82 research outputs found

    A Reminiscence of ”Mastermind”: Iris/Periocular Biometrics by ”In-Set” CNN Iterative Analysis

    Get PDF
    Convolutional neural networks (CNNs) have emerged as the most popular classification models in biometrics research. Under the discriminative paradigm of pattern recognition, CNNs are used typically in one of two ways: 1) verification mode (”are samples from the same person?”), where pairs of images are provided to the network to distinguish between genuine and impostor instances; and 2) identification mode (”whom is this sample from?”), where appropriate feature representations that map images to identities are found. This paper postulates a novel mode for using CNNs in biometric identification, by learning models that answer to the question ”is the query’s identity among this set?”. The insight is a reminiscence of the classical Mastermind game: by iteratively analysing the network responses when multiple random samples of k gallery elements are compared to the query, we obtain weakly correlated matching scores that - altogether - provide solid cues to infer the most likely identity. In this setting, identification is regarded as a variable selection and regularization problem, with sparse linear regression techniques being used to infer the matching probability with respect to each gallery identity. As main strength, this strategy is highly robust to outlier matching scores, which are known to be a primary error source in biometric recognition. Our experiments were carried out in full versions of two well known irises near-infrared (CASIA-IrisV4-Thousand) and periocular visible wavelength (UBIRIS.v2) datasets, and confirm that recognition performance can be solidly boosted-up by the proposed algorithm, when compared to the traditional working modes of CNNs in biometrics.info:eu-repo/semantics/publishedVersio

    Periocular Region-Based Biometric Identification

    Get PDF
    As biometrics become more prevalent in society, the research area is expected to address an ever widening field of problems and conditions. Traditional biometric modalities and approaches are reaching a state of maturity, and their limits are clearly defined. Since the needs of a biometric system administrator might extend beyond those limits, new modalities and techniques must address such concerns. The goal of the work presented here is to explore the periocular region, the region surrounding the eye, and evaluate its usability and limitations in addressing these concerns. First, a study of the periocular region was performed to examine its feasibility in addressing problems that affect traditional face- and iris-based biometric systems. Second, the physical structure of the periocular region was analyzed to determine the kinds of features found there and how they influence the performance of a biometric recognition system. Third, the use of local appearance based approaches in periocular recognition was explored. Lastly, the knowledge gained from the previous experiments was used to develop a novel feature representation technique that is specific to the periocular region. This work is significant because it provides a novel analysis of the features found in the periocular region and produces a feature extraction method that resulted in higher recognition performance over traditional techniques

    Genetic And Evolutionary Biometrics:Multiobjective, Multimodal, Feature Selection/Weighting For Tightly Coupled Periocular And Face Recognition

    Get PDF
    The Genetic & Evolutionary Computation (GEC) research community has seen the emergence of a new subarea, referred to as Genetic & Evolutionary Biometrics (GEB), as GECs have been applied to solve a variety of biometric problems. In this dissertation, we present three new GEB techniques for multibiometric recognition: Genetic & Evolutionary Feature Selection (GEFeS), Weighting (GEFeW), and Weighting/Selection (GEFeWS). Instead of selecting the most salient individual features, these techniques evolve subsets of the most salient combinations of features and/or weight features based on their discriminative ability in an effort to increase accuracy while decreasing the overall number of features needed for recognition. We also incorporate cross validation into our best performing technique in an attempt to evolve feature masks (FMs) that also generalize well to unseen subjects and we search the value preference space in an attempt to analyze its impact in respect to optimization and generalization. Our results show that by fusing the periocular biometric with the face, we can achieve higher recognition accuracies than using the two biometric modalities independently. Our results also show that our GEB techniques are able to achieve higher recognition rates than the baseline methods, while using significantly fewer features. In addition, by incorporating machine learning, we were able to create FMs that also generalize well to unseen subjects and use less than 50% of the extracted features. Finally, by searching the value preference space, we were able to determine which weights were most effective in terms of optimization and generalization

    UFPR-Periocular: A Periocular Dataset Collected by Mobile Devices in Unconstrained Scenarios

