4 research outputs found

    Adopting Scenario-Based approach to solve optimal reactive power Dispatch problem with integration of wind and solar energy using improved Marine predator algorithm

    Get PDF
    The penetration of renewable energy resources into electric power networks has been increased considerably to reduce the dependence of conventional energy resources, reducing the generation cost and greenhouse emissions. The wind and photovoltaic (PV) based systems are the most applied technologies in electrical systems compared to other technologies of renewable energy resources. However, there are some complications and challenges to incorporating these resources due to their stochastic nature, intermittency, and variability of output powers. Therefore, solving the optimal reactive power dispatch (ORPD) problem with considering the uncertainties of renewable energy resources is a challenging task. Application of the Marine Predators Algorithm (MPA) for solving complex multimodal and non-linear problems such as ORPD under system uncertainties may cause entrapment into local optima and suffer from stagnation. The aim of this paper is to solve the ORPD problem under deterministic and probabilistic states of the system using an improved marine predator algorithm (IMPA). The IMPA is based on enhancing the exploitation phase of the conventional MPA. The proposed enhancement is based on updating the locations of the populations in spiral orientation around the sorted populations in the first iteration process, while in the final stage, the locations of the populations are updated their locations in adaptive steps closed to the best population only. The scenario-based approach is utilized for uncertainties representation where a set of scenarios are generated with the combination of uncertainties the load demands and power of the renewable resources. The proposed algorithm is validated and tested on the IEEE 30-bus system as well as the captured results are compared with those outcomes from the state-of-the-art algorithms. A computational study shows the superiority of the proposed algorithm over the other reported algorithms

    Reactive Power Optimization and Price Management in Microgrid Enabled with Blockchain

    No full text
    The energy market is gradually changing from centralized trading to peer-to-peer trading due to the tremendous increase in a microgrid with green energy resources. When more generating units are included in the microgrid, the possibilities of more reactive power flows exist in the system that leads to high transmission loss which has to be optimized. The reactive power is one of the essential ancillary services in the microgrid towards preserving the voltage in the transmission and distribution line. The major contribution of the paper is towards managing the ancillary service in the distributed energy network economically and technically. This study aims to estimate and optimize the power loss, reactive power, and price management as well. Towards optimization, the self-balanced differential evolution algorithm (SBDE) is used in this study. A distribution system operator is involved in coordinating the sellers and buyers. The proposed layered microgrid architecture uses the blockchain technology for reactive power price management by providing transparency and security among peers. The process of converging various transactions into a block and adding in the distributed blockchain is illustrated. Multiple transactions are performed by using the proposed methodology, giving efficient energy transaction. The results show that the power loss is minimized using SBDE algorithm for different cases. Additionally, the study has demonstrated the price allocation of the optimal reactive power obtained from providers. The blockchain technology embedded in reactive power pricing will play a significant role in the evolution of traditional power distribution systems to active distribution networks

    Reparation of voltage disturbance using PR controller-based DVR in Modern power systems

    No full text
    The Smart Grid environment gives more benefits for the consumers, whereas the power quality is one of the challenging factors in the smart grid environment. To protect the system equipment and increase the reliability, different filter technologies are used. Even though, consumers’ expectations towards the power quality are not fulfilled. To overcome these drawbacks and enhance the system reliability, a new Custom Power Devices (CPD) are introduced in the system. Among different CPDs, the Dynamic Voltage Restorer (DVR) is one of the voltage compensating devices that is used to improve the power quality during distortions. When the distortions such as voltage swell and sag occur in the distribution system, the control strategy in the DVR plays a significant role. In this article, the DVR performance using Proportional Integral (PI), Proportional Resonant (PR) controllers are analyzed. A robust optimization algorithm called Self Balanced Differential Evolution (SBDE) is used to find the optimal gain values of the controllers in order to reach the target of global minimum error and obtain fast response. Then, a comparative analysis is performed between different controllers and verified that the performance of PR controller is superior than the other controllers. It has been found that the proposed PR controller strategy reduces the Total Harmonic Distortion (THD) values for all types of faults. The proposed SBDE optimized DVR with PR controller reduces the THD value less than 4% under voltage distoration condition. The DVR topology is validated in MATLAB/SIMULINK in order to detect the disturbance and inject the voltage to compensate the load voltage
    corecore