754 research outputs found

    Self-Complementary Hypergraphs

    Get PDF
    In this thesis, we survey the current research into self-complementary hypergraphs, and present several new results. We characterize the cycle type of the permutations on n elements with order equal to a power of 2 which are k-complementing. The k-complementing permutations map the edges of a k-uniform hypergraph to the edges of its complement. This yields a test to determine whether a finite permutation is a k-complementing permutation, and an algorithm for generating all self-complementary k-uniform hypergraphs of order n, up to isomorphism, for feasible n. We also obtain an alternative description of the known necessary and sufficient conditions on the order of a self-complementary k-uniform hypergraph in terms of the binary representation of k. We examine the orders of t-subset-regular self-complementary uniform hyper- graphs. These form examples of large sets of two isomorphic t-designs. We restate the known necessary conditions on the order of these structures in terms of the binary representation of the rank k, and we construct 1-subset-regular self-complementary uniform hypergraphs to prove that these necessary conditions are sufficient for all ranks k in the case where t = 1. We construct vertex transitive self-complementary k-hypergraphs of order n for all integers n which satisfy the known necessary conditions due to Potocnik and Sajna, and consequently prove that these necessary conditions are also sufficient. We also generalize Potocnik and Sajna's necessary conditions on the order of a vertex transitive self-complementary uniform hypergraph for certain ranks k to give neces- sary conditions on the order of these structures when they are t-fold-transitive. In addition, we use Burnside's characterization of transitive groups of prime degree to determine the group of automorphisms and antimorphisms of certain vertex transitive self-complementary k-uniform hypergraphs of prime order, and we present an algorithm to generate all such hypergraphs. Finally, we examine the orders of self-complementary non-uniform hypergraphs, including the cases where these structures are t-subset-regular or t-fold-transitive. We find necessary conditions on the order of these structures, and we present constructions to show that in certain cases these necessary conditions are sufficient.University of OttawaDoctor of Philosophy in Mathematic

    Hipergráfok = Hypergraphs

    Get PDF
    A projekt célkitűzéseit sikerült megvalósítani. A négy év során több mint száz kiváló eredmény született, amiből eddig 84 dolgozat jelent meg a téma legkiválóbb folyóirataiban, mint Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, stb. Számos régóta fennálló sejtést bebizonyítottunk, egész régi nyitott problémát megoldottunk hipergráfokkal kapcsolatban illetve kapcsolódó területeken. A problémák némelyike sok éve, olykor több évtizede nyitott volt. Nem egy közvetlen kutatási eredmény, de szintén bizonyos értékmérő, hogy a résztvevők egyike a Norvég Királyi Akadémia tagja lett és elnyerte a Steele díjat. | We managed to reach the goals of the project. We achieved more than one hundred excellent results, 84 of them appeared already in the most prestigious journals of the subject, like Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, etc. We proved several long standing conjectures, solved quite old open problems in the area of hypergraphs and related subjects. Some of the problems were open for many years, sometimes for decades. It is not a direct research result but kind of an evaluation too that a member of the team became a member of the Norvegian Royal Academy and won Steele Prize

    Euler tours in hypergraphs

    Get PDF
    We show that a quasirandom kk-uniform hypergraph GG has a tight Euler tour subject to the necessary condition that kk divides all vertex degrees. The case when GG is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the kk-subsets of an nn-set.Comment: version accepted for publication in Combinatoric

    Tournaments, 4-uniform hypergraphs, and an exact extremal result

    Full text link
    We consider 44-uniform hypergraphs with the maximum number of hyperedges subject to the condition that every set of 55 vertices spans either 00 or exactly 22 hyperedges and give a construction, using quadratic residues, for an infinite family of such hypergraphs with the maximum number of hyperedges. Baber has previously given an asymptotically best-possible result using random tournaments. We give a connection between Baber's result and our construction via Paley tournaments and investigate a `switching' operation on tournaments that preserves hypergraphs arising from this construction.Comment: 23 pages, 6 figure

