZT) dimensions 

of 1024 x 1024 x 4 x 40 x 1 consists of 160 single-channel images (4 channels x 40 Z 

slices), but is treated as a unit within the pipeline. 

Nomenclature for slides: 

Structure: 

[Date of birth]_[Animal ID(Age&Sex)]_[Genotype(alleles)]_ [antibodies(dyes)]_[Scene]_[Tile] 
 

Example of slide labeling:  

1. [Date of birth]_[Animal ID(Age&Sex)] 

2. [Genotype(alleles)] 

3. [Staining conditions(modifier)]  

4. [Staining conditions(modifier) cont.]  

The information from the slide labeling should be used to name the images during acquisition. In 

other words, use a regularized version of the slide label during microscope setup and auto-save.  
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Example 1: Animal ID is from ear tag. Age&Sex are undocumented. Biological conditions in-
cludes only the shorthand Genotype because all alleles are dominant (i.e. no allele modifier is 
needed). NkxCreER was induced by gavage with 200ug/g tamoxifen at E17.5, designated as the 
(gE17-200) modifier. Staining conditions designate primary antibody and (secondary dye). The 
[Scene] value is generated from the user’s custom scene-name (Scene-3) during microscope setup 
and an autolabeled value from the image metadata (TR5). The [tile] values are automatically gen-
erated in accordance with the microscope setup. 

User input at scope: 

 20221001_7769-17 _NkxCreER(gE17-200)-Ai34_ AnkG(405)-Kv2(488)-SypTdT(561)-Gphn(647)_ 

Example output image: 

 20221001_7769-17 _NkxCreER(gE17-200)-Ai34_ AnkG(405)-Kv2(488)-SypTdT(561)-Gphn(647)_ Scene-3-TR5_m4 

Example 2: Animal ID is from cross and toe tags. Age&Sex are not documented. Biological con-
ditions includes Genotype (shorthand) for dominant & alleles for recessive alleles. The stainining 
conditions are stored in a metadata file (generated independently and stored separately) and des-
ignated by the value S1. The [Scene] and [tile] values are automatically generated from the mi-
croscope setup. 

User input at scope: 

 20221001_7559x7577-32 _SstCre-Ai34-RELN(RL-RL)_S1_ 

Example output image name: 

 20221001_7559x7577-32 _SstCre-Ai34-RELN(RL-RL)_S1_TR3_m4 

Automated Tile Grouping  

The automated tile grouping code in our pipeline relies upon the structured outlined above to 

identify categorical and hierarchical relationships between images. In order to understand how we 

identify these relationships and how we use them, we first have to go back into the nomenclature 

and the metadata to understand the utility and limitations of each, and how we exploited both to 

increase efficiency and to facilitate processing stages. Presented below is the nomenclature struc-

ture, as well as two real examples of its use from our dataset. 

Nomenclature structure: 
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[Experiment ID]_[Sample ID]_[Biological conditions]_[Staining conditions]_[Scene]_m[Tile]_[variable stem ID] 

example 1: 20201120_7441_SstCre-Ai34_AnkG-Kv2-Gphn _TR1_m03_BatchQ75NZ.tif 

example 2: 20210302_A1_SstCre-Ai34_AnkG-Kv2-Gphn _TR1_m04_xyCorr-EDF.tif 

Based on naming patterns alone, we can automatically classify/group tile data based on their 

experiment, sample, scene, genotype, and staining conditions. We know, for instance, that the tiles 

above are from different experiments. And since the experiment-sample-scene-tile relationship is 

hierarchical, we also know that no matter what follows the experiment field, these data are from 

different samples, scenes, and tiles. In contrast, the [Biological conditions] and [Staining condi-

tions] fields are categorical and cut across these hierarchies. For example, these samples utilized 

the same driver and reporter alleles (SstCre and Ai34, respectively) and were stained using the same 

antibodies (AnkG, Kv2, and Gphn), and are thus grouped by these shared properties. Another less 

apparent category embedded in the [Sample ID] field is the sample format, i.e. whether data de-

rives from slice or from culture. As mentioned above, slice and culture samples follow different 

naming conventions, with slice samples containing a 4-digit number (the mouse ear tag ID#) and 

culture samples following a [A-D][1-6] pattern (the sample’s well ID on the tissue culture plate). 

Based on these patterns, we know that example1 is from slice, whereas example2 is from culture. 

Importantly, these embedded categories are extensible: adding a new sample format simply re-

quires implementing an additional naming convention, e.g., oA3 for the organoids in well A3 or 

C5-sl2515 for organotypic slice culture from mouse 2515 in C5.  

There are instances, however, when nomenclature alone is insufficient to infer that tiles belong 

to the same group. To provide a real life example, we set up a series of imaging sessions to image 

culture samples in a 24-well plate. Each acquisition session acquired images from multiple wells 

(i.e. multiple samples), with multiple scenes per well. Since any given imaging session outputs 

only a single image file, we were unable to designate the full sample nomenclature at the scope. 



366 
 

Instead, we used the tile region name to document the source well during acquisition, then post-

hoc split the images by scene and renamed the files to accord with our nomenclature rules. In other 

words, the images from these wells had different scene names and sample names but were all part 

of the same acquisition series. To complicate this picture further, despite using similar acquisition 

parameters, slight differences in the amount of oil on the objective led to systematic differences in 

image intensity between one acquisition series and another. That is, neither the experiment group-

ing, nor the sample grouping reflected the true relationship between the tiles acquired within the 

same session (and so neither could be used as a grouping parameter to delineate the systematic 

error). The image metadata, however, provides a solution: every tile from the same acquisition 

series shares the same time stamp within the AcquisitionDate field. This time stamp is to the mil-

lisecond, and so, for all intents and purposes, is a unique barcode for any given acquisition series. 

We are therefore able to use this value to group all tiles acquired in the same imaging session, 

regardless of potential naming differences. Moreover, since it is not possible to change acquisition 

parameters or slides/plates in the middle of an acquisition series, all images within a series must 

share the acquisition parameters and be from the same slide/plate. We utilize this acquisition series 

grouping during the Image correction stages of the pipeline discussed below.  
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