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ORIGINAL ARTICLE1

2 Self-organizing maps for texture classification

3 Nedyalko Petrov • Antoniya Georgieva • Ivan Jordanov

4 Received: 4 March 2011 / Accepted: 26 December 2011
5 � Springer-Verlag London Limited 2011

6 Abstract A further investigation of our intelligent

7 machine vision system for pattern recognition and texture

8 image classification is discussed in this paper. A data set of

9 335 texture images is to be classified into several classes,

10 based on their texture similarities, while no a priori human

11 vision expert knowledge about the classes is available.

12 Hence, unsupervised learning and self-organizing maps

13 (SOM) neural networks are used for solving the classifi-

14 cation problem. Nevertheless, in some of the experiments,

15 a supervised texture analysis method is also considered for

16 comparison purposes. Four major experiments are con-

17 ducted: in the first one, classifiers are trained using all the

18 extracted features without any statistical preprocessing; in

19 the second simulation, the available features are normal-

20 ized before being fed to a classifier; in the third experiment,

21 the trained classifiers use linear transformations of the

22 original features, received after preprocessing with princi-

23 pal component analysis; and in the last one, transforms of

24 the features obtained after applying linear discriminant

25 analysis are used. During the simulation, each test is per-

26 formed 50 times implementing the proposed algorithm.

27 Results from the employed unsupervised learning, after

28 training, testing, and validation of the SOMs, are analyzed

29 and critically compared with results from other authors.

30

31Keywords Self-organizing maps � Texture classification �

32Feature extraction � Statistical analysis � PCA � LDA

331 Introduction

34Analysis, recognition, and classification of texture patterns

35and images are topics with current surge of research

36interest in the field of digital image processing and pattern

37recognition, with wide areas of applications [1–5]. A

38number of different methods, algorithms, and paradigms

39have been or are being developed nowadays [6–9].

40The investigated image classification and recognition

41systemsmay vary in their approach but most of them include

42data acquisition, data preprocessing, feature extraction,

43feature analysis, classification, and testing and evaluation

44stages [8–11]. The preprocessing of the raw data is difficult

45but important part of the whole process, whose aims are to

46extract useful and appropriate characteristics and features

47that are to be used in the later stages [8]. Often, the raw data

48are too large or complex to be used directly as input to a

49classifier, leading to the ‘‘curse of dimensionality’’ and other

50problems related to the generalization abilities of the trained

51systems, especially when insufficient training samples are

52available. Even if this is not the case, reducing the number of

53variables representing the data can speed up and facilitate the

54learning process at later stages [11]. That is why principal

55component analysis (PCA), for example, is a widely accep-

56ted technique in such cases [1, 2, 12].

57In [12], we investigated a classification of texture images

58problem, using supervised neural network learning, for

59which a priori knowledge about the image classes was used.

60The aim of this research is to extend this previous work,

61considering the same classification problem, but assuming

62there is no expert knowledge available for the texture
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63 classes of the data set samples. This implies that no

64 supervised learning can be used, and the knowledge about

65 the texture patterns and their similarity and uniformity has

66 to be extracted from the data set itself. Unsupervised

67 classification of texture patterns and images is widely used

68 approach with applications in a broad range of areas, for

69 example: for determining water quality based on some

70 chemical and physicochemical features [1], for classifica-

71 tion of SAR images [2], for texture-based classification of

72 atherosclerotic carotid plaque images for determining risk

73 of stroke for individuals [13], for classifying volcanic ash

74 using surface texture features [3], for automatically clas-

75 sifying texture structure of different fabric types using

76 SOM [14], for classification of textures in scene images

77 using biology inspired features [6], for classification of

78 aerial images using SOMs [15].

79 In this investigation, a data set of 335 texture images,

80 acquired via an intelligent visual recognition system, as

81 reported in [12], is used. Each data sample of the set rep-

82 resents a grayscale image of an industrial cork tile that was

83 classified in the previous paper into one of seven classes—

84 Beach, Corkstone, Desert, Lisbon, Pebble, Precision and

85 Speckled. The distribution of the texture classes is non-

86 uniform and is shown in Fig. 1.

87The simulation of the investigated system is divided in

88five main stages: data acquisition, feature extraction, fea-

89ture analysis, classifier training, and classifier testing and

90evaluation.

91The rest of the paper is organized as follows: Sect. 2 pre-

92sents information about the data acquisition, feature extrac-

93tion, and feature analysis and reduction stages, while Sect. 3

94covers the classification stage. The results from the conducted

95tests are given and discussed in Sect. 4. Finally, Sect. 5 con-

96cludes the paper and gives some ideas for future work.

972 Data acquisition and feature extraction

98The texture image data set used in this paper is acquired via

99an intelligent visual recognition system described in more

100detail in [12]. The system consists of a charge-coupled

101device camera, lightning devices, and scaffolding. Since

102the texture of the samples is of prime interest, the images

103are converted to a grayscale format.

104As mentioned above, a total of 335 grayscale images of

105size 230 9 340 pixels of cork tile samples of 7 predefined

106by experts types were collected (see Fig. 2).

107The feature extraction phase in our investigation aims to

108identify characteristics and properties that make the classes

109of samples distinct from each other [16]. At this stage of

110the process, features that represent some valuable infor-

111mation about the texture of the images are obtained. This is

112preceded by image normalization.

1132.1 Initial feature extraction

114In order to reduce the illumination effects on the analyzed

115images (e.g., due to a glare), a normalization technique is

116applied. In this process, a small window (15 9 15 pixels) is

117moved within each image and the local average is subtracted

118from the pixels’ values, in order to get images with average

119intensity of each neighborhood about a zero [9]. Afterward,

12034 features are extracted using classical approaches.

Beach

18%

Corkstone

14%

Desert

19%
Lisbon

12%

Pebble

12%

Precision

13%

Speckled

12%

Fig. 1 Distribution of the texture classes

Fig. 2 Samples of the acquired

texture data—images of seven

different types of wall cork tiles:

Beach, Corkstone, Desert,

Lisbon, Pebble, Precision and

Speckled
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121 2.1.1 Co-occurrence matrices

122 Co-occurrence matrices, introduced by Haralick in [17], is

123 a commonly applied statistical approach for texture fea-

124 tures extraction that takes into account relative dis-

125 tances and orientation of pixels with co-occurring values

126 [9, 15, 18].

127 The MATLAB’s Image Processing Toolbox is used for

128 the computation of the co-occurrence matrices of the nor-

129 malized images. As usually proposed by other authors [19],

130 four relative orientations are used—horizontal (0�), right

131 diagonal (45�), vertical (90�), and left diagonal (135�). In

132 this way, the energy, homogeneity, correlation, and con-

133 trast characteristics in each direction are computed, getting

134 as a result the rotation invariant features [9, 11].

135 Also, two spatial relationships are considered—the

136 direct neighbors and the pixels with difference of five. As a

137 result, a total of eight co-occurrence matrices are

138 obtained—four for the direct neighbors and another four

139 for the pixels with difference of five.

140 2.1.2 Laws’ masks

141 The Laws’ masks are used as a filter technique that is

142 applied to identify points of high energy in an image [20].

