54 research outputs found

    Power-Aware Resilience for Exascale Computing

    Get PDF
    To enable future scientific breakthroughs and discoveries, the next generation of scientific applications will require exascale computing performance to support the execution of predictive models and analysis of massive quantities of data, with significantly higher resolution and fidelity than what is possible within existing computing infrastructure. Delivering exascale performance will require massive parallelism, which could result in a computing system with over a million sockets, each supporting many cores. Resulting in a system with millions of components, including memory modules, communication networks, and storage devices. This increase in number of components significantly increases the propensity of exascale computing systems to faults, while driving power consumption and operating costs to unforeseen heights. To achieve exascale performance two challenges must be addressed: resilience to failures and adherence to power budget constraints. These two objectives conflict insofar as performance is concerned, as achieving high performance may push system components past their thermal limit and increase the likelihood of failure. With current systems, the dominant resilience technique is checkpoint/restart. It is believed, however, that this technique alone will not scale to the level necessary to support future systems. Therefore, alternative methods have been suggested to augment checkpoint/restart -- for example process replication. In this thesis, we present a new fault tolerance model called shadow replication that addresses resilience and power simultaneously. Shadow replication associates a shadow process with each main process, similar to traditional replication, however, the shadow process executes at a reduced speed. Shadow replication reduces energy consumption and produces solutions faster than checkpoint/restart and other replication methods in limited power environments. Shadow replication reduces energy consumption up to 25 depending upon the application type, system parameters, and failure rates. The major contribution of this thesis is the development of shadow replication, a power-aware fault tolerant computational model. The second contribution is an execution model applying shadow replication to future high performance exascale-class systems. Next, is a framework to analyze and simulate the power and energy consumption of fault tolerance methods in high performance computing systems. Lastly, to prove the viability of shadow replication an implementation is presented for the Message Passing Interface

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets

    Byzantine fault tolerance from static selection to dynamic switching

    Get PDF
    La Tolérance aux pannes Byzantines (BFT) est de plus en plus crucial avec l'évolution d'applications et en raison de la croissance de l'innovation technologique en informatique. Bien que des dizaines de protocoles BFT aient été introduites dans les années précédentes, leur mise en œuvre ne semble pas satisfaisant. Pour faire face à cette complexité, due à la dependence d'un protocol d'une situation, nous tentons une approche qui permettra de sélectionner un protocole en fonction d'une situation. Ceci nous paraît, en s'inspirant de tout système d'encrage, comme une démarche nécessaire pour aborder la problématique de la BFT. Dans cette thèse, nous introduisons un modèle de sélection ainsi que l'algorithme qui permet de simplifier et d'automatiser le processus d'élection d'un protocole. Ce mécanisme est conçu pour fonctionner selon 3 modes : statique, dynamique et heuristique. Les deux derniers modes, nécessitent l'introduction d'un système réactif, nous ont conduits à présenter un nouveau modèle BFT : Adapt. Il réagit à tout changement et effectue, d'une manière adaptée, la commutation entre les protocoles d'une façon dynamique. Le mode statique permet aux utilisateurs de BFT de choisir un protocole BFT en une seule fois. Ceci est très utile dans les services Web et les " Clouds " où le BFT peut être fournit comme un service inclut dans le contrat (SLA). Ce mode est essentiellement conçu pour les systèmes qui n'ont pas trop d'états fluctuants. Pour ce faire, un processus d'évaluation est en charge de faire correspondre, à priori, les préférences de l'utilisateur aux profils du protocole BFT nommé, en fonction des critères de fiabilité et de performance. Le protocole choisi est celui qui réalise le meilleur score d'évaluation. Le mécanisme est bien automatisé à travers des matrices mathématiques, et produit des sélections qui sont raisonnables. D'autres systèmes peuvent cependant avoir des conditions flottantes, il s'agit de la variation des charges ou de la taille de message qui n'est pas fixe. Dans ce cas, le mode statique ne peut continuer à être efficace et risque de ne pas pouvoir s'adapter aux nouvelles conditions. D'où la nécessité de trouver un moyen permettant de répondre aux nouvelles exigences d'une façon dynamique. Adapt combine un ensemble de protocoles BFT ainsi que leurs mécanismes de commutation pour assurer l'adaptation à l'évolution de l'état du système. Par conséquent, le "Meilleur" protocole est toujours sélectionné selon l'état du système. On obtient ainsi une qualité optimisée de service, i.e., la fiabilité et la performance. Adapt contrôle l'état du système grâce à ses mécanismes d'événements, et utilise une méthode de "Support Vecor Regrssion" pour conduire aux prédictions en temps réel pour l'exécution des protocoles (par exemple, débit, latence, etc.). Ceci nous conduit aussi à un mode heuristique. En utilisant des heuristiques prédéfinies, on optimise les préférences de l'utilisateur afin d'améliorer le processus de sélection. L'évaluation de notre approche montre que le choix du "meilleur" protocole est automatisé et proche de la réalité de la même façon que dans le mode statique. En mode dynamique, Adapt permet toujours d'obtenir la performance optimale des protocoles disponibles. L'évaluation démontre, en plus, que la performance globale du système peut être améliorée de manière significative. Explorer d'autres cas qui ne conduisent pas de basculer entre les protocoles. Ceci est rendu possible grâce à la réalisation des prévisions d'une grande precision qui peuvent atteindre plus de 98% dans de nombreux cas. La thèse montre que cette adaptabilité est rendue possible grâce à l'utilisation des heuristiques dans un mode dynamique.Byzantine Fault Tolerance (BFT) is becoming crucial with the revolution of online applications and due to the increasing number of innovations in computer technologies. Although dozens of BFT protocols have been introduced in the previous decade, their adoption by practitioners sounds disappointing. To some extant, this indicates that existing protocols are, perhaps, not yet too convincing or satisfactory. The problem is that researchers are still trying to establish 'the best protocol' using traditional methods, e.g., through designing new protocols. However, theoretical and experimental analyses demonstrate that it is hard to achieve one-size-fits-all BFT protocols. Indeed, we believe that looking for smarter tac-tics like 'fasten fragile sticks with a rope to achieve a solid stick' is necessary to circumvent the issue. In this thesis, we introduce the first BFT selection model and algorithm that automate and simplify the election process of the 'preferred' BFT protocol among a set of candidate ones. The selection mechanism operates in three modes: Static, Dynamic, and Heuristic. For the two latter modes, we present a novel BFT system, called Adapt, that reacts to any potential changes in the system conditions and switches dynamically between existing BFT protocols, i.e., seeking adaptation. The Static mode allows BFT users to choose a single BFT protocol only once. This is quite useful in Web Services and Clouds where BFT can be sold as a service (and signed in the SLA contract). This mode is basically designed for systems that do not have too fuctuating states. In this mode, an evaluation process is in charge of matching the user preferences against the profiles of the nominated BFT protocols considering both: reliability, and performance. The elected protocol is the one that achieves the highest evaluation score. The mechanism is well automated via mathematical matrices, and produces selections that are reasonable and close to reality. Some systems, however, may experience fluttering conditions, like variable contention or message payloads. In this case, the static mode will not be e?cient since a chosen protocol might not fit the new conditions. The Dynamic mode solves this issue. Adapt combines a collection of BFT protocols and switches between them, thus, adapting to the changes of the underlying system state. Consequently, the 'preferred' protocol is always polled for each system state. This yields an optimal quality of service, i.e., reliability and performance. Adapt monitors the system state through its Event System, and uses a Support Vector Regression method to conduct run time predictions for the performance of the protocols (e.g., throughput, latency, etc). Adapt also operates in a Heuristic mode. Using predefined heuristics, this mode optimizes user preferences to improve the selection process. The evaluation of our approach shows that selecting the 'preferred' protocol is automated and close to reality in the static mode. In the Dynamic mode, Adapt always achieves the optimal performance among available protocols. The evaluation demonstrates that the overall system performance can be improved significantly too. Other cases explore that it is not always worthy to switch between protocols. This is made possible through conducting predictions with high accuracy, that can reach more than 98% in many cases. Finally, the thesis shows that Adapt can be smarter through using heursitics

