436 research outputs found

    Some geometrical methods for constructing contradiction measures on Atanassov's intuitionistic fuzzy sets

    Get PDF
    Trillas et al. (1999, Soft computing, 3 (4), 197–199) and Trillas and Cubillo (1999, On non-contradictory input/output couples in Zadeh's CRI proceeding, 28–32) introduced the study of contradiction in the framework of fuzzy logic because of the significance of avoiding contradictory outputs in inference processes. Later, the study of contradiction in the framework of Atanassov's intuitionistic fuzzy sets (A-IFSs) was initiated by Cubillo and Castiñeira (2004, Contradiction in intuitionistic fuzzy sets proceeding, 2180–2186). The axiomatic definition of contradiction measure was stated in Castiñeira and Cubillo (2009, International journal of intelligent systems, 24, 863–888). Likewise, the concept of continuity of these measures was formalized through several axioms. To be precise, they defined continuity when the sets ‘are increasing’, denominated continuity from below, and continuity when the sets ‘are decreasing’, or continuity from above. The aim of this paper is to provide some geometrical construction methods for obtaining contradiction measures in the framework of A-IFSs and to study what continuity properties these measures satisfy. Furthermore, we show the geometrical interpretations motivating the measures

    The Combination of Paradoxical, Uncertain, and Imprecise Sources of Information based on DSmT and Neutro-Fuzzy Inference

    Full text link
    The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this chapter, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT) in the literature, developed for dealing with imprecise, uncertain and paradoxical sources of information. We focus our presentation here rather on the foundations of DSmT, and on the two important new rules of combination, than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout the presentation to show the efficiency and the generality of this new approach. The last part of this chapter concerns the presentation of the neutrosophic logic, the neutro-fuzzy inference and its connection with DSmT. Fuzzy logic and neutrosophic logic are useful tools in decision making after fusioning the information using the DSm hybrid rule of combination of masses.Comment: 20 page

    Self-Contradiction and Contradiction between two Atanassov's Intuitionistic Fuzzy Sets

    Full text link
    The paper focuses on the study of the contradiction between two Atanassov's intuitionistic fuzzy sets. First, taking into account some characterizations obtained in previous papers, some functions are defined in order to measure the degrees of contradiction. Besides the principal properties of these measures are pointed out. Finally, some results relating self-contradiction and contradiction between two Atanassov's intuitionistic fuzzy sets are achieved

    Plithogeny, Plithogenic Set, Logic, Probability, and Statistics

    Get PDF
    In this book we introduce for the first time, as generalization of dialectics and neutrosophy, the philosophical concept called plithogeny. And as its derivatives: the plithogenic set (as generalization of crisp, fuzzy, intuitionistic fuzzy, and neutrosophic sets), plithogenic logic (as generalization of classical, fuzzy, intuitionistic fuzzy, and neutrosophic logics), plithogenic probability (as generalization of classical, imprecise, and neutrosophic probabilities), and plithogenic statistics (as generalization of classical, and neutrosophic statistics). Plithogeny is the genesis or origination, creation, formation, development, and evolution of new entities from dynamics and organic fusions of contradictory and/or neutrals and/or non-contradictory multiple old entities. Plithogenic Set is a set whose elements are characterized by one or more attributes, and each attribute may have many values. An attribute’s value v has a corresponding (fuzzy, intuitionistic fuzzy, or neutrosophic) degree of appurtenance d(x, v) of the element x, to the set P, with respect to some given criteria. In order to obtain a better accuracy for the plithogenic aggregation operators in the plithogenic set/logic/probability and for a more exact inclusion (partial order), a (fuzzy, intuitionistic fuzzy, or neutrosophic) contradiction (dissimilarity) degree is defined between each attribute value and the dominant (most important) attribute value. The plithogenic intersection and union are linear combinations of the fuzzy operators tnorm and tconorm, while the plithogenic complement/inclusion/equality are influenced by the attribute values’ contradiction (dissimilarity) degrees. Formal definitions of plithogenic set/logic/probability/statistics are presented into the book, followed by plithogenic aggregation operators, various theorems related to them, and afterwards examples and applications of these new concepts in our everyday life

    Obtaining contradiction measure on intuitionistic fuzzy sets from fuzzy connectives

    Get PDF
    In a previous paper, we proposed an axiomatic model for measuring self-contradiction in the framework of Atanassov fuzzy sets. This way, contradiction measures that are semicontinuous and completely semicontinuous, from both below and above, were defined. Although some examples were given, the problem of finding families of functions satisfying the different axioms remained open. The purpose of this paper is to construct some families of contradiction measures firstly using continuous t-norms and t-conorms, and secondly by means of strong negations. In both cases, we study the properties that they satisfy. These families are then classified according the different kinds of measures presented in the above paper

    A Unifying Field in Logics: Neutrosophic Logic.

    Get PDF
    The author makes an introduction to non-standard analysis, then extends the dialectics to “neutrosophy” – which became a new branch of philosophy. This new concept helps in generalizing the intuitionistic, paraconsistent, dialetheism, fuzzy logic to “neutrosophic logic” – which is the first logic that comprises paradoxes and distinguishes between relative and absolute truth. Similarly, the fuzzy set is generalized to “neutrosophic set”. Also, the classical and imprecise probabilities are generalized to “neutrosophic probability”

    A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS

    Get PDF
    In 1960s Abraham Robinson has developed the non-standard analysis, a formalization of analysis and a branch of mathematical logic, which rigorously defines the infinitesimals
    • 

    corecore