We consider 4-uniform hypergraphs with the maximum number of hyperedges
subject to the condition that every set of 5 vertices spans either 0 or
exactly 2 hyperedges and give a construction, using quadratic residues, for
an infinite family of such hypergraphs with the maximum number of hyperedges.
Baber has previously given an asymptotically best-possible result using random
tournaments. We give a connection between Baber's result and our construction
via Paley tournaments and investigate a `switching' operation on tournaments
that preserves hypergraphs arising from this construction.Comment: 23 pages, 6 figure