143 Masks are derived from one-dimensional (1-D) vectors of

144 five pixels length, proposed by Laws, to pick up the average

145 gray level, edges, ripples, spots, and waves [12, 13]:

146 L5 (Level) = [1 4 6 4 1] ? Level detection;

147 E5 (Edge) = [-1 -2 0 2 1] ? Edge detection;

148 S5 (Spot) = [-1 0 2 0 -1] ? Spot detection;

149 R5 (Ripple) = [1 -4 6 -4 1] ? Ripple detection;

150 W5 (Wave) = [-1 2 0 -2 1] ? Wave detection.

151 The vectors are multiplied each other (the second vector

152 is transposed) and this way 25 different 5 9 5 masks are

153 produced. The masks are then applied to the normalized set

154 of samples and the obtained filtered images are converted

155 to texture energy maps. The aim of this process (also called

156 smoothing) is to deduce the local magnitudes of the

157 quantities of interest (edges, spots, etc.). A smoothing

158 window of size 15 9 15 [9] is applied to each filtered

159 image Fk for the k-th mask and new energy images are

160 obtained, where each pixel in the image is given by (1):

Ekðr; cÞ ¼
Xcþ7

j¼c�7

Xrþ7

i¼r�7

Fkði; jÞj j; ðk ¼ 1; . . .; 25Þ; ð1Þ

162162 where (r, c) denotes the rows and columns indices. After

163 obtaining 25 energy maps for each image, a power metric,

164 representing the sum of the squared absolute values for

165 each pixel in the map is used [9], to finally obtain 25 dif-

166 ferent values for each texture sample.

1672.1.3 Entropy

168Entropy is a statistical measure of randomness that can be

169used to characterize the texture of an image [9, 14]. It takes

170low values for smooth images and vice versa.

171The entropy for each image sample is calculated using a

172MATLAB’s build-in function, according to (2):

E ¼ �
XG

i¼1

dðiÞ: log2 dðiÞ; ð2Þ

174174where G is the number of gray levels in the image’s his-

175togram, ranging between 0 and 255 for a typical 8-bit

176image, and d(i) is the normalized occurrence frequency of

177each gray level.

1782.2 Statistical analysis and feature reduction

179Before applying any statistical analysis, a random subset of

18025% of the available data is excluded for the purposes of

181further testing. This subset will be referred to as the testing

182set from now on and the remaining 75% of the available

183data will be the training set.

184During the feature extraction stage, a total of 34 features

185are obtained for each texture image (8 by the co-occurrence

186method, 25 by Law’s masks and 1 entropy feature). The

187distribution of the seven classes of the training set, repre-

188sented by two randomly selected from the 34 features is

189shown in Fig. 3. Figure 3b presents the classes’ distribu-

190tion according to the 2nd and the 5th features of the ori-

191ginal data set and Fig. 3a shows the classes’ means with

19295% confidence interval. As it can be seen from Fig. 3, the

193considerable overlap between the classes makes the clas-

194sification process more challenging.

195In order to reduce the dimensionality of the classifica-

196tion problem (i.e., the number of inputs to the classifier), to

197reduce the redundant information (i.e., the information

198contained in some highly correlated features), and to

199improve the class separability, two statistical analysis

200techniques [10] are used in some of the experiments. They

201are described in more details in the next two subsections.

2022.2.1 Principal component analysis

203PCA is an eigenvalue-based multivariate technique that

204transforms a number of possibly correlated features into a

205number of uncorrelated features, called principal compo-

206nents (PC) [2, 9]. The number of the derived PCs is less

207than or equal to the number of the original features. It is an

208unsupervised technique and as such does not use any

209labeled information on the data.

210The first PC accounts for as much of the variability

211(information) in the data, as possible, and each succeeding
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212 PC accounts for as much of the remaining variability as

213 possible. Depending on the areas of application, PCA is

214 also referred to as Hotelling transform, Karhunen–Loeve

215 transform, or proper orthogonal decomposition [9].

216 The PCA implementation of the MATLAB’s Statistics

217 Toolbox is used for processing the extracted features of the

218 training set. As a result, a new data set in which the first 5

219 features contain about 97% of the total variation (infor-

220 mation) is obtained (Fig. 4a). The PCA transformation

221 matrix is saved for further use in the evaluation stage.

