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POWER-AWARE RESILIENCE FOR EXASCALE COMPUTING

Bryan Mills, PhD

University of Pittsburgh, 2014

To enable future scientific breakthroughs and discoveries, the next generation of scientific

applications will require exascale computing performance to support the execution of pre-

dictive models and analysis of massive quantities of data, with significantly higher resolution

and fidelity than what is possible within existing computing infrastructure. Delivering exas-

cale performance will require massive parallelism, which could result in a computing system

with over a million sockets, each supporting many cores. Resulting in a system with millions

of components, including memory modules, communication networks, and storage devices.

This increase in number of components significantly increases the propensity of exascale com-

puting systems to faults, while driving power consumption and operating costs to unforeseen

heights. To achieve exascale performance two challenges must be addressed: resilience to

failures and adherence to power budget constraints. These two objectives conflict insofar as

performance is concerned, as achieving high performance may push system components past

their thermal limit and increase the likelihood of failure. With current systems, the domi-

nant resilience technique is checkpoint/restart. It is believed, however, that this technique

alone will not scale to the level necessary to support future systems. Therefore, alternative

methods have been suggested to augment checkpoint/restart – for example process replica-

tion.

In this thesis, we present a new fault tolerance model called shadow replication that

addresses resilience and power simultaneously. Shadow replication associates a shadow pro-

cess with each main process, similar to traditional replication, however, the shadow process

executes at a reduced speed. Shadow replication reduces energy consumption and produces
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solutions faster than checkpoint/restart and other replication methods in limited power en-

vironments. Shadow replication reduces energy consumption up to 25% depending upon the

application type, system parameters, and failure rates. The major contribution of this thesis

is the development of shadow replication, a power-aware fault tolerant computational model.

The second contribution is an execution model applying shadow replication to future high

performance exascale-class systems. Next, is a framework to analyze and simulate the power

and energy consumption of fault tolerance methods in high performance computing systems.

Lastly, to prove the viability of shadow replication an implementation is presented for the

Message Passing Interface.
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1.0 INTRODUCTION

The race to build the world’s first exascale-class system has been underway for the last ten

years and many challenges remain. Two of the biggest challenges facing these future systems

are resilience failures and the need to operate within power constraints, both a direct result of

the massive amount of parallelism necessary to meet the requirements of exascale. Delivering

exascale performance is projected to require a system with a million sockets, each supporting

many cores [2]. Furthermore, achieving the expected level of performance will require many

millions of components, including increases in memory modules, communication networks,

and storage devices. With this explosive growth in the number of components will come an

increase in the number of faults; reducing the overall system reliability and increasing the

system’s power requirements. In this chapter, we first discuss the functional and physical

attributes of an exascale computing infrastructure, including a functional comparison with

existing petascale systems. We then explore the challenges that need to be addressed to

enable exascale computing. The last section of this chapter focuses on the thesis objective

and contributions of this research.

1.1 EXASCALE COMPUTING SYSTEMS

We start by defining the concept of exascale and providing some background on the scalabil-

ity of high performance computing (HPC). An exascale system, as defined by the Exascale

Working Group [8], is a system that contains at least one system attribute that is one

thousand times larger than that of today’s petascale system. Typically, high performance

computers are ranked by the number of floating point operations per second (FLOPS), which

1



is a functional performance metric. There is a direct relationship between this functional

performance metric and the application performance, although the radical increase in the

level of parallelism might prove to be challenging for today’s applications – potentially lim-

iting the gains achieved in functional performance. For example, increases in application

observed failure rates could offset the improvement in functional performance. Most work in

exascale computing research, including this thesis, focuses upon increasing functional perfor-

mance. Specifically, this thesis is focused on providing resilience to the software and runtime

environments that will enable applications to harness the available resources in terms of

hardware, power, energy, and time.

In order to deliver the desired functional performance and effectively harness its capa-

bilities, several daunting scalability challenges must be addressed. In the late 90’s, terascale

performance was achieved with fewer than 10,000 heavyweight single-core processors. A

decade later, petascale performance required about ten times as many processors as teras-

cale performance. Delivering exascale computing will require one million processors, each

supporting 1,000 cores, resulting in a billion-core computing infrastructure while also re-

quiring a dramatic increase in the number of memory modules, communications devices and

storage components. Table 1 is the U. S. Department of Energy’s projected specifications for

future exascale-class systems, defining “swim lanes” representing expected paths to reaching

exascale performance [2]. Note that there are two distinct paths toward achieving exascale,

one requiring a million nodes supporting 1,000 cores, and the other having 100,000 nodes

supporting 10,000 cores. In either case, exascale performance is achieved through unprece-

dented levels of parallelism, supporting systems with billions of computing components.

As today’s HPC systems grow to meet the requirements of tomorrow’s exascale-class sys-

tems, two of the biggest challenges are power consumption and system resilience. Regardless

of the exact constraints under which the computing infrastructure must operate, power is

undoubtedly a limiting factor in achieving the expected exascale performance required by

the supporting applications. Addressing the prescribed power constraints is critical to the

design and operations of exascale computing systems. The U. S. Department of Energy

has already targeted a power limit of 20 megawatt [2], as indicated in Table 1. As a direct

consequence of the increase in the number of components, the overall system resilience to
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Exascale (projection)
System Parameter Petascale Swim Lane 1 Swim Lane 2 Factor Change

System Peak 2Pf/s 1 Ef/s 500
Power 6MW ≤ 20MW 3

System Memory 0.3 PB 32 - 64 PB 100-200
Total Concurrency 225K 1B × 10 1B × 100 40,000-400,000
Node Performance 125GF 1TF 10TF 8-80
Node Concurrency 12 1,000 10,000 83-830

Network BW 1.5 GB/s 100 GB/s 1,000 GB/s 66-660
System Size (nodes) 18,700 1,000,000 100,000 50-500

I/O Capacity 15 PB 32 - 64 PB 20-67
I/O BW 0.2 TB/s 20-60 TB/s 10-30

Table 1: Comparison of a petascale supercomputer to an expected exascale-class supercom-

puter, as defined by the U. S. Department of Energy Exascale Workshop [2].

faults decreases substantially. Regardless of the reliability of individual components, sys-

tem resilience will continue to decrease as the number of components increases1. Achieving

high resilience to failures under strict power constraints is a daunting and critical challenge

that must be addressed to enable exascale systems. In the following, we further explore the

dimensions of these challenges and their impact on the design and performance of future

exascale-class systems.

1.1.1 Power Challenge

With the explosive growth in the number of components will come a dramatic increase in

system power requirements. Figure 1 shows a steady rise in system power consumption to

1-3MW in 2008 but then a sharp increase to 10-20MW in the following years. The trend

shows that system power consumption could surpass 50MW by 2016. This makes system

power a leading design constraint on the path to exascale. The Department of Energy

has recognized this trend and established a power limit of 20 megawatt [2], challenging the

research community to provide a 1000x improvement in performance with only a 10x increase

1For example, a system consisting of 1 million components, each averaging a fault every 25 years, produces
a system that will experience a fault every 10 minutes on average.
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Figure 1: System Power Projections [57]

in power. This constraint is largely pragmatic, derived from an estimated cost of $1 million

dollars per megawatt per year to operate a supercomputer, resulting in a power budget of

$20 million per year for any one supercomputer. Regardless of the actual budget, it is clear

that exascale systems will need to operate under constraints of a specific budget, which

very likely will be more constraining than what current systems can achieve if they were to

support the expected requirements of future exascale applications.

Adherence to power budget constraints presents a challenging dilemma in the operation

of exascale-class systems. Exascale-class systems will be capable of achieving levels of power

consumption that exceed their prescribed power budget constraints. For example the total

power consumption of a system designed with 150,000 sockets, each consuming 200 watts of

power at full speed, would consume 30 megawatts if all sockets were operating at full speed.

To remain under the 20 megawatt limit, either 50,000 of these sockets must be powered

off, or the power consumption of some or all of the sockets must be reduced. While this

may seem inefficient, as more hardware is available than can be supported by the power
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infrastructure, this will become a reality in exascale-class systems.

Power is the rate at which energy is being consumed, which for the purposes of this thesis

is equivalent to the speed of execution 2. The energy consumed by an application is a function

of the time-to-solution and the amount of power consumed. Reducing the execution speed

can reduce the power consumption, however, reducing the execution speed will also increase

in the time-to-solution. The tradeoff between power consumption and time-to-solution is at

the crux of energy research in computing systems. Although the intricacies of this tradeoff

are complex, it has been demonstrated that energy savings is possible by reducing execution

speeds [113, 53, 6].

The power-limits placed upon exascale-class systems is at the heart of the tradeoff be-

tween power consumption and time-to-solution. The limit is both pragmatic and practical,

on one hand, it limits the energy costs and on the other hand it is reflective of the practical

constraints of the infrastructure supporting exascale-class systems. In either case power-

constraints are a reality that future exascale environments have to face, making the relation-

ship between power and energy consumption increasingly more critical. This thesis presents

a power-aware replication model, that has the potential to save energy, however, the tradeoff

between power consumption and time-to-solution will remain an issue to be addressed.

1.1.2 Resilience Challenge

The field of fault tolerance in computing systems is well established, and significant advances

on how to deal with faults have been achieved by different communities. State of the art

solutions largely rely upon restarting the execution of the application. To avoid the full

re-execution of the failing application, fault-tolerant techniques typically checkpoint the ex-

ecution periodically; upon the occurrence of a fault, recovery is achieved by restarting the

computation from a safe checkpoint [55].

However, recent work in our lab [76, 75] and others [38, 92, 10, 13] have shown that

existing solutions are likely not to scale to the level of faults anticipated in exascale envi-

ronments. Given the increase in system failure rates and the time required to checkpoint

2The relationship between execution speed and power consumption is well established and discussed in
more detail in Chapter 2.
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a fixed checkpoint time of 20 minutes. Twenty minutes is an estimate of checkpoint time

given the amount of system memory (32-64PB) and the I/O bandwidth (20-60TB) projected

in the “swim-lanes” in Table 1, producing a checkpoint write time of between 9-54 minutes.

This data was produced using a simulator [93].
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large-scale compute- and data-intensive applications, it is very likely that the time required

to periodically checkpoint an application and restart it upon failure may exceed the system

mean time between failures [92]. Consequently, applications may achieve very little comput-

ing progress, thereby reducing considerably the overall performance of the system. Figure 2

illustrates this fact and shows that, using coordinated checkpointing, the system efficiency

drops below 50% as the number of sockets increases. Several studies have shown this same

behavior and proposed traditional replication as a possible solution [81, 92].

Replication, also referred to as state-machine replication, is a well-known technique that

has been shown to scale to meet the resilience requirements of large distributed and mission-

critical systems. Based on this technique, a processes state and computation are replicated

across independent computing nodes. When the main process fails, one of the replicas takes

over the computation task. Replication requires doubling the number of nodes, since each

process must have at least 1 replica, thereby reducing the system efficiency to 50%. A major

shortcoming of traditional replication in HPC is the increased power consumption caused by

the need for additional resources to tolerate failure, which might exceed the power budget

imposed upon exascale-class machines.

1.2 THESIS STATEMENT

Two of the biggest challenges facing exascale systems are power and resilience, both a result

of the increase in the number of components. In this thesis, we will show that it is possible

to develop a solution that addresses both of these challenges. Our goal is to justify and

provide evidence to prove the following thesis statement:

“In a power-limited environment, it is possible to build a fault tolerant system for strongly

scalable applications that is more time and energy efficient than existing fault tolerance tech-

niques for exascale-class, high performance, computing systems.”

We seek to achieve this objective by developing a new power-aware replication tech-
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nique called shadow replication. Through the use of analytical models, simulations, and

experimentations, we demonstrate that shadow replication provides system resilience more

efficiently than both checkpointing and traditional replication in power-limited environments.

To achieve a fair comparison with existing fault tolerance methods, we study the power and

energy consumption of existing methods and suggest power saving techniques that could be

applied in today’s systems.

The basic idea of shadow replication is to associate with each process a “shadow process,”

whose execution speed depends on the performance requirements of the underlying appli-

cation. A shadow process is an exact replica of the original process. In order to overcome

failure, the shadow is scheduled to execute concurrently with the main process, but at a

different computing node. In order to minimize energy, the shadow process initially executes

at a decreased processor speed. The successful completion of the main process results in

the immediate termination of all shadow processes. If the main process fails, the primary

shadow process immediately takes over the role of the main process and resumes compu-

tation, possibly at an increased speed, in order to complete the task. The main challenge

in realizing the potential of the shadow replication stems from the need to compute the

speed of execution of the main process and the speed of execution of its associated shadows,

both before and after a failure occurs, so that the applications requirements are met, while

minimizing energy consumption.

Since the failure of an individual component is much lower than the overall system failure,

it is very likely that most of the time the main processes complete their execution successfully.

Successful completion of a main process automatically results in the immediate halting of

its associated shadow processes, providing a significant savings in energy consumption in

comparison with replication. The completion of a main or its shadow results in the successful

execution of the underlying task.

1.2.1 Thesis Contributions

The thesis has five main contributions. First, a new power-aware fault tolerant computation

model, referred to as shadow replication, is proposed and a formal definition of it execution
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model in high performance computing is provided. Second, an analytical model is developed

to compute the expected energy consumption of shadow replication, and an optimization

framework is used to determine the energy-optimal execution speeds of the main process and

its associated shadow, before and after failure occurs. Third, the analysis of the expected

energy consumption of shadow replication and a comparison to other fault tolerant methods

is presented. Fourth, a simulator is developed to validate the analytical models and provide

further analysis. Fifth, to prove the viability of shadow replication within the Message

Passing Interface (MPI).

The remainder of this section will highlight each of these contributions and discuss the

main outcome related to their research.

A power-aware fault tolerant computational model called shadow replication.

After exploration of the power and energy requirements of existing fault tolerant methods,

it became clear that today’s techniques will be inefficient in exascale systems. This study

led us to develop the power-aware fault tolerant computational model of shadow replication

and is the central focus of this thesis. To explore this technique we first develop a execution

model and provide a sketch of how such a model could be deployed in the high performance

computing environment. We then define our design space using this execution model and

further refine the search space in the context of HPC.

Optimization framework for determining the energy, power, and time opti-

mized execution speeds of shadow replication. Having defined the execution model,

we develop an analytical framework that describes both the time-to-solution and energy

requirements. Using this framework an optimization problem is constructed to derive the

energy optimal execution speeds for shadow replication. To enable analytical comparison we

also develop analytical energy and power models for coordinated checkpointing and tradi-

tional replication.

Comparison of the power and energy consumption of resilience methods.

Armed with these models, we explore the potential energy savings achievable using shadow

replication. Ultimately, we demonstrate that in exascale-class systems replication is signifi-

cantly more efficient than coordinated checkpointing. Further, we show that shadow repli-

cation is up to 25% more efficient than traditional replication depending upon the system
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parameters, the application’s communication dependencies and the available laxity.

Additionally, using the analytical model we study the effect shadow replication has upon

strong scaling applications in power limited environments, such as those expected in exascale

systems. In a power limited environment, it is expected that there will be more available

sockets than power to turn them on. Our analytical models show us that in this environment

shadow replication can provide up to a 46% reduction in both time-to-solution and energy

consumption over traditional replication. The main reason for this savings is that shadow

replication enables the system to utilize more sockets than traditional replication and do so

more efficiently than coordinated checkpointing.

A simulation framework for studying power and energy consumption of fault

tolerance techniques. Given these positive analytical results, we implemented a simulator

to validate our analytical model and to confirm the energy savings achievable by shadow repli-

cation. Simulation confirmed our 14-46% savings for applications with no communication,

but showed a 2-24% savings in tightly coupled applications. After further investigation, we

found that in exascale-class machines, our simulations were experiencing cascading process

delays which drastically cut the potential gains we saw in our analytical models.

An implementation of shadow replication in the MPI library. To confirm the

feasibility of executing shadow replication in exascale-class systems we provide an imple-

mentation in the HPC messaging passing interface (MPI). This implementation allows a

non-modified MPI application to execute in HPC systems while taking advantage of our

new fault tolerance method. In this thesis, we provide implementation details and a dis-

cussion of those issues related to the pairing of shadow replication and MPI. We then show

experimental results using our implementation in small clusters that have the capability to

measure power and energy usage.

A related contribution is presented in the Appendix addressing energy concerns faced in

current systems. In this section, we study the power profiles of coordinated checkpointing

in today’s systems. Showing that there is a potential to save energy by reducing the CPU

during the writing and restoring operation with little effect on time to solution of existing

applications. This technique alone could save 5-10% of the energy consumption in today’s

systems.
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1.3 THESIS ORGANIZATION

In Chapter 2 we provide a background study of the related work for fault tolerance and

power management in high performance computing. Chapter 3 develops shadow replication

as a new computation model and describes how such a technique would be implemented

in high performance computing environments. Further, we develop an analytical framework

and compare the power and energy consumption of shadow replication to other fault tolerant

techniques in Chapter 4. Chapter 5 details a simulation framework developed to study power

and energy consumption of resilience techniques and demonstrates potential energy savings of

shadow replication. In Chapter 6 we provide the details of the MPI implementation. Finally,

in Chapter 7 we provide some concluding remarks and detail future work and continued

research being actively pursued in this area. The appendix presents experimental results

and analysis of coordinated checkpointing and propose power-aware enhancements.
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2.0 BACKGROUND AND RELATED WORK

This chapter provides background on fault tolerance and power management as it pertains

to high performance computing (HPC), with a focus on exascale-class systems. First, a

conceptual framework for how faults interact within the context of the system and set the

stage for how fault tolerance is provided. It will also provide background on checkpointing

and replication, with a focus on the most current research on these topics and how they

apply to exascale-class systems. A review of power management concerns in HPC, are also

discussed, along with current research in this area. As discussed in the previous chapter,

shadow replication aims to simultaneously addresses fault tolerance and power management

in HPC; we therefore review previous work in the interplay between fault tolerance and en-

ergy consumption. Lastly, within this context, we argue that shadow replication is positioned

provide power-aware resilience by enabling tradeoff between hardware and time redundancy.

2.1 FAULT TOLERANCE

Before discussing how systems provide fault tolerance, it is necessary to define fault, failure,

and error [52]. A fault is a deviation from the expected behavior of a system. There are

two distinct types of faults: operational and design [52]. Operational faults are those that

occur at the lowest level of the system and are usually the result of a physical malfunction,

such as a memory cell being stuck at one. Design faults are those that occur as a result

of the design being flawed, for example, a software bug. Typically, fault tolerance in HPC

systems is built to address operational faults, but not design faults. This stems from the fact

that operational errors can be identified and corrected at the system software level, whereas
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design faults need to be addressed at the application or middleware level. Techniques such

as design diversity can address operational errors; but these techniques are usually deployed

at the application level [58].

A fault can be reproducible, meaning that every time a series of steps are followed the

fault occurs. A fault could also be transient, meaning that it sometimes occurs but there is

no specific set of steps that always produces the error. Transient faults can occur because

of physical factors - for example, the heat of processor might cause it to perform the wrong

operation. Faults can also be classified as hard or soft faults. Hard faults are those that

result in a system becoming completely unusable and are therefore trivially reproducible; for

example, a broken power supply would result in a hard fault. Soft faults are those which

produce errors without completly halting operation. For example, a slowly running machine

that can be corrected by rebooting.

Failures are faults that become visible to the application or the application user. There

are cases where a fault is always visible to the application, causing the terms fault and

failure to be used interchangeably. For example, a faulting power supply might always cause

a computer to turn off which is always visible to the user of that computer, causing them to

associate the fault with the failure.

An error is the system state that occurs after a failure. Typically one cannot directly

observe a fault or failure but instead observes the resulting error state. There is a wide range

of error states that might occur after a failure, for example an incorrect calculation might

be returned or a segmentation fault could occur due to the application accessing an invalid

memory location.