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    A Multi Agent System for Flow-Based Intrusion Detection Using Reputation and Evolutionary Computation

    Get PDF
    The rising sophistication of cyber threats as well as the improvement of physical computer network properties present increasing challenges to contemporary Intrusion Detection (ID) techniques. To respond to these challenges, a multi agent system (MAS) coupled with flow-based ID techniques may effectively complement traditional ID systems. This paper develops: 1) a scalable software architecture for a new, self-organized, multi agent, flow-based ID system; and 2) a network simulation environment suitable for evaluating implementations of this MAS architecture and for other research purposes. Self-organization is achieved via 1) a reputation system that influences agent mobility in the search for effective vantage points in the network; and 2) multi objective evolutionary algorithms that seek effective operational parameter values. This paper illustrates, through quantitative and qualitative evaluation, 1) the conditions for which the reputation system provides a significant benefit; and 2) essential functionality of a complex network simulation environment supporting a broad range of malicious activity scenarios. These results establish an optimistic outlook for further research in flow-based multi agent systems for ID in computer networks

    Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    Get PDF
    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking

    Computer Science & Technology Series : XXI Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC’15 was the 21thCongress in the CACIC series. It was organized by the School of Technology at the UNNOBA (North-West of Buenos Aires National University) in Junín, Buenos Aires. The Congress included 13 Workshops with 131 accepted papers, 4 Conferences, 2 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 6 courses. CACIC 2015 was organized following the traditional Congress format, with 13 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of 3-5 chairs of different Universities. The call for papers attracted a total of 202 submissions. An average of 2.5 review reports werecollected for each paper, for a grand total of 495 review reports that involved about 191 different reviewers. A total of 131 full papers, involving 404 authors and 75 Universities, were accepted and 24 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI

    Computer Science & Technology Series : XXI Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC’15 was the 21thCongress in the CACIC series. It was organized by the School of Technology at the UNNOBA (North-West of Buenos Aires National University) in Junín, Buenos Aires. The Congress included 13 Workshops with 131 accepted papers, 4 Conferences, 2 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 6 courses. CACIC 2015 was organized following the traditional Congress format, with 13 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of 3-5 chairs of different Universities. The call for papers attracted a total of 202 submissions. An average of 2.5 review reports werecollected for each paper, for a grand total of 495 review reports that involved about 191 different reviewers. A total of 131 full papers, involving 404 authors and 75 Universities, were accepted and 24 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI

    Core Technologies for Native XML Database Management Systems

    Full text link
    This work investigates the core technologies required to build Database Management Systems (DBMSs) for large collections of XML documents. We call such systems XML Base Management Systems (XBMSs). We identify requirements, and analyze how they can be met using a conventional DBMS. Our conclusion is that an XML support layer on top of an existing conventional DBMS does not address the requirements for XBMSs. Hence, we built a Native XBMS, called Natix. Natix has been developed completely from scratch, incorporating optimizations for high-performance XML processing in those places where they are most effective
    • …
    corecore