5,020 research outputs found

    Fast, invariant representation for human action in the visual system

    Get PDF
    Humans can effortlessly recognize others' actions in the presence of complex transformations, such as changes in viewpoint. Several studies have located the regions in the brain involved in invariant action recognition, however, the underlying neural computations remain poorly understood. We use magnetoencephalography (MEG) decoding and a dataset of well-controlled, naturalistic videos of five actions (run, walk, jump, eat, drink) performed by different actors at different viewpoints to study the computational steps used to recognize actions across complex transformations. In particular, we ask when the brain discounts changes in 3D viewpoint relative to when it initially discriminates between actions. We measure the latency difference between invariant and non-invariant action decoding when subjects view full videos as well as form-depleted and motion-depleted stimuli. Our results show no difference in decoding latency or temporal profile between invariant and non-invariant action recognition in full videos. However, when either form or motion information is removed from the stimulus set, we observe a decrease and delay in invariant action decoding. Our results suggest that the brain recognizes actions and builds invariance to complex transformations at the same time, and that both form and motion information are crucial for fast, invariant action recognition

    A survey of visual preprocessing and shape representation techniques

    Get PDF
    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention)

    Neural codes for one’s own position and direction in a real-world “vista” environment

    Get PDF
    Humans, like animals, rely on an accurate knowledge of one’s spatial position and facing direction to keep orientated in the surrounding space. Although previous neuroimaging studies demonstrated that scene-selective regions (the parahippocampal place area or PPA, the occipital place area or OPA and the retrosplenial complex or RSC), and the hippocampus (HC) are implicated in coding position and facing direction within small-(room-sized) and large-scale navigational environments, little is known about how these regions represent these spatial quantities in a large open-field environment. Here, we used functional magnetic resonance imaging (fMRI) in humans to explore the neural codes of these navigationally-relevant information while participants viewed images which varied for position and facing direction within a familiar, real-world circular square. We observed neural adaptation for repeated directions in the HC, even if no navigational task was required. Further, we found that the amount of knowledge of the environment interacts with the PPA selectivity in encoding positions: individuals who needed more time to memorize positions in the square during a preliminary training task showed less neural attenuation in this scene-selective region. We also observed adaptation effects, which reflect the real distances between consecutive positions, in scene-selective regions but not in the HC. When examining the multi-voxel patterns of activity we observed that scene-responsive regions and the HC encoded both spatial information and that the RSC classification accuracy for positions was higher in individuals scoring higher to a self-reported questionnaire of spatial abilities. Our findings provide new insight into how the human brain represents a real, large-scale “vista” space, demonstrating the presence of neural codes for position and direction in both scene-selective and hippocampal regions, and revealing the existence, in the former regions, of a map-like spatial representation reflecting real-world distance between consecutive positions

    Slowness and Sparseness Lead to Place, Head-Direction, and Spatial-View Cells

    Get PDF
    We present a model for the self-organized formation of place cells, head-direction cells, and spatial-view cells in the hippocampal formation based on unsupervised learning on quasi-natural visual stimuli. The model comprises a hierarchy of Slow Feature Analysis (SFA) nodes, which were recently shown to reproduce many properties of complex cells in the early visual system. The system extracts a distributed grid-like representation of position and orientation, which is transcoded into a localized place-field, head-direction, or view representation, by sparse coding. The type of cells that develops depends solely on the relevant input statistics, i.e., the movement pattern of the simulated animal. The numerical simulations are complemented by a mathematical analysis that allows us to accurately predict the output of the top SFA laye

    Learning viewpoint invariant object representations using a temporal coherence principle

    Get PDF
    Invariant object recognition is arguably one of the major challenges for contemporary machine vision systems. In contrast, the mammalian visual system performs this task virtually effortlessly. How can we exploit our knowledge on the biological system to improve artificial systems? Our understanding of the mammalian early visual system has been augmented by the discovery that general coding principles could explain many aspects of neuronal response properties. How can such schemes be transferred to system level performance? In the present study we train cells on a particular variant of the general principle of temporal coherence, the "stability” objective. These cells are trained on unlabeled real-world images without a teaching signal. We show that after training, the cells form a representation that is largely independent of the viewpoint from which the stimulus is looked at. This finding includes generalization to previously unseen viewpoints. The achieved representation is better suited for view-point invariant object classification than the cells' input patterns. This property to facilitate view-point invariant classification is maintained even if training and classification take place in the presence of an - also unlabeled - distractor object. In summary, here we show that unsupervised learning using a general coding principle facilitates the classification of real-world objects, that are not segmented from the background and undergo complex, non-isomorphic, transformation

    Computational Models of Object Recognition in Cortex: A Review

    Get PDF
    Understanding how biological visual systems perform object recognition is one of the ultimate goals in computational neuroscience. Among the biological models of recognition the main distinctions are between feedforward and feedback and between object-centered and view-centered. From a computational viewpoint the different recognition tasks - for instance categorization and identification - are very similar, representing different trade-offs between specificity and invariance. Thus the different tasks do not strictly require different classes of models. The focus of the review is on feedforward, view-based models that are supported by psychophysical and physiological data
    corecore