To summarize, faults are the flawed system component, failures are visible effects arising

from faults, and errors are the system state after a failure. For example, were a processor

to add two numbers, but instead subtracted those numbers, the processor would cause an

operational fault. A failure occurs if the fault results in unexpected behavior as observed by

the application. If, for example, the value of the numbers that were to be added were both

zero the processor’s fault remains undetected, and exhibits no deviation from the expected

behavior. Therefore, this fault would not be considered a failure. An error is the state of

the system that results after a failure occurs. In this example, the resulting state would
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not be an error state, because the final result was not incorrect. If however, the numbers

being considered were non-zero then a failure would have occurred, due to the incorrect

summation.

Because the reasons for and manifestations of faults are extremely varied, faults are

described using a fault model. There are a variety of fault models proposed in the literature.

For our discussion, we will focus on three of the most popular fault models. A fail-stop model

describes a faults in which a processor completely stops working upon failure and is easily

detected by its neighbors. A crash model exhibits the same behavior as a fail-stop model, but

assumes that it might be harder for its neighbors to recognize the fault. A Byzantine fault

model is one in which a system may continue to execute, but produce random or malicious

outcomes, resulting in unexpected behavior. In this short list of models, Byzantine is the

most generic because it covers the behavior of the other two models, whereas fail-stop is the

most restrictive model because failures can be easily detected.

2.1.1 Reliability Metrics

There are several metrics commonly used when discussing the resiliency of HPC systems.

The reliability of a component describes the probability that the component will perform

its intended function during a specified period of time. The failure rate, λ, is the frequency

with which a component will experience failures.

The other commonly used metric is the Mean Time Between Failure (MTBF), which

describes the mean time between any two consecutive failures. The MTBF is the inverse of

the failure rate, λ. For a typical hardware component this is defined in a number of years.

This time is equal to the sum of the mean time to interrupt (MTTI) and the mean time

to repair (MTTR). The mean time to interrupt (MTTI) is the mean time the system or

component will be executing before a failure occurs. The mean time to repair (MTTR) is

the time it takes to actually repair and recover from the failure; for example, including the

time it takes to restore from a checkpoint.
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2.1.2 Fault Masking with Redundancy

Fault tolerance is concerned with providing a service conforming to a predetermined speci-

fication in spite of faults occurring [63]. A fault tolerant system is one that never produces

error state despite the presence of faults. Fault tolerance is typically achieved by fault mask-

ing, the ability of the system to hide failures and avoid error states [5]. To accomplish this

objective, the system leverages redundancy to detect and correct failures. Redundancy is

defined as having additional resources that go beyond the minimum needed to complete the

required tasks at the expected level of performance. All fault tolerant techniques exploit

redundancy to mask failures from the application being supported [63].

There are four forms of redundancy: hardware, software, information, and time [59].

Hardware redundancy is provided by augmenting the system with additional hardware re-

sources to enable system resiliency. An example of hardware redundancy is to execute the

same task simultaneously on two different processors, thus making the system resilient de-

spite a single processor failure. Software redundancy, although seldom used, consists of

writing the same function using two different methods and then comparing the correspond-

ing output to avoid design faults. Information redundancy, a common technique to provide

data resiliency, can be a simple copying a file to multiple locations or could be more elaborate

involving complex encoding techniques. Lastly, time redundancy consists of re-executing a

failed task, thereby harnessing the time resource much like the other techniques harness

hardware, software or storage resource redundancy.

2.1.3 Fault Tolerance Challenges at Exascale

Exascale presents some unique challenges to fault tolerance in exascale systems as faults are

no longer an exceptional event. The first challenge is to provide a fault tolerant technique that

is efficient when implemented in systems with high failure rates. Additionally, any solution

must address how to coordinate all operations across millions, if not billions, of executing

threads, support a multitude of different target applications and provide seamless interactions

for application engineers. It is unclear if current fault tolerant solutions will continue to be

efficient as system sizes grow to meet the demand of future exascale application [38, 92, 10,
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13].

Any system implementing fault tolerance can be broken into four distinct phases: de-

tection, containment, recovery, and preparedness [59]. These phases are not unique to HPC

systems; but when applied to exascale-class systems, they can pose unique challenges. This

section will define these phases and discuss how the challenges they entail are solved in HPC

systems.

Fault Detection. To provide fault tolerance, mechanisms must be designed to determine

that the system deviated from its expected behavior. Unfortuntely, faults cannot be detected

alone, but can only be observed through a fault-induced failure. In other words, rather than

detect faults, fault tolerance techniques check for error states resulting from failures. This

failure checking process, critical to all fault tolerance techniques, must exhibit the following

properties. First, the check should be complete, in the sense that any type of failure should be

detectable. Second, the check should be independent of the system being checked, such that

a fault in the system will not cause the check to fail. Third, the check should be deterministic,

given the system specifications, and should be application independent. In HPC systems,

this is typically provided through the Reliability, Availability, and Servicablity, which is a

management layer, being run on each individual node within the cluster [34].

To provide fault tolerance, the system must first be able to detect that a fault has

occurred. Faults are not possible to detect, but can only be observed through the resulting

failure. In other words, the only way to detect faults is to check for error states resulting

from failures.

Fault Containment. Once a failure is detected, the fault containment component is

responsible for identifying the location of the fault and limiting its effect. For example, in

exascale computing fault containment consists of identifying which node produced faulty

behavior and removing that node from the system.

Fault Recovery. Fault recovery is concerned with the mechanisms and techniques of

reestablishing the expected level of operation of the a system component after a fault has

occurred. For checkpointing, this process involves rolling back the system to a known good

state and re-executing the code that produced the error state as a result of the failure. This

technique assumes that the error state was produced by an operational error in the system
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and is not due to a design error in the application code. If an error is a result of a design

fault, then re-executing the failing code is bound to produce the same error state. Systems

software designs often ignore this possibility; but one can easily see how ignoring design

faults may lead to a system that continually re-executes faulty code and therefore never

halts. The solution is typically to place a limit on the number of times consecutive fault

recovery is performed, such that the probability of operational faults causing consecutive

errors is low.

Fault Preparedness. During normal operations, the fault tolerance method is pro-

actively preparing for the occurrence of the next fault. In checkpointing, this is achieved by

periodically writing the system state to stable storage. In replication, this process consists

of maintaining consistent system state across the replicas. Checkpointing prepares for faults

by having a known good state of the application saved in a location that will be accessible,

regardless of failure. Replication, on the other hand, must ensure that a consistent state

of the system is maintained between the primary and replica processes. For example, non-

deterministic functions must be made consistent across all replica processes. Regardless of

the fault preparedness method used, the system incurs a potentially significant overhead,

even if an error state is never encountered. Fault preparedness is of particular concern in

exascale-class systems as the overhead associated with saving global state and maintaining

process consistency increases as the size of the system increases.

2.2 ROLLBACK AND RECOVERY PROTOCOLS

Rollback and recovery are the predominate mechanisms deployed to achieve fault tolerance

in current HPC environments. In the most general form, the rollback and recovery mech-

anism involves the periodic saving of the current system state to stable storage, with the

anticipation that in the case of a system failure, computation can be restarted from the most

recently saved state prior to failure [30, 55]. The identification of an error, before or during

a checkpoint, requires that the application rollback to the previously completed checkpoint.

Single node systems can save their system state and be assured that the checkpoint
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represents a consistent view of the execution. This is due to the fact that the system

is executing based on a single clock, making it possible to easily capture computation at

a single point in time [103]. However, distributed computing environments are designed

with multiple system clocks. Therefore generating a consistent view of the system state is

significantly more complicated than in a single clock system. A large number of solutions

have been proposed to achieve consistency in distributed systems. Most of the techniques are

derived from the seminal work of Chandy and Lamport [17, 55]. The global-state recording

algorithm is typically used, can be simply described as follows: each process records its own

state and the state of its communication channels. The question then becomes how to use

these states to re-construct a globally consistent view of the application.

2.2.1 Coordinated Checkpoint

The Chandy-Lamport algorithm provides a method for achieving a globally consistent state

and guaranteeing that each process’s state accurately produce a globally consistent state. To

achieve this goal all processes coordinate with one another to produce individual states that

satisfy the “happens before” communication relationship [16], which is proven to provide

a consistent global state. Essentially, the algorithm provides a method for all processes

involved to stop operation “at the same-time” and transfer their system state to a stable

storage. This has become known as coordinated checkpointing, whose defining characteristic

is that all processes coordinate to write their state to stable storage.

The major benefit of coordinated checkpointing stems from its simplicity and ease of

implementation, which lead to its wide adoption in high-performance computing environ-

ments. However, its major drawback is lack of scalability, since it requires all processes to

coordinate in order to achieve a checkpoint [28, 38, 92, 10, 13].

2.2.2 Coordinated Checkpointing in HPC

Today, most HPC applications implement some form of coordinated checkpointing, which is

typically achieved by pausing their execution and requesting the system to capture a check-

point; this ensures that all running processes have reached the same application execution
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point. For example, checkpointing could be done after every 1000 iterations through process

loop or based on other easily identifiable stopping-points in the applications execution, re-

ferred to as an application barrier. Another approach is to have the system coordinate the

checkpoint without the application’s knowledge, which may be desirable if process migration

by the system software is supported [47, 81].

2.2.3 Uncoordinated Checkpoint and Derivative Work

In contrast to coordinated checkpointing, uncoordinated checkpointing enables processes to

record their states independently of each other and postpone creating a globally consistent

view until the fault recovery phase [105, 85]. The major advantage of uncoordinated check-

pointing is that the overhead during fault free operation can be reduced by allowing processes

to checkpoint when its most convenient. For example, a process could produce a checkpoint

when the processes state is small [110]. However, uncoordinated checkpointing suffers sev-

eral disadvantages. First, in order to be able to construct a consistent state during recovery,

each process must maintain multiple checkpoints and message logs. Furthermore, it must

perform extra work to garbage collect unnecessary checkpoints [109]. Second, uncoordinated

checkpoints may be subject to the well-known domino effect, when processes fail to find a

consistent state upon failure, which results in the re-execution of the entire application [91].

Communication Induced Checkpointing. One hybrid approach is known as communi-

cation induced checkpointing schemes [4, 11]. Based on this technique, processes perform

independent checkpoints that ensure a basis for a system-wide consistent state by triggering

checkpoints from communication patterns. Although it reduces the coordination overhead,

the approach may cause processes to store useless states that are never used in future roll-

backs. To address this shortcoming, “forced checkpoints” have been proposed [49]. In most

cases, forced checkpoints are used to reduce useless states; it may, however, lead to unpre-

dictable checkpointing rates. Another approach is to increase the likelihood of obtaining

a globally consistent state, thereby reducing the number of checkpoints. This approach

typically uses a message ordering techniques, such as Lamport clocks [60].

Asynchronous checkpointing. Asynchronous checkpointing with message logging [54,
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88], improves checkpointing performance by avoiding synchronization during the checkpoint

process, as in uncoordinated checkpointing. In addition to storing system state, there is

also a log of all recent messages sent or received by the processes. During the rollback

procedure, the message logs can then be used to synchronize the processes. One of the

potential advantages of this technique is that nodes can be restored independently avoiding

coordinated recovery.

2.2.4 Uncoordinated Checkpointing in HPC

While uncoordinated checkpointing has been well explored in the literature, it is rarely used

in high performance computing. The notable exception is FTC-Charm++ which has im-

plemented uncoordinated checkpointing and is still supported in the middleware layer [112].

There are many reasons for the lack of adoption of uncoordinated checkpointing in HPC. The

most commonly cited one is the complexity of building and maintaining a globally consistent

state from the independent checkpoints from all individual nodes. Another implementation

concern is related to the growing size of message logs, as the size of the system increases.

There have been attempts to reduce the message log size by exploiting properties of the

underlying application. These techniques, however, are dependent upon the application; as

such, they have not gained wide acceptance [44].

Although the applicability of uncoordinated checkpoint techniques is still being debated,

it is our belief that these techniques are not well-suited to address efficiently the failures

expected in future large-scale HPC environments. It has been argued that the sheer num-

ber of components in exascale-class systems increases the potential for more frequent faults,

making operating under a high likelihood of failure the normal, rather than the the excep-

tional behavior in these systems. The underlying assumption of fault-tolerance techniques

based on uncoordinated checkpointing is that faults are rare events. Although appropriate

in computing environments where the fault frequency is low, the intrinsic design decision of

uncoordinated checkpoint to delegate synchronization and state consistency to the rollback

process is no longer viable in large-scale computing environments, where the propensity to

failure is expected to be high. Furthermore, the potentially high number of interrupts due
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to the need to perform independent checkpoints at individual nodes may result in cascading

system delays, negatively impacting system efficiency and performance.

2.2.5 Reducing Checkpoint Overhead

One of the largest overheads in any checkpointing process is the time necessary to write the

checkpoint to stable storage, because while the checkpoint is being written the application

must pause its execution. As the systems grow larger, in number of nodes and memory

size, the time to write a checkpoint will also increase in order to capture the global system

state. The time needed to write the checkpoint is a function of the checkpoint size and the

available IO bandwidth, making minimization of the size of the checkpoint a critical concern

in exascale [81]. In this section, we will review these optimizations and discuss their possible

implications at the exascale level.

2.2.5.1 Incremental Checkpointing Incremental checkpointing [18, 1] attempts to re-

duce the size of the checkpoint by only writing the system state that has changed since the

previous checkpoint. It can be implemented using dirty-bit flags located at the memory page

level [86]. Incremental checkpointing can be extended across multiple nodes to use parity

and other encoding techniques to further reduce the total checkpoint size [84, 29].

Hash based incremental checkpointing makes use of hashes to determine which state has

changed, as opposed to using dirty-bits [1, 18]. The main advantage of this technique is that

it allows differences to be detected at a level below the page size, potentially further reducing

the size of the checkpoint.

Another proposed scheme, known as copy-on-write protocols [70], offloads the check-

pointing process to a secondary task and again only writes incremental checkpoints. This

enables the application to continue working while the checkpoint write operation proceeds

in the background. To accomplish this the checkpoint sub-system flags memory pages as

read-only until they have been written to stable storage. In the even that the application

needs to write to that page then an in-memory copy will occur such that the application can

write to the page but the previous state of the page is retained until copied. The concern
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with this technique is that some applications would require double the memory to support

the simultaneous execution of the checkpoint and the application.

2.2.5.2 High-speed Local Storage Traditionally, HPC nodes are not configured with

local storage, such as spinning disks or solid state devices, instead they network boot and

their root filesystem is maintained on network attached storage devices. The network then

becomes a bottleneck in the process of writing checkpoints because the only stable storage

device is the network attached storage. It has been suggested that nodes in exascale systems

should be configured with fast local storage and that doing so could reduce checkpoint write

times to between four minutes and one second [2]. This would improve performance of

checkpointing such that exascale-class systems would be 59-97% efficient, which while not

ideal, might be sufficient.

There are two problems with this approach: increased failure rates of individual nodes

and increased per-node cost. Historically local storage dramatically increased the node

failure rates. The use of solid-state devices, as opposed to spinning disks, has been proposed

to address this shortcoming. However, durability of these devices when operating in an

environment with a high volume of writes can become an issue. Further, the relatively large

cost of the these storage devices can prohibitive with regard to the overall system costs [19].

One proposed method for using this high-speed local storage, should it be available,

is multi-level checkpointing, which consists of writing checkpoints to multiple storage tar-

gets [79]. For example, a checkpoint is first written locally, then to a neighbor node and

ultimately to a parallel filesystem. Local storage is faster than writing to the parallel filesys-

tem directly. This enables the application to return to normal execution faster, effectively

reducing the checkpoint write time. This technique has been shown, through analytical mod-

els, to significantly reduce the overhead of checkpointing in exascale-class systems [99, 46].

The disadvantages are that it complicates the checkpoint writing process and requires that

the system track the current location of all process’s checkpoints.
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2.3 STATE MACHINE REPLICATION

Process replication and state machine replication have long been used to provide fault tol-

erance in distributed [9, 61, 100] and mission critical systems [7]. State machine replication

creates one or more replicas for each process and ensures that all replicas deterministically

calculates the output in response the given inputs. To ensure consistent system state, all

process messages must be delivered to all nodes running a given process, typically done by

using a message ordering protocol [62]. Additionally, if any parts of the computation rely

on nondeterministic calculations, such as random number generation, then extra consistence

protocols must be constructed. In the event that two processes produce different results, a

voting protocol is used to determine the correct outcome.

The advantage of state machine replication is that it provides a fault tolerance method

that can mask most failures without the need to re-execute computations. Additionally,

replication can be used to detect and correct system failures that are otherwise undetectable,

such as silent data failures [80] and Byzantine faults [73, 14, 40, 108]. However, replication

alone is not enough to guarantee fault tolerance since it is possible that all nodes executing

a given process could fail simultaneously, thus replication is typically paired with some form

of checkpointing.

2.3.1 Replication in HPC Systems

Replication been proposed as a viable alternative to checkpointing in high-performance appli-

cations [38, 92, 10, 13, 68]. Previously it was thought that replication was too costly to work

efficiently in HPC [33], however the predicted increase in failure rates in future systems has

re-ignited interest in this technique. As discussed in Section 1.1.2, it is hypothesized that in

exascale-class systems efficiency of existing checkpointing techniques could drop below 50%

making it equal to that of state machine replication. Figure 2 presents the percentage of

the execution actually executing applicaiton code versus the time performing coorindated

checkpoint or recovering as the system size grows that expected in exascale-class systems.

The figure assumes a fixed the checkpoint time of 20 minutes. Twenty minutes is an estimate
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of checkpoint time given the amount of system memory (32-64PB) and the I/O bandwidth

(20-60TB) projected in the “swim-lanes” in Table 1, producing a checkpoint write time of

between 9-54 minutes, which is inline with previous studies [12, 37].

Replication has been proposed as an augmentation to existing checkpointing techniques

as a means to reduce the checkpoint interval in HPC, while maintaining the same system

resiliency levels [38, 13]. To limit the overhead of replication there has been proposals to for

partial replication [104, 26]. Replication has also been used in HPC to guard against silent

data corruption [80]. There are several different implementations of replication in the widely

used MPI library, each with their different tradeoffs and overheads. The overhead can be

negligible or up to 70% depending upon the communication patterns of the application [32].

2.4 POWER MANAGEMENT

Power management is a mature research area and several energy saving runtime techniques

have been proposed [42, 50, 51, 56, 69, 72, 94, 106]. This work spans real-time systems, mobile

devices and data centers and they all revolve around the notion that one can save energy

by leveraging execution slack. In real-time systems the interplay between slack, scheduling

and global energy savings have been extensively studied [113, 53, 6]. In mobile devices the

operating system is tasked with properly managing the devices sensors and network accesses

to maximize its effective lifetime [95, 107]. In data centers the focus is on reducing energy

consumption of the entire ecosystem, from reduction in cooling to peak power management.

Much of this work relies upon some form of DVFS, which is a mechanism by which the

frequency and voltage of a processor can be scaled during CPU operation. DVFS [83] and

clock throttling [78] are attractive since CPU power continues to dominate overall system

power consumption [50]. Dynamic CPU power, P , can be determined by knowing the chip

activity factor, A, the capacitance C, operating voltage, V , and the frequency, f . The

dynamic CPU power is therefore represented by the function P (A,C, V, f) = A×C×V n×f ,

where n ≥ 2. DVFS enables both voltage and frequency to be change. The reduction in both

the frequency and voltage of a processor has a near cubic relation to the amount of power
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consumption of a CPU. The argument for energy savings is that you achieve a polynomial

reduction in power consumption at the cost of a linear increase in execution time. This is

not a perfect argument because the linear slow down assumption is highly dependent upon

the type of application.

