research

Tournaments, 4-uniform hypergraphs, and an exact extremal result

Abstract

We consider 44-uniform hypergraphs with the maximum number of hyperedges subject to the condition that every set of 55 vertices spans either 00 or exactly 22 hyperedges and give a construction, using quadratic residues, for an infinite family of such hypergraphs with the maximum number of hyperedges. Baber has previously given an asymptotically best-possible result using random tournaments. We give a connection between Baber's result and our construction via Paley tournaments and investigate a `switching' operation on tournaments that preserves hypergraphs arising from this construction.Comment: 23 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions