14,272 research outputs found

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Pheromone-based In-Network Processing for wireless sensor network monitoring systems

    Get PDF
    Monitoring spatio-temporal continuous fields using wireless sensor networks (WSNs) has emerged as a novel solution. An efficient data-driven routing mechanism for sensor querying and information gathering in large-scale WSNs is a challenging problem. In particular, we consider the case of how to query the sensor network information with the minimum energy cost in scenarios where a small subset of sensor nodes has relevant readings. In order to deal with this problem, we propose a Pheromone-based In-Network Processing (PhINP) mechanism. The proposal takes advantages of both a pheromone-based iterative strategy to direct queries towards nodes with relevant information and query- and response-based in-network filtering to reduce the number of active nodes. Additionally, we apply reinforcement learning to improve the performance. The main contribution of this work is the proposal of a simple and efficient mechanism for information discovery and gathering. It can reduce the messages exchanged in the network, by allowing some error, in order to maximize the network lifetime. We demonstrate by extensive simulations that using PhINP mechanism the query dissemination cost can be reduced by approximately 60% over flooding, with an error below 1%, applying the same in-network filtering strategy.Fil: Riva, Guillermo Gaston. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales; Argentina. Universidad TecnolĂłgica Nacional; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba; ArgentinaFil: Finochietto, Jorge Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Estudios Avanzados en IngenierĂ­a y TecnologĂ­a. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto de Estudios Avanzados en IngenierĂ­a y TecnologĂ­a; Argentin

    Self-organization of Nodes using Bio-Inspired Techniques for Achieving Small World Properties

    Full text link
    In an autonomous wireless sensor network, self-organization of the nodes is essential to achieve network wide characteristics. We believe that connectivity in wireless autonomous networks can be increased and overall average path length can be reduced by using beamforming and bio-inspired algorithms. Recent works on the use of beamforming in wireless networks mostly assume the knowledge of the network in aggregation to either heterogeneous or hybrid deployment. We propose that without the global knowledge or the introduction of any special feature, the average path length can be reduced with the help of inspirations from the nature and simple interactions between neighboring nodes. Our algorithm also reduces the number of disconnected components within the network. Our results show that reduction in the average path length and the number of disconnected components can be achieved using very simple local rules and without the full network knowledge.Comment: Accepted to Joint workshop on complex networks and pervasive group communication (CCNet/PerGroup), in conjunction with IEEE Globecom 201

    Self-Synchronization in Duty-cycled Internet of Things (IoT) Applications

    Full text link
    In recent years, the networks of low-power devices have gained popularity. Typically these devices are wireless and interact to form large networks such as the Machine to Machine (M2M) networks, Internet of Things (IoT), Wearable Computing, and Wireless Sensor Networks. The collaboration among these devices is a key to achieving the full potential of these networks. A major problem in this field is to guarantee robust communication between elements while keeping the whole network energy efficient. In this paper, we introduce an extended and improved emergent broadcast slot (EBS) scheme, which facilitates collaboration for robust communication and is energy efficient. In the EBS, nodes communication unit remains in sleeping mode and are awake just to communicate. The EBS scheme is fully decentralized, that is, nodes coordinate their wake-up window in partially overlapped manner within each duty-cycle to avoid message collisions. We show the theoretical convergence behavior of the scheme, which is confirmed through real test-bed experimentation.Comment: 12 Pages, 11 Figures, Journa

    Achieving Small World Properties using Bio-Inspired Techniques in Wireless Networks

    Full text link
    It is highly desirable and challenging for a wireless ad hoc network to have self-organization properties in order to achieve network wide characteristics. Studies have shown that Small World properties, primarily low average path length and high clustering coefficient, are desired properties for networks in general. However, due to the spatial nature of the wireless networks, achieving small world properties remains highly challenging. Studies also show that, wireless ad hoc networks with small world properties show a degree distribution that lies between geometric and power law. In this paper, we show that in a wireless ad hoc network with non-uniform node density with only local information, we can significantly reduce the average path length and retain the clustering coefficient. To achieve our goal, our algorithm first identifies logical regions using Lateral Inhibition technique, then identifies the nodes that beamform and finally the beam properties using Flocking. We use Lateral Inhibition and Flocking because they enable us to use local state information as opposed to other techniques. We support our work with simulation results and analysis, which show that a reduction of up to 40% can be achieved for a high-density network. We also show the effect of hopcount used to create regions on average path length, clustering coefficient and connectivity.Comment: Accepted for publication: Special Issue on Security and Performance of Networks and Clouds (The Computer Journal

    Improving the adaptability of simulated evolutionary swarm robots in dynamically changing environments

    Get PDF
    One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behaviour. Using an artificial life simulation framework that mimics a dynamically changing environment, we show that separating the static from the conditionally active part of the network contributes to a better adaptive behaviour. Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize their complete controller network from scratch each time they are subjected to novel conditions, our system uses its genome to store GRNs whose performance was optimized under a particular environmental condition for a sufficiently long time. When subjected to a new environment, the previous condition-specific GRN might become inactivated, but remains present. This ability to store 'good behaviour' and to disconnect it from the novel rewiring that is essential under a new condition allows faster re-adaptation if any of the previously observed environmental conditions is reencountered. As we show here, applying these evolutionary-based principles leads to accelerated and improved adaptive evolution in a non-stable environment
    • …
    corecore