2.4.1 Power Management in HPC

Power management in data centers is most closely aligned with the demands of the high per-

formance computing environments; in fact, much of the work overlaps. There are two areas

in which energy and power for supercomputing is an issue. The first is energy consumption,

which directly equates to the cost of running the system [41, 64, 43]. The second is peak

power usage, which can constrain a system, keeping it from running at full speed to limits

on the rate at which energy can be consumed [111]. There has been work that has looked

specifically at the effect of DVFS has upon HPC workloads, concluded that there is possible

energy savings but it is highly dependent upon the application [64, 43].

2.5 FAULT TOLERANCE AND ENERGY CONSUMPTION

Fault tolerance and power management have been studied extensively, although only recently

have researchers begun to study the combination of these two competing goals. Both fault

tolerance and power management seek to exploit slack in the system, both in time and

power, to provide fault free computation or energy savings respectively. There is also a

delicate interplay between these two fields, for example replication and rollback techniques

requires additional energy to accomplish their goals. Conversely, it has been shown that

lowering supply voltages, which is often done to conserve energy, causes an increase in the

probability of transient faults [15, 48, 115]. The tradeoffs between fault free operation and

optimal energy consumption is only now being explored and high performance computing is

a fertile ground for such research.

In the real-time embedded systems there has been a number of studies that combine the
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goals of fault tolerance using DVFS. Studies have paired scheduling techniques and power

management to simultaneously solve real-time deadlines in-spite of errors and optimize en-

ergy consumption. The most relevant work uses of DVFS to make triple modular redundancy

(TMR) more energy efficient [114, 27]. This work develops an analytical model to describe

the potential energy savings of reducing the execution speed of the third replica, referred

to as optimistic TMR (OTMR). More recently work on reliability-aware power management

(RAPM) explicitly explores the tradeoffs and proposes frameworks for characterizing this

interplay [89, 90].

The energy consumption of HPC systems during checkpoints was studied in [24] for a

variety of checkpointing methods. Models have been developed [74] for coordinated, unco-

ordinated (message logging) and parallel recovery methods. However, the assessments did

not consider the effect DVFS might have upon their energy consumption. While the power

profile of several systems is understood during checkpointing, these studies did not look at

modifications to save energy. The one exception is a study of local checkpoint operations

that used DVFS to achieve energy savings [96]. Work in this thesis analyzes explicitly the

use of DVFS during both local and remote checkpoint operations. Others have exploited

the causal relationship between CPU temperature and reliability to build an adaptive fault

tolerance approach that mitigates faults by reducing the CPU power consumption, which

has the side effect of also conserving energy [98].

2.6 SHADOW REPLICATION IN CONTEXT OF RELATED WORK

The work in this thesis lies at the intersection of the three presented disciplines: fault

tolerance, power management and high performance computing. The existing work in this

area has largely been focused upon measuring power and energy consumption of existing

fault tolerance techniques and only a few have proposed new techniques [96, 24, 74]. This

thesis proposes a new fault tolerance method, Shadow Replication, which can achieve faster

time to solutions and decreases in energy consumption in power-constrained environments.

To achieve fault tolerance redundancy is required, in this case time or hardware redun-
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dancy. The amount of redundancy is a factor of the minimum required time or hardware,

represented as Tmin and Hmin. For example, assuming only one error, re-execution requires

a maximum of double the time, whereas traditional replication requires double the hardware

resources. However, depending upon the number of failures and the degree of replication,

redundancy factors could be more than double. The redundancy factor of different fault

tolerant methods are represented in Figure 3. As depicted, shadow replication is designed to

provide a framework to better balance redundant resources to provide more energy efficient

fault tolerance in high performance computing. Shadow Replication achieves this by enabling

a tradeoff between hardware and time redundancy.

Using DVFS to reduce the execution speed of the replica process, one reduces the hard-

ware resources while potentially increasing the necessary time. The computational model of

Shadow Replication thereby enables the parameterized tradeoff between these two redundant

resources: hardware and time. Energy is a function of power consumption and length of time,

in terms of redundant resources, the energy is determined by the hardware requirements and

the time it takes to successfully execute the application. This thesis develops models to lever-

age the tradeoff enabled by Shadow Replication and demonstrates that this fault tolerance

model has potential to reduce energy consumption in exascale-class computing environments

while meeting expected levels of performance.
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with a focus on how Shadow Replication provides a framework for balancing these resources.
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3.0 SHADOW REPLICATION

Replication has been proposed as an alternative to checkpoint/restart protocols; it has been

shown to provide significant improvement in scalability, with the potential to reach the ef-

ficiency levels at scales required by extreme scale systems. The advantage of replication

is that its implementation requires neither new hardware features nor modification to the

application software. However, these techniques have not gained wide deployment in HPC

environments. This is mostly due to the need for increased levels of hardware, energy and

power requirements. To realize fault tolerance and ensure levels of performance similar those

achieved when no failures occur in the original infrastructure. Shadow replication attempts

to address this shortcoming and aims to provide the required levels of fault-tolerance while

minimizing energy in HPC environments. This chapter defines the shadow replication com-

putational model and describes it’s dynamics in Section 3.1. Section 3.2 restricts the general

computational model into an execution model applicable in the high performance comput-

ing environment. Using this execution model, Section 3.3 defines an analytical model for

the expected energy consumption of shadow replication and other fault tolerant techniques.

Using this analytical model we then formulate the optimization framework for determining

optimal execution speeds for shadow replication.

3.1 SHADOW REPLICATION DETAILS

Current fault tolerance approaches rely upon either time or hardware redundancy in or-

der to tolerate failure. The first approach, which uses time redundancy, requires the re-

execution of work after the failure is detected. Although it can be improved by the use of
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checkpoint/restart systems, such an approach still requires time redundancy. The other ap-

proach, replication, which relies upon hardware redundancy, requires both hardware, power,

and energy to execute the task twice. Shadow replication, by contrast, seeks to achieve the

optimal tradeoff between re-execution and traditional replication to meet the constraints

of the application, while minimizing hardware and energy resources, subject to the system

power consumption constraints.

Exploring the energy consumption of replication reveals that the replica processes could

execute at different execution speeds while still guaranteeing a response time, not to exceed

that provided by checkpointing. Based upon this observation, the basic idea of shadow

replication is to associate with each main process a “shadow process,” whose execution speed

depends on the performance requirements of the underlying application and the likelihood

of failure. In order to overcome failure, the shadow executes concurrently with, but on a

separate computing node than the main process. The successful completion of the main

process results in the immediate termination of the shadow process. If the main process

fails, the shadow process takes over the role of the main process and resumes computation –

possibly at an increased speed – in order to complete the task within the targeted response

time. The dynamics of shadow replication are illustrated in Figure 4(a).

Depending on the occurrence of failure, two scenarios are possible. The first scenario,

depicted in Figure 4(a), takes place when no failure occurs. In this scenario, the main process

executes at the speed necessary to achieve the desired level of fault-tolerance, minimize power

consumption and meet the target response time of the supported application. Based on the

specified execution speed, the main process completes the total amount of work required

by the underlying application. During the execution time of the main process, the shadow

executing at a reduced processor speed, only completes a significantly small amount of the

original work, before it is terminated.

The second scenario, depicted in Figure 4(b), takes place when failure of the main process

occurs. Upon failure detection, the shadow process increases its processor speed and executes

until completion of the task. The processor speed at which the shadow executes after failure

is determined so that the task completes by the targeted response time.
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Two properties are unique characteristics of the shadow replication computational model:

• Given that the likelihood of individual socket failure is low in exascale systems, the

first execution scenario of shadow replication is likely to occur more frequently during

the execution of an application. Consequently, the additional energy consumed by the

shadow is significantly smaller than the energy needed to execute an exact replica of the

main, resulting in significant energy savings.

• The failure of a shadow has no bearing on the behavior of the main process

Early detection of the main process failure is an important aspect of shadow replication

to ensure optimal execution. Several mechanisms have been proposed to achieve early failure

detection, a challenging problem in distributed systems [59]. These techniques differ in their

ability to detect failures as soon as it occurs and the overhead required to do so. It is

worth noting, however, that failure detection in shadow replication is limited to the main

and its shadow and does not involve other processes in the system. A simple mechanism to

detect failure is to use the estimated execution time of the main process as an indicator of

successful completion or failure of the main process. If the shadow process does not receive

a notification of a successful completion, the shadow assumes failure of the main process

and proceeds to complete the task. Although the overhead is low, this simple method runs

the risk of causing the shadow to wait longer than necessary, therefore causing the shadow

to execute sub-optimally. This simple solution can be easily augmented with a light-weight

heart-beat protocol to achieve earlier failure detection while reducing energy consumption.

Another critical issue of shadow replication is the need to determine the speed at which

the main must execute to increase the likelihood of successful completing the task, when a

failure occurs. On one hand, increasing the execution speed of the main process leads to

quicker completion time, which in turn reduces both the shadow execution time and exposure

of the main process to failure, thereby achieving significant energy savings. Furthermore,

this strategy allows the detection of failure, if such an event were to occur, early in the

execution phase, which provides additional laxity for the shadow to complete the task by

the targeted response time. On the other hand, increasing the processor speed of the main

processes may stress the system beyond its power limits which is likely to have an adverse
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impact on the resilience of the system.

The approach used in this thesis to obtain optimal execution speeds for the main process

and its associated shadow takes into consideration the nature and computational attributes

of an HPC application, without stressing the system beyond its thermal and power limits. In

the following sections a brief discussion is provided to highlight how the shadow replication

computational model is implemented in a distributed system; further details are presented in

Chapter 6, which discusses the implementation of shadow replication in the MPI middleware

commonly used in HPC environments.

3.1.1 Process Mapping

In shadow replication, the execution of a task spawns the creation of both a main process

and a shadow process. These processes must be carefully mapped to the computing nodes1

of the distributed infrastructure to achieve fault tolerance. Specifically, the mapping must be

done such that the main and shadow processes are fault-isolated from each other, meaning

that a fault affecting one process does not affect the other. Fault isolation is necessary to

minimize the likelihood that both the main and shadow processes fail at the same time.

There are a number of different ways to achieve a fault-isolated mapping of shadow

replication processes. One possible strategy is to make use of the multi-core capabilities of

the infrastructure to assign main processes and shadows such that a given shadow process can

only be run concurrently with an unrelated main process. In such a mapping, voltage scaling

is used to execute the main and the unrelated shadow process at their specified execution

speeds. Figure 5 illustrates a feasible assignment using this approach for the case of three

main processes and their associated shadows. Another strategy is to use time-sharing to

achieve both process mapping and process slow-down without the use of voltage scaling,

only the first strategy is considered in this thesis. The MPI implementation of process

mapping will be explored in further detail in Chapter 6.

1In HPC computing nodes are the sockets which are performing the computation.
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3.1.2 Message Passing Considerations

Another important aspect of the shadow replication model is providing intra-process commu-

nication to achieve synchronization and to maintain system consistency. Any communication

model must, at a minimum, provide the following two properties:

• All messages destined for a task must be delivered to both the main process and the

associated shadow process.

• It’s possible that both main and shadow processes send the same, and duplication of the

same message must be resolved.

To satisfy the communication and synchronization requirements of the shadow replication

model, the runtime support environment makes use of message queues at each replica, possi-

bly consolidating these queues between a replica-pair. The replica-pair is the unit consisting

of a main and it’s associated shadow process.
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It is clear that the policy of directly forwarding messages to all processes is not likely

to scale in exascale-class systems. The use of passive-queues, where stored messages are

only forwarded upon request by the processes, has greater potential to achieve the levels

of scalability expected in exascale-class systems. This approach eliminates the need for the

queue manager to notify processes directly; it also allows processes to request messages

when they are ready. Consequently, processes running at a higher execution speed will not

interfere with the execution of slower running processes. As will be discussed in Chapter

6, a passive-queue for communication messages is well-suited for MPI-based environments,

where a similar data structure is already supported by the communication middleware layer.

In order to keep track of which replicas are present, a global register, which maps pro-

cesses to the various replicas, is needed. In our MPI implementation this is achieved by using

a global process map, a static map constructed when MPI initializes the nodes. A detailed

discussion of these maps is provided in Chapter 6.

When a message is sent, the global register is consulted and the message is routed to

each of the replica queues. The queue holds the message until it has been delivered to all

associated processes2. This is possible because all associated processes are registered in the

process map. An example of passive-queue based message delivery is depicted in Figure

6. While not shown in the figure, messages would also be removed from the queue once

the main process has completed. This scheme ensures that all executing processes reliably

receive all messages destined for their task.

A duplicate-free implementation of message queues maybe achieved by ignoring messages

that have already been received. More specifically, when the queue receives a message from

a task, it determines if that message has already been received by the queue. If the message

is redundant, it simply ignores the message. However, if it is new, the message is queued

for delivery. An example of the message receiving process is shown in Figure 7. This allows

shadow processes to execute at their intended speeds, without producing duplicate system

messages. An additional benefit of this model is that messages will be processed regardless

of their source; therefore, the queues need not be aware of process failures.

2Any implementation of such a system must address the issue of growing queue size. More detailed
discussion in Section 4.1.4
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3.2 SHADOW REPLICATION EXECUTION MODEL DEFINITION AND

OPTIMIZATION

To study the application of shadow replication and the potential energy savings, this section

defines an execution model for HPC environments, the potential optimizations, and the

supported applications. The execution model enables us to explore the possible optimization

points. Pairing these optimizations with a supported application provides the information

necessary to both develop and evaluate analytical models and simulators representing shadow

replication.

3.2.1 Execution Model

We consider applications executing in a distributed computing environment using a large

number of collaborative tasks (equivalent to ranks in MPI). The successful execution of the

application depends on the successful completion of all tasks. Therefore, the delay of a single

task delays the entire application.

The execution model of shadow replication explored in this thesis consists of two processes

36



Message
Queue

Task 1
Main

Process

Task 1
Shadow
Process

Send
M1

M1

Accepted
Send
M2

M2

Accepted
Send
M1

M1

Ignored Send
M2

M2

Ignored

X
Main Process

Failed

Send
M3

M3

Accepted

Figure 7: Example Message Receiving

for each task: a main and a shadow. The main process executes at a single execution speed

denoted as σm. If no failure occurs, the task will be completed by the main process. The

shadow process executes at two different speeds, a speed before failure detection, σb, and a

speed after failure detection, σa. If a failure occurs in the main process, the shadow takes

over the execution and changes its execution speed to σa. If a failure occurs in the shadow

process, the main process simply continues to execute at σm. This is depicted in Figure 8.

main

shadow

σb
σa

σm
X

t0 t f tc t r

p

p

Figure 8: Overview of Shadow Replication

Additionally, Figure 8 defines time points signaling system events. The time at which

the main process completes a task is tc. The time of failure in the main process is denoted

as tf . The time at which the shadow process is guaranteed to complete a task, regardless of
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a failure, is tr. There is a longer discussion about how this guarantee is determined later in

this section.

The challenge is determining execution speeds such that the application requirements

are met while simultaneously maintaining the system-level goals. When applying shadow

replication to exascale, the system-level goals are to minimize energy, power, and/ or time to

solution. These goals maybe conflicting; for example, increasing power consumption might

decrease the time-to-solution but have no effect on energy consumption. The next section

explores the possible design choices and discusses possible optimization strategies to achieve

these goals.

3.2.2 Shadow Replication Optimization Issues and Strategies

Regardless of the minimization objective, one can explore the optimization search space to

gain a better understanding of the issues related to the design and use of shadow replication.

The execution speeds of the main and its associated shadow are the variables of the

optimization model, and their optimal values are the outcome of the model. These variables

determine the task completion time and the power and energy consumption. The remaining

parameters capture the computing capabilities of the system and the performance require-

ments of the supported applications. The system parameters, such as number of nodes,

maximum execution speed, node failure, and power constraints; capture the intrinsic charac-

teristics of the system that are relevant in computing the optimum values of σm, σb, and σa.

The application parameters constrain the optimization model to produce optimum values

for the speed variables that adhere to the performance requirements of the application. The

resulting optimization model is depicted in Figure 9.

In its most general form, the optimization model seeks to optimize all speed variables.

Such an approach, however, may increase unnecessarily the complexity of the optimization

problem, particularly when the characteristics of the computation environment and applica-

tion may constrain the formulation of the optimization problem. Such insight must be taken

into consideration when deriving the optimum values that are relevant to and commensu-

rate with the environment supporting the application. For example, in HPC environments,
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the high cost of the computing infrastructure, coupled with the need to reduce the time to

solution makes it undesirable or even unacceptable to execute the main process at less than

the maximum speed. The reality of such an environment dictates that σm be set to the

maximum execution speed. A summary of all possible optimization strategies, along with

the type of application for which the strategy is well-suited, is depicted in Table 2.

When calculating any optimization one can perform the optimization either online or

offline. In this case, it is always most logical to calculate σm and σb offline because the

execution speeds are needed at the beginning of execution, prior to any other system event

has occurred. However, it is possible to calculate the execution speed of the shadow after

failure either before the failure occurs (offline) or once a failure has been experienced (online).

Depending upon the information known and the objective of the optimization, the offline

optimization could perform as well as the online calculation, making online optimization

unnecessary.

Lastly, one needs to define the objective of the optimization. In this thesis, our goal is

to minimize the energy consumption while achieving high throughput. Although using this

execution model, one could also find execution speeds which minimize power consumption

or time to solution. When performing an online optimization of the speed of the shadow

after failure, it might be unnecessary to optimize energy and instead optimize power or time

to solution.
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σm σb σa Explanation or Example

Opt. Opt. Opt. Full optimization
Opt. Opt. Fixed Always execute at max speed after failure or we could let σa = σb.
Opt. Fixed Opt. Always execute the shadow at 0, effectively making this model

act like re-execution.
Opt. Fixed Fixed Execute at speed 0 before failure and maximum speed after fail-

ure, only optimizing the speed of the main process.
Fixed Opt. Opt. Always execution the main at max speed, only optimizing the

shadow execution speeds.
Fixed Opt. Fixed Execute the main and the shadow after failure at maximum speed.
Fixed Fixed Opt. An example would be to always execute main at max speed and

shadow before failure at zero, only optimizing the shadow after
failure has occurred.

Fixed Fixed Fixed This would be the case if we used traditional replication, in which
case all speeds are set to the maximum execution speed.

Table 2: Optimization Search Space. The models and simulation we present in future

chapters will always fall into one of these categories.

3.2.3 Application Specification

We consider applications executing in a distributed computing environment using a large

number of collaborative tasks (equivalent to ranks in MPI). The successful execution of the

application depends on the successful completion of all tasks. Therefore, the delay of a single

task delays the entire application.

One of the key application factors is the amount of coordination between the tasks. For

example, an application might require no intra-task communication, allowing a single task to

fail and restart without effecting the completion time of other tasks. However, if intra-task

communication is required, then the failing of a single task could potentially delay all tasks

with which it would have normally communicated. The amount of communication can be

thought of as the amount of dependencies one task has upon all other tasks and affects the

application completion time and energy consumption. There are wide range of potential

applications but they can be classified into one of the following types: No Dependency,

Blocking Dependency or Full Dependency. Details of these communication types can be

found in Table 3.
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Application Type Case Description

No Dependency Map Tasks There are no intra-task dependencies, all tasks must complete
but could do so with no coordination.

Blocking Dependency Independent Simula-
tion

Tasks can execute independently but are required to communi-
cate at the end of execution to complete the solution. This repre-
sents applications that divide work into non-overlapping parts but
require collective operations at the end of execution or perform
asynchronous communication during execution, the difference be-
ing how much work is necessary at the end of execution.

Full Dependency Coordinated Simula-
tion

Tasks are fully-dependent upon other tasks and require constant
communication between tasks. This represents an application
that frequently performs collective operations during execution.

