40,412 research outputs found

    Selection of a data exchange format for industry 4.0 manufacturing systems

    Get PDF
    With the emergence of the Industry 4.0 concept, or the fourth industrial revolution, the industry is bearing witness to the appearance of more and more complex systems, often requiring the integration of various new heterogeneous, modular and intelligent elements with pre-existing legacy devices. This challenge of interoperability is one of the main concerns taken into account when designing such systems-of-systems, commonly requiring the use of standard interfaces to ensure this seamless integration. To aid in tackling this challenge, a common format for data exchange should be adopted. Thus, a study to select the foundations for the development of such a format is hereby presented, taking into account the specific needs of four different use cases representing varied key European industry sectors.info:eu-repo/semantics/publishedVersio

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    Towards building information modelling for existing structures

    Get PDF
    The transformation of cities from the industrial age (unsustainable) to the knowledge age (sustainable) is essentially a ‘whole life cycle’ process consisting of; planning, development, operation, reuse and renewal. During this transformation, a multi-disciplinary knowledge base, created from studies and research about the built environment aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc is critical. Although there are a growing number of applications of 3D VR modelling applications, some built environment applications such as disaster management, environmental simulations, computer aided architectural design and planning require more sophisticated models beyond 3D graphical visualization such as multifunctional, interoperable, intelligent, and multi-representational. Advanced digital mapping technologies such as 3D laser scanner technologies can be are enablers for effective e-planning, consultation and communication of users’ views during the planning, design, construction and lifecycle process of the built environment. For example, the 3D laser scanner enables digital documentation of buildings, sites and physical objects for reconstruction and restoration. It also facilitates the creation of educational resources within the built environment, as well as the reconstruction of the built environment. These technologies can be used to drive the productivity gains by promoting a free-flow of information between departments, divisions, offices, and sites; and between themselves, their contractors and partners when the data captured via those technologies are processed and modelled into BIM (Building Information Modelling). The use of these technologies is key enablers to the creation of new approaches to the ‘Whole Life Cycle’ process within the built and human environment for the 21st century. The paper describes the research towards Building Information Modelling for existing structures via the point cloud data captured by the 3D laser scanner technology. A case study building is elaborated to demonstrate how to produce 3D CAD models and BIM models of existing structures based on designated technique

    Evaluation of Cognitive Architectures for Cyber-Physical Production Systems

    Full text link
    Cyber-physical production systems (CPPS) integrate physical and computational resources due to increasingly available sensors and processing power. This enables the usage of data, to create additional benefit, such as condition monitoring or optimization. These capabilities can lead to cognition, such that the system is able to adapt independently to changing circumstances by learning from additional sensors information. Developing a reference architecture for the design of CPPS and standardization of machines and software interfaces is crucial to enable compatibility of data usage between different machine models and vendors. This paper analysis existing reference architecture regarding their cognitive abilities, based on requirements that are derived from three different use cases. The results from the evaluation of the reference architectures, which include two instances that stem from the field of cognitive science, reveal a gap in the applicability of the architectures regarding the generalizability and the level of abstraction. While reference architectures from the field of automation are suitable to address use case specific requirements, and do not address the general requirements, especially w.r.t. adaptability, the examples from the field of cognitive science are well usable to reach a high level of adaption and cognition. It is desirable to merge advantages of both classes of architectures to address challenges in the field of CPPS in Industrie 4.0

    Applications of thermal energy storage in the cement industry

    Get PDF
    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, established use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10 to the 13th power Btu/year, or an equivalent on investment of the proposed systems are an incentive for further development

    Leveraging Open-standard Interorganizational Information Systems for Process Adaptability and Alignment: An Empirical Analysis

    Get PDF
    PurposeThe purpose of this paper is to understand the value creation mechanisms of open-standard inter-organizational information system (OSIOS), which is a key technology to achieve Industry 4.0. Specifically, this study investigates how the internal assimilation and external diffusion of OSIOS help manufactures facilitate process adaptability and alignment in supply chain network.Design/methodology/approachA survey instrument was designed and administrated to collect data for this research. Using three-stage least squares estimation, the authors empirically tested a number of hypothesized relationships based on a sample of 308 manufacturing firms in China.FindingsThe results of the study show that OSIOS can perform as value creation mechanisms to enable process adaptability and alignment. In addition, the impact of OSIOS internal assimilation is inversely U-shaped where the positive effect on process adaptability will become negative after an extremum point is reached.Originality/valueThis study contributes to the existing literature by providing insights on how OSIOS can improve supply chain integration and thus promote the achievement of industry 4.0. By revealing a U-shaped relationship between OSIOS assimilation and process adaptability, this study fills previous research gap by advancing the understanding on the value creation mechanisms of information systems deployment

    Asset Administration Shell in Manufacturing: Applications and Relationship with Digital Twin

    Get PDF
    Within Industry 4.0 the communication between the physical and the cyber part of manufacturing system faces an ever-growing rise in complexity. The Asset Administration Shell (AAS) is an information framework, within Industry 4.0, that describes the technological features of an asset. It was created to present data and information in a structured and semantically defined format, allowing for interoperability. The work addresses the industrial implementation of AAS, where a systematic literature review has been carried out to investigate the features of the implemented AAS metamodel, and the tools used for the realization of the models. A study of the convergence present in literature between the AAS and Digital Twin (DT) has also been carried out. This paper presents a reference of AAS tools and information for industry practitioners, as well as suggestions for research gaps in the standardization of AAS information modelling. Copyright (C) 2022 The Authors

    Considerations for a design and operations knowledge support system for Space Station Freedom

    Get PDF
    Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF
    corecore