112 research outputs found

    Robust Transmission of Images Based on JPEG2000 Using Edge Information

    Get PDF
    In multimedia communication and data storage, compression of data is essential to speed up the transmission rate, minimize the use of channel bandwidth, and minimize storage space. JPEG2000 is the new standard for image compression for transmission and storage. The drawback of Compression is that compressed data are more vulnerable to channel noise during transmission. Previous techniques for error concealment are classified into three groups depending on the Approach employed by the encoder and decoder: Forward Error Concealment, Error Concealment by Post Processing and Interactive Error Concealment. The objective of this thesis is to develop a Concealment methodology that has the capability of both error detection and concealment, be Compatible with the JPEG2000 standard, and guarantees minimum use of channel bandwidth. A new methodology is developed to detect corrupted regions/coefficients in the received Images the edge information. The methodology requires transmission of edge information of wavelet coefficients of the original image along with JPEG2000 compressed image. At the receiver, the edge information of received wavelet coefficients is computed and compared with the received edge information of the original image to determine the corrupted coefficients. Three methods of concealment, each including a filter, are investigated to handle the corrupted regions/coefficients. MATLAB™ functions are developed that simulate channel noise, image transmission Using JPEG2000 standard and the proposed methodology. The objective quality measure such as Peak-signal-to-noise ratio (PSNR), root-mean-square error (rms) and subjective quality Measure are used to evaluate processed images. The simulation results are presented to demonstrate The performance of the proposed methodology. The results are also compared with recent approaches Found in the literature. Based on performance of the proposed approach, it is claimed that the Proposed approach can be successfully used in wireless and Internet communications

    Embedding Authentication and DistortionConcealment in Images – A Noisy Channel Perspective

    Get PDF
    In multimedia communication, compression of data is essential to improve transmission rate, and minimize storage space. At the same time, authentication of transmitted data is equally important to justify all these activities. The drawback of compression is that the compressed data are vulnerable to channel noise. In this paper, error concealment methodologies with ability of error detection and concealment are investigated for integration with image authentication in JPEG2000.The image authentication includes digital signature extraction and its diffusion as a watermark. To tackle noise, the error concealment technologies are modified to include edge information of the original image.This edge_image is transmitted along with JPEG2000 compressed image to determine corrupted coefficients and regions. The simulation results are conducted on test images for different values of bit error rate to judge confidence in noise reduction within the received images

    Optimized Scalable Image and Video Transmission for MIMO Wireless Channels

    Get PDF
    In this chapter, we focus on proposing new strategies to efficiently transfer a compressed image/video content through wireless links using a multiple antenna technology. The proposed solutions can be considered as application layer physical layer (APP-PHY) cross layer design methods as they involve optimizing both application and physical layers. After a wide state-of-the-art study, we present two main solutions. The first focuses on using a new precoding algorithm that takes into account the image/video content structure when assigning transmission powers. We showed that its results are better than the existing conventional precoders. Second, a link adaptation process is integrated to efficiently assign coding parameters as a function of the channel state. Simulations over a realistic channel environment show that the link adaptation activates a dynamic process that results in a good image/video reconstruction quality even if the channel is varying. Finally, we incorporated soft decoding algorithms at the receiver side, and we showed that they could induce further improvements. In fact, almost 5 dB peak signal-to-noise ratio (PSNR) improvements are demonstrated in the case of transmission over a Rayleigh channel

    LAR Image transmission over fading channels: a hierarchical protection solution

    Get PDF
    International audienceThe aim of this paper is to present an efficient scheme to transmit a compressed digital image over a non frequency selective Rayleigh fading channel. The proposed scheme is based on the Locally Adaptive Resolution (LAR) algorithm, and the Reed-Solomon error correcting code is used to protect the data against the channel errors. In order to optimize the protection rate and ensure better protection we introduce an Unequal Error Protection (UEP) strategy, where we take the hierarchy of the information into account. The digital communication system also includes appropriate interleaving and differential modulation. Simulation results clearly show that our scheme presents an efficient solution for image transmission over wireless channels, and provides a high quality of service, outperforming the JPWL scheme in high bit error rate conditions

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation

    A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral Images

    Get PDF
    Predictive coding is attractive for compression onboard of spacecrafts thanks to its low computational complexity, modest memory requirements and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation where the maximum error can be bounded but the rate of the compressed image is variable. Rate control is considered a challenging problem for predictive encoders due to the dependencies between quantization and prediction in the feedback loop, and the lack of a signal representation that packs the signal's energy into few coefficients. In this paper, we show that it is possible to design a rate control scheme intended for onboard implementation. In particular, we propose a general framework to select quantizers in each spatial and spectral region of an image so as to achieve the desired target rate while minimizing distortion. The rate control algorithm allows to achieve lossy, near-lossless compression, and any in-between type of compression, e.g., lossy compression with a near-lossless constraint. While this framework is independent of the specific predictor used, in order to show its performance, in this paper we tailor it to the predictor adopted by the CCSDS-123 lossless compression standard, obtaining an extension that allows to perform lossless, near-lossless and lossy compression in a single package. We show that the rate controller has excellent performance in terms of accuracy in the output rate, rate-distortion characteristics and is extremely competitive with respect to state-of-the-art transform coding

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    A Novel Rate-Controlled Predictive Coding Algorithm for Onboard Compression of Multispectral and Hyperspectral Images

    Get PDF
    Predictive compression has always been considered an attractive solution for onboard compression thanks to its low computational demands and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation where the maximum error can be bounded but the rate of the compressed image is variable. Fixed-rate is considered a challenging problem due to the dependencies between quantization and prediction in the feedback loop, and the lack of a signal representation that packs the signals energy into few coefficients as in the case of transform coding. In this paper, we show how it is possible to design a rate control algorithm suitable for onboard implementation by providing a general framework to select quantizers in each spatial and spectral region of the image and optimize the choice so that the desired rate is achieved with the best quality. In order to make the computational complexity suitable for onboard implementation, models are used to predict the rate-distortion characteristics of the prediction residuals in each image block. Such models are trained on-the-fly during the execution and small deviations in the output rate due to unmodeled behavior are automatically corrected as new data are acquired. The coupling of predictive coding and rate control allows the design of a single compression algorithm able to manage multiple encoding objectives. We tailor the proposed rate controller to the predictor defined by the CCSDS-123 lossless compression recommendation and study a new entropy coding stage based on the range coder in order to achieve an extension of the standard capable of managing all the following encoding objectives: lossless, variable-rate near-lossless (bounded maximum error), fixed-rate lossy (minimum average error), and any in-between case such as fixed-rate coding with a constraint on the maximum error. We show the performance of the proposed architecture on the CCSDS reference dataset for multispectral and hyperspectral image compression and compare it with state-of-the-art techniques based on transform coding such as the use of the CCSDS-122 Discrete Wavelet Transform encoder paired with the Pairwise Orthogonal Transform working in the spectral dimension. Remarkable results are observed by providing superior image quality both in terms of higher SNR and lower maximum error with respect to state-of-the-art transform coding
    corecore