Table 3: Classification of application communication types and their descriptions.

We assume each application is fully parallelizable, with a total workload of W. The

work is assumed to be evenly divided into N tasks. We further assume a strong scaling

application; therefore, as the number of tasks increases, the amount of work each individual

task performs decreases linearly with the number of tasks. Each task is assigned an equal

workload, Wtask = W
N

, where N represented the number of tasks. Blocking Dependency

and Full Dependency applications require N processes to execute in parallel in order to

complete an application with N tasks. However, applications that do not require intra-task

communication may execute their tasks in a serial fashion.

We will assume that each process is assigned a processing socket to complete its execution.

Work is defined as a number of clock cycles and each computing socket has a variable speed,

σ, given in clock cycles per second. Therefore, the minimum solution time for an application

executing in parallel occurs when all sockets are executing at maximum speed is tmin = Wtask

σmax
.

If tasks exhibit no intra-task communication then they can execute in serial, making the

minimum completion time depend upon the number of sockets available, sockavail, and can

be expressed as tmin = Wtask

σmax

N
sockavail

.

Each task also has an associated targeted response time, tresp, which is the maximum

time that the process needs to complete its task. We express the targeted response time as

a multiplicative function of the minimum response time, tresp = α× tmin, where α represents

a laxity factor defined by the application. For example, if the minimum response time is
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100 seconds and the targeted response time is 125 seconds, the laxity factor is 1.25. In

contrast, checkpointing techniques assume that if a single failure occurs, the system must

always have enough time to re-execute. In this framework this results in a laxity factor of

α = 2.0, assuming a single failure. If multiple failures occur, checkpointing may require a

laxity factor of α > 2.0. Such a high laxity is needed, as the application tasks may have to

restart multiple times.

3.3 ENERGY CONSUMPTION ANALYTICAL FRAMEWORK

This section develops the analytical framework used to model the energy consumption of fault

tolerance mechanisms; specifically, shadow replication, traditional replication, and check-

pointing. To calculate the energy consumption, we begin by modeling the power consump-

tion of a process executing on a socket at a given execution speed. In order to model the

energy consumption of the entire system, the single socket model is combined to represent

a group of sockets. By then combining this with a socket failure model, one can derive

the expected energy consumption of various fault tolerance mechanisms, including shadow

replication.

3.3.1 Power Model

We start by describing a power model for a single computing socket which will be built

upon for our checkpoint and replication models. Consider the dynamic CPU power which is

known to be affected by the execution speed of the processor. Specifically, one can reduce

the dynamic CPU power consumption at least quadratically by reducing the execution speed

linearly. Dynamic CPU power, P , can be determined by knowing the chip activity factor, A,

the capacitance C, operating voltage, V , and the frequency, f . The dynamic CPU power is

therefore represented by the function P (A,C, V, f) = A× C × V n × f , where n ≥ 2. DVFS

scales both voltage and frequency whereas activity and capacitance are fixed, therefore we

denote the execution speed using σ, which is the the combination of V and f . Thereby,
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allowing us to represent the power consumption as the function P (σ) = σn, resulting in

a polynomial function where n ≥ 2. In the remainder of this thesis we assume that the

dynamic power function is the cubic, P (σ) = σ3.

Next, consider the “overhead” power which is consumed regardless of the speed of the

processor. This includes both CPU static leakage and all other components consuming power

during execution (memory, network, etc.). In this work, we define the overhead power to

be a fixed factor, ρ, of the power consumed when the CPU is operating at full speed. The

percentage of overhead power in a system is thus defined as ρ
ρ+1

. By reducing the execution

speed, one can only change the dynamic power and the overhead power remains constant.For

example, when ρ equals 4.0 and the CPU is executing at maximum speed, the overhead power

of the system is 80%, meaning that the CPU is consuming the remaining 20% of the total

power.

The energy consumed over a period of time is the summation of the instantaneous power

consumed over that period. Therefore, the energy consumed by a socket executing at speed

σ during an interval [t1, t2] is given by:

Esoc(σ, [t1, t2]) =

∫ t2

t=t1

(σ3 + ρσ3
max)dt = (σ3 + ρσ3

max)(t2 − t1) (3.1)

3.3.2 Failure Model

A failure can occur at any point during the execution of the main task, rendering the work

completed by that process unrecoverable. Because tasks execute on different computing

nodes, failures are assumed to be independent events. However, it is assumed that either

the main or the shadow can fail, but not both. If the main task fails it is implied that the

shadow will complete without failure. This assumption is realistic as the probability of both

the main and shadow sockets failing simultaneously is highly unlikely, given that the failure

of any socket is very low. In order to achieve higher resiliency, one could make use of multiple

shadow processes to overcome simultaneous failure of the main and its associated shadow.

We further assume the existence of a probability density function, f(t), to express the

probability of the main task failing at time t. In the remainder of this thesis, we use an

exponential probability density function, thus f(t) = 1
Msoc

e−t/Msoc , where Msoc is the socket
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MTBF. We choose to use the exponential distribution function because it is widely used

to represent socket failures in HPC environments. This further enables the integration of

existing failure models, such as Daly’s checkpointing approximation model [23], into the

analysis and experimental studies carried out in this thesis.

3.3.3 Replica-Pair Energy Model

This section develops a model which represents the energy consumption of a replica-pair.

This model is then used to determine the energy consumption of the combination of repli-

cation and checkpointing.

A replica-pair consists of two process, the main and the shadow. The main process

executes at a single execution speed denoted as σm. If no failure occurs, then the task will

be completed by the main process. The shadow process executes at two different speeds:

namely before failure detection, σb and after failure detection, σa, as depicted in Figure 8.

We define some specific time points signaling system events. The time at which the

main process completes a task, tc, is given as tc = Wtask/σm. Note that tc is dependent

upon the execution speed of the main. Additionally, we define tf as the time at which a

failure in the main process is detected. Without loss of generality, in order to make the

optimization problem formulation easier to understand, we assume tf = tc, when no failure

occurs. We further define the time at which the shadow process completes a task, regardless

of a failure as, tr = tf + (Wtask − σbtf )/σa. In order to meet the performance requirements

of the application, we constrain this value to be less than or equal to the targeted response

time of a task, tresp.

We define the expected energy of a shadow replica-pair as the summation of the expected

energy consumed by the main and shadow process given our failure model. We assume at

most one failure between the main or the shadow process. Based on these assumptions, the
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expected energy consumption of a main and shadow replica-pair can be expressed as:

Esocrep =

∫ tc

t=0
(Esoc(σm, [0, t]) + Esoc(σb, [0, t]))f(t)dt

+

∫ tc

t=0
Esoc(σa, [t, tr])f(t)dt

+(1 −
∫ tc

t=0
f(t)dt)(Esoc(σm, [0, tc]) + Esoc(σb, [0, tc]))

(3.2)

In the above expression, the first part of this equation represents the expected energy

consumed by the main and shadow process before a failure occurs in the main process. This

is the summation of the expected energy consumed by the main plus the energy consumed by

the shadow given our failure model over the total duration, 0 to tc. The second part of this

equation is the expected energy consumed by the shadow after failure occurs. The duration

of this is from the time of failure, tf , until the shadow completes execution, tr. The last part

is the expected energy consumed by the main and shadow processes in the event that no

failure occurs. This equation can then be used as an objective function in the construction

of an optimization problem used to find energy-minimizing execution speeds.

If there is blocking or full dependency among the tasks, sockets must continue to execute

until the last task completes. To account for energy consumed while waiting, the model

calculates the expected waiting time and energy consumption for the replica-pair. Adding

the expected waiting energy to the overall expected energy consumption expands the model

to account for different application communication patterns.

The energy consumed by the processes waiting is dependent upon two variables: the

execution speed of the waiting sockets, σwait, and the completion time of the last executing

socket. The execution speed of the waiting socket depends upon the type of communication.

In the case of blocking communication, sockets wait idly until the last task fully completes,

and all waiting tasks will have an execution speed of zero, but will still consume overhead

power. If, however, the application requires full communication, then tasks will have to

perform work while waiting on the last task to complete. In the worst case scenario, the

tasks may have to execute a maximum speed while waiting. The execution speed of the

waiting socket, σwait, can then be either zero or σmax, depending on the communication type

of the application. In the absence of failure, no task is required to wait. If at least one
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process fails, however, all other processes must wait until the shadow of the failing process

completes its task. Consequently, the expected waiting time depends on the probability,

pfail, that at least one main process fails. The expected value is calculated by determining

the probability that none of the main tasks would fail, then using this value to derive the

probability that one would fail.

pfail = 1 − (1 −
∫ tc

0

f(t)dt)N/2 (3.3)

Note that because of replication at most N/2 nodes, representing the main processes, may

fail.

The tasks have to wait until the last task completes its work, which is dependent upon

the time of failure and the execution speed of the shadow after failure. Assuming that a

failure of the main process has occurred, with the probability pfail, the failure time can be

estimated using a truncated exponential distribution. The distribution is truncated to only

include the time of completion of the main process, tc. The average time to failure occurs

at the mean of the exponential distribution, truncated at tc, which is given by the following

equation [3].

t̂f =
1

λ
− tc

1

eλtc − 1
(3.4)

Using this value we can determine the expected waiting time given the execution speed

of the shadow after failure.

twait =
Wtask − (σb ∗ t̂f )

σa
(3.5)

The energy consumed by the waiting processes depends upon the execution speed of the

waiting process, σwait, the failure of the shadow and main process, and the time they must

wait, twait.

Ewait =2 × (1 −
∫ twait

0

f(t)dt)2 × E(σwait, twait)

+

∫ twait

0

f(t)dt× E(σwait, twait)

(3.6)

Combining these above equations the expected energy consumed by a replica-pair while

waiting can be expressed as follows:

Ewaitrep = pfail × Ewait (3.7)
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This value can then be added to Esocrep to account for the total energy consumed by a

replica-pair, both during the execution phase and the waiting phase.

3.3.4 System Level Energy Consumption

The model accounts for the energy consumed by each individual socket or replica-pair. The

energy consumed by the entire system is the summation of the energy consumed by all

sockets. Given a system of N sockets, the energy consumed in the non-replication is:

Esys = Esoc ∗N (3.8)

The energy model accounts for the energy consumed by the main and the replica, the replica-

pair. The number of replica-pairs is half the total number of sockets N , therefore the energy

consumed by a system using replication is:

Esys = Esocrep ∗
N

2
(3.9)

3.3.5 Checkpointing Energy Model

The previous sections computed the expected energy consumption for both a single socket or

a replica-pair. By considering only the energy consumed by a single socket, we can determine

the energy consumed if coordinated checkpointing is used by those sockets. To this end, we

consider the execution time required if coordinated checkpointing is used and the energy

consumed by the sockets performing the execution.

Coordinated checkpointing periodically pauses tasks and writes a checkpoint to stable

storage. In the coordinated case, if any one socket fails this checkpoint is read into memory

and used to restart execution. Daly [23] computes the expected total wall clock time, tw,

given the original total solve time (Ts), a system MTBF (Msys), checkpoint interval (τ),

checkpoint time (δ), and recovery time (R). System MTBF is dependent upon the number

of sockets and the socket MTBF, Msoc, this assumes that socket failures are independent

events. The clock time, tw, can be expressed as:

Tw = Msyse
R/Msys(e(τ+δ)/Msys − 1)(

Ts
τ

− δ

τ + δ
) (3.10)

47



Note that, the system MTBF is dependent upon the number of sockets and the individual

socket MTBF. In the derivation of tw, it is also assumed that failure are independent events.

Based on the above, we can express the estimated energy required for a single socket

using checkpoint and restart (CPR), Ecpr, as follows:

Ecpr =Esoc(σmax, [0, Tw]) (3.11)

At any given time all processes are either working, writing a checkpoint, or restoring from a

checkpoint; therefore, we assume all sockets are always executing at σmax.

In our analysis and simulations, we use the time-to-solution optimized checkpointing

interval, τopt, defined in Equation 3.12 [23]. The optimal checkpointing interval depends

upon the time to take a checkpoint, δ, and the system MTBF, Msys.

τopt =


√

2δMsys[1 + 1
3

δ
2Msys

1
2 + 1

9
δ

2Msys
] − δ for δ < 2Msys

Msys for δ ≥ 2Msys

(3.12)

Note that regardless of the level of reliability replication provides, the scheme does not

fully take into consideration the case where both the main and replica nodes fail. To address

this shortcoming, checkpointing is used in conjunction with process replication. Furthermore,

the derivation of the energy consumed by checkpointing only differs from the one used

in shadow replication in that it accounts for the fact that replication reduces the overall

system MTBF. This is due to the fact that a replica-pair has a smaller failure rate than a

single socket, resulting in a lower overall system failure rate. However, when using process

replication, the time optimal checkpointing interval, τopt will typically be greater than the

time of the application execution because of the low system failure rate, depicted in table 4.
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Node MTBF (year) τopt without replication τopt with replication

1 87.52 546210.54
5 207.61 2.73 × 106

10 297.66 5.46 × 106

15 366.77 8.19 × 106

25 476.38 13.65 × 106

Table 4: Comparing time optimal system checkpoint intervals (in minutes) when using

process replication. Checkpoint time, δ, is 15 minutes and the system contains 100, 000

nodes.

3.3.6 Energy Optimized Execution Speed Derivation

This section will be concerned with finding execution speeds that minimize the energy con-

sumption of the application execution. The shadow replication model enables multiple points

of optimization, as enumerated in table 2. We will explore these optimizations in the con-

text of exascale systems and detail the feasible optimizations and their constraints. First

looking at optimizing a single replica-pair then expanding our optimizations to include the

optimization over the entire system.

3.3.6.1 Optimization Constraints To produce energy optimized execution speeds, the

energy consumption equation (found in Equation 3.2) is used an objective function along

with several constraints. When performing an offline optimization of two or more execution

speeds, a non-linear optimization technique is used; however, when optimizing one execution

speed a closed form solution is derived. Regardless of how many execution speeds are being

optimized, our constraints ensure that the optimization will always produce feasible energy

optimized execution speeds, ensuring that the replica-pair will always complete the task by

the targeted response time. This assumes that the targeted responsible is feasible given the

amount of work and available execution speeds.

The first constraint we apply is that execution speeds cannot exceed the maximum

execution speed, σmax. Similarly, we ensure that the execution speeds are greater than

or equal to zero. Throughout our analysis we assume that execution speeds are normalized
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such that σmax = 1.

The next series of constraints ensure that the work is completed by the targeted response

time, tresp. The first constraint is to ensure that the completion time of the main process is

less than the targeted response time.

tc ≤ tresp (3.13)

Then, ensure the execution speed of the main is able to complete all the work in the available

time.

σmtc ≥ Wtask (3.14)

One of the most important constraints is that if the main process fails, then the shadow

process must be able to complete the given work, Wtask, by the targeted response time,

tresp. This is known as the minimum “work constraint” and is represented by the following

inequality.

tc ∗ σb + (tresp − tc) ∗ σmax ≥ Wtask (3.15)

This constraint states that the speed of the shadow before failure must be fast enough that

if a failure occurs, the shadow can complete the remaining work by executing no faster than

σmax.

Based upon the above, the optimization problem can be defined as the following:

minimize Esys(σm, σb, σa, λ,Wtask, σmax, pfail, σwait)

subject to tc ≤ tresp

σmtc ≥ Wtask

tc ∗ σb + (tresp − tc) ∗ σmax ≥ Wtask

σm ≥ 0, σb ≥ 0, σa ≥ 0

σm ≤ σmax, σb ≤ σmax, σa ≤ σmax

(3.16)
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3.3.6.2 Online Optimization of Speed After Failure Observe that the speed of the

shadow after failure, σa, is dependent upon the the shadow speed before failure, σb, and the

time of failure, tf . This leaves us two options: determining the execution speed either online

or offline. The advantage to an online optimization is that it knows exactly how much work

is remaining and can optimize the speed of the shadow process accordingly. There are three

potential choices when optimizing the speed after failure: σa can be energy efficient, power

efficient, or minimize time to solution.

To determine the energy efficient speed of the shadow after failure is equivalent to finding

the energy optimal execution speed of a single process. The energy consumption of a single

process is modeled in Equation 3.1. After solving this optimization, we find that the optimal

execution speed is a function of the overhead power and the maximum execution speed.

σopt =
ρ1/3σmax

21/3
(3.17)

This equation does not account for upper and lower bounds placed on the execution speed.

The lower bound is the minimum execution speed that enables the shadow to complete the

remaining work by the targeted response time. The upper bound is simply the maximum

possible execution speed.

The power efficient execution speed is the slowest possible speed to finish by the targeted

response time, tresp. Not surprisingly this is also the lower bound of the energy efficient

execution speed.

σa = (Wtask − σb ∗ tf )/(tresp − tf ) (3.18)

This equation determines the work remaining for the shadow and divides that work evenly

over the time between the failure and the targeted response time.

Lastly, the shadow can execute at the speed that minimizes the time to solution for

the shadow. This would be accomplished by executing at the maximum execution speed,

σmax. To model σa as one of these online optimizations we can substituting the closed form

solutions above into the energy consumption model. This reduces the number of variables

in our objective function, thus simplifying our optimization problem.

If the supported application has communication dependencies, then we need to consider

that sockets are consuming overhead power while waiting for the shadow to complete. Even
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for very low overhead power values, this would indicate that the execution speed of the

shadow should be optimized after failure in order to reduce the execution time which is

shown in the analysis Section 4.1.3, therefore σa = σmax.

3.3.7 Energy Optimized Execution Speeds for HPC

We assume that the execution speed of the shadow after failure will be determined online

at the time of failure. This leaves us with two execution speeds to optimize: the speed

of the main and the speed of the shadow before failure. One of the primary goals of high

performance computing is to achieve maximum possible system throughput. Thus when we

apply shadow replication to this environment. we assume that the execution speed of the

main process should be the maximum possible execution speed, σm = σmax. If no failure

occurs, the task will be completed as soon as possible, in what is known as the minimum

response time. We explore relaxing this constraint in section 4.1.2, where we show that

the optimization framework often chooses to set σm to the maximum execution speed when

applied to exascale class systems.

Therefore, for HPC systems, shadow replication has one speed to optimize, the speed of

the shadow before failure, σb. Using traditional optimization techniques, we take the deriva-

tive, set the result to zero and solve for σb producing a closed form solution. In addition to

providing a model for shadow replication this can be used to represent traditional replication.

Traditional replication would be represented by letting σm = σb = σa = σmax, traditional

replication always executes both the main and the replica at the maximum execution speed.

3.4 CONCLUSION OF THIS CHAPTER

This chapter defined the concept of shadow replication; developing the computational model

and then further defining the execution model. Then explored possible strategies for optimiz-

ing the execution model, along with a summary of the supported application characteristics.

Using this execution model and potential search space an analytical model is developed to
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express the expected energy consumption of shadow replication, traditional replication and

coordinated checkpointing. Lastly, defining the optimization problem used to find the energy-

optimal execution speeds for shadow replication. The next chapter will use these analytical

models to explore the potential energy and power savings offered by shadow replication.
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4.0 ENERGY AND POWER ANALYSIS

The previous chapter introduced the computational and execution model of shadow replica-

tion and developed the analytical framework for determining the expected energy consump-

tion of shadow replication along with other fault tolerance methods. This chapter discusses

an energy-based comparative analysis of these fault tolerance methods. The primary goal of

this analysis is to provide a strong justification for implementing shadow replication in ex-

ascale environments by demonstrating significant energy and power savings. The secondary

goal is to explore the design space of shadow replication to better understand implementation

concerns and limitations by exploring sensitivity to system characteristics.

