2,401 research outputs found

    Selection of Cluster Heads for Wireless Sensor Network in Ubiquitous Power Internet of Things

    Get PDF
    This paper designs a selection algorithm of cluster heads (CHs) in wireless sensor network (WSN) under the ubiquitous power Internet of Things (UPIoT), aiming to solve the network failure caused by premature death of WSN sensors and overcome the imbalance in energy consumption of sensors. The setting of the cluster head node helps to reduce the energy consumption of the nodes in the network, so the choice of cluster head is very important. The author firstly explains the low energy adaptive clustering hierarchy (LEACH) and the distance and energy based advanced LEACH (DEAL) protocol. Compared with the LEACH, the DEAL considers the remaining nodal energy and the sensor-sink distance. On this basis, the selectivity function-based CH selection (SF-CHs) algorithm was put forward to select CHs and optimize the clustering. Specifically, the choice of CHs was optimized by a selectivity function, which was established based on the remaining energy, number of neighbors, motion velocity and transmission environment of sensors. Meanwhile, a clustering function was constructed to optimize the clustering, eliminating extremely large or small clusters.Finally, the simulation proves that the DEAL protocol is more conducive to prolonging the life cycle of the sensor network. The SF-CHs algorithm can reduce the residual energy variance of nodes in the network, and the network failure time is later, which provides a way to improve the stability of the network and reduce energy loss

    Energy-Aware Clustering in the Internet of Things by Using the Genetic Algorithm

    Get PDF
    Internet of things (IoT) uses a lot of key technologies to collect different types of data around the world to make an intelligent and integrated whole. This concept can be as simple as a connection between a smartphone and a smart TV, or can be complex communications between the urban infrastructure and traffic monitoring systems. One of the most challenging issues in the IoT environment is how to make it scalable and energy-efficient with regard to its growing dimensions. Object clustering is a mechanism that increases scalability and provides energy efficiency by minimizing communication energy consumption. Since IoT is a large scale dynamic environment, clustering of its objects is a NP-Complete problem. This paper formulates energy-aware clustering of things as an optimization problem targeting an optimum point in which, the total consumed energy and communication cost are minimal. Then. it employs the Genetic Algorithm (GA) to solve this optimization problem by extracting the optimal number of clusters as well as the members of each cluster. In this paper, a multi objective GA for clustering that has not premature convergence problem is used. In addition, for fast GA execution multiple implementation, considerations has been measured. Moreover, the consumed energy for received and sent data, node to node and node to BS distance have been considered as effective parameters in energy consumption formulation. Numerical simulation results show the efficiency of this method in terms of the consumed energy, network lifetime, the number of dead nodes and load balancing

    Energy-efficient routing and secure communication in wireless sensor networks

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Wireless Sensor Networks (WSNs) consist of miniature sensor nodes deployed to gather vital information about an area of interest. The ability of these networks to monitor remote and hostile locations has attracted a significant amount of research over the past decade. As a result of this research, WSNs have found their presence in a variety of applications such as industrial automation, habitat monitoring, healthcare, military surveillance and transportation. These networks have the ability to operate in human-inaccessible terrains and collect data on an unprecedented scale. However, they experience various technical challenges at the time of deployment as well as operation. Most of these challenges emerge from the resource limitations such as battery power, storage, computation, and transmission range, imposed on the sensor nodes. Energy conservation is one of the key issues requiring proper consideration. The need for energy-efficient routing protocols to prolong the lifetime of these networks is very much required. Moreover, the operation of sensor nodes in an intimidating environment and the presence of error-prone communication links expose these networks to various security breaches. As a result, any designed routing protocol need to be robust and secure against one or more malicious attacks. This thesis aims to provide an effective solution for minimizing the energy consumption of the nodes. The energy utilization is reduced by using efficient techniques for cluster head selection. To achieve this objective, two different cluster-based hierarchical routing protocols are proposed. The selection of an optimal percentage of cluster heads reduces the energy consumption, enhances the quality of delivered data and prolongs the lifetime of a network. Apart from an optimal cluster head selection, energy consumption can also be reduced using efficient congestion detection and mitigation schemes. We propose an application-specific priority-based congestion control protocol for this purpose. The proposed protocol integrates mobility and heterogeneity of the nodes to detect congestion. Our proposed protocol uses a novel queue scheduling mechanism to achieve coverage fidelity, which ensures that the extra resources consumed by distant nodes are utilized effectively. Apart from energy conservation issue, this thesis also aims to provide a robust solution for Sybil attack detection in WSN. In Sybil attack, one or more malicious nodes forge multiple identities at a given time to exhaust network resources. These nodes are detected prior to cluster formation to prevent their forged identities from participating in cluster head selection. Only legitimate nodes are elected as cluster heads to enhance utilization of the resources. The proposed scheme requires collaboration of any two high energy nodes to analyse received signal strengths of neighbouring nodes. Moreover, the proposed scheme is applied to a forest wildfire monitoring application. It is crucial to detect Sybil attack in a wildfire monitoring application because these forged identities have the ability to transmit high false-negative alerts to an end user. The objective of these alerts is to divert the attention of an end user from those geographical regions which are highly vulnerable to a wildfire. Finally, we provide a lightweight and robust mutual authentication scheme for the real-world objects of an Internet of Thing. The presence of miniature sensor nodes at the core of each object literally means that lightweight, energy-efficient and highly secured schemes need to be designed for such objects. It is a payload-based encryption approach which uses a simple four way handshaking to verify the identities of the participating objects. Our scheme is computationally efficient, incurs less connection overhead and safeguard against various types of replay attacks