222 Figure 5 shows the distribution of the seven texture

223 classes, represented by the first and second PCs. It can be

224 seen that four out of the seven classes (Beach, Corkstone,

225 Desert, and Pebble) are easily separable from the others.

226 However, the rest of the classes are too close to each other

227and partially overlap. This is because the PCA considers all

228the data samples independently, without taking into

229account which class they belong to. The overlapping in

230some of the classes however is expected to harden the

231classifiers’ performance later on.

2322.2.2 Linear discriminant analysis

233Linear discriminant analysis (LDA) is an eigenvalues-

234based transformation technique that aims to find a linear

235combination of features that characterize or separate two or

236more classes [9, 21]. LDA is not used in this work as a

237classification technique, but as a data preprocessing trans-

238form, before applying the classification technique, as rec-

239ommended in [10]. The number of the newly generated

Fig. 3 Texture types

distribution, according to two

randomly selected features from

the training set: a classes’

means with 95% confidence

intervals; b scatter plot of the

samples

Fig. 4 Percentage of the

information from the training

set contained: a in the first five

PCs for the PCA experiment;

b in the first five eigenvalues for

the LDA experiment
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240 features is always one less than the number of the classes.

241 An LDA implementation in MATLAB, following the

242 algorithm presented in [21], is employed for this research.

243 LDA is applied to the features extracted for each texture

244 sample of the training set. As a result, the dimensionality of

245 the feature space is reduced from 34 to 6 without loss of

246 information about the class separability [11] and the LDA

247 transformation matrix is saved for further use in the eval-

248 uation stage.

249 Figure 4b shows the percentage contribution of each

250 eigenvalue to the sum of the six eigenvalues. It can be seen

251 that about 98.5% of the eigenvalues sum is contributed by

252 the first five eigenvalues.

253 The classes’ means with 95% confidence intervals and

254 the scatter plot of the processed with LDA data are shown

255 in Fig. 6. It can be seen that the classes’ separability is

256 considerably improved.

257 3 Classification

258 For the classification of the texture samples data, self-

259 organizing maps (SOM) are employed. As it is known, a

260 SOM is an artificial neural network (NN) that is trained

261 using unsupervised learning to produce a low-dimensional

262 (typically two-dimensional), discretized representation of

263 the input space of the training samples, called map. A

264 specific characteristic of SOMs (compared to other NNs) is

265that they use a neighborhood function to preserve the

266topological properties of the input space [22]. Like most

267neural networks, SOMs operate in two modes: training and

268testing. The MATLAB’s implementation of SOM is

269employed for this research and the following algorithm is

270used for the classification:

2711. Design of SOM’s architecture (map topology, number

272of neurons, training parameters, etc.);

2732. Training of the SOM with data subset, representing the

274extracted texture features (75% of the available data set);

2753. As a result of step b), a 2D map is obtained, in which

276each node and its closest neighbors represent similar

277data samples (Fig. 7);

2784. Based on the available expert knowledge for the

279training samples, the count of the samples belonging to

280a certain class is determined for each node of the map;

2815. Each node is then labeled to represent just one class—

282the class with predominant number of associated

283samples. In case equal number of samples of different

284classes is mapped to a certain node, the node is labeled

285to the predominant class in its neighborhood (Fig. 7).

286A node gets no label if there are no data samples

287mapped to it (the red node in Fig. 7b);

2886. The classifier’s testing is performed with the remaining

28925% of the available data;

2907. Each testing sample label is compared to the label of

291the node that it is mapped to. A sample is counted as

292unclassified if it is mapped to an unlabeled node;

Fig. 5 Texture types

distribution, according to the

first two PCs: a classes’ means

with 95% confidence intervals;

b scatter plot of the samples
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293 8. The classification accuracy rate is calculated using

294 Eq. 3:

a ¼
nc

nc þ nw þ nu
� 100½%�; ð3Þ

296296 where a is the accuracy of the classifier, nc is the

297 number of correctly classified samples, nw is the num-

298 ber of wrongly classified samples and nu is the number

299 of unclassified samples.