    Full text link
    Recently, ocular biometrics in unconstrained environments using images obtained at visible wavelength have gained the researchers' attention, especially with images captured by mobile devices. Periocular recognition has been demonstrated to be an alternative when the iris trait is not available due to occlusions or low image resolution. However, the periocular trait does not have the high uniqueness presented in the iris trait. Thus, the use of datasets containing many subjects is essential to assess biometric systems' capacity to extract discriminating information from the periocular region. Also, to address the within-class variability caused by lighting and attributes in the periocular region, it is of paramount importance to use datasets with images of the same subject captured in distinct sessions. As the datasets available in the literature do not present all these factors, in this work, we present a new periocular dataset containing samples from 1,122 subjects, acquired in 3 sessions by 196 different mobile devices. The images were captured under unconstrained environments with just a single instruction to the participants: to place their eyes on a region of interest. We also performed an extensive benchmark with several Convolutional Neural Network (CNN) architectures and models that have been employed in state-of-the-art approaches based on Multi-class Classification, Multitask Learning, Pairwise Filters Network, and Siamese Network. The results achieved in the closed- and open-world protocol, considering the identification and verification tasks, show that this area still needs research and development

    One-Shot Learning for Periocular Recognition: Exploring the Effect of Domain Adaptation and Data Bias on Deep Representations

    Full text link
    One weakness of machine-learning algorithms is the need to train the models for a new task. This presents a specific challenge for biometric recognition due to the dynamic nature of databases and, in some instances, the reliance on subject collaboration for data collection. In this paper, we investigate the behavior of deep representations in widely used CNN models under extreme data scarcity for One-Shot periocular recognition, a biometric recognition task. We analyze the outputs of CNN layers as identity-representing feature vectors. We examine the impact of Domain Adaptation on the network layers' output for unseen data and evaluate the method's robustness concerning data normalization and generalization of the best-performing layer. We improved state-of-the-art results that made use of networks trained with biometric datasets with millions of images and fine-tuned for the target periocular dataset by utilizing out-of-the-box CNNs trained for the ImageNet Recognition Challenge and standard computer vision algorithms. For example, for the Cross-Eyed dataset, we could reduce the EER by 67% and 79% (from 1.70% and 3.41% to 0.56% and 0.71%) in the Close-World and Open-World protocols, respectively, for the periocular case. We also demonstrate that traditional algorithms like SIFT can outperform CNNs in situations with limited data or scenarios where the network has not been trained with the test classes like the Open-World mode. SIFT alone was able to reduce the EER by 64% and 71.6% (from 1.7% and 3.41% to 0.6% and 0.97%) for Cross-Eyed in the Close-World and Open-World protocols, respectively, and a reduction of 4.6% (from 3.94% to 3.76%) in the PolyU database for the Open-World and single biometric case.Comment: Submitted preprint to IEE Acces

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Multi-Order Statistical Descriptors for Real-Time Face Recognition and Object Classification

    Get PDF
    We propose novel multi-order statistical descriptors which can be used for high speed object classification or face recognition from videos or image sets. We represent each gallery set with a global second-order statistic which captures correlated global variations in all feature directions as well as the common set structure. A lightweight descriptor is then constructed by efficiently compacting the second-order statistic using Cholesky decomposition. We then enrich the descriptor with the first-order statistic of the gallery set to further enhance the representation power. By projecting the descriptor into a low-dimensional discriminant subspace, we obtain further dimensionality reduction, while the discrimination power of the proposed representation is still preserved. Therefore, our method represents a complex image set by a single descriptor having significantly reduced dimensionality. We apply the proposed algorithm on image set and video-based face and periocular biometric identification, object category recognition, and hand gesture recognition. Experiments on six benchmark data sets validate that the proposed method achieves significantly better classification accuracy with lower computational complexity than the existing techniques. The proposed compact representations can be used for real-time object classification and face recognition in videos. 2013 IEEE.This work was supported by NPRP through the Qatar National Research Fund (a member of Qatar Foundation) under Grant 7-1711-1-312.Scopu
    corecore