The first part of this chapter is an analysis of the potential energy savings over traditional

replication. This analysis provides insights into how shadow replication behaves and how op-

timizations should be applied. Additionally, the energy analysis will confirm that in exascale

HPC environments the energy optimal execution speeds for the main, σm, and shadow after

failure, σa, would be the maximum execution speed. The second part of this chapter focuses

on the application of shadow replication to exascale-class power-limited environments. That

analysis will compare shadow replication to traditional replication, stretched replication, and

coordinated checkpointing demonstrating that shadow replication could potentially provide

remarkable energy savings in those environments. The last part of this chapter summarizes

the major findings of the shadow replication analysis.
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4.1 ENERGY ANALYSIS

Previous studies have shown that replication will become more efficient than coordinated

checkpointing in exascale systems [13, 38]. Based upon the outcomes of those studies, the

first performance study carried out in this chapter limits the analysis to the comparison of

shadow replication to traditional replication. The focus of the analysis will be on energy

savings in exascale computing environments with different computational characteristics,

including the number of nodes, laxity factors, MTBF values, and power constraints.

Intuitively, one may assume that shadow replication is bound to achieve higher levels of

energy savings than traditional replication. Although that is likely to be true in communi-

cation and synchronization-independent environments, the interplay between power savings

and time to solution, coupled with the impact of idle waiting caused by communication

dependency, puts such an assumption into question and requires further investigation. Ad-

ditionally, there is a known fundamental tradeoff between power savings and time to solution.

To carry out the energy savings study, the energy optimization model is used to derive the

optimum execution speeds for the main and its associated shadow. This analysis constrains

the exploration to the computational aspects of HPC applications; namely, communication

dependency. As discussed in the analytical framework, the need for communication synchro-

nization may give rise to idle waiting as processes complete their execution. Based on the

optimal execution speeds, the total system energy consumption is computed for both shadow

replication and traditional replication. Using these values this section presents the potential

energy savings by showing the percentage of energy savings.

In summary, throughout this analysis, it is assumed that the application exhibits full

communication dependency. As a result, σm and σa are set to σmax, while σb, the only

remaining optimization variable, is the derived solution of the energy-optimization problem.

Unless otherwise noted, throughout this analysis σb is the energy optimized execution speed,

as described in detail in Section 3.3.6. Furthermore, without loss of generality, all execution

speeds are normalized such that σmax = 1. This eliminates the dependency on specific

hardware characteristics of the executing sockets.
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4.1.1 Comparison to Traditional Replication

Our analysis begins by looking at the effect node MTBF has upon potential energy savings.

To begin our analysis we study the impact of the node MTBF upon the potential energy

savings. In Figure 10, we observe that shadow replication exhibits potential energy savings

over traditional replication, 4-24% depending on node failure rate and the value of the laxity

factor. Additionally, when the socket MTBF reaches 15 years, the amount of additional

energy savings achieved by shadow replication no longer changes significantly. This is due to

the fact that in systems where node failure is an extremely rare event, shadow replication is

optimized to execute at the slowest possible speed in order to conserve power. Two factors

prevent the speed of the execution to go below a threshold, determined by the minimum

work constraint and the overhead power. As a result, the maximum possible energy savings

is bound to 25%.
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Figure 10: Energy savings of shadow replication for various alpha values, varying mtbf.

100, 000 nodes, Static power 50%.

The next analysis studies the potential energy savings as the system size increases. Figure

11 shows, that the number of sockets effects both replication techniques in similar ways.

While the energy consumed will increase, it increases by the same amount regardless of the
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Figure 11: Energy savings of shadow replication for various alpha values, varying number

of sockets. 15 year socket MTBF, Static power 50%.

replication technique, making the energy savings fairly constant. Because we are computing

the expected energy consumption, the model captures only the average case behavior. In the

average case, the node MTBF and the number of nodes will have almost the same effect on

both replication techniques. The only difference is in the energy consumed by the processes

having to wait for the slowest node to complete. As the MTBF increases, this waiting

time has little effect upon the overall energy consumption, making it behave very similarly

to traditional replication. In the simulation work we explore more complex interactions

between the processes of shadow replication which the analytical model cannot express.

Two variables that have a significant effect upon the energy savings are the amount of

laxity, represented by α, and the percent of overhead power. The laxity variable, α, is the

lever that allows us to trade off between time and hardware redundancy. If there is no laxity,

(α = 1.0) shadow replication requires full replication, which in turn requires full hardware

redundancy and saves no energy. As we increase the laxity, shadow replication can trade

off hardware for time, and also conserve energy along the way. Observe in Figure 12 that

once the laxity become twice the minimum response time, shadow replication can no longer
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save additional energy, because once there is twice as long to complete one would always

choose to perform re-execution instead of any form of replication. We detect this in our

optimization because the energy optimized execution speed of the shadow before failure is

calculated as zero.
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Figure 12: Energy savings of shadow computing for various alpha values, varying static
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Thus far we have considered the potential energy savings assuming that the overhead

power per socket was 50% of the power consumed when the CPU was executing at maximum

execution, as detailed in Section 3.3.1. By considering the overhead power, we effectively

limit the savings achievable by shadow replication. In our model, even if the processor is

executing at zero the socket will continue to consume fifty percent of that consumed by a

socket running at maximum speed. Fifty percent overhead has been chosen because our

experiments[77] and others [43, 64] have shown that current architectures have an overhead

of 40-60%. Its expected that these overhead will remain consistent in the future.

Observe in Figure 12 that as the overhead power is increased, the amount of energy

savings decreases. When the overhead is at 10% we see a that the potential energy savings

can be as high as 43.95%, although at the more realistic 50% the potential savings reduces

to 23.58%, as we have previously seen.
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4.1.2 Optimizing Execution Speed of the Main

As discussed in the previous chapter, specific knowledge of the HPC environment and the

exascale application it supports may further constrain the energy optimization model used

to derive the optimal speeds of the main and its associated shadow. Furthermore, it was

argued that when using shadow replication to achieve fault-tolerance in HPC environments,

the execution speed of the main, σm, must be set to σmax. This assumption is justified by

the critical need to achieve high throughput in HPC environments. It is further motivated

by the high infrastructure cost, which makes idling computing and communication hardware

financially prohibitive during the execution of an application. This section further considers

the decision to set σm to σmax, presenting a relaxed formulation of the energy optimization

model defining σm as an optimization variable. The optimized solution shows that for most

of the exascale design space, the optimization model derived value of σm is σmax.

The hypothesis was that by relaxing the model to allow σm to be a optimization param-

eter the potential energy savings of shadow replication would increase. Using Mathmatica’s

non-linear optimization methods the model was relaxed and then used to find optimal ex-

ecution speeds for both the speed of the main, σm, and the speed shadow before failure,

sigmab. Calculating the energy savings using these optimal values in HPC environments

showed little or no difference in energy savings. Upon further review we found that if the

overhead power percentage was 50% or higher the optimization found σm to also be σmax, as

depicted in Figure 13. Because it is expected that overhead power will be between 40-70%

in exascale environments shadow replication analysis was unable to achieve power savings

beyond those already observed.

4.1.3 Optimizing Execution Speed of the Shadow After Failure

Exascale applications are massively parallel and tightly coupled, and they exhibit full commu-

nication dependency among their components. Consequently, processes executing in parallel

can only move forward if their communication requirements have been satisfied. A direct

consequence of this requirement is that processes must wait for the slowest process to com-

plete before they can resume execution. In Chapter 3, we show that the general formulation
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Figure 13: Energy Optimal Main Execution Speed, σm, vary static power. 5 year socket

MTBF, 100,000 nodes.

of shadow replication energy optimization model leads to an online optimized value, σa, of

the shadow speed after failure. Such a formulation, however, ignores the communication de-

pendency among the application’s processes. The need to reduce the time that processes may

idly wait while waiting for the last shadow of the failed main process to complete requires

that the value of the shadow execution speed after failure, σa, be σmax.

To confirm this intuition the model is relaxed to derive the energy optimized execution

speed of the shadow after failure, σa. This is performed using Mathmatica’s non-linear

optimization to determine the offline energy optimal execution speed of the shadow after

failure for different communication dependency types. Figure 14 shows the results of this

optimization for different application types. If there is any communication dependency the

energy optimal speed after failure becomes the maximum execution speed once static power

is over 40%. There is one case removed from Figure 14, which is when static power is zero the

execution speed of the shadow after failure does not effect the waiting processes, resulting

in a slower execution speed than is plotted.
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application types. 5 year socket MTBF, 100,000 nodes.

4.1.4 Sensitivity to Buffer Size

Another constraint we have not considered is the buffer size available to hold messages des-

tined for slower running shadow process. The shadow replication library will be responsible

for holding messages destined for the shadow process until the shadow is ready to process

them and these buffers will undoubtedly be limited. One method for working with limited

buffers is to set a lower bound on the speed of the shadow prior to failure. This bound forces

the shadow to consume a given rate of messages, while keeping the buffers from overflowing.

Using this method introduces another constraint on our optimization problem.

Let r represent the rate at which the main process would consume messages. This rate

would be defined as bytes per cycle and will be dependent upon the speed of the main

process, σm. The buffer size, b, is defined as the number of bytes available for buffer for an

individual node. We can then express the speed before failure, σb, in terms of the speed of

the main process, σm, by defining a speed factor θ.

σb = θσm (4.1)
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Application Msg Log Growth Rate (Bytes/sec.)

CTH 5.42 × 107

miniFE 2.58 × 106

LAMMPS 2.16 × 106

AMG 9.66 × 105

HPCCG 7.43 × 105

Table 5: Maximum per-process message log growth rates, including both point-to-point

and collective operations for a number of production HPC workloads.

If we assume the rate of message consumption is linear, with respect to the speed, we can

define the buffer constraint as the following.

(Wi/σm) ∗ (1 − θ) ∗ r ≤ b (4.2)

This expresses that the rate of message consumption must be such that the size of the

messages present in the buffer should not exceed b over the entire execution time, Wi/σm.

Solving for θ,

θ ≥ 1 − σm ∗ b
Wi ∗ r

(4.3)

Lastly, one can obtain the constraint on σb by combining the equation 4.1 and equation 4.3.

σb ≥ (1 − σm ∗ b
Wi ∗ r

)σm (4.4)

To evaluate these buffer size constraints we ran a number of representative HPC work-

loads and used the rMPI to collect the mean message logging growth rate of the applica-

tion. These workloads include the production applications CTH [25], a shock physics code,

LAMMPS [87], the molecular dynamic code, and the algebraic multi-grid solver AMG [66].

We also include results from two of the mini-applications from Sandia’s mantevo suite [97]:

HPCCG (a conjugate gradient solver) and miniFE (an implicit finite element method). These

applications represent a range of computational techniques, are frequently run at very large

scales on leadership class systems, and represent key simulation workloads for the U. S. De-

partment of Energy. Using the modified rMPI replication library, we measured the maximum

per-process message log growth rate for each application, shown in Table 5. From this table,
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we see message log growth rates can vary dramatically. For example, CTH, which does a

good deal of bulk data transfer, has the largest growth rate of the applications tested, a

measured 54MB/sec, while AMG, which does much less communication, has a log growth

rate of nearly 1MB/sec.

To analyze the impact buffer sizes have upon the potential energy savings of shadow

replication, one can look at the effect the constraint has upon the energy optimal execution

speed of the shadow. To do this one applies the buffer constraint defined in Equation 4.4 to

the optimization problem. Figure 15 shows that when the constraint is applied, the speed

of the shadow before failure is forced to increase as the work size increases. The constraint

forces the execution speed to exceed the energy optimal execution speed, ultimately reaching

σmax and causing shadow replication to mimic traditional replication. Once this occurs, there

is no potential energy savings offered by shadow replication. Applications with high message

rates, such as CTH, a faster execution speed than those applications with lower message

rates such as LAMMPS.
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4.2 POWER ANALYSIS

The previous section analyzed the expected energy savings when given a fixed number of

nodes. However, it is expected that exascale-class machines will be capable of consuming

more power than what is set by the DoE’s target system power limit of 20MW [2]. For

example a system might have 150,000 sockets, each consuming 200 watts of power at full

speed. Therefore, if all sockets were operating at full power, we would be consuming 30MW.

To stay under the 20MW limit, 50,000 of these sockets would need to be powered off, or the

power consumption of some or all of the cores would need to be reduced in order to stay

within budget. While this may seem inefficient, as more hardware is available than can be

supported by the power infrastructure, not all applications will be capable of fully utilizing

the system.

Given a power limit and socket power consumption there will be a fixed number of

sockets available at any one time. Coordinated checkpoint/restart would use all of the

available sockets to perform work and in the event of failure would roll back all sockets,

therefore staying under the power limit by restricting the number of sockets used. Traditional

replication would take half of the available sockets and use them as replicas, which has

been shown to increase system efficiency in exascale-class machines. In contrast, shadow

replication has the ability to use additional sockets because the replica sockets are consuming

less power by running at a reduced speed. This has the added benefit of allowing additional

sockets to work as main processes while still providing system resilience such as that seen

in traditional replication. In the event of failure, there is the potential delay in the time to

solution because of the replica’s slower execution speed. However, because of the ability to

use additional sockets, we show that the expected time to solution is actually faster than

both checkpoint/restart and traditional replication methods when accounting for the power

limit.

Our analysis finds several system parameters to be important in determining which fault

tolerant method is most efficient.

• I/O Bandwidth - This dictates how long it will take to write or recover a checkpoint.

• System Size - The number of total sockets.
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• Socket MTBF - Reliability of a single socket in the computing system.

• Overhead Power - The overhead power consumed by the socket, as described in Section

3.3.1.

When comparing fault tolerant methods, we calculate the energy consumption and time

using the power, failure and energy models described in the previous section.

4.2.1 Stretched Replication

In this analysis we also consider a simple power-aware replication technique called stretched

replication. Stretched replication works on the assumption that performing work slowly can

save energy. Stretched replication is a näıve approach which slows down the execution of all

processes to the slowest possible speed while maintaining the applications targeted response

time.

Previous analysis dismissed this approach because overhead power dominated any po-

tential savings. Specifically, in direct energy analysis stretched replication performed more

poorly than traditional replication when overhead power exceeded 50% and laxity values

of 1.25. Because of this we choose not to present stretched replication as a solution in

the previous analysis. However, stretched replication enables the execution of more nodes

than traditional replication, which is of benefit in power-limited environments. Accordingly,

stretched replication has been included in this sections analysis.

4.2.2 Scaling and Failure Rates

Break-even values are calculated by computing the energy and time required for coordi-

nated checkpointing and comparing that to the energy and time required for the replication

technique. The break-even point is when those values match, We compare fault tolerance ef-

ficiencies by identifying the break-even point at which the replication technique is equivalent

to that provided by coordinated checkpointing. We use two different break-even metrics:

the expected energy consumed, and the expected time to solution. While these are related

to one another; because energy is a function of time, due to overhead power they are not
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equivalent. All of the area above the break-even curve is where the replication technique is

more efficient than coordinated checkpointing.

N
u
m

b
e
r 

o
f 
S

o
c
k
e
ts

 f
o
r 

b
re

a
k
e
v
e
n

Socket MTBF (years)

Stretched Replication

Traditional Replication

Shadow Replication

 0

 50000

 100000

 150000

 200000

 250000

 300000

1 2 5 10 25 50 100

Figure 16: Breakeven points for energy given a fixed checkpoint time of 15 minutes and a

system overhead power of 60% with barrier communication dependency.

Figure 16 shows the energy break-even point varying system size and socket MTBF using

a fixed checkpoint time of 15 minutes. These results show that shadow replication can provide

a significant energy savings over traditional replication. For example, when socket MTBF

is 25 years, traditional replication is viable at 96, 700 sockets whereas shadow replication

is more efficient at 53, 100. This represents a 46% energy efficiency gain. Unfortunately,

stretched replication is less energy efficient because of the increased time to solution and the

presence of overhead power.

Shadow replication achieves this energy savings by slowing down the replicas. This raises

the question of how this will affect the expected time to solution. Figure 17 plots the time to

solution break-even point, and shows that even though shadow replication slows the replicas,

the expected time to solution is actually shorter than that provided by traditional replication.

For example, when socket MTBF is 25 years, traditional replication is viable at 97, 600

sockets, whereas shadow replication is more efficient at just 52, 700 sockets, representing a

46% improvement in expected time to solution.
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Figure 17: Breakeven points for time given a fixed checkpoint time of 15 minutes and a

system overhead power of 60% with barrier communication dependency.

The improvement in time to solution arises because shadow replication can utilize ad-

ditional sockets while consuming the same power, because the replicas are consuming less

power. This is illustrated in Table 6 which shows the active socket counts allowable given a

20 megawatt fixed power budget. Both stretched and shadow replication have the ability to

use additional sockets because they reduce the power consumed by the individual sockets.

Stretched replication reduces the power consumed by all processes equally whereas shadow

replication only reduces the power consumed by the replica sockets. This is the reason that

the expected time to completion of shadow replication outperforms traditional replication.

Stretched replication is able to add additional nodes but because it also reduces the processor

speed of the main processes, the time to solution is higher than both traditional and shadow

replication.

In pure replication, the total amount of work remains constant but the the number of

sockets is half of that available to coordinated checkpointing. Our model assumes a strongly

scaled application, which is a fair comparison because each socket would have less work

to accomplish than in coordinated checkpointing. Thus, in a failure free case it would be
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Overhead % Method # Sockets # Main Sockets

60% Checkpointing 100, 000 100, 000
60% Traditional Replication 100, 000 50, 000
60% Stretched α = 2.0 153, 846 76, 923
60% Shadow α = 2.0 124, 998 62, 499

80% Checkpointing 100, 000 100, 000
80% Traditional Replication 100, 000 50, 000
80% Stretched α = 2.0 120, 230 60, 115
80% Shadow α = 2.0 110, 636 55, 318

Table 6: Available sockets assuming a 20 mega-watt power limit and 200W per socket.

faster than replication techniques. However, because with replication there are two sockets

instead of one, the MTBF for the pair is greater than that provided in the single-socket case.

The change in MTBF is what allows replication to outperform coordinated checkpointing

on a large scale. In shadow replication, instead of assuming half of the original sockets are

replicas, we calculate the energy optimal σb for α = 2.0. We then “add” additional sockets,

all the while remaining under the original power limit, but continuing to use half the sockets

as replicas. Stretched replication is similar to shadow replication, but both the replica and

main use less power.

We conclude that shadow replication is both more energy efficient and produces solutions

faster than traditional replication in power-limited systems. This is true for the majority

of the exascale design space, illustrated by the region in the grey box in Figure 16 and 17.

We assumed a fixed checkpoint time of 15 minutes and a overhead power of 60% which are

reasonable system parameters given expected exascale I/O bandwidth and increased system

efficiencies [37]. In the next sections we further relax these assumptions and study the models

sensitivity to these parameters.

4.2.3 Scaling at Different Checkpoint I/O Rates

The checkpoint write times have a significant effect on the efficiency of coordinated check-

pointing. These times are directly related to the available I/O bandwidth, as modeled in [81].

Figure 18 uses these models to determine the energy break-even points for I/O bandwidth
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rates from 500GB/s to 50TB/s, representing a wide range of values for an exascale-class

machine. For space reasons, we only show results for shadow replication, though other repli-

cation techniques follow a pattern similar to that in Figures 16 and 17. Shadow replication

is viable for all but very extreme levels of I/O bandwidth.
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Figure 18: Shadow replication energy breakeven for different I/O bandwidths. Assumes

16Gb per socket with barrier communication dependency.

4.2.4 Scaling at Different Overhead Power

Table 6 illustrates that the number of available sockets decreases as the percentage of over-

head power increases. Shadow replication can only reduce dynamic power consumption,

leaving it with less power headroom to improve efficiency. This means it can take advantage

of fewer main sockets as the available power headroom decreases. Figure 19 shows the effect

overhead power has upon the energy break-even point. As the power overhead increases, the

potential energy savings also decreases, moving the break-even point further out into the

exascale domain. The conclusion is that overhead power does have an effect upon shadow

replication, but even if the overhead is 100% it will be no worse than traditional replication.