    Research Paper on Firefly Optimized Leach to Reduce Energy Consumption

    Get PDF
    The recent advances in information and communication technologies enable fast development and practical applications of wireless sensor networks (WSNs). The operation of the WSNs including sensing and communication tasks needs to be planned properly in order to achieve the application-specific objectives. The WSNs consist of a number of sensor nodes equipped with microprocessor, wireless transceiver, sensing components and energy source. These sensor nodes operate as autonomous devices to perform different tasks including sensing, communication and data processing. We made this protocol more efficient by using optimization algorithm to choose the cluster head optimally amongst all nodes in the cluster. A new evolutionary firefly Algorithm (FA) is used which is advanced than efficient PSO algorithm and more fast converging and accurate algorithm. We optimised the cluster head based on energy and distance from other neighboring nodes by this FA algorithm and achieves high residual energy than PSO optimised LEACH and conventional LEACH protocol for the same network parameters

    MANET Network in Internet of Things System

    Get PDF
    In the current world of technology, various physical things can be used for facilitation of a human work. That is why the Internet of Things,an innovative technology and a good solution which allows the connection of the physical things with the digital world through the use of heterogeneous networks and communication technologies, is used. The Internet of Things in smart environments interacts with wireless sensor network (WSN) and mobile adā€hoc network (MANET), making it even more attractive to the users and economically successful. Interaction between wireless sensor and mobile adā€hoc networks with the Internet of Things allows the creation of a new MANETā€IoT systems and ITā€based networks. Such the system gives the greater mobility for a user and reduces deployment costs of the network. However, at the same time it opens new challenging issues in its networking aspects as well. In this work, the authors propose a routing solution for the Internet of Things system using a combination of MANET protocols and WSN routing principles. The presented results of solution\u27s investigation provide an effective approach to efficient energy consumption in the global MANETā€IoT system. And that is a step forward to a reliable provision of services over global Future Internet infrastructure

    A Data Collecting Strategy for Farmland WSNs using a Mobile Sink

    Get PDF
    To the characteristics of large number of sensor nodes, wide area and unbalanced energy consumption in farmland Wireless Sensor Networks, an efficient data collection strategy (GCMS) based on grid clustering and a mobile sink is proposed. Firstly, cluster is divided based on virtual grid, and the cluster head is selected by considering node position and residual energy. Then, an optimal mobile path and residence time allocation mechanism for mobile sink are proposed. Finally, GCMS is simulated and compared with LEACH and GRDG. Simulation results show that GCMS can significantly prolong the network lifetime and increase the amount of data collection, especially suitable for large-scale farmland Wireless Sensor Networks

    Residual Energy Based Cluster-head Selection in WSNs for IoT Application

    Full text link
    Wireless sensor networks (WSN) groups specialized transducers that provide sensing services to Internet of Things (IoT) devices with limited energy and storage resources. Since replacement or recharging of batteries in sensor nodes is almost impossible, power consumption becomes one of the crucial design issues in WSN. Clustering algorithm plays an important role in power conservation for the energy constrained network. Choosing a cluster head can appropriately balance the load in the network thereby reducing energy consumption and enhancing lifetime. The paper focuses on an efficient cluster head election scheme that rotates the cluster head position among the nodes with higher energy level as compared to other. The algorithm considers initial energy, residual energy and an optimum value of cluster heads to elect the next group of cluster heads for the network that suits for IoT applications such as environmental monitoring, smart cities, and systems. Simulation analysis shows the modified version performs better than the LEACH protocol by enhancing the throughput by 60%, lifetime by 66%, and residual energy by 64%

    Research on Sensor Network Spectrum Detection Technology based on Cognitive Radio Network

    Get PDF
    With the bursting development of computer science and the hardware technology, Internet of Things and wireless sensor networks has been popularly studied in the community of engineering. Under the environment of Internet of Things, we carry out theoretical analysis and numerical simulation on the sensor network spectrum detection technology based on cognitive radio network. As a means of information and intelligence, information service system is an important research hotspot in the field of Internet of things. Wireless sensor network is composed of a large number of micro sensor nodes, which have the function of information collection, data processing, and wireless communication, characterized by the integration of wireless self-organization. However, most of the methodologies proposed by the other institutes are suffering form the high complexity while with the high time-consuming when processing information. Therefore, this study is to assess the economic feasibility of using the optimized multipath protocol availability and the increased bandwidth and several mobile operators through the use of cost-benefit analysis, single path selection model is to develop more path agreement to achieve better performance. To test the robustness, we compare our method with the other state-of-the-art approach in the simulation section and proves the effectiveness of our methodology. The experimental result reflected that our approach could achieve higher accuracy with low time-consuming when dealing with complex sources of information
    • ā€¦
    corecore