    Toward a Formal Semantics for Autonomic Components

    Full text link
    Autonomic management can improve the QoS provided by parallel/ distributed applications. Within the CoreGRID Component Model, the autonomic management is tailored to the automatic - monitoring-driven - alteration of the component assembly and, therefore, is defined as the effect of (distributed) management code. This work yields a semantics based on hypergraph rewriting suitable to model the dynamic evolution and non-functional aspects of Service Oriented Architectures and component-based autonomic applications. In this regard, our main goal is to provide a formal description of adaptation operations that are typically only informally specified. We contend that our approach makes easier to raise the level of abstraction of management code in autonomic and adaptive applications.Comment: 11 pages + cover pag

    Erdos-Hajnal-type theorems in hypergraphs

    Get PDF
    The Erdos-Hajnal conjecture states that if a graph on n vertices is H-free, that is, it does not contain an induced copy of a given graph H, then it must contain either a clique or an independent set of size n^{d(H)}, where d(H) > 0 depends only on the graph H. Except for a few special cases, this conjecture remains wide open. However, it is known that a H-free graph must contain a complete or empty bipartite graph with parts of polynomial size. We prove an analogue of this result for 3-uniform hypergraphs, showing that if a 3-uniform hypergraph on n vertices is H-free, for any given H, then it must contain a complete or empty tripartite subgraph with parts of order c(log n)^{1/2 + d(H)}, where d(H) > 0 depends only on H. This improves on the bound of c(log n)^{1/2}, which holds in all 3-uniform hypergraphs, and, up to the value of the constant d(H), is best possible. We also prove that, for k > 3, no analogue of the standard Erdos-Hajnal conjecture can hold in k-uniform hypergraphs. That is, there are k-uniform hypergraphs H and sequences of H-free hypergraphs which do not contain cliques or independent sets of size appreciably larger than one would normally expect.Comment: 15 page

    Balanced walls for random groups

    Get PDF
    We study a random group G in the Gromov density model and its Cayley complex X. For density < 5/24 we define walls in X that give rise to a nontrivial action of G on a CAT(0) cube complex. This extends a result of Ollivier and Wise, whose walls could be used only for density < 1/5. The strategy employed might be potentially extended in future to all densities < 1/4.Comment: 18 pages, 2 figures. v2: Minor improvements, final versio

    Hypergraph Learning with Line Expansion

    Full text link
    Previous hypergraph expansions are solely carried out on either vertex level or hyperedge level, thereby missing the symmetric nature of data co-occurrence, and resulting in information loss. To address the problem, this paper treats vertices and hyperedges equally and proposes a new hypergraph formulation named the \emph{line expansion (LE)} for hypergraphs learning. The new expansion bijectively induces a homogeneous structure from the hypergraph by treating vertex-hyperedge pairs as "line nodes". By reducing the hypergraph to a simple graph, the proposed \emph{line expansion} makes existing graph learning algorithms compatible with the higher-order structure and has been proven as a unifying framework for various hypergraph expansions. We evaluate the proposed line expansion on five hypergraph datasets, the results show that our method beats SOTA baselines by a significant margin

    Generalized Kneser coloring theorems with combinatorial proofs

    Full text link
    The Kneser conjecture (1955) was proved by Lov\'asz (1978) using the Borsuk-Ulam theorem; all subsequent proofs, extensions and generalizations also relied on Algebraic Topology results, namely the Borsuk-Ulam theorem and its extensions. Only in 2000, Matou\v{s}ek provided the first combinatorial proof of the Kneser conjecture. Here we provide a hypergraph coloring theorem, with a combinatorial proof, which has as special cases the Kneser conjecture as well as its extensions and generalization by (hyper)graph coloring theorems of Dol'nikov, Alon-Frankl-Lov\'asz, Sarkaria, and Kriz. We also give a combinatorial proof of Schrijver's theorem.Comment: 19 pages, 4 figure
    • …
    corecore