It is expected that future hardware will reduce this overhead, making shadow replication

more efficient.
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Figure 19: Shadow replication energy breakeven for various overhead power percentages.

Checkpoint time of 15 minutes with barrier communication dependency.

4.3 CONCLUSION OF ANALYSIS

This utilizes an analytical framework to demonstrate that shadow replication is 25% more

energy efficient than traditional replication for system parameters expected in exascale-class

systems. We also demonstrate that for strong scaling applications in power-limited environ-

ments shadow replication can be over 40% more energy and time efficient than traditional

replication. Moreover, this chapter shows that replication techniques are more efficient than

checkpoint/restart techniques for much of the exascale design space and that shadow repli-

cation is the most efficient replication technique presented. Ultimately, we have shown that

shadow replication has potential to save significant energy when compared to existing fault

tolerant techniques.

These promising results provide a basis for continuing to explore shadow replication as

a fault tolerant model in exascale-class systems. Additionally, this chapter identifies several

challenges that will need to be addressed during the implementation and areas which will

require further exploration to fully understand the potential energy savings. Due to the
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reduced speed of the replicas one concern is the growth of the message queues between

replica and their leaders, which occupy memory on the replica nodes. This chapter shows

that the rate of this queue growth is highly dependent upon an application message rate. A

solution presented is to constrain the execution speeds of the processes such that messages

are consumed before they overflow the buffer. There are other potential options for solving

this problem explored in future work, including a the concept of “jumping shadows” and

using properties of the applications such as send-determinism [45]. Lastly, this chapter

identifies that inner-process communication dependency is a critical factor in the amount of

achievable energy savings. The analytical framework accounts for this dependency but does

not fully model all the intricacies of process communication; specifically failures of nodes

while waiting. To explore this limitation the next chapter will build a simulator that is

capable of emulating these communication dependencies.
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5.0 SIMULATION AND IMPLEMENTATION

The analytical model has shown that shadow replication is a fault tolerant method that

reduces energy consumption while also increasing time to solution in highly scalable appli-

cations. However, the analytical framework was not designed to fully capture the complex

communication between processes, as would be present in tightly-coupled HPC applications.

Therefore, in this chapter we will develop a simulator, HPCSim, that seeks to more ac-

curately depict the computing environment found in HPC and to evaluate different fault

tolerant techniques including checkpointing, replication and shadow replication.

5.1 SIMULATOR OVERVIEW

The goal of the simulator is to emulate multiple nodes, each executing part of a tightly

coupled application. Failures can occur at each individual node and are assumed to be

independent from one another. Each node consumes energy while executing but is adjustable

by reducing the execution speed of the node. We define clusters of nodes which work in

parallel to solve a problem of some fixed size. Using these primitives we then simulate

checkpointing by periodically pausing execution and saving all the nodes state. To simulate

replication we combine two or more nodes together and compute their energy consumption

and failure rates accordingly. Similarly, shadow replication is simulated as a replica-pair,

however the shadow process is executed at a speed independent of the execution speed of the

main. This framework allows us to measure the energy consumption and time to solution for

different applications while simulating an exascale environment with its potential failures.

HPC applications are tightly-coupled, therefore all nodes in a cluster must successfully
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execute in unison without failure to complete the job. This is because HPC applications

all work on part of the same problem and constantly communicate with one another in

order to solve the problem. If a failure occurs at a node then all the work completed

on all the node is lost and all the nodes must complete without failure in order to find

the solution. The simulator has the ability to simulate all three process communication

types: no dependency, barrier dependency and full dependency. Recall that these correspond

to the level of communication dependencies between the processes. No dependency refers

to application that can execute without communication between their processes. Barrier

dependency means that the processes can perform their work independent of communication,

but must communicate at the end of the task to produce a final result. Full communication

refers to applications that require all processes to communicate with each other during the

entire execution.

The simulator causes a failure at each node, independently of each other using a prob-

ability distribution function. The parameters of the distribution function are configured in

the simulator to describe the behavior of each individual node. When a failure occurs the

node immediately stops its work and issues an event announcing its failure, then other parts

of the simulator react to this failure.

Most HPC systems deploy checkpointing to help mitigate this risk, by periodically writing

all the nodes’ state to stable storage in order to restart the execution from the last known

failure-free state. We simulate this behavior by periodically pausing execution and waiting

for the checkpoint to complete. The checkpoint interval can either be a specified amount

of time or can be optimally computed using Daly’s equations. The time necessary to write

the checkpoint can be either a fixed amount of time or dynamically calculated based upon

the system bandwidth and the size of state recorded by each node. While the checkpoint is

being executed we assume the nodes continue to execute at their previous execution speed.

As we show in Chapter , there is a potential to save energy during these checkpoint events

by reducing the execution speed, however we do not explore this behavior in this chapter.

To simulate traditional replication and shadow replication we replace a single node with a

pair of nodes. The pair of nodes have all the same functions and parameters of the individual

nodes. However, the failure of one node in the pair does not cause the pair to fail, instead
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the replica node simply takes over the execution. If both nodes fail, this triggers a failure

in the entire cluster, resulting in all nodes re-executing from the last known checkpoint, just

as it would in the single node case. In order to simulate shadow replication the replica node

in the pair is executed at a slower execution speed. Accordingly, if the main node fails, the

amount of work done by the pair will be “reduced” to the amount of work done by the replica

process which is less than that done by the main. However, just as in traditional replication,

this failure will not result in a rollback of all other nodes.

Adjusting the execution speed of a node changes both the amount of work being com-

pleted and the energy consumption of the node. The amount of work being completed

is linearly reduced as a function of the execution speed. To record the amount of work

completed each node maintains a log of its execution time and speed.

We also account for the overhead power consumed by the node. Similar to our analytical

model we assume this is a fixed amount of overhead, proportional the energy consumed by

the node when executing at full power.

5.2 IMPLEMENTATION

The simulator was implemented using SimPy, a Python based discrete event simulator li-

brary. SimPy uses Python generators to populate the discrete event queue and allows for

event driven simulations using using a simple signal handles. Processes in SimPy are Python

generator functions that then model machines, clusters, and checkpointing functions. SimPy

also provides various types of shared resources to model limited capacity congestion points,

for example CPUs and power. It also provides monitoring capabilities to aid in gathering

statistics about resources and processes.

5.2.1 Architecture Model

The architecture of the system was designed as a series of interchangeable components. The

core object is called Machine which simulates the execution of a node, tracks its energy
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consumption, records the amount of work completed, and fails according to the specified

distribution and parameters. When a Machine fails, it must decide what to do next. If a

parent exists, it reports the failure to its parent, if such a parent exists. In the simplest

case, the parent is a Cluster object which holds pointers to a series of machines. When

a failure occurs, the cluster must decide what to do next. In our default implementation

the cluster reports the failure to its parent if one exists. The typical parent of a cluster

is another object called the Worker, the worker is responsible for knowing how to respond

to errors, to track the amount of work completed and when to stop working. The default

worker declares failure when the cluster fails without completing its work. There is also a

CheckpointWorker which given a checkpoint interval, checkpoint write time, and recovery

time emulates running a cluster and periodically checkpointing the cluster’s state. When a

cluster failure happens during execution, the worker waits the recovery time and restarts the

cluster.

In order to simulate both traditional and shadow replication there is another machine

specified called ShadowMachine, which operates much like a cluster of two nodes. However,

when a failure occurs in one of the nodes it decides how to handle that failure based upon

the simulator’s configuration. If it is acting as a traditional replica machine, no changes are

made and the failure event is not propagated. If the machine is acting as a shadow replica

machine, and the failure occurs in the main machine, then it adjusts the execution speed of

the shadow. If the shadow machine fails then no change is made. In either case the single

machine failure event is not propagated beyond the ShadowMachine. If both machines fail

in the ShadowMachine, the failure event is propagated to the shadow’s parent.

The idea is to divide the logic of concerns among a series of objects in order allow for

simple re-configuration for different simulations and to easily audit their correctness. The

simulator is not optimized for memory usage but is instead optimized for flexibility and

code-readability. Even so we have been able to simulate executions of up to 12 hours on

clusters of 250,000 nodes using a machine with 12Gb of memory.
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5.3 VALIDATION OF SIMULATOR

The validation of the simulator occurred in two phases. First, we began with known edge

cases and calculated the measured metrics by hand, and then confirmed that the simula-

tor provided those expected results. Second, we ran simulations that matched the system

configuration used in the analytical model and confirmed that the output closely matches.

5.3.1 Unit Tests

To ensure individual components of the simulator were functioning correctly we compared

simulation outputs to the hand-calculated expected results. This was done by writing unit

tests for each component in the simulator and verified by calculating the expected output.

These tests were then run periodically while development was done on the simulator to

ensure that no regressions had been introduced.

5.3.2 Comparison to Analytical Model

Assuming that our models are accurate, the simulator should produce results similar to that

observed in the analytical models. The simulator captures the intricacies of inner-socket

communication so it is expected that the simulation will differ from the model in those

cases. It is expected that no communication dependency cases should match. Figure 20

plots both the projected energy savings found by the analytical model and those found by

the simulator for applications with no communication dependencies. As can be observed,

the results are nearly identical.
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Figure 20: Simulated energy savings compared to that predicted by the model for applica-

tion with no communication dependencies. MTBF=25 Years, Work = 2 hours at full speed,

Socket Power Consumption=200 Watts, Static Power 50%

5.4 SIMULATION RESULTS

5.4.1 Energy Consumption of Shadow Replication

Our analytical model showed that shadow replication would be able to save 14-24% energy

over traditional replication. The results obtained from the simulator did not show this poten-

tial energy savings; in fact, it showed that shadow replication increased energy consumption

as the number of nodes were increased, shown in Figure 21. This can be explained because

the expected energy model did not fully model the application communication; specifically,

it does not capture the cascading delay effect, explained below in full but defined as the

delay of one process because another process has failed, which in turn makes the delayed

processes more susceptible to failure. As the number of nodes increases, the overall system

failure rate increases, resulting in additional cascading delay and eroding any energy savings

achievable by shadow replication.
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shadow replication. Node MTBF=25 Years, Work = 2 hours per socket at full speed, Socket

Power Consumption=200 Watts, Static Power 50%

As stated above, cascading delay is the delay of one process because another process has

failed, which in turn makes the delayed processes susceptible to failure. This can cause the

time to solution to increase beyond the targeted response time, tr, as illustrated in Figure

22. Cascading delays increase in frequency as the likelihood of a system failure increases,

such as when the system size grows, demonstrated in Figure 21. As the system scales and

failures become more common the time to solution increases beyond the available laxity, α.

As depicted in the simulation data a job requiring two hours of work with laxity at α = 1.4

should take no longer than 168 minutes. However, as the simulation data demonstrates

it can increase to well beyond the targeted response time in exascale-class systems. This

causes the overall energy consumption to increase and therefore negates the potential energy

savings showed in our analytical model. The time to solution is ultimately bounded by the

speed of the shadow before failure.

tbound <= Wtask/σb (5.1)
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This limitation arises due to the fact that in the worst case all tasks will be completed by the

shadow process which is executing at the speed of the shadow before failure. The problem in

our optimization is that as the laxity approaches twice the job size the speed of the shadow

before failure approaches zero and ultimately creates a nearly unbounded delay. This is why

in our simulations the smaller the laxity, the better the results.
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Figure 22: Illustration of cascading delay involving two shadow processes.

5.4.2 Simulation of Power-Limited Environments

In the previous simulation results we assumed that the work for each socket was fixed re-

gardless of the number of sockets, which mimics a weak/constant-scaling application. This

section assumes, a power-limited environment in which there are more computing resources

than there is power to turn them on. Furthermore, we assume a perfect strong-scaling appli-

cation that can utilize all available computing resources to complete a fixed amount of total

work. This is the same set of assumptions made in the power analysis performed in Section

4.2.

In power-limited environments the simulations demonstrated that there is the poten-

tial to save energy over traditional replication, although the saving is dependent upon the
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applications communication pattern. Figure 23 illustrates the potential energy savings of

shadow replication over traditional replication for different communication types. As the

communication dependencies between processes is reduced the potential energy savings in-

creases. Applications exhibiting full or barrier communication patterns show a savings of

2-11% whereas applications with no communication dependency achieve 23-25%.

The energy savings in a power-constrained environments are greater than those found in

non-constrained environments because shadow replication enables power constrained envi-

ronments to have additional main execution nodes, as depicted in Table 7. The reason is that

the replica nodes in shadow replication consume less power than those found in traditional

replication, freeing up additional power for more nodes.
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Figure 23: Simulated energy savings of shadow replication over traditional replication,

showing different application communication types. Node MTBF=25 Years, Work 3.3 hours

per socket for 100,000 sockets, Socket Power Consumption=200 Watts, Static Power 50%,

α = 1.25
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Power Limit Checkpointing Traditional Replication Shadow Replication

5 25,000 12,500 14,611
10 50,000 25,000 29,223
15 75,000 37,500 43,835
20 100,000 50,000 58,447
25 125,000 62,500 73,059
30 150,000 75,000 87,671
35 175,000 87,500 102,283
40 200,000 100,000 116,894

Table 7: Number of sockets available to execute main processes for various fault tolerance

methods. MTBF 25 years, Socket Power 200W, Static power 50%.

5.4.3 Sensitivity to Laxity Factor

The simulator has demonstrated that as the laxity factory, α, increases the energy savings

acheivable by shadow replication decreases when the application exhibits full or barrier

communication dependencies. However, in a power limited environment shadow replicaion

does have the ability to save energy however the savings is highly dependent upon the

amount of laxity. Figure 24 demonstrates the energy savings sensitity to the laxity factor.

From this figure you can see that the maximum energy savings happens when α = 1.25 for

both full and barrier communication. However, for applications requiring no communication

the energy savings continues to increase as the laxity increases. This also demonstrats that

as the laxity increases the variablity in energy savings also increase, as indicated by the

confidence intervals.

5.4.4 Sensitivity to Socket MTBF

We identified socket MTBF as a major influence of how much energy could be saved using

shadow replication. This experiment measures the sensitivity of energy savings over tradi-

tional replication as the socket MTBF varies. Figure 25 shows that as the socket MTBF

increases the potential energy savings increases for shadow replication, regardless of the ap-

plications communication type. However, the socket MTBF has a greater effect on those
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applications with communication dependency because as socket MTBF increases the cas-

cading delay effect is reduced.

5.5 CONCLUSION OF SIMULATION ANALYSIS

The simulator was built to further investigate the potential energy savings provided by

shadow replication in exascale-class systems. The central conclusion is that shadow replica-

tion has the ability to save between 2-25%, dependent upon the application of communication

dependency type. As applications have less communication dependency between their pro-

cesses the potential energy savings of shadow replication increases dramatically - from 2%

for application having full communication dependency to 25% for applications with no de-

pendency. Reducing the amount of communication dependency in the application is critical

because it allows processes to stop waiting for others to finish. While it might be impossible

to reduce this dependency fully any reduction will allow the application to scale better in

terms of both fault tolerance and energy consumption.

A secondary conclusion is that shadow replication suffers from cascading delay when

communication dependency is introduced. As processes wait on other processes, those wait-

ing processes can also fail, producing a cascading delay that is bounded only by the laxity

factor. As the number of sockets increases to the level expected at exascale, cascading delay

becomes a significant challenge for shadow replication. To address this concern it is sug-

gested that the laxity factor be below 1.25, which yields the most promising energy savings

in our simulations.

Even with cascading delay the simulator demonstrates that in power-limited environ-

ments shadow replication can still provide energy savings. This promising result demon-

strates that shadow replication still has the potential to save energy and to reduce time to

solution in exascale-class systems. The next chapter looks at the viability of implementing

shadow replication in actual HPC applications; specifically, application written using the

MPI middle-ware layer.
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6.0 IMPLEMENTATION

This chapter will provide details of an implementation of shadow replication, called SrMPI,

demonstrating that it can execute actual HPC workloads. SrMPI is an implementation of

shadow replication for the widely used Message Passing Interface (MPI). We discuss details

of the consistency protocols, function modifications, and implementation issues. We then

provide an evaluation of the implementation running actual HPC workloads.

6.1 OVERVIEW OF MPI

Message Passing Interface (MPI) is a standardized protocol designed to provide portable

message-passing functionality between processes running in a distributed memory system.

Although nearly 25 years old, MPI remains the dominant communication mechanism for

parallel programming environments and is still found in the largest supercomputing centers.

MPI retains its popularity because it enables applications to be written for a wide variety

of platforms and systems, resulting in a large library of existing code. As a result of this

continuing relevance, we chose to provide an implementation of shadow replication in MPI.

MPI provides both point-to-point communication and collective communication mech-

anisms, such as broadcast. Point-to-point communication enables two processes, referred

to as ranks, to communicate with one another through send and receive functions. There

are a series of collective operations that enable group communication between MPI ranks.

MPI also provides blocking and non-blocking versions of these communication primitives.

Additionally, MPI provides functions for creating process groups which are used during

communication. Later in this chapter, details will be presented on how these functions were
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modified to support shadow replication.

There are several implementations of the MPI protocol, each optimized for different sys-

tem environments; however, they consistently adhere to the MPI specifications. This is what

has enabled application developers to develop reusable libraries that can be executed in a

variety of environments without requiring code modifications. Several of these implementa-

tions provide a feature called a profiling library. This feature provides third party libraries

the ability to intercept and modify calls to MPI. The profiling library has enabled a vari-

ety of packages to be built on top of existing MPI libraries, including replication libraries,

checkpointing libraries, and profiling tools.

Moving forward, MPI will undoubtedly be augmented to address scalability concerns of

exascale but the core protocol will remain fairly consistent for the foreseeable future. While

issues of resilience have long been a topic in the MPI community, efforts to standardize

support for resilience have largely failed. Power consumption is becoming a concern and will

surely become a topic of interest in future versions of MPI. Another major topic is how to

integrate shared-memory parallelism within the context of MPI, which has resulted in pairing

MPI with other parallel libraries such as OpenMP and CUDA. The current philosophy is

to embrace and extend the protocol to support the growing needs of the community, largely

due to the worldwide investment in applications relying upon MPI. Our implementation of

shadow replication takes the approach that application code should not have to be modified

in order to gain the advantages described in this thesis.

6.2 DESIGN OF SRMPI

The primary purpose of SrMPI is to implement shadow replication within the MPI frame-

work. This involves two main tasks: replicating MPI ranks and adjusting shadow execution

speed in response to failures. There are several libraries written to provide replication of

MPI ranks; however, none of these libraries provided support for reduced execution speed of

the replica ranks. We studied previous implementations of MPI replication [36, 71, 67], and

decided it best to implement our own replication library to meet the required consistency
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protocols, particularly given that replicas would be running at a slower execution speed.

6.2.1 Consistency Protocols

One of the biggest challenges in developing a replication library is maintaining consistent

communication between the main the replica ranks. This is exacerbated by the fact that our

replica ranks will be executing at a reduced execution speed. In this section, we will review

different consistency protocols and discuss the implementation of those used within SrMPI.

Communication consistency can be maintained either by both the main and replica ranks,

or it can be delegated to be done exclusively by the main rank. This distinction is called

either active or passive replication. In active replication, the replica ranks actively process

every request, whereas in passive replication, the replica follows the main and might ignore or

suppress messages while the main node is alive. Active replication requires additional system-

wide messages, but it makes error detection much easier. In contrast, passive replication can

reduce the amount of communication overhead but will require additional work of the main

rank and complicate failure recovery.

SrMPI implements two different active replication designs, called Mirror and Parallel. In

mirror mode, the sender rank sends its message to both the main and the replica rank, and

conversely a receiver posts a receipt to both the main and the replica sender. This pattern

is depicted in Figure 26. To support all possible MPI communications, there is special care

needed to handle MPI functions, which will be discussed later in the implementation details.

