20,533 research outputs found

    Winner-Relaxing Self-Organizing Maps

    Full text link
    A new family of self-organizing maps, the Winner-Relaxing Kohonen Algorithm, is introduced as a generalization of a variant given by Kohonen in 1991. The magnification behaviour is calculated analytically. For the original variant a magnification exponent of 4/7 is derived; the generalized version allows to steer the magnification in the wide range from exponent 1/2 to 1 in the one-dimensional case, thus provides optimal mapping in the sense of information theory. The Winner Relaxing Algorithm requires minimal extra computations per learning step and is conveniently easy to implement.Comment: 14 pages (6 figs included). To appear in Neural Computatio

    Fault prediction in aircraft engines using Self-Organizing Maps

    Full text link
    Aircraft engines are designed to be used during several tens of years. Their maintenance is a challenging and costly task, for obvious security reasons. The goal is to ensure a proper operation of the engines, in all conditions, with a zero probability of failure, while taking into account aging. The fact that the same engine is sometimes used on several aircrafts has to be taken into account too. The maintenance can be improved if an efficient procedure for the prediction of failures is implemented. The primary source of information on the health of the engines comes from measurement during flights. Several variables such as the core speed, the oil pressure and quantity, the fan speed, etc. are measured, together with environmental variables such as the outside temperature, altitude, aircraft speed, etc. In this paper, we describe the design of a procedure aiming at visualizing successive data measured on aircraft engines. The data are multi-dimensional measurements on the engines, which are projected on a self-organizing map in order to allow us to follow the trajectories of these data over time. The trajectories consist in a succession of points on the map, each of them corresponding to the two-dimensional projection of the multi-dimensional vector of engine measurements. Analyzing the trajectories aims at visualizing any deviation from a normal behavior, making it possible to anticipate an operation failure.Comment: Communication pr\'esent\'ee au 7th International Workshop WSOM 09, St Augustine, Floride, USA, June 200

    Self-organizing maps for texture classification

    Get PDF

    Self-Organizing Maps and Parton Distributions Functions

    Full text link
    We present a new method to extract parton distribution functions from high energy experimental data based on a specific type of neural networks, the Self-Organizing Maps. We illustrate the features of our new procedure that are particularly useful for an anaysis directed at extracting generalized parton distributions from data. We show quantitative results of our initial analysis of the parton distribution functions from inclusive deep inelastic scattering.Comment: 8 pages, 4 figures, to appear in the proceedings of "Workshop on Exclusive Reactions at High Momentum Transfer (IV)", Jefferson Lab, May 18th -21st, 201

    Classifying Amharic News Text Using Self-Organizing Maps

    Get PDF
    The paper addresses using artificial neural networks for classification of Amharic news items. Amharic is the language for countrywide communication in Ethiopia and has its own writing system containing extensive systematic redundancy. It is quite dialectally diversified and probably representative of the languages of a continent that so far has received little attention within the language processing field. The experiments investigated document clustering around user queries using Self-Organizing Maps, an unsupervised learning neural network strategy. The best ANN model showed a precision of 60.0% when trying to cluster unseen data, and a 69.5% precision when trying to classify it

    WSOM: Building Adaptive Wavelets with Self-organizing Maps

    Full text link
    The WSOM (Wavelet Self-Organizing Map) model, a neural network for the creation of wavelet bases adapted to the distribution of input data, is introduced. The model provides an efficient on-line way to construct high-dimensional wavelet bases. Simulations of a lD function approximation problem illustrate how WSOM adapts to non-uniformly distributed input data, outperforming the discrete wavelet transform. A speaker-independent vowel recognition benchmark task demonstrates how the model constructs high-dimensional bases using low-dimensional wavelets.National Science Foundation (IIU 91-011659); Office of Naval Research (N00014-95-10409, NOOOH-95-0657
    • …
    corecore