3004 Simulation and results

301MATLAB 2010B and its Neural Network, Image Pro-

302cessing and Statistics Toolboxes are used for the compu-

303tations and simulations presented in this paper.

304Four major experiments are conducted: in the first one,

305the classifiers are trained using all the extracted features

306without any statistical preprocessing; in the second, the

307extracted features are normalized before being fed to a

Fig. 6 Texture types

distribution, according to the

first two eigenvalues: a classes’

means with 95% confidence

intervals; b scatter plot of the

samples

Beach Pebble Corkstone Desert 

Lisbon 
Precision Speckled 

Beach Pebble Corkstone Desert 

Lisbon Precision Speckled 

Beach Pebble Corkstone Desert 

Lisbon Precision Speckled 

(a) (b)

(c)

Fig. 7 Sample SOM classifier

map. Image a presents the node

hits for the samples from the

training set and b from the

testing set. The number in each

node represents its hits. The

nodes are colored according to

the classes they are labeled to.

Image c shows the relative

distance between the map

nodes. Darker color

corresponds to larger distances
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308 classifier; in the third experiment, the trained classifiers use

309 features obtained after preprocessing with PCA; and in the

310 last one, features obtained after applying LDA are used.

311 During the simulation, each test is performed 50 times

312 using the algorithm given in Sect. 3. The minimum, max-

313 imum, and mean percentages of successfully classified

314 texture images from the testing set are recorded, and the

315 mean standard deviation over the 50 runs is also calculated.

316 4.1 Classification without statistical preprocessing

317 In this experiment, SOMs are trained using all the 34

318 extracted features. No statistical preprocessing is per-

319 formed, and random 75% (251 texture images) of the

320 available data samples are used for training and the

321 remaining 25% (84 texture images) for testing.

322 Tables 1 and 3 show results from simulations with

323 varying number of training epochs and varying number of

324 neurons for different SOM’s topologies. The sample con-

325 fusion matrix given in Table 4 shows excellent perfor-

326 mance of the classifier for two of the classes (Lisbon and

327 Speckled) and inferior results for the rest.

328 4.2 Classification with features normalization

329 In this experiment, all 34 features are used for the SOM’s

330 learning and the training set is normalized, so that the

331 features have zero mean and unity standard deviation.

332 Tables 2 and 3 show results from simulations with varying

333 number of training epochs and varying number of neurons

334 for different SOM’s topologies. Table 4 gives a sample

335 confusion matrix of the classifier’s performance for one

336run. It can be seen that the classifier’s performance is

337improved, and it is now able to better distinguish most of

338the classes. However, it still experiences some difficulties

339with the Beach and the Corkstone samples.

3404.3 Classification with PCA

341In this case, statistically preprocessed with PCA data is

342used for the training of SOMs. Again, random 75% (251

343texture images) of the available data samples are used for

344training and the remaining 25% (84 texture images) for

345testing.

346Similarly to the previous case, the number of training

347epochs, the number of neurons in the SOM, the SOM’s

348topology, and the number of principal components (PC)

349used for the training are varied. Each sub-experiment is

350performed 50 times, and the minimal, maximal, and the

351mean accuracy (%) for these runs are recorded. The results

352are presented in Tables 5, 7, and Fig. 8a. The sample

353confusion matrix given in Table 8 shows that this classifier

354experience slight difficulties recognizing some of the

355Corkstone samples, but performs very well on the rest of

356the classes.

3574.4 Classification with LDA

358In the last experiment, SOMs are trained using data sta-

359tistically preprocessed with LDA, while the same training/

360testing data ratio (75% training, 25% testing) is kept intact.

361The parameters for this experiment are varied through

362the number of eigenvalues used, the number of training

363epochs, the number of neurons, and the SOM’s topology.