This protocol makes error recovery simple but increases the network bandwidth requirements

at each rank.

In parallel mode, the replicas only communicate with the other replica ranks and the

main ranks only communicate with other main ranks, depicted in Figure 27. In the event of

failure, the non-failed rank begins communicating with the mains and the replicas, effectively

switching the failed rank to a “mirrored” mode of operation after failure. A single failure

case is depicted in Figure 28. This protocol uses less individual node bandwidth because

messages are only sent within their own family of ranks. However, failures must be detected

in order to know when to switch into failure recovery mode. This requires additional “short”
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Figure 26: Depiction of communication messages when using mirror consistency protocol.

messages to be sent either between the main and replica ranks or a Reliability, Availability,

and Serviceability (RAS) system to detect node failures. Additionally, when a replica rank

is promoted due to failure, it must catch up to its faster running main counterparts.

SrMPI does not implement a passive protocol, but there are two different ways that it

could be implemented: either the main is responsible for pushing messages to the replica, or

the main can wait for receive requests from the replica. This difference is depicted in Figure

6.2.1

6.3 DETAILS OF SRMPI

The SrMPI library is implemented as a profiling library on top of OpenMPI. The first

step in the implementation was to modify all collective operations to use point-to-point

communication primitives directly. To do this we implemented optimized versions of each

collective operation supported in MPI. We did this so that replication could be implemented

solely in the point-to-point operations. Next, each point-to-point primitive function was

modified to support communication with the replica ranks following the consistency protocols
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discussed earlier. Special care is also necessary to support MPI topologies, specifically,

Cartesian topology used in MPI applications in the testing testing environment.

When SrMPI is enabled, the MPI Init() function divides the available ranks into two

different sets: main and replica ranks. From the applications perspective, MPI COMM WORLD

is cut in half and all associated functions such as MPI Comm size() and MPI Comm rank()

are modified to return the proper rank and sizes. After the MPI Init() function, the map

between main and replica ranks is fixed and available on each rank. By default, the main

ranks are the lower half of the rank-space; however, this mapping can be overwritten using

a configuration file or environment variables.

Collective operations are written using the point-to-point communication functions; there-

fore, the implementation only needs to concern itself with the consistency of the point-to-

point functions. In mirror mode, each send and receive is posted twice - once to the main

and once to the replica. However, we return MPI SUCCESS when either one is successfully

returned, both to ease failure recovery and because the replicas will be executing at a re-

duced speed. In parallel mode, the send and receive only sends their messages to their

“rank-family” - either the main set or the replica set.

The implementation assumes application non-determinism can only occur during the
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and a main failure occurs.

MPI calls and that the application themselves are deterministic. If this was not the case,

then application replication would not be possible. The only MPI operations that can result

in non-deterministic behavior are non-blocking operations, wildcard receive operations, and

MPI Wtime(). To handle these cases, SrMPI assumes the main rank is always the leader

rank and determines the outcome of these operations. If the main node fails then the

implementation can simply use the result of the replica rank.

For non-blocking receives and sends, which are widely used in MPI applications and

collectives, SrMPI must provide mapping between the application request pointers and the

multiple requests being maintained by SrMPI. To achieve this behavior MPI Wait() and

MPI Test() functions are modified to translate between the actual request pointers and

those handled by application. Additionally, in mirror mode the application is allowed to

continue once either the main or replica rank has responded. This greatly simplifies fault

recovery because the implementation largely stays consistent even in the presence of failures,

with wildcard receives as a notable exception.

The other concern is that messages must retain their message order. Because SrMPI

posts receives to both the main and the replica ranks a message could be received out of
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order. To ensure this does not happen, SrMPI makes use of an unused tag bit to distinguish

between messages received from main and replica ranks. This allows the receive functions

to guarantee order even if messages are interleaved between the main and replica ranks.

The MPI protocol allows for wildcard receives, using MPI ANY SOURCE or MPI ANY TAG.

To ensure consistency, the main and replica ranks must return the same message and SrMPI

must then coordinate this between the two ranks. To do so, the main node acts as a leader

node and determines which rank or tag will be used, and then informs the replica ranks

which message was selected. This requires additional messages to be passed between the

main the replica ranks. This poses some challenges when the replica node is running at a

reduced speed. In order to overcome this, the messages between the main and replica ranks

are performed asynchronously and rely upon the buffering already provided by MPI.

6.3.1 Execution Speed Control

SrMPI uses the findings of the analytical model to determine the execution speeds of the

shadow before failure. As discussed in detail in Section 3.3.7, we assume that the main

process always executes at the maximum execution speed. The analytical model provided
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a closed form solution for the energy optimal execution speed before failure based upon

the total amount of work, the node failure rate, and the laxity factor. The MPI layer

is unaware of the amount of work necessary, but production scheduling systems, such as

SLURM, requires the users to provide an estimated execution time when requesting batch

jobs. SrMPI assumes that access to this value is provided and can be used to determine the

amount of work necessary. The node failure rate and the laxity factor are then defined as

environment variables.

Each architecture will have different available execution speeds and methods for setting

and changing those speeds. SrMPI assumes that there is a specified API for both determining

available execution speeds and setting those speeds. Most systems have a specified set of

execution “gears” which use a combination of both frequency and voltage scaling to achieve

an execution speed. However, the analytical model outputs the execution speed in terms of

a percentage of the maximum execution speed and is continuous. To translate this into a

set of discrete gears, we determine the execution speed which most closely aligns with the

available execution gears but is never less than that given by the optimization.

When ranks are initialized, they set their execution speed appropriately, either maximum

execution speed for all main processes and the speed before failure for the replica ranks. Once

a failure in a main node is detected, the execution speed of the associated replica is increased

to the speed of the shadow after failure. In our case this is the maximum execution speed.

In multi-core environments SrMPI must know which core each rank is mapped to on the

individual ranks, because DVFS control is typically done on a per core basis. In OpenMPI

it is possible to specify the node/core mapping of ranks, and SrMPI relies upon this to

know which core is running each rank. In future implementations it would be possible to

determine this mapping dynamically, but for this implementation we assume a static mapping

is available.

6.3.2 Message Buffers

Within MPI implementations, all communications between ranks happen using a buffer to

post both sends and receives. By its very nature, a message is not received until a receive
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is explicitly posted to a message buffer. This is ideal for shadow replication because this

property allows messages to be posted to message queues and not actually consumed until the

process is ready to receive them. Because of this property, a rank executing at a slower speed

can receive messages from the faster execution ranks without blocking the faster process.

SrMPI exploits these buffers and uses them to buffer messages being queued at the slower

execution replica ranks. When the replica rank is ready to process the received message, the

rank can simply post a request for that given message.

In mirror mode, the replica process will be able to catch up quickly to the main processes

in the event of failure because duplicate messages will be waiting in the message buffer. By

contrast, in parallel mode, the replica process will have to wait until all messages are received

by the other replica processes.

6.3.3 Function Level Details

In this section we provide details for each function that was modified to accommodate SrMPI.

6.3.3.1 Send In mirror mode, this method sends the message to both the main and the

replica task. It then blocks until one of the two messages is successfully received. The other

send message remains active but non-blocking until either it is received or MPI Finalize()

is called, at which point all pending sends are canceled. If the message is sent from a replica

rank, an unused bit in the tag is modified in order to identify the message as coming from a

replica. This allows full ordering of the messages on the receive side. In parallel mode, this

method sends only one message to either the main or replica rank depending on from what

type of node it is being sent.

6.3.3.2 Recv If the source and tag are specified in mirror mode, this method posts

two receives: one for the main sender and one for the replica receiver. Once one has been

returned, the function returns success to the application. The other receive remains active

but non-blocking until it receives a matching message or MPI Finalize() is called, at which

point all pending receives are canceled. In parallel mode, this method only posts a receive
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request for the main or replica rank depending on the node type from which it was called.

If the source or tag is not specified and the main and the replica rank are still active,

the wildcard coordination protocol is invoked. In this protocol, the main is selected as the

leader and will first determine which source and/or tag is selected, after which time the main

will inform the replica of the selected source and/or tag. Subsequently the replica will post

a receive for the selected source and/or tag that the main has already received. Additional

details were presented in the implementation details.

6.3.3.3 iSend This method implements the same semantics of blocking send function ex-

cept instead of blocking, it returns a request pointer to the application. This request pointer

will then be used by the application in either the MPI Wait(), MPI Wait() or MPI Test()

functions to determine when one of the sends completes. Just as in the blocking version,

this version will return success when one of the sends completes, and the other send will stay

active until it succeeds or MPI Finalize() is called. Again, for parallel mode only one send

is posted.

6.3.3.4 iRecv This method implements the same semantics of the blocking receive func-

tion, except instead of blocking this method returns a request pointer. This request pointer

will then be used by the application in either the MPI Wait(), MPI Wait() or MPI Test()

functions to determine when one of the sends completes. Just as in the blocking version,

this version will return success when one of the receives completes, and the other send will

stay active until it succeeds or MPI Finalize() is called. Again, in parallel mode only one

receive is posted.

This function is further complicated when the source or tag is unspecified, although the

same semantics are implemented in the non-blocking version as were implemented in the

blocking version.

6.3.3.5 Test, Wait These functions were modified to use a modified request pointer that

the application is given by the non-blocking send and recv methods. This method then looks

up the actual request pointers which were issued by SrMPI and uses them to determine how
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to respond these functions while maintaining the MPI semantics.

6.3.3.6 Topology Functions These functions had to be modified because the number

of ranks and rank ordering is changed and managed by SrMPI. Specifically when creating

a Cartesian topology the ranks must be ordered consistently to ensure that any application

using these methods received consistent results.

6.4 EVALUATION OF IMPLEMENTATION
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Figure 30: Experimental results of the energy savings achieved by different replication

schemas, executing on 16 cores.

The purpose of these small-scale experiments is to demonstrate that the power-aware

replication techniques can provide measurable energy savings for actual HPC applications.
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Application Replication Method Energy Time to Solution

LAMMPS Traditional 1.000 14.0 min 0.0 sec
LAMMPS Stretched α = 1.5 0.678 14.0 min 37.0 sec
LAMMPS Shadow α = 1.5 0.617 18.0 min 56.0 sec

HPCCG Traditional 1.000 2.0 min 5.0 sec
HPCCG Stretched α = 1.5 0.942 2.0 min 11.0 sec
HPCCG Shadow α = 1.5 0.479 2.0 min 14.0

miniFe Traditional 1.000 1.0 min 42.0 sec
miniFe Stretched α = 1.5 0.756 2.0 min 10.0 sec
miniFe Shadow α = 1.5 0.485 2.0 min 9.0 sec

Table 8: Experimental data.

In Figure 30, the average total energy consumption of multiple application runs are shown

for each replication technique, normalized to the energy consumed by traditional replica-

tion. This shows that power-aware replication techniques reduce overall energy but also

demonstrates that the amount of savings is application dependent, as previous studies have

found [64]. HPCCG and miniFe show the maximum energy savings. This is because they are

simple applications that are processor bound. Looking at LAMMPS, which is a production

application, one can see that the energy savings follows the same trend but also that the

amount of energy saved is less than for the mini-applications. While it is hard to predict

exactly what the energy savings will be, it is clear that our proposed techniques have the

potential to save energy.

In Table 8 we present the energy consumption normalized to the pure replication en-

ergy and the corresponding time to solution of each of our configurations. Determining the

execution speeds based upon α is not that accurate. As previous studies [64] have shown,

applications are affected differently by CPU scaling. In LAMMPS, reducing the processor

speed by a third had very little effect on the time to solution for the application. By contrast,

shadow replication causes LAMMPS to slow down significantly. We believe this is because

LAMMPS makes use of ANY SOURCE receives, which causes a blocking dependency be-

tween the main and shadow processes, slowing down the overall execution.

To confirm our assumptions about overhead power, we looked at the component level

energy usage over runs of real applications. In Figure 31 we show the percentage of energy
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Figure 31: Component level energy usage for LAMMPS

consumption by component for multiple runs of the LAMMPS application. The first chart

is the energy consumed when running LAMMPS at the lowest possible execution speed. In

this case, the CPU consumes 40% of the overall energy. The second chart shows the energy

consumption when running at full power and the CPU consuming 71% of the overall energy.

From this, the estimated amount of overhead power is 67%. We observed a similar pattern

for other applications, concluding that overhead power in our system is 60-67%.

6.5 SUMMARY OF MPI IMPLEMENTATION

By implementing shadow replication within MPI, this chapter has confirmed its feasiblity to

provide fault tolerance in high performance computing. Additionally, this chapter discusses

some challenges faced within the MPI middle-ware and how they were overcome in this

implementation. To demonstrate the prototype implementation this chapter presents the

energy savings achieved using SrMPI using an actual HPC workload.
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7.0 CONCLUSION AND FUTURE WORK

The main goal of this thesis is to explore the possibility of building a fault tolerant model

for future exascale-class systems that is more energy efficient than existing fault tolerance

models. To achieve this goal, shadow replication a power-aware fault tolerant computational

model for failure-prone, power-constrained exascale HPC environments is developed. Using

analytical models and simulation studies, the ability of shadow replication to conserve en-

ergy in power-constrained environments, while meeting the time to solution requirements,

has been demonstrated. Furthermore, the practicality of shadow replication is demonstrated

thorough the implementation of this fault tolerant computation model in the Message Passing

Interface (MPI), a widely used middle-ware for process communication and synchronization

in HPC environments. The insights gained in developing shadow replication paved the way

to an easily implementable, power-ware technique that when incorporated into coordinated

checkpointing fault-tolerant models, leads to energy savings in today’s systems. The ex-

perimental results show that the levels of energy savings achieved by these methods could

be significant. This final chapter will summarize the contributions of this dissertation and

discuss possible future work.

7.1 CONTRIBUTIONS

The research work presented in this thesis, backed by analytical and experimental results,

proves the feasibility of the a power-aware tolerant model, shadow replication, that can

achieve substantial levels of energy savings, while providing the same level of performance

and resilience, in terms of adhering to time to solution requirements and power constraints.
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The implementation of shadow replication in MPI further demonstrates how this model can

be incorporated in the most commonly used fault tolerant middle-ware in HPC environments.

The experimental studies carried out in this thesis demonstrate significant levels of achievable

energy savings in power-constrained HPC environments. The major contributions of this

work are discussed below:

Computational Model for Shadow Replication . In order to investigate the behav-

iors of shadow replication, a computational model was defined and the possible techniques to

minimize energy consumption were explored using this model. The resulting model defines a

duplex system, where two processes execute the same computation, with the main/primary

process executing at a higher execution speed than the replica/shadow process. Upon failure

of the main process, the shadow process increases its execution speed in order to achieve

the targeted response time of the task. The potential power savings achieved by the model,

are a direct result of executing the shadow process at a slower speed; consequently, shadow

replication consumes less power than traditional replication. The hypothesis is that this com-

putational model would be more energy efficient than replication and traditional rollback-

recovery methods, especially in future exascale environments where system failure rates are

expected to be high.

Analytical Energy Models for Fault Tolerant Mechanisms. In order to evaluate

the energy consumption of shadow replication, we developed an analytical model for both

replication and coordinated checkpointing. An analytical framework is developed, assuming

an exponential failure model, to compute the expected energy consumption of fault toler-

ance models.The replication model is flexible enough to describe a variety of replication

techniques, including shadow replication, stretched replication, and traditional replication.

Using Daly’s model [23] for estimating time to solution for coordinated checkpointing, we

define an expected energy model.

Analytical and Simulation Analysis of Energy Consumption. The original ana-

lytical model was focused on deriving the speeds of execution of the main and its associated

shadow, both before and after failure. The objective is to gain understanding of the basic

behavior of the model and determine the challenges and research directions that must be

addressed for a practically feasible, easily implementable model in exascale systems. As
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such, the original model does not fully capture the communication intricacies of exascale

applications. Unfortunately, augmenting the original model to account for the complexity

of communication patterns and requirements in HPC environments makes the model math-

ematically intractable. To accurately capture the different types of communication patterns

in HPC environments, a simulator was built to emulate three types of communication depen-

dency behaviors, namely no communication, barrier dependency and full dependency. Using

the simulator, a study was carried out to measure the levels of energy savings achievable by

shadow replication. The analysis shows that, depending upon the application and system

characteristics, shadow replication has the ability to save 2-47% of the energy consumed by

applications in power limited environments.

MPI Implementation of Shadow Replication. In order to prove that shadow repli-

cation is feasible in high performance environments, we then presented a prototype im-

plementation in the message passing interface (MPI), which we called SrMPI. The thesis

presents details of the implementation and discusses the challenges that needed to be over-

come during implementation. Selected small-scale experimental results were presented using

SrMPI, demonstrating its potential to save energy in the non-failure case.

In the Apendix is the related contribution of exploring the power analysis of check-

pointing techniques. In this section, we present component-level power data for coordinated

checkpointing and suggestions for how to save energy during the writing and restoring of

checkpoints. This analysis shows that during IO bound operations there is the potential

to reduce the energy consumption by reducing the frequency and/or voltage of the CPU

using dynamic voltage/frequency scaling (DVFS). This analysis also discusses the interplay

between the processor and the interconnect framework providing the stable storage being

used by coordinated checkpointing.

7.2 FUTURE WORK

Expanded Computational Models. This thesis has provided justification for the fact

that power-aware fault tolerance methods can not only save energy but might also provide
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faster time to solutions. However, while shadow replication shows promising energy savings

in exascale-class systems, the optimality of such a model for different failure models and

communication patterns is yet to be proven. The model presented in this thesis showed that

cascading delay can result from successive process failures, leading to adverse performance

implications. Additional research is required to develop models to overcome cascading delays

and continue to provide energy savings.

Jumping Shadows. Due to the reduced speed of the replicas, one concern is the

growth of the message queues between the replica and the main process. The rate of growth

depends upon the application message rate, as shown in Section 4.1.4. One possible solution

to limit the message log growth, is to synchronize the shadow processes such that message

buffers are flushed before they reach their capacity. This would require either monitoring

of message buffers or the development of a predetermined schedule which would drive the

main process to synchronize with its associated shadows processes, and allowing shadows to

“jump” to the current main execution point. By copying the state of the main process to

all the shadow processes, buffer overflow can be prevents, while maintaining the same level

of fault tolerance. This is similar to independent checkpoints, which has been proposed in

uncoordinated checkpointing, and could potentially making “jumping shadows” a general

solution to the message log growth problem. Another approach would draw upon existing

methods used to address the message log problem in uncoordinated checkpointing, such as

send-determinism [45].

Shadow Replication in Cloud Computing. One of the hallmarks of the cloud

computing environment is its support of decoupled applications, which allows massive paral-

lelism. This is ideal for tasks requiring timely, but not necessarily precise, responses such as

indexing content and providing shopping suggestions. The inherent laxity in precision allows

massively parallel applications to continue to respond in the face of failures and other system

events. As these solutions are applied to applications traditionally dominated by centralized

database servers, such as medical analysis and banking, higher accuracy and precision may

be needed, while still achieving fast responses. This will result in tightly coupled real-time

applications being executed in the inherently unreliable cloud environments, which is similar

to those found in HPC environments. Applying shadow replication to cloud environments
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has the promise of being able to demonstrate the same energy savings we have seen in this

thesis. Our group has already began to explore shadow replication in the cloud; however,

additional work is still necessary to conclusively demonstrate its merit [21].

Interplay between Fault Tolerance and Power. This thesis presents additional evi-

dence that addressing fault tolerance and power management in tandem results in more effi-

cient designs both in future systems and production systems executing code today. Through

the literature review we have found that very little is known about the interplay between

resilience, faults, power, and energy, especially in large-scale distributed systems. While this

is a broad area of research, it is believed that through understanding the intricacies of these

relationships new models for resilience and power management will become apparent.