364Each simulation is performed 50 times, and the minimal,

365maximal, and the mean accuracy (in %) for these runs are

366given in Fig. 8b, Tables 6, and 7. Table 8 presents a

367sample confusion matrix of the classifier’s performance for

368one run. It can be seen that this classifier is able to dis-

369tinguish all the classes, and the classification error is

370mainly contributed by the unclassified samples (mapped to

371an unlabeled node).

3724.5 Analysis of the results

373Figure 8a illustrates that no significant improvement of the

374accuracy is obtained when more than 5 principal compo-

375nents are used (PCA case), and for the LDA case (Fig. 8b),

376the first 3 eigenvalues bring the most significant improve-

377ment. This could also be concluded from the graphics

378given in Fig. 4.

379Regarding the SOM’s topology, no clear corelation

380between the accuracy and the number of used neurons was

381observed (Tables 3 and 7), but more experiments need to

382be done in order to investigate this in more detail.

Table 1 Variation of the classifier’s accuracy (in %) for different

number of training epochs and no statistical preprocessing

Epochs 50 100 250 500 1,000 2,500 5,000 7,500

Min 48.2 58.0 70.3 70.4 75.3 75.3 74.1 75.3

Max 63.0 75.3 81.5 80.3 81.5 81.5 82.7 82.7

Mean 55.1 66.7 77.0 77.0 78.4 78.3 78.0 78.1

Std 3.6 3.9 2.6 1.9 1.4 1.6 1.9 1.8

SOMs with 120 neurons (15 9 8 map topology) are trained

Table 2 Variation of the classifier’s accuracy (in %) for different

number of training epochs for SOM with 120 neurons (15 9 8 map

topology) after normalization

Epochs 50 100 250 500 1,000 2,500 5,000 7,500

Min 71.6 79.0 84.0 84.0 85.2 85.2 87.7 87.7

Max 86.4 90.1 93.8 93.8 93.8 93.8 95.1 93.8

Mean 77.8 84.9 88.7 89.8 89.9 89.8 90.8 90.9

Std 3.6 3.1 2.4 2.0 2.1 1.8 1.8 1.6
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383Figure 9 summerises and illustrates the obtained results

384for the four cases, presented in the previous section. It can

385be seen from the figure that, as expected, the worst accuracy

386is attained for the case with no statistical preprocessing.

387Although the accuracy of the normalized data looks better

388than the obtained one for the PCA case, it has to be noted

389that only five principal components are considered during

390the training, whereas in the normalized case, all 34

391extracted features are taken into account. The use of only

Table 4 Sample confusion

matrix for SOM classifier with

120 neurons (15 9 8 map

topology) and 500 training

epochs: with no statistical

preprocessing on the left side of

the cells and after normalization

on the right

Actual Predicted

Beach Corkstone Desert Lisbon Pebble Precision Speckled Unclassified

Beach 14/13 1/1 0/0 0/0 0/0 0/0 0/0 0/1

Corkstone 1/0 8/7 0/1 0/0 1/2 0/0 0/0 1/1

Desert 2/0 0/0 10/15 0/0 1/0 1/0 1/0 0/0

Lisbon 0/0 0/0 0/0 11/11 0/0 0/0 0/0 0/0

Pebble 0/0 1/0 0/1 2/0 8/10 0/0 0/0 0/0

Precision 1/0 0/0 1/0 1/1 2/0 5/10 1/0 0/0

Speckled 0/0 0/0 0/0 1/0 0/1 0/0 9/9 0/0

Table 5 Variation of the

accuracy (in %) of the classifier

for different number of training

epochs for SOM with 120

neurons, 15 9 8 map topology,

and PCA preprocessing with 5

PCs

Epochs 50 100 250 500 1,000 2,500 5,000 7,500

Min 70.4 74.1 85.2 85.2 85.2 84.0 85.2 86.4

Max 85.2 88.9 92.6 91.4 93.8 92.6 92.6 92.6

Mean 75.6 80.9 89.1 88.8 89.2 88.9 89.5 89.3

Std 2.8 3.3 2.1 1.6 2.0 1.8 1.5 1.5

Fig. 8 Variation of the accuracy (in %) of the classifier (SOM with

120 neurons, 15 9 8 map topology, 500 epochs). The border between

the subbars shows the mean accuracy rate for the 50 runs. The green

and the purple sections show the min and max rate, respectively, for:

a different number of PCs used for the training (after PCA);

b different number of eigenvalues used for training (after LDA)