QoS-based Resilience. In this thesis we proposed using available slack in time to dy-

namically trade off the hardware and power resources necessary to provide fault tolerance.

In a broader sense, target time to solution is simply a way of defining a required quality

of service (QoS) for the application. Using this reasoning it would be possible to use other

metrics of application QoS to provide the necessary “slack” to achieve fault tolerance. HPC

Applications often have the ability to adjust the fidelity of their results, such as the granu-

larity of a simulation or the precision of convergence. If the fault tolerance system had the

ability to adjust the applications fidelity at runtime, it could harness that leverage to create

“slack” while meeting the applications defined QoS in faulty environments.

To accomplish, this we are proposing a new computational model, called shadow com-

puting, which provides goal-based adaptive execution to meet the requirements of complex

applications executing within complex systems. Adaptive execution is the ability of the sys-

tem to dynamically harness all available resources to achieve the highest level of QoS for a

given application. Additionally, the application will have the ability to adjust the quality of

its results at runtime and the system could do so to be able to provide fault tolerance while

meeting the applications stated QoS. Similar to shadow replication fault tolerance would be

provided by using shadow processes but instead of executing at reduced execution speed,

they would be executing at a reduced quality metric, such as fidelity. This technique has

some precedence in networking but to our knowledge has not be explored in the context of

distributed systems.
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Mobile Distributed Computing Environment. As processing power continues to

increase on mobile devices, there will be an opportunity to perform computations in a cluster

of mobile nodes. This ushers in an extreme version of moving the computation to the data, in

which the nodes collecting the data would collaborate with one another, in physical proximity,

to perform complex computations that any single node would be unable to complete by

itself. Such an environment would be plagued with reliability concerns and will require new

programming models and systems software to provide overall system resilience to deliver the

required QoS to supported applications. We believe that shadow computing has potential to

provide fault tolerance in such environments.
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APPENDIX

POWER MEASUREMENT OF CHECKPOINTING

In this thesis we have demonstrated that there are power-aware alternatives to check-

point/restart that should be considered for exascale-class machines. However, fault tolerance

in today’s large scale production systems continues to rely, almost exclusively, on coordinated

checkpoint/restart. This appendix will look closely at the energy and power consumption of

checkpoint/restart and investigate methods for reducing overall energy consumption without

changing the behavior of checkpoint/restart.

As previously discussed, during normal operation, checkpoint/restart (or rollback recov-

ery) protocols [31], periodically record the state of all application processes to stable storage

(the checkpoint stage). When a process fails, a new incarnation of the failed process is re-

covered from the most recent checkpoint (the restart phase). This limits the amount of lost

work to only that since the last checkpoint (the rework stage).

The prevalence of checkpoint/restart is due to a number of factors: historically failures

have been relatively rare events; applications are generally self-synchronizing; and application

state can be saved and restored much more quickly than a given system’s mean time to inter-

rupt (MTTI). All of these factors have kept the overheads of traditional checkpoint/restart

on current systems limited to a modest portion (currently perhaps 10-25%) of an applications

total time to solution. For future exascale-scale systems, a number of these assumptions may

change such that the overheads of traditional checkpoint/restart could become prohibitively

expensive [82, 35, 101].

Unreliable systems are nothing new. For example, ASCI White originally had a Mean
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Time Between Failure (MTBF) of only 5 hours [102]. This was subsequently improved to

approximently 50 hours. It is expected, however, that exascale-class systems will experience

failure rates significantly higher than those observed in the highest failure prone HPC sys-

tems to date. Worse than that, the methods to alleviate the impact of failures on system

performance, not only add overhead, but also increase power consumption. Figure 32 illus-

trates the problem: The time to checkpoint and restart increases exponentially with system

size. These are high-power operations and, therefore, energy consumption will also increase

at a much higher rate than the increase in number of sockets would suggest.

A number of recent studies show that general power consumption can be reduced during

writing of a checkpoint to stable storage [96, 74]. The CPU is the largest consumer of power

on an HPC node, but its power consumption can be controlled using Dynamic Voltage and

Frequency Scaling (DVFS). The prior work suggests that during the I/O intensive checkpoint

and restart operations, throttling the CPU can save power without impacting checkpoint

performance.

In this work, we build on previously published framework, examining component-level

power consumption to measure the energy cost of checkpoint operations to local SSD’s and

remote storage [65]. For remote operations, we compare the power consumption of IP and

RDMA, both over an InfiniBand network. With these baselines in place, we then use DVFS to

throttle CPU speed during checkpoint writes to measure the energy savings and performance

impact. We find that overall energy savings of 10% are possible with actual HPC workloads.

Furthermore, the choice of network protocol and local versus remote storage have important

energy consumption impacts that needs to be considered when designing fault tolerance

protocols that make use of hierarchical storage.

A.1 EXPERIMENTAL RESULTS

Before we present the results of this experimental study, we explain our experimental method-

ology and the framework used to carry out the study. We then measure the effect of lowering

the frequency and voltage of the CPU during a checkpoint write operation to local and re-
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Figure 32: Percent of wall-clock time spent in each coordinated checkpointing component

using a validated simulator [93]. Checkpoint commit time is 15 minutes, a value shown

seen on many extreme-scale systems [12, 39]; and a node MTBF of 15 years [101], using the

optimal checkpoint interval from Daly [22].
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P-state Volt Frequency

P0 1.363 3800
P1 1.288 3400
P2 1.200 2900
P3 1.075 2400
P4 0.963 1900
P5 0.925 1400

Table 9: Software visible power states for x86 cores on AMD K10-5800K.

mote storage. For remote I/O over InfiniBand, we switch between the IP and the Remote

Direct Memory Access (RDMA) protocol and evaluate each. We then repeat these three

experiments for two applications and analyze the results obtained in each case.

A.1.1 Methodology

We used DVFS to vary the CPU frequency and voltage during a checkpoint write to deter-

mine the potential energy savings available. Using DVFS, several different discrete “gears”

are available for CPU frequency; the specific “gears” that are available on the testbed hard-

ware and explored are listed in Table 9. We gathered component-level power consumption

data from several nodes; the data gathering was accomplished while writing checkpoints to

local and remote storage. For remote access, we used two NFS solutions: one using the

kernel network stack and the other using the IB RDMA interface.

A.1.2 Experimental Framework

We measured power consumption on a cluster with 104 nodes, each equipped with an AMD

Llano Fusion APU, which is a 4-core AMD K10 x86 paired with a 400-core Radeon HD

6550D. In the experiments, we only use the x86 cores, ignoring the available GPU. The CPU

frequency and voltage are modified using the powernow k8 kernel module. There are six

available gears ranging from a frequency of 3.8 GHz down to 1.4 GHz.

Component level power measurements of the CPU, memory, on-node SSD device, moth-

erboard and the Qlogic QDR InfiniBand HCA were performed using a custom designed
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Figure 33: Local SSD. Component level power profile during a coordinated checkpoint of

HPCCG in a 4-node cluster using 16 processes, each process checkpoint was approximately

1.5GB. The Time versus Energy plot shows the energy and time to complete the checkpoint

operation over 10 separate runs. Error bars represent standard deviation.

power measurement system. More detail about the system is available in [65].

We used LAMMPS [87], a molecular dynamics code, and HPCCG, a conjugate gradi-

ent solver from Sandia’s mantevo suite [97] as the MPI applications for the experiments.

These applications together expose a range of computational behaviors, ranging from mixed

IO and computing as exhibited by LAMMPS and compute intensive behavior typical of

HPCCG. LAMMPS is a production level code that is frequently run at very large scales on

U. S. Department of Energy leadership class systems, while HPCCG is a mini-app that is

representative of a real, finite element code. Both used Open MPI and the built-in BLCR [47]

support for checkpointing.

A.1.3 Local Checkpoint Power Profile

Checkpointing is an I/O intensive operation and previous work has indicated that CPU uti-

lization is low during a local checkpoint [96]. This section explores what energy savings may

be possible when checkpointing to a local SSD. Figure 33(a) shows the component level power

profile of 4 nodes running at full processor speed performing a local coordinated checkpoint.

As the processes pause their execution, a drop in the amount of power consumed by the CPU
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Figure 34: Remote SSD using IP over InfiniBand. Component level power profile during

a coordinated checkpoint of HPCCG in a 4-node cluster using 16 processes, each process

checkpoint was approximately 1.5GB. The Time versus Energy plot shows the energy and

time to complete the checkpoint operation over 10 separate runs. Error bars represent

standard deviation.
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Figure 35: Remote SSD using RDMA over InfiniBand. Component level power profile

during a coordinated checkpoint of HPCCG in a 4-node cluster using 16 processes, each

process checkpoint was approximately 1.5GB. The Time versus Energy plot shows the energy

and time to complete the checkpoint operation over 10 separate runs, error bars represent

standard deviation.
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occurs, even without modifying the operating voltage or frequency of the processor. This

initial result underscores the opportunity to save energy by reducing the clock frequency and

voltage of the processor.

Observe in Figure 33(a) that even though CPU power consumption drops during a check-

point, the CPU is still the dominant consumer of power. All other components consume less

than half the power consumed by the CPU. This makes CPU power an excellent candidate

for energy savings during checkpoints. SSD power consumption does increase during the

checkpoint, but it is not as promising a candidate for energy savings as the CPU as the

percentage of energy consumed by the SSD is far less than that of the CPU.

Figure 33(b) shows the result of checkpointing with the processor frequency set to

1.4 GHz, the lowest possible gear. Reducing the CPU frequency (and voltage) reduces

total energy consumption and smooths out power consumption during the checkpoint time.

During the I/O operation, there are times that the CPU is blocked in a busy loop waiting

for the I/O to complete. This polling for I/O completion can lead to small power spikes.

By reducing the CPU frequency, these spikes occur less frequently because the CPU is less

likely to block on I/O.

Reducing the CPU frequency during checkpoint causes the operation to take slightly

longer. In Figure 33(c), we compare the consumed energy during the checkpoint time and

the total execution time for the operation. We show the results for all 6 available voltage and

frequency gears in our environment. To compare both time and energy in the same figure,

we normalized the values to the highest measured. This figure confirms that during extended

local I/O operations, reducing the CPU power has little effect on the time to completion,

but can save up to 25% of the total energy.

These results are very encouraging, but for a checkpoint to be usable it must be stored

on a device that is failure independent of the node performing the computation. In practice

this means that writing a checkpoint also includes a network operation, to copy or stream

the checkpoint data to a network storage device. The next section will explore the power

profile of writing a checkpoint to a network device.
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A.1.4 Power Consumption by Network Type

Checkpoints are clearly I/O bound operations, and checkpointing to a remote location will

therefore be network intensive. CPU involvement in the network operations is highly de-

pendent upon both the software and hardware being utilized. If network operations require

significant CPU resources, reducing processor frequency can have a significant effect on the

time necessary to write a checkpoint. This will impact the potential energy savings for

checkpointing over a network. In order to study the effect of distributing checkpoints across

a network we chose to store checkpoints in neighboring compute nodes. Because this is

a coordinated checkpoint there should be no interference with the MPI application being

checkpointed. We tested two different network configurations using NFS: IP over InfiniBand

and RDMA over InfiniBand.

Both of the network configurations tested use InfiniBand network hardware. InfiniBand

networks can be implemented as an offloaded or onloaded, or partially onloaded and offloaded

solution. The results presented in this thesis measure energy consumption of a system with

a partially onloaded InfiniBand Qlogic host channel adapter (HCA). With a fully offloaded

InfiniBand HCA, such as those from Mellanox, the CPU utilization during the checkpoint

could reasonably be expected to be lower, and therefore greater savings may be possible.

A.1.4.1 IP over InfiniBand IP over InfiniBand (IPoIB) is a protocol that allows en-

capsulating IP packets for their transmission over InfiniBand network hardware [20]. This

requires mapping IP addresses to InfiniBand subnets that support IPoIB. The underlying

network driver/hardware is an InfiniBand HCA, which transmits the encapsulated packets

inside of native InfiniBand messages. IPoIB utilizes portions of the kernel IP networking

stack, and associated upper layer transports (e.g. TCP/UDP). Therefore, the performance

benefits of OS bypass is not available to IPoIB applications and CPU load is increased over

native IB. IPoIB therefore provides the convenience of a socket interface to an application

but with the drawback of a performance penalty.
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A.1.4.2 RDMA over InfiniBand Remote Direct Memory Access (RDMA) is a key

feature of InfiniBand networks. It allows for a source node to transmit data directly into

a target node’s memory. There are two methods for performing RDMA. The send/recv

method uses target side “recv” queue (RQ) entries that are matched to incoming messages.

These RQ entries indicate where a given message should be placed in memory, which can be

an application’s buffer, avoiding any intermediary copies that would otherwise be performed

in a typical kernel network transport communication.

The other method of performing RDMA is the Write/Read approach, which has the

source node include all of the information on where the data is to be placed in the target

node’s memory. This requires that the source node has knowledge of the target node’s mem-

ory, including what areas are designated for that source node’s messages. This is typically

accomplished through an exchange of data prior to RDMA communication, or through buffer

advertisement while communication is ongoing.

RDMA can provide very low latency networking, and small message RDMA operations

can have sub-microsecond latencies, while large messages can have very high throughput.

A.1.4.3 Remote Checkpoint Power Profile Figure 34 shows the power profile of

writing a checkpoint over a network using IP over InfiniBand. When executing the check-

point at full speed there is significantly more CPU activity than that observed for local SSD

checkpoints (Figure 33). This increased CPU utilization is due to the network stack process-

ing required by our onloaded InfiniBand hardware. Reducing the CPU speed reduces the

energy consumption significantly while even potentially increasing checkpoint performance.

This result is encouraging and shows that reducing CPU power can result in energy sav-

ings with little additional overhead, and in the case where resource contention was causing

slowdown, actually increase checkpoint efficiency.

It would be reasonable to expect that a local SSD checkpoint would be faster than a

network operation, however we consistently saw full speed IP over InfiniBand and RDMA

outperform local SSD writes, albeit only by a small amount. The reason for this unexpected

result is the buffering behavior of NFS. Due to it’s write buffers, NFS reports to the client that

the write operation is complete as soon as the entire message has been buffered at the server.
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The actual write to disk then finishes, allowing the client to proceed with computation. This

results in the network copy appearing to be slightly faster than the local SSD write, as

local SSD write-caching is not available in the Linux kernel we used for testing. As can be

observed in 34(c), reducing the CPU power during checkpoint operation can save 50% of

the consumed energy. Further research is necessary to determine the impact that the NFS

buffered writes might have upon energy and time to solution.

In contrast, Figure 35(a) shows a near constant use of the CPU during the RDMA

network transfer. Although, in principle, RDMA is OS bypass and can be offloaded, our

interface cards make heavy use of the CPU during RDMA transmission. With an un-

throttled CPU, the transmission is slightly faster than IPoIB. Reducing the CPU speed we

observe that RDMA takes significantly longer than it did at 3.8 GHz. Figure 35(c) shows

that while we can save 15% of the energy, this causes the checkpoint time to nearly double.

A.1.5 Checkpoint Energy over Application Execution

In the previous sections we examined the power profile of a single checkpoint event during

the execution of HPCCG. In this section, we look at the power profile over three checkpoints

taken during a run of LAMMPS using the Lennard-Jones workload.

Figure 37(a) shows the power profile of LAMMPS when the three checkpoints go to

the local SSD. During the local checkpoints, the CPU power consumption is considerably

reduced. However, when writing remote checkpoints, shown in Figure 38(a) and 39(a), the

CPU power is much higher during these times. With reduced CPU frequency shown in

Figures 37(b), 38(b) and 39(b), we see a drop in power consumption and an increase in

execution time, particularly for the off-node operations.

By focusing on the checkpoint event itself in previous experiments, we were able to draw

some conclusions regarding the use of DVFS during those events. However, when evaluating

the energy and time to solution we found that the variance of the application runtime was

too high to draw any conclusions. This was unexpected as LAMMPS typically has very

little variance in execution time. Further investigation determined that the variance was

introduced by a helper thread for Open MPI’s BLCR support. Figure 36 shows the effect of
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Figure 36: Time to solution and energy consumed for LAMMPS using different configura-

tions. These experiments are ran using Open MPI 1.3.4.
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BLCR support in Open MPI on LAMMPS runtimes, even when no checkpoints are taken.

The amount of variance is further magnified when checkpoints are actually written.

This is because the time to coordinate the checkpoint is dependent upon how far into the

application execution it is requested. The variance introduced by Open MPI BLCR support

moves this request from run to run and obscures conclusions. Therefore, we do not show

energy graphs for the overall application run.

We can, however, conclude from the power profiles that the behavior during the check-

point event is the same even when executing multiple checkpoints over the execution of the

application. Because these profiles show a similar behavior to that found in the HPCCG

experiments, energy savings are expected for the overall application execution. Future work

must address the variance introduced by the checkpointing support in Open MPI to be able

to confirm this conclusion.

A.2 CONCLUSTIONS OF POWER MEASUREMENT OF

CHECKPOINTING

This chapter demonstrates there is potential for realizing energy reduction during check-

pointing events using DVFS – all while having little to no impact on checkpointing per-

formance. More specifically, we show a maximum 50% energy savings by throttling CPU

power consumption during I/O intensive checkpoint operations. Given that these check-

point operations can consume 20% of an applications total runtime (see Figure 32), this

leads to a possible 10% total application energy savings from DVFS with checkpointing. We

also show that this potential is highly dependent upon the network characteristics. For the

Qlogic InfiniBand cards in our test cluster, the opportunity to save energy is small compared

to the benefits seen committing checkpoints to local storage due to network onload versus

offload issues. The onloaded interface used showed IPoIB, while slower than RDMA, has

greater potential to save energy during large I/O operations. The result of our experimental

study, the first of its kind to explore DVFS techniques using IP over InfiniBand and RDMA

during checkpoint operations, is in conflict with general conclusions reported in existing lit-
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erature [?]. In these studies the focus has either been on experimental data of a single node

or used analytical models to study multiple nodes without capturing network behavior.

Understanding the potential energy savings during checkpointing periods as well as the

interplay between CPU performance and checkpoint commit speed provides the building

blocks for future power-aware checkpointing research. In a broader scope, this work demon-

strates that checkpoint events can involve significant amounts of CPU usage depending on

the system configuration. We believe this finding could have potential impact on the per-

formance of recently suggested staged checkpoints, in which checkpoints are written locally

then copied over the network while the application continues to execute. If one has a system

in which the CPU is heavily involved, the copy operation will be slower than expected and

will likely interfere significantly with application progress.

Going forward, we will explore energy savings using a fully offloaded InfiniBand network

card. We believe the energy savings possible will more closely match those found in the local

checkpoint case. We also plan on exploring the use of more traditional parallel file systems in

addition to our local storage system presented in this paper. Additionally, we are exploring

energy optimizations in other parts of rollback/recovery; for example, the restart and rework

phases. Lastly, we plan to explore different checkpoint methods, including uncoordinated

checkpointing. Our hypothesis is that uncoordinated checkpointing will benefit from these

techniques. However, due to the lack of coordination, the performance implications are not

clear.
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Figure 37: Local SSD. Component level power profile during three coordinated checkpoints

of a LAMMPS application run within a 4-node cluster using 16 processes, each process

checkpoint is approximately 700MB.
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Figure 38: Remote SSD using IP over InfiniBand. Component level power profile during

three coordinated checkpoints of a LAMMPS application run within a 4-node cluster using

16 processes, each process checkpoint is approximately 700MB.
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Figure 39: Remote SSD using RDMA over InfiniBand. Component level power profile during

three coordinated checkpoints of a LAMMPS application run within a 4-node cluster using

16 processes, each process checkpoint is approximately 700MB.
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