Table 6 Variation of the accuracy (in %) of the classifier for dif-

ferent number of training epochs for SOM with 120 neurons, 15 9 8

map topology, and LDA with 6 eigenvalues

Epochs 50 100 250 500 1,000 2,500 5,000 7,500

Min 85.2 86.4 92.6 92.6 95.1 96.3 95.1 95.1

Max 96.3 98.8 100.0 100.0 100.0 100.0 100.0 100.0

Mean 92.6 93.9 97.7 97.9 98.5 98.2 98.1 98.2

Std 2.9 3.0 1.5 1.3 1.2 1.1 1.1 1.3

Table 3 Variation of the

classifier’s accuracy (in %) for

different number of neurons and

different SOM topology (trained

for 500 epochs): with no

statistical preprocessing on the

left side of the cells and after

normalization on the right

Neurons 60 120

Topology 3 9 20 5 9 12 6 9 10 6 9 20 10 9 12 12 9 10

Min 70.4/82.7 69.1/84.0 69.1/85.2 67.9/84.0 70.4/84.0 70.4/85.2

Max 82.7/92.6 79.0/92.6 80.3/92.6 81.5/93.8 81.5/92.6 81.5/92.6

Mean 77.9/88.0 75.2/88.1 75.1/87.9 75.5/88.1 75.9/89.0 76.6/89.1

Std 2.5/2.0 2.4/2.1 2.3/2.0 2.9/2.0 2.0/1.9 2.5/1.6
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392 five PCs in the PCA case led to significant reduction in the

393 computational time, compared to the first two experiments.

394 Analyzing the sample confusion matrices for the four

395 experiments (Tables 4 and 8), it can be said that the

396 accuracy is improved (as expected) after applying LDA

397 and PCA on the data sets, and this is especially valid for the

398 Desert and Precision classes, while at the same time, the

399 SOM kept excellent recognition rate for the Lisbon and

400 Speckled classes.

401 Overall, the achieved accuracy for the LDA case is

402 superior for all runs, outperforming the others by 9% on

403 average. The best results for the LDA are due to the nature

404 of this approach, which uses the samples’ lables during the

405 feature analysis. On the contrary, the PCA does not con-

406 sider the classes when applying ortogonal linear transfor-

407 mation to convert the investigated features to principal

408 components. It can also be observed that the increase in the

409number of epochs for the runs does not lead to substantial

410increase in the accuracy, and above 250 epochs, an accu-

411racy plateau is normally reached (Tables 1, 2, 5, and 6).

412The results for the PCA case, presented in Tables 5 and

4137, are in good agreement with those given in [2], where the

414authors reported between 81 and 98% accuracy rate for a

415PCA-based unsupervised classification of SAR images.

416They are also very close to the [83, 95.5%] achieved in [15]

417and fall within the intervals with slightely larger accuracy

418variance, reported in [5, 6], where the results are within the

419[77, 100%] and [67, 92%] domains, respectively.

4205 Conclusion

421The investigated texture image recognition of cork tiles is

422considered as unsupervised classification problem, and

423SOMs are employed for its solution. The proposed

424approach includes statistical feature preprocessing tech-

425niques (for the purposes of dimensionality reduction and

426defining optimal number of the features used for the clas-

427sification) and employing SOM as a classifier for unsu-

428pervised classification (NN architecture and topology

429design, investigating the complexity of the unsupervised

430learning and the performance of the SOM). For the purpose

431of comparison, the experiments and simulations of the

432system are also conducted using the raw data set without

433any statistical preprocessing. As expected, better results are

434obtained for the cases when statistical techniques such as

435PCA and LDA are used (on average about 92% accuracy

436rate). When LDA is applied, the trained SOMs achieve

Table 7 Variation of the

classifier’s accuracy (in %) for

different number of neurons,

different SOM topology, 500

epochs after: PCA with 5 PCs

on the left side of the cells and

LDA with 6 eigenvalues on the

right

Neurons 60 120

Topology 3 9 20 5 9 12 6 9 10 6 9 20 10 9 12 12 9 10

Min 81.5/96.3 81.5/96.3 82.7/96.3 81.5/95.1 82.7/93.8 84.0/93.8

Max 91.4/100.0 92.6/100.0 91.4/100.0 93.8/100.0 92.6/100.0 91.4/100.0

Mean 86.7/98.7 87.8/99.2 87.4/99.1 87.1/98.6 88.7/97.9 88.4/97.6

Std 2.1/1.1 2.2/0.9 1.8/1.0 2.2/1.4 2.0/1.2 1.7/1.4

Table 8 Sample confusion

matrix for SOM classifier with

120 neurons (15 9 8 map

topology) and 500 training

epochs: with PCA on the left

side of the cells and with LDA

on the right

Actual Predicted

Beach Corkstone Desert Lisbon Pebble Precision Speckled Unclassified

Beach 14/15 0/0 1/0 0/0 0/0 0/0 0/0 0/0

Corkstone 0/0 7/10 1/0 0/0 2/0 0/0 0/0 1/1

Desert 1/0 0/0 14/14 0/0 0/0 0/0 0/0 0/1

Lisbon 0/0 0/0 0/0 11/11 0/0 0/0 0/0 0/0

Pebble 0/0 0/0 0/0 0/0 11/11 0/0 0/0 0/0

Precision 0/0 0/0 0/0 1/0 0/0 10/11 0/0 0/0

Speckled 0/0 0/0 0/0 1/0 0/1 0/0 9/9 0/0

0

20

40

60

80

100

5
0

1
0
0

2
5
0

5
0
0

1
0
0
0

2
5
0
0

5
0
0
0

7
5
0
0

A
c
c
u

ra
c
y

Training Epochs

No Statistics

Normalized

PCA

LDA

Fig. 9 Bar graph showing the accuracy for the four case studies with

increasing the number of training epochs
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437 very high accuracy rate—above 98%. This can be expec-

438 ted, as LDA is in fact supervised labeling technique, which

439 makes the classification tasks for the subsequently used

440 SOM much easier.

441 The comparison of the sample confusion matrices for

442 the four experiments (Tables 4 and 8) shows that the SOM

443 classifiers generally confirm the experts’ knowledge about

444 the seven types of texture. However, the visual closeness of

445 some of the misclassified samples to samples from other

446 classes could assist experts to refine the classes’ boundaries

447 or to introduce new classes.

448 Although a straightforward comparison of the methods’

449 performance, based only on the accuracy, can be mis-

450 leading due to the different complexity of the investigated

451 problems (network’s topology parameters, training con-

452 vergence parameters, differences in the preprocessing

453 techniques, and variations in the number of the investigated

454 features and classes, size and quality of the datasets, etc.), it

455 still can give some indication about the method quality.

456 Nevertheless, as compared with results from other authors

457 in the above paragraph, it can be concluded that while our

458 results of 88% mean accuracy for the PCA case, and above

459 98% for the LDA case, are generally comparable and

460 competitive for most of the cases, they are also superior in

461 some of the comparisons. It is also interesting to note that

462 in our previous paper [12], the achieved results (86% after

463 PCA and 95% after LDA) are inferior to the ones presented

464 here. This can be attributed to the added entropy feature

465 and the feature normalization, applied before the analysis

466 and classification stages, but would need further investi-

467 gation